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Pulmonary arterial hypertension is a rare but terminal pulmonary vascular disease 

characterized by elevated pressure in the pulmonary circulation coupled with right 

ventricular hypertrophy and failure. This disease is up to four times more common in 

women—a striking sex difference that cannot be explained by the contributions of sex 

hormones alone. This dissertation is a compilation of the first work investigating the sex 

biasing contributions of sex chromosomes in pulmonary arterial hypertension. 

In Chapter 2, we use powerful mouse models to identify the male-specific Y chromosome 

confers protection against the development of experimental pulmonary hypertension. In 

Chapter 3, we use a combination of experimental models and bioinformatic approaches 

to identify the gene on the Y chromosome that protects males against the development 

of pulmonary hypertension and its downstream effector genes. We found the Y 
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chromosome gene Uty protects against the development of pulmonary hypertension by 

attenuating a proinflammatory lung response. Loss or lack of Uty gene expression results 

in an elevated inflammatory response that contributes detrimentally to disease severity. 

We identified two chemokines, Cxcl9 and Cxcl10, that are downstream of and inversely 

related to Uty as particularly harmful in pulmonary hypertension. We show that blocking 

their activity is sufficient to extend Y chromosome protection to females in a novel, 

preclinical therapy. In Chapter 4, we expand on our findings of downstream Uty effector 

genes and identify a sex-specific upregulation of Endothelin-2 that is linked to loss of Uty 

expression and elevated Cxcl9 and Cxcl10 levels. While the role of Endothelin-1 is known 

in pulmonary hypertension, the role of Endothelin-2, a proinflammatory and 

vasoconstrictive peptide, has not yet been studied. Our findings regarding Endothelin-2 

help explain a clinical sex difference in the efficacy of endothelin receptor antagonist 

therapies for pulmonary hypertension where females are more responsive to treatment.  

Taken together, this dissertation offers evidence of a powerful sex-biasing Y chromosome 

effect in pulmonary hypertension, elucidates novel therapeutic approaches for the 

treatment of this terminal disease, and serves as an example of the translational 

relevance in investigating sex differences in disease. While the studies presented provide 

the first insight into the role of sex chromosomes in pulmonary hypertension, they also 

provide a foundation for further examination which are highlighted here as future 

directions.   
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1. Pulmonary circulation  

The mammalian heart is composed of four chambers: two atria which act as reservoirs to 

receive blood entering the heart, and two ventricles which act as muscularized pumps to 

distribute blood out from the heart (Figure 1). The ventricles, which are separated 

longitudinally by an intraventricular septum (IVS), largely vary in their size and 

appearance due to the physiological demands imposed by the body. While the larger, 

muscularized left ventricle (LV) pumps oxygenated blood throughout the body via the high 

pressured systemic circulatory system, the much smaller, thin-walled right ventricle (RV) 

pumps deoxygenated blood throughout the lungs via the low pressured pulmonary 

circulatory system to allow for gas exchange to occur. Typically, the RV fills and contracts 

without significant dilation or impact on the overall pressure of the circulatory system as 

to not impede LV filling or function (1–3). To accomplish this, the RV maintains its shape 

and pressure while adapting to dynamic changes in the blood volume it receives from the 

vena cava. Since venous return is largely dependent on the metabolic demands of the 

body, the volume of blood the RV receives and overall cardiac output can change rapidly 

as a response to stress and exercise (4). The RV is able to comply with rapid changes in 

venous return and increased cardiac output without fluctuations in pressure pulmonary 

artery (PA) pressure due to adequate vascular compliance and pulmonary vascular 

resistance (PVR) (4, 5). Vascular compliance refers to the ability of an artery, in this case 

the PA, to expand and constrict to compensate for the change in the pressure and volume 

of blood. PVR, a measure of RV afterload, refers to the pressure gradient across the lungs 

as determined by the quantity and elasticity of the lung vasculature (1). In healthy 

circulation, pulmonary vascular compliance is relatively high while PVR is low allowing for  
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Figure 1. Schematic of pulmonary (small circulation) and systemic (great 

circulation) in the mammalian heart. Reprint from Shutterstock. 
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low pressure gas exchange to occur despite fluctuations in blood volume due to metabolic 

demands.  

Changes in pulmonary vascular compliance and PVR can result in increased PA pressure 

(PAP). Since the thin-walled RV is optimized for a low-pressure system, chronic increase 

in PA pressure leads to persistent increased RV afterload which can quickly progress to 

RV failure (5).  

 

2. Pulmonary hypertension 

Overview and prevalence  

PH is a rare but terminal disease that is increasing in prevalence worldwide (6). PH refers 

to an overarching classification of cardio-pulmonary diseases characterized by an 

increase in mean PAP (mPAP) above 20 mmHg at rest (7). Chronic increase in mPAP, 

as seen in patients with PH, results in sustained increased RV pressure which leads to 

compensatory RV hypertrophy (Figure 2). Rather quickly, the RV is unable to maintain 

increased pressures and decompensatory heart failure ensues resulting in RV dilation 

and failure. The diagnosis of PH includes right ventricular catheterization to measure 

pressure, although parameters of PH can also be estimated via noninvasive 

echocardiography.  

The classification of pulmonary hypertension is split into five groups based on shared 

pathophysiology, hemodynamics, and treatment strategies. Group 1 PH includes 

pulmonary arterial hypertension (PAH), Group 2 includes PH due to left heart disease, 

Group 3 includes PH due to lung disease and/or hypoxia, Group 4 includes PH due to  
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Figure 2. Overview of normal pulmonary circulation compared to pulmonary 

hypertension. Pulmonary hypertension is characterized by aberrant vasoconstriction of 

the pulmonary arterioles and increased pressure, hypertrophy, and failure of the right 

ventricle (RV). Adapted from Shutterstock.  
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pulmonary artery obstructions, and Group 5 includes PH due to unclear or multifactorial 

problems (7). The main focus of this dissertation is PAH which is classified as Group 1 

PH.  

Pulmonary arterial hypertension 

PAH is a pre-capillary form of PH hemodynamically characterized by an increase in 

mPAP > 20 mm Hg without elevation in a PA wedge pressure (PAWP), indicating high 

mPAP in the absence of elevated left atrial pressures (8). Thus, the increased mPAP 

indicative of PAH is primarily due to increased PVR within the lungs. Increased PVR 

associated with PAH is caused by vascular abnormalities mainly in the medial and distal 

arteries in the lungs (9). The source of these vascular abnormalities further subdivides 

PAH into groups based on pathogenesis. These groups include primary forms of PAH 

(idiopathic, heritable, drug/toxin induced PAH) as well as secondary forms of PAH (7).  

Unfortunately, there are between 500-1000 new cases of PAH diagnosed annually, and 

the median survival time is five to seven years following diagnosis (10, 11). Taken 

together, it is clear that investigation into the pathogenesis and treatment of PAH is of 

utmost importance.  

Histological and molecular signatures  

PAH is histologically characterized by aberrant vascular remodeling within the pulmonary 

arterioles. Types of vascular remodeling found in PAH patients varies and can include 

medial hypertrophy, neointimal formation, complex lesions, and loss or muscularization 

of distal arterioles (9). These histological processes result in stiffening, occlusion, and 

loss of pulmonary vasculature which contribute to the increased PVR and mPAP 
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indicative of PAH (Figure 2). The pathogenic vascular changes in PAH are triggered by 

a multitude of molecular processes that include, but are not limited to, vascular cell 

dysfunction and inflammation (Figure 3).  

While many cell types contribute to the healthy homeostasis of the pulmonary 

vasculature, the most common vascular cell types implicated in PAH include smooth 

muscle cells (SMCs) and endothelial cells (ECs). SMCs are muscularized cells found in 

the medial layer of arteries which provide vascular integrity and ability to modulate the 

diameter of vessels through vasoconstriction and vasodilation (Figure 2). SMCs exhibit 

excessive proliferation and hypertrophy resulting in thickening and stiffening of medial 

pulmonary arteries which are normally relatively thin-walled and compliant (9). 

Dysfunctional and hyperproliferative SMCs also migrate toward the intimal layer of the 

vessels in a process called neointimal formation which contributes to the narrowing and 

occlusion found in PAH (9). Dysfunctional ECs, which comprise the innermost intimal later 

within vessels, can also contribute to the aberrant muscularization and thickening within 

the distal pulmonary arterioles (9, 12). While distal arterioles normally lack a muscular 

SMC layer, dysfunctional ECs in PAH patients transition to a contractile SMC phenotype 

in a process called endothelial-to-mesenchymal transition which, in addition to EC 

swelling, contribute to narrowing of vessels (13, 14). Dysfunctional ECs found in PAH 

patient lung vasculature also contribute to disease severity through plexiform lesion 

formation as well as impaired angiogenesis and altered production of vasoconstrictive 

agents (Figure 2). Diseased ECs initially exhibit increased apoptosis which contributes 

to a reduced density of distal pulmonary arterioles within patients’ lung and an impaired 

angiogenic response to inefficient oxygen exchange. However, it is known that ECs that  
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Figure 3: Overview of the various pathological processes known to be associated 

with PAH development. Adapted from Sharma, et al., Pulm Circ. 2016 (15).  
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resist apoptosis in response to PAH are dysfunctional which results in increased 

expression of the potent vasoconstrictive peptide Endothelin-1 (ET-1) and the formation 

of plexiform lesions which are complex channels within the vascular lumen that impede 

blood flow (9, 12, 16–18).  

Taken together, the hyperproliferative state of SMCs and muscularization of ECs in 

contributes to increased PVR and increased PAP in PAH patients’ lungs through 

occlusion and stiffening of the medial and distal pulmonary vasculature. This is further 

compounded by increased expression of vasoconstrictive agents, such as ET-1, which 

are released by injured ECs. EC apoptosis and dysfunction also contribute to an overall 

loss of vascular density within the lungs of PAH patients and turbulent and disordered 

flow through the vasculature.  

PAH patients also exhibit dysregulation of inflammatory pathways, and lung inflammation 

is now thought to play a causal role in PAH development (19). Complex plexiform lesions, 

which are highly disorganized and remodeled vessels within PAH patient lungs, exhibit 

perivascular inflammation and increased infiltrate of immune cells particularly 

lymphocytes and macrophages (19–21). Regulatory T-lymphocytes and Cd68+ 

macrophages are known to be necessary for maintenance of pulmonary vascular 

homeostasis, and alterations in the function or balance between these cells has been 

linked to aberrant vascular remodeling seen in PAH (20).  Further studies report that 

degree of perivascular inflammation is positively correlated with vascular wall thickening 

and elevated RV pressure indicating a causal role of increased inflammation in PAH 

development (19). Experimentally, studies confirm that inflammation is a driving force for 

PAH development since aberrant inflammation triggers vascular remodeling and elevated 
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RV pressure in various animal models of PH—particularly in the monocrotaline (MCT)-

induced and oxidized lipid-induced models of PH (20). In the MCT model, MCT toxin is 

injected into rats which causes endothelial cell injury followed by a large infiltration of 

immune cells to the injured vasculature (22). MCT treated animals develop severe PH 

within 4 weeks of exposure to MCT toxin. Likewise, multiple reports demonstrate a causal 

role of increased oxidized lipid exposure, which triggers elevated lung inflammation, in 

PH development in rodent models (23, 24).  

Because PAH patients exhibit elevated lung inflammation, components of 

proinflammatory signaling pathways have been linked to PAH and identified as 

biomarkers for PAH development. Signaling peptides, called chemokines, or chemotactic 

cytokines, play a large role in cell migration and function (25, 26). This includes recruiting 

inflammatory cells to the site of injured vasculature through forming a chemokine gradient 

by adhering to the vascular endothelium. Chemokines are secreted by various 

inflammatory cells in the lung as well as vascular cell types. They act by eliciting a 

proinflammatory response and/or alter cellular function through biding to their respective 

receptor. Circulating levels of chemokines have been associated with disease severity 

and serve as biomarkers and prognostics for PAH. Furthermore, dysregulation of 

chemokines and their receptors within the lungs have been associated with PAH 

development (26).  

Inflammation, vascular injury, and vascular remodeling are all histological and molecular 

signatures of PAH that are intimately connected and perpetuated by one another. While 

current PAH therapies target symptoms of disease, the future direction of PAH 
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therapeutics lies in understanding and targeting these underlying factors that contribute 

to PAH pathogenesis.  

Therapeutic strategies 

While there is no cure for PAH, there are a handful of drugs regularly prescribed to PAH 

patients that can improve patient quality of life, hemodynamics, and functional outcome. 

The majority of therapies used primarily target vasoconstriction through the endothelin, 

nitric oxide (NO), and prostacyclin pathways (27, 28). Targeting these pathways in 

combination is commonplace and has been shown to have an additive benefit compared 

to treatment with a single therapy (29). 

Endothelin receptor antagonists (ERAs), blocking one or both endothelin receptor, are 

often prescribed to block the vasoconstrictive and proliferative effects of ET-1. ET-1, 

which is upregulated by injured ECs and known to be elevated in PAH patient lungs, 

promotes contraction and proliferation of vascular SMCs resulting in increased PVR (30). 

ERAs effectively increase exercise capacity, pulmonary hemodynamics, symptoms, and 

right-ventricular function (31). They have also been found to increase overall patient 

survival in cases of advanced idiopathic PAH (32). Interestingly, treatment with ERAs 

exhibit a marked sex difference which is described further below (33). 

Conversely, NO is a powerful vasodilator secreted by the lung endothelium that also 

inhibits SMC proliferation (34, 35). Inhaled NO is used as a therapy for PH patients, 

particularly in pediatric cases; however, there are substantial concerns regarding cost, 

feasibility, and efficacy of this treatment (36). Since NO imparts its vasodilatory effects 

though cyclic guanylate monophosphate (cGMP), therapeutics that inhibit the 
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degradation of cGMP by phosphodiesterases (PDEs) are commonly prescribed to 

enhance and prolong the effects of NO in the lung (36). PDE inhibitors, which are 

mainstay treatment for PAH patients, have been shown to significantly improve the 

functional capacity and hemodynamics in PAH patients (37, 38). Compounds that 

stimulate and sensitize NO pathway activation though guanylate-cyclase are used as a 

therapeutic as well (39).  

Finally, the most effective form of PAH treatment currently available include prostacyclin 

(PGI2) analogs. PGI2 is another vasodilator that is known to exhibit reduced expression 

in PAH lungs. In addition to vasodilation, PGI2 analogs have been shown to inhibit platelet 

aggregation and reduce EC dysfunction in the lungs of PAH patients (40). Continual 

infusion of a PGI2 analog has been shown to reduce symptoms, increase exercise 

tolerance, and has the most significant effect on enhancing overall PAH patient survival 

(41, 42).  

Despite the variety of commercial drugs available to target the above pathways, treatment 

efficacy remains suboptimal and patient survival remains poor at around 60% at five years 

(43). While these available treatments target vasoconstriction in the lungs of PAH 

patients, no current PAH therapies target the underlying cellular dysfunction and 

inflammation that are known to be central to PAH pathogenesis. This dissertation 

proposes a novel therapeutic strategy that targets proinflammatory chemokines 

upregulated in PAH patient lungs in a sex-specific manner.  
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3. Sex differences in PAH 

Overview 

Striking and complicated sex differences exist within the prevalence, progression, and 

prognosis of PAH. According to a composite of national and international PAH registries 

between 1981 and 2013, females are between two to four times more likely to be 

diagnosed with PAH (44–48). This marked female predominance holds true for all 

subtypes of PAH with the exception of HIV-associated and portopulmonary PH, which are 

both more common in males (49). Paradoxically, while females are more likely to be 

diagnosed with PAH, they are more responsive to therapies and have a better overall 

prognosis than their male counterparts (50). On average, females with PAH have a lower 

mPAP and increased survival compared to their male counterparts (50). Additionally, they 

exhibit better functional improvement with treated with ERA therapies as indicated by a 

higher 6-minute walk score (33). Taken together, this indicates that the underlying basis 

for the sex differences in PAH are complex and likely a result of multiple sex-biasing 

factors including sex hormones and sex chromosomes.   

Sex Hormones 

Decades of research have been devoted to uncovering the sex disparity in PAH with an 

emphasis on the role of sex hormones—namely estrogens. While the role of estrogens 

has been well studied in the context of PAH pathogenesis, the data surrounding the 

effects of estrogens in PAH are paradoxical and controversial. Since estrogen is the main 

circulating sex hormone in premenopausal females, it was initially hypothesized that 

estrogen and its metabolites would have a largely deleterious effect in PAH. Surprisingly, 

in vivo studies found estrogens to be protective against PAH since they were shown to 
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prevent and rescue disease development in animal models of PH, particularly through 

binding estrogen receptor β (51–54). On a molecular basis, estrogens have been shown 

to protect against PH through mediating RV compensation to pressure overload (55, 56). 

Since RV compensation and function is a marker for survival, perhaps it is the protective 

effects of estrogens in the RV that accounts for the better prognosis in female patients.  

Conversely, estrogens have also been shown to predispose females to PAH development 

through their interaction with bone morphogenic protein 2 (BMPR2). BMPR2 is a known 

heritable loss-of-function mutation found in PAH patients, and reduced expression of 

BMPR2 is associated with PAH in non-heritable forms of PAH as well (57). Estrogens 

were found to reduce expression of BMPR2 (58, 59). Regardless, the penetrance of the 

heritable BMPR2 mutation is only around 20%, indicating that the development of PAH 

may require a “two-hit” phenomenon where it takes a combination of multiple pathogenic 

stimuli to trigger the onset of disease. It seems one of these pathogenic factors may even 

include female sex, since BMPR2 mutant carrying females have a significantly higher risk 

of developing PAH (43%) compared to BMPR2 mutant carrying males (14%) (60, 61). 

Within BMPR2 mutant carrying females, levels of estrogen and its metabolites are 

significant predictors of increased risk of PAH development (62).  

Other sex hormones have also been studied in the context of PAH, but none to the degree 

of estrogens. Briefly, the female-specific gonadal hormones progesterone and follicle-

stimulating hormone were linked to PAH severity in reproductive-aged women. High 

levels of follicle-stimulating hormone and low levels of progesterone were associated with 

increased PAH severity (63). Testosterone, the main androgenic steroid hormones which 

is typically elevated in males compared to females, is known to be associated with 
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cardiovascular disease. Studies show testosterone contributes to worse RV hypertrophy 

and fibrosis following pressure overload in mice (64). Since RV function is the main 

indicator of PAH patient survival (65), elevated testosterone levels in male compared to 

female patients could contribute to the worse prognosis of male PAH patients. 

The PAH field is saturated with studies examining sex biasing hormones, their 

metabolites, and receptors. Taken together, these data indicate that sex hormones 

undoubtably influence PAH development and prognosis and play a role in the profound 

sex differences associated with PAH. However, our understanding of sex hormones 

remains paradoxical—indicating other sex biasing factors are at play.  

Sex Chromosomes 

Sex hormones are not the only sex basing factor that contribute to disease susceptibility 

and severity. Males and females differ in their sex chromosomes, and genes encoded by 

the sex chromosomes have been linked to sex-specific differences and disease. Outlined 

in this dissertation are the first studies to investigate sex chromosome effects in the 

context of PAH.  

1. Overview 

Mammalian sex is genetically determined by the combination of two sex chromosomes: 

X and Y. Typically, each female cell contains two X-chromosomes (XX) while each male 

cell contains one X-chromosome and one Y-chromosome (XY). While the Y-chromosome 

encodes for the sex determining Sry gene, it is much less rich in genomic data when 

compared to the X-chromosome or autosomes. To reduce the genetic density in female  
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Figure 4. The genetics behind sex chromosome biasing effects. The X chromosome 

(pink) and Y chromosome (blue) encode genes (listed) that are expressed in the heart 

and lungs which exhibit sex-specific expression patterns. Y chromosome genes are 

exclusive to males (XY) and are absent in female (XX) tissue. Incomplete X-inactivation 

of the second chromosome in females, through DNA hypermethylation and chromosome 

condensation, results in a subset of genes that that escape inactivation and are 

expressed at higher levels in females than males. Adapted from Cunningham, Eghbali, 

Adv Exp Med Bio. 2018 (66). 
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cells to match that of males, one X-chromosome in females becomes largely inactivated 

in a finely-tuned process orchestrated by a series of epigenetic modifiers (Figure 4). The 

condensed, X-inactivated state of one X chromosome is maintained throughout all 

subsequent cell divisions in females (67).  

2. X-chromosome effects 

While X-inactivation largely silences one X-chromosome in female cells to match the X-

chromosome gene expression levels in male cells, this inactivation does not include all 

genes. In fact, it is thought that between 12-20% of the protein coding genes on the 

inactivated X-chromosome are expressed (68). These genes, which escape X-

inactivation, are commonly referred to as X-escapee genes.  

While it is not entirely clear why certain X-chromosome genes escape activation, studies 

have shown that X-chromosome dosage (one X-chromosome versus two) imparts sex 

differences in disease progression and severity. Most notably, the Four Core Genotype 

(FCG) mouse model allows researchers to study sex differences due to sex 

chromosomes independent of gonads or gonadal hormones (69). In the FCG mouse 

model, the testis-determining Sry gene is removed from the Y-chromosome and 

expressed by an autosome. The autosomal Sry gene segregates independently from the 

Y-chromosome allowing for the generation of gonadal males and females with both XX 

and XY genotypes. Thus, mice with four genotypes are created: XY males, XX males, XY 

females and XX females (Figure 5A) (69).  

Studies using FCG mice reveal that sex chromosomes are implicated in various 

pathologies that exhibit sex differences, including cardiovascular diseases (70–72). The 
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majority of these studies demonstrate that having one X-chromosome is better than 

having two (70–73). In the context of ischemia/reperfusion heart injury, our lab found that 

gonadectomized male and female mice with two X-chromosomes have a larger area of 

infarct, lower hemodynamic functional recovery post reperfusion, and greater 

mitochondrial dysfunction than male and female mice with one X chromosome (72).  

X-escapee genes likely play a role in these X-chromosome dosage-dependent sex 

differences. Genes that have been regularly demonstrated to escape X-inactivation in 

various tissues, including the heart and lung, include: Kdm5c, Kdm6a, Ddx3x and Eif2s3x 

(73). Interestingly, these genes affect widespread gene transcription through direct or 

indirect epigenetic mechanisms as Kdm5c and Kdm6a are histone demethylases, Ddx3y 

is an RNA helicase involved in RNA splicing, transcription and translation, and Eif2s3x is 

a translation initiation factor. All of these genes are capable of driving changes to normal 

homeostasis and have been implicated in a disease or developmental process (74–78).  

Protein coding genes are not the only possible source of X-chromosome determined sex 

differences. In fact, the X-chromosome is densely packed with microRNAs (miRNAs) and 

contains approximately double the number of miRNAs found on autosomes in both mice 

and humans (79). In contrast, the Y-chromosome is not enriched with miRNAs and 

encodes little to no miRNAs (80). The degree to which X-chromosome linked miRNAs 

escape X-inactivation continues to be investigated, although it is known that X-

chromosome encoded miRNAs undergo mutation much more rapidly than autosomal 

miRNAs. These X-encoded miRNAs could be a source of sex differences in tissues and 

diseases (79, 81).  
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Figure 5. An overview of the FCG and XY* mouse models. A. The Four Core 

Genotypes (FCG) mouse model produces gonadal males and females with both XX and 

XY genotypes to test the effects of sex chromosomes and gonadal sex hormones 

separately. B. The XY* mouse model produces near-equivalent XX and XO gonadal 

females and XY and XXY gonadal males to compare the effect of the number of X-

chromosomes or the presence of a Y-chromosome. Adapted from Li et al., Cardiovasc 

Res. 2014 (72).  
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3. Y-chromosome effects 

In the FCG mouse model, the number of X-chromosomes is not the sole sex chromosome 

effect that could influence disease risk and/or pathogenesis. In fact, the differences 

identified between XX and XY mice of both sexes could be due to the number of X-

chromosomes or the presence of a Y-chromosome. As mentioned earlier, the Y-

chromosome is much less dense than autosomes and its X-chromosome counterpart. 

Unlike the X-chromosome, the Y-chromosome is not necessary for proper development; 

however, while it contains the genes necessary for proper male gonad formation and 

spermatogenesis, it also retained a subset of ancestral genes during its rapid evolution 

from an autosome beginning millions of years ago (82). These ancestral genes, 

expressed only on the Y-chromosome, provide another source of sex difference between 

males who have a Y-chromosome and females who do not.  

A handful of Y-chromosome genes are known to be expressed in heart and lung tissue 

(83). While difficult to examine in human populations, Y-chromosome effects in 

cardiovascular and cardiopulmonary diseases have been documented. Single nucleotide 

polymorphisms within the Y-chromosome may be associated with increased risk of 

cardiovascular disease in men. A large study found British men inheriting the Y-

chromosome haplogroup I had a 50% greater risk of developing coronary artery disease 

(CAD) than British men with other haplogroups (84). Interestingly, a separate study found 

that macrophages with Y-chromosome haplogroup I had decreased expression of the Y-

chromosome genes UTY and PRKY (85). As macrophages play an integral role in the 

development of CAD and atherosclerosis, these Y-chromosome genes could be play a 

role in attenuating inflammation in response to CAD (86). Notably, the studies included in 
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this dissertation also identified loss of Uty expression was associated with elevated 

inflammation and increased disease severity in PH. 

To investigate the role of the Y-chromosome in disease experimentally, the FCG mouse 

model can be used in combination with the XY* mouse model. While the FCG mouse 

model allows researchers to test the effects of sex chromosomes independent from 

gonadal sex (Figure 5A), the XY* mouse model tests whether the sex differences found 

are due to the number of X-chromosomes or the presence of a Y-chromosome. The XY* 

mouse model produces near-equivalent XX and XO gonadal females and XY and XXY 

gonadal males (Figure 5B). Comparing mice with one X-chromosome (XO, XY) to those 

with two X-chromosomes (XX, XXY) reveals an effect of X-chromosome number, 

whereas comparing mice with a Y-chromosome (XY, XXY) to those without a Y-

chromosome (XO, XX) shows the effect of the presence/absence of the Y-chromosome.  

 

4. Summary  

This dissertation is a collection of the first studies investigating sex chromosome effects 

in PAH, a pulmonary vascular disease that affects the RV and is up to four times more 

common in females. In Chapter 2, we used the FCG and XY* mouse models to 

investigate the role of the X and Y chromosomes in the absence of gonadal hormones. 

In this study, we found that the presence of a Y-chromosome was protective against the 

development of experimental PH. Gonadal male and female mice with a Y-chromosome 

exhibited lower RV pressure and less severe vascular remodeling due to experimental 

PH, regardless of the number of X-chromosomes (83). We hypothesized that genes 
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encoded by the Y-chromosome that are expressed in the heart and lung, Kdm5d, Uty, 

Ddx3y and Eif2s3y, confer protection against the development of PH, and we tested each 

of these Y-chromosome candidate genes in the context of PH in Chapter 3. We found 

that Uty is the sole Y chromosome gene responsible for conferring protection against 

experimental PH. Loss of Uty expression in macrophages resulted in an increase in 

proinflammatory chemokines Cxcl9 and Cxcl10 which resulted in endothelial dysfunction 

and more severe PH. Blocking the activity of Cxcl9 and Cxcl10 was sufficient to rescue 

PH development in female rats indicating that targeting autosomal genes downstream of 

Uty can extend Y chromosome protection against PH to females. In Chapter 4 we 

examined Endothelin-2 (ET-2), another autosomal gene downstream of Uty that may 

contribute to PH development and explain the sex differences observed in patient 

response to ERAs where females are more responsive to treatment. We found ET-2 was 

upregulated in the lungs of Uty knockdown mice with PH as well as in female patients 

with PAH but not in the lungs of male PAH patients. ET-2 is a lesser-known member of 

the endothelin family of potent vasoconstrictive peptides. While ET-1 is known to be 

upregulated in the lungs of PAH patients, we were the first to identify the sex-specific 

upregulation of ET-2 in females. Future experiments based on this study will further 

investigate the role of ET-2 in the development and treatment of PAH.  

In summary, the experiments that included in this dissertation make up the first 

comprehensive investigation into sex chromosome effects in PH. The following chapters 

1) elucidate the protective effect of the male-specific Y chromosome in PH, 2) uncover 

the molecular mechanism by which the Y chromosome exerts its protective effect in 

males, 3) highlight the involvement of proinflammatory chemokines in PAH pathogenesis, 
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4) present a novel preclinical treatment strategy using a small molecular inhibitor already 

approved by the Food and Drug Administration, and 5) provide a molecular explanation 

to the sex-specific disparity in response to ERA therapies for the treatment of PH. 

Together, this work exemplifies how thoroughly investigating sex as a biological variable 

can lead to novel insight into disease pathogenesis and shed light on innovative treatment 

strategies.  
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Abstract 

Rationale 

The incidence of pulmonary arterial hypertension (PAH) is markedly higher in female 

patients than in males. Research investigating the role of sex hormones in PAH has 

yielded paradoxical results indicating that other sex biasing factors could be involved.  

Objectives 

We investigated the role of sex chromosomes, independent of gonadal hormones, in the 

development of hypoxia-induced pulmonary hypertension. 

Methods 

We used two powerful mouse models to study the role of sex chromosomes in 

susceptibility to pulmonary hypertension. The Four Core Genotypes model allowed us to 

compare the effect of chromosome complement (XX or XY). The XY* model allowed us 

to determine if differences are due to the presence of a Y chromosome or the number of 

X chromosomes. Mice were gonadectomized to remove gonadal hormones and placed 

in hypoxia (10% oxygen) for three weeks. Hemodynamic parameters were measured 

terminally via direct cardiac catheterization. Pulmonary vascular remodeling and fibrosis 

were quantified. 

Measurements and Main Results 

Hypoxic XY mice, irrespective of gonadal sex, developed less severe pulmonary 

hypertension than XX mice indicated by lower right ventricular systolic pressure (RVSP) 

and less vascular remodeling and fibrosis than XX mice. Protection of XY mice was due 
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to the presence of a Y chromosome but not the number of X chromosomes.  Analysis of 

online microarray data revealed three Y chromosome genes are expressed in both mouse 

and human heart and lung tissue.  

Conclusions 

The Y chromosome is protective against development of hypoxia-induced PH in mice in 

the absence of gonadal hormones. 
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Introduction 

Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease 

characterized by elevated pulmonary arterial pressure and vascular remodeling leading 

to right ventricular failure (1, 2). Patients with PAH exhibit narrowing of the main 

pulmonary artery with constriction and stiffening of the distal pulmonary arterioles 

primarily due to aberrant smooth muscle cell proliferation and muscularization, vascular 

endothelial cell dysfunction, and intimal and adventitial fibrosis (1–3). PAH in general, and 

its idiopathic form in particular, has long been considered to be a disease of young women 

(4, 5) with female sex being a risk factor (6). Surprisingly, being female was found to 

protect against the development of PH in various animal models (7–9). Because this 

effect has largely been attributed to the protective effects of estradiol (7, 10–13), the 

phenomenon is known as the ‘estrogen paradox’ of PH (14, 15). One resolution of the 

paradox is that sex hormones alone are not sufficient to explain the marked sex bias 

observed in PAH in humans. 

Sex differences between males and females are not solely attributed to the effects of 

gonadal hormones. Sex chromosomes are inherently different between males and 

females from the time of zygote formation. This determination of sex by chromosome 

complement precedes the formation of the gonads. Together, sex chromosomes and sex 

hormones act directly on tissues to produce sex differences (14, 16, 17). Mouse studies 

in which chromosome complement, the number and type of sex chromosomes, is 

independent of gonadal sex indicate that sex chromosome complement influences sex 

bias in autoimmune disease, metabolic dysfunction, neurodegeneration, and 

ischemia/reperfusion injury in the heart (18–21). Therefore, genes encoded on the sex 
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chromosomes have already been shown to have strong effects contributing to sex 

differences in phenotype including disease susceptibility and progression. 

In the current study, we investigate for the first time the role of sex chromosomes, in the 

absence of gonadal hormones, in the development of hypoxia-induced PH using the 

powerful FCG and XY* mouse models. In addition, we identify Y chromosome genes 

expressed the in male heart and lung tissue and compare Y chromosome gene 

expression levels between male PAH patients versus healthy control males.  

 

Materials and methods 

Mouse models 

We used two powerful mouse models, the four core genotypes (FCG) and XY* models, 

to study the role of sex chromosomes in the susceptibility to PH (22) (Figure 1). The FCG 

model produces mice in which sex chromosome complement (XX vs. XY) is independent 

of gonadal sex (female vs. male). This model allows us to assess the effect of sex 

chromosomes independent of gonadal sex (Figure 1A).  

The XY* model consists of female and male mice with one or two X chromosomes 

(females: XO or XX, males: XY or XXY) (Figure 1B). This model allows us to determine 

if the XX-XY difference found in the FCG model is a result of i) the presence or absence 

of a Y chromosome (comparing mice with or without a Y chromosome),  
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Figure 1. Overview of the FCG and XY* mouse models. A. The FCG model produces 

mice in which gonadal sex is independent of sex chromosomes. The FCG model allows 

us to compare gonadal female mice with XX and XY chromosomes and gonadal male 

mice with XX and XY chromosomes. B. The XY* model produces mice with one or two 

X chromosomes (female XO and XX, male XY and XXY). This model allows us to 

determine if the XX-XY difference found in the FCG model is caused by the presence or 

absence of the Y chromosome or the number of X chromosomes. 
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or ii) the number of X chromosomes (comparing mice with one or two X chromosomes, 

Figure 1B).  

Gonadectomy surgery and hypoxia protocol 

All protocols described in the methods received institutional review and committee 

approval. This investigation conformed to the National Institute of Health Guide for the 

Care and Use of Laboratory Animals (NIH Pub. No. 85-23, Revised 1996). 

Mice were gonadectomized (GDX) at day 75 after birth to remove potential group 

differences in the levels of gonadal hormones during testing. Thirty days after GDX, mice 

were placed in a hypoxia chamber (10% oxygen) for three weeks (n=4-6 per group for 

FCG mice and n=5 per group for XY* mice). For the FCG mouse model, some FCG mice 

(n=5 per group) were kept under normoxic conditions for 3 weeks. 

Cardiopulmonary hemodynamic monitoring 

Direct cardiac catheterization was performed terminally to measure RV systolic pressure 

(RVSP) by inserting a catheter into the RV immediately prior to sacrifice. The mice were 

anesthetized with a mixture of Ketamine (80 mg/kg) and Xylazine (8 mg/kg) administered 

via intraperitoneal injection. The animals were placed on a controlled warming pad to 

keep the body temperature constant at 37°C. After a tracheostomy was performed, a 

cannula was inserted, and the animals were mechanically ventilated using a rodent 

ventilator (Harvard Apparatus, Canada). Following ventilation, mice were placed under a 

stereomicroscope (Zeiss, Hamburg, Germany), and a pressure-conductance catheter 

(model 1.4F Millar SPR-671) was introduced via the apex into the RV and positioned 

towards the pulmonary valve. The catheter was connected to a pressure transducer 
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(Power Lab, ADInstruments) and RV pressures were recorded digitally. After recording 

the RVSP, lungs were removed rapidly under deep anesthesia for preservation of protein 

integrity. 

Histopathologic analysis, immunohistochemistry, and imaging 

Lungs were weighed, perfused and/or snap frozen for further histological and molecular 

investigation. Briefly, whole lungs were isolated and inflated manually using a syringe by 

perfusing 4% paraformaldehyde in 0.1 M Na2HPO4 and 23 mM NaH2PO4 (pH 7.4) through 

the trachea. Isolated perfused lungs were fixed in 4% paraformaldehyde on ice overnight. 

Following fixation, the tissue was immersed in ice-cold 20% sucrose overnight and 

embedded using optimum cutting temperature compound. Five μm lung tissue sections 

were obtained with a cryostat (Microm HM525, Thermo Scientific). Standard Masson 

Trichrome (Sigma) staining was performed according to the manufacturer's protocol, and 

images were acquired with a confocal microscope (Nikon). Stitched images of entire lung 

sections were obtained using 10x objective on a high-resolution confocal microscope 

(Nikon). Pulmonary vascular remodeling was assessed by quantifying percent occlusion 

of peripheral lung arterioles (<100 um diameter) from a total of 392 arterioles, n=4-6 mice 

per group and ~20 arterioles per mouse. Pulmonary fibrosis was assessed from the 

stitched images as percent fibrosis using a grid (n=4-6 mice per group). 

Immunofluorescence staining 

Lung sections (5μm) were fixed in acetone for 15 minutes at –20°C. The sections were 

then washed with PBS+0.1% Triton three times and incubated with 10% normal goat 

serum in PBS+0.1% Triton for 30 minutes to block the background. Following blocking, 
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the sections were incubated with primary antibodies against alpha-smooth muscle actin 

and von Willebrand Factor in PBS+0.1% Triton+1% normal goat serum at 4°C overnight. 

Sections were then washed with PBS+0.1% Triton three times, incubated with the 

appropriate secondary antibodies in PBS+0.1% Triton+1% normal goat serum at room 

temperature for one hour. After washing the secondary antibodies with PBS+0.1% Triton 

three times, the sections were incubated with DAPI and then mounted for imaging using 

Prolong gold (Molecular Probes). Images were acquired with a confocal microscope 

(Nikon). 

Analysis of online gene expression databases 

For analysis of gene expression from online RNA-Seq data (GSE29278: male mouse 

heart and lung, GSE49417: male human heart and lung), we measured the expression 

levels by calculating RPKM (Reads Per Kilobase of transcript per Million mapped reads). 

R package “QuasR” was used for the read alignment to the human (hg19) or mouse 

(mm10) genome, followed by the counting of reads at the gene level and calculation of 

RPKM(23). In Table 1, we report protein-coding genes, pseudogenes and non-coding 

RNAs with RPKM >1. For the microarray analysis of gene expression in Table 2 

(GSE15197: human lung, control and PAH), we quantile normalized gene expression 

levels and compared the expression of Y chromosome genes in PAH and Ctrl lungs using 

a one-way ANOVA followed by False Discovery Rate (FDR) analysis (23). 

Reagents 

Primary antibodies used include: anti-smooth muscle actin (Sigma (A2547), 1:250 

dilution) and anti-von Willebrand Factor (Abcam (ab6994), 1:200 dilution). Secondary 
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antibodies used include: Goat anti-Mouse IgG (H+L), Alexa Fluor 488 (ThermoFisher (A-

11001), 1:1000 dilution and Goat anti-Rabbit IgG (H+L), Alexa Fluor 594 (ThermoFisher 

(A-11012), 1:1000). 

Statistical analysis 

Two-way ANOVAs were used to compare experimental groups. For comparison of FCG 

mice, the factors were sex chromosome complement (XX vs. XY), and gonadal sex (male 

vs. female).  For studies of XY* mice, the factors were numbers of X Chromosomes (one 

vs. two) and presence of Y Chromosome (present vs. absent, same as gonadal sex). 

P<0.05 was considered statistically significant. Values were expressed as Mean± SEM. 

 

Results 

XY mice, irrespective of their gonadal sex, develop less severe PH than XX mice. 

We examined the role of sex chromosome complement on susceptibility to PH 

development in the absence of sex hormones in GDX FCG mice. Under normoxic 

conditions, the RV pressure was not significantly different between XX vs XY mice 

regardless of their gonads (male or female) (Figure 2). When mice were subjected to 

hypoxic insult for three weeks, we found male and female XY mice developed less severe 

PH than male and female XX mice. RV pressure was significantly lower in XY mice than 

XX mice (RVSP: 43.31± 5.72 mmHg in XX females and 46.51± 4.52 in XX males vs. 

33.17± 2.36 in XY females and 40.4± 2.31 in XY males; p<0.05, n=4-6 per group, Figure 

2).  
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Figure 2. Gonadectomized male and female XY mice develop less severe PH 

compared to male and female XX mice. Bar graphs showing RV systolic pressure 

(RVSP) in normoxia or hypoxia for GDX FCG mice. Female XX and XY mice (white bars) 

are plotted against male (black bars) XX and XY mice. *p<0.05; for normoxia experiment 

n=5 mice/group; for hypoxia experiment XX females n=4; XX males n=6; XY females n=5; 

XY males n=5. 
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Male and female XY mice have less pulmonary vascular remodeling compared to 

male and female XX mice. 

Consistent with the lower RV pressures found in XY mice, PH protection in XY mice was 

also accompanied by less severe pulmonary vascular remodeling as measured by 

percent occlusion of pulmonary arterioles (XY female: 23.84± 3.14; XY male: 22.47± 3.15; 

XX female: 58.8± 7.95; XX male: 44.56± 11.68) (Figure 3). These results further indicate 

that GDX male and female mice with XY chromosome complement develop less severe 

PH compared to the male and female mice with XX chromosome complement. 

 

PH protection in XY mice is due to the presence of a Y chromosome rather than the 

number of X chromosomes. 

To explore whether the less severe PH in XY mice compared to XX mice is due to the 

number of X chromosomes or the presence of the Y chromosome, we used mice from 

the XY* mouse model (XO, XX, XY XXY) and compared PH severity. RV pressures from 

XY (33.49±0.60 mm Hg) and XXY (32.03±2.17 mm Hg) mice were significantly lower than 

RV pressures measured in XO (38.72±2.44 mm Hg) and XX mice (41.56±3.84 mm Hg) 

(Figure 4). We did not observe any significant change in RV pressure between mice with 

one or two X chromosomes (XO and XX compared to XY and XXY). These results 

indicate that the lower susceptibility of XY mice to hypoxic insult is due to the presence 

of the Y chromosome rather than the number of X chromosomes. 
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Figure 3. Hypoxic gonadectomized male and female XX mice develop more severe 

pulmonary vascular remodeling compared to male and female XY mice. A. 

Representative Masson trichrome (upper panel) and immunofluorescence staining (lower 

panel) for a-smooth muscle actin (green), von Willebrand Factor (red) and DAPI (blue) of 

lung sections from gonadectomized FCG mice kept in hypoxia for 3 weeks showing 

thicker pulmonary arterioles in XX mice compared to XY mice regardless of male (XXM, 

XYM) or female (XXF, XYF) gonads. B. Quantification of percent occlusion of the 

arterioles in the lung sections from XX and XY male and female mice.  XX females n=4, 

XX males n=6, XY females n=5, XY males n=5, *p<0.05.  
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Figure 4. Hypoxic gonadectomized mice with a Y chromosome develop less severe 

PH compared to mice without a Y chromosome. Bar graphs showing RV systolic 

pressure (RVSP, mmHg) in hypoxic gonadectomized XY* mice. Female XX and XO mice 

(orange bars) are plotted against male XXY and XY mice (blue bars). *p<0.05, n=5 

mice/group. 
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Y chromosome genes are expressed in mouse and human lung and heart tissues. 

We infer from the above results that genes encoded by the Y chromosome that are 

expressed in the lung or heart tissues confer protection against PH. To discover which Y 

chromosome genes are expressed in the lungs and heart, we analyzed several datasets 

in the GEO databases. In Table 1, we summarize Y chromosome genes showing at least 

1 RPKM in male tissues. In mice, four Y chromosome protein-coding genes are 

expressed in the lungs and heart: Ddx3y, Eif2s3y, Kdm5d and Uty. These represent the 

top candidates to explain the protective effect of the Y chromosome. The same genes are 

also expressed in human heart and lung with the exception of Eif2s3y, which is not 

conserved in humans. In Table 2, we analyzed a GEO microarray dataset and compared 

the expression of Y chromosome genes in the lungs of male PAH patients versus healthy 

male controls. We found that KDM5D and UTY expression is downregulated in PAH lungs 

(p<0.05) whereas DDX3Y is not significantly altered. 
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Mouse 

Lung RPKM Heart RPKM 

Ddx3y 9.8 Ddx3y 7.5 

Eif2s3y 9.6 Eif2s3y 6.5 

Kdm5d 4.6 Kdm5d 2.0 

Uty 2.4 Uty 1.4 

    

    

    

Human 

Lung RPKM Heart RPKM 

CD24P4* 94.4 PSMA6P1* 33.8 

PSMA6P1* 61.2 EIF1AY 11.8 

EIF4A1P2* 38.3 DDX3Y 10.1 

DDX3Y 32.4 EIF4A1P2* 6.8 

RPS4Y1 6.0 VDAC1P6* 5.5 

RNU6-941P* 4.7 USP9Y 4.0 

EIF1AY 4.0 RPS4Y1 3.5 

RPL26P37* 3.3 ZFY 3.3 

KDM5D 3.2 KDM5D 2.2 

USP9Y 2.8 TTTY14** 1.5 

TXLNGY* 2.6 TXLNGY* 1.2 

ZFY 2.6 UTY 1.0 

PRKY* 2.3   

TTTY15** 2.0   

UTY 1.8   

VDAC1P6* 1.5   

KRT18P10* 1.2   

    
    

Table 1. Y chromosome genes expressed in lung and heart tissues. RNA-seq 

analysis of Y chromosome gene expression (GSE29278: mouse heart and lung, 

GSE49417: human heart and lung). RPKM (Reads Per Kilobase of transcript per Million 

mapped reads) values were calculated using R package “QuasR.” Only genes with RPKM 

> 1 are listed. Genes found in both mouse and human tissues are bolded. *pseudogene, 

**ncRNA. 
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Table 2. Change in Y chromosome gene expression between male healthy and PAH 

lung tissue. Microarray analysis showing the change in Y chromosome gene expression 

between PAH lungs and control (Ctrl) lungs (GSE15197: human lungs, PAH and Ctrl). 

We quantile normalized gene expression levels and compared PAH and Ctrl expression 

using a one-way ANOVA followed by False Discovery Rate (FDR) analysis (24). Only 

genes with RPKM > 1 in lung tissue via RNAseq analysis from Table 1 are listed. Genes 

found in both mouse and human tissues are bolded. *pseudogene, **ncRNA.  

 

  

Human Lung 

Gene p-Value FDR PAH/Ctrl 

KDM5D 0.00001 0.04 0.52 

USP9Y 0.001 0.11 0.13 

TXLNGY* 0.002 0.13 0.16 

ZFY 0.005 0.14 0.64 

UTY 0.018 0.19 0.40 

EIF1AY 0.110 0.35 0.55 

DDX3Y 0.151 0.40 0.70 

RPS4Y1 0.779 0.89 1.07 
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Discussion  

In this study, using two informative mouse models that elucidate sex chromosome 

differences in disease, we investigated for the first time the effect of sex chromosomes in 

hypoxia-induced PH. In FCG mice, we found that GDX male and female mice with XY 

chromosomes developed less severe hypoxia-induced PH and exhibited reduced 

vascular remodeling and pulmonary fibrosis than male and female mice with XX 

chromosomes. Using XY* mice, we found that the lower susceptibility of XY mice to 

hypoxic insult is not due to the number of X chromosomes, but is instead due to the 

presence of a Y chromosome. We found only four protein-coding genes are expressed in 

male mouse heart and lung tissue (Table 1) (25). These four genes are prime candidates 

to explain the protective effect of the Y chromosome in our experiments. Three of these 

Y chromosome encoded genes are conserved in humans and may contribute to the sex 

differences found in PAH (26). The protective effect of the Y chromosome helps explain 

why male sex is the single best deterrent for developing PAH.  

There are complex sex differences in PH susceptibility and prognosis which has led to 

two important paradoxical findings (4, 14, 15): i) higher incidence of PAH in women (up 

to 4:1 ratio in some forms of PAH) whereas wild type female rodents are protected against 

some forms of experimental PH by estrogens; and ii) although female patients are more 

susceptible to PAH than men, they respond better to currently available therapies and 

have increased survival compared to men (27). Taken together, these data indicate that 

a single sex-biasing factor is not sufficient to explain the complex sex differences in PAH. 

This study adds dimension to the current literature by exploring the influence of sex 

chromosomes on the development of PH. Our findings indicate that the Y chromosome, 
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in the absence of sex hormones, is a protective factor against hypoxia-induced PH in 

mice.  

The FCG and XY* mouse models, which allow investigators to highlight sex differences 

in disease driven by both the type and number of sex chromosomes (22) have uncovered 

effects of sex chromosomes on various pathologies including autoimmune disease, 

metabolic dysfunction, neurodegeneration and, in our lab, ischemic heart disease (18–

21). The findings from the aforementioned studies indicate that the presence of two X 

chromosomes can increase susceptibility to various diseases (16). Since females have 

two X chromosomes, compared to one in males, X chromosome genes that escape 

inactivation result in increased expression in females. These X-escapee genes, which are 

expressed higher in females, may explain the harmful effects of X chromosome dosage 

in female tissues (18–21).  Interestingly, none of the preceding studies found a significant 

effect, either protective or harmful, due to the presence of a Y chromosome.  Many X 

genes that escape inactivation are similar to a paralogous “partner” gene encoded by the 

Y chromosome, which evolved from a common autosomal orthologue.  Although the X 

and Y gene pairs may retain common functions, in some cases the Y chromosome 

paralogue gene has evolved novel functions due to different evolutionary pressure and a 

high rate of mutation (26, 28, 29). These Y genes are therefore interesting candidates to 

explain the protective effect of the Y chromosome reported here. Four of these Y 

chromosome genes—Ddx3y, Kdm5d, Uty and Eif2x3y— are expressed in the heart and 

lung tissue in males (Table 1) (25). Although information is limited, a growing body of 

evidence suggests that these protein-coding candidate genes have potential to impact 

fundamental cellular processes affecting proliferation, apoptosis, inflammation, and 



 56 

epigenetic regulation (26, 30). Dysregulation of proliferation, apoptosis, and inflammation 

are hallmarks of PAH pathogenesis, and epigenetic regulation has recently emerged as 

a promising direction for PAH research (2, 31–33).  

KDM5D, a histone demethylase, modulates gene expression by removing methyl groups 

from the trimethylation mark on histone 3 lysine 4 (H3K4me3) which generally represses 

the transcription of specific genes that may be implicated in PAH (34, 35). As an 

epigenetic modifier, it has potential to elicit widespread changes in gene expression and 

has recently been found to influence the development and metastasis of prostate cancer 

through regulation of androgen receptor synthesis and signaling (36, 37). 

UTY is a paralog of the more characterized X chromosome gene UTX (KDM6A)—a 

histone demethylase that activates expression by removing methyl groups from 

H3K27me3 and is required for proper cardiac development. UTY retains some 

overlapping functions with UTX since it was shown that Uty expression is sufficient to 

prevent improper cardiac development and reduce mid-gestation lethality resulting from 

loss of Utx. Interestingly, UTY appears to lack histone demethylase activity, so its 

mechanism of action overlaps incompletely with the effect of UTX (29, 38). Mutations in 

both Uty and Utx have been implicated in the development of various cancers, illuminating 

their role as powerful regulators of disease (39–41). Furthermore, expression of UTY in 

macrophages has been linked atherosclerosis risk in men (42).  

Ddx3y encodes an RNA helicase involved in ribosome synthesis and metabolism that 

was recently linked to the development of pulmonary disease. Using protein-protein 

interactive network analysis, Yang et al. determined that DDX3Y is not only upregulated 
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in chronic obstructive pulmonary disease, but also acts as a regulatory hub gene in the 

network (43). 

EIF2S3Y, a translation initiation factor, has been shown to be dramatically upregulated in 

parallel with regulation of apoptosis in endothelial cells (44). Endothelial cell dysfunction 

within the walls of pulmonary vasculature is symptomatic of PH and is the target of many 

therapies currently used for PH in patients (45). 

Our study demonstrates for the first time the protective effect of the Y chromosome in the 

development of PH and represents an important paradigm shift in the approach towards 

understanding the marked sex differences in PH. In attempts to uncover the molecular 

mechanism by which the Y chromosome confers protection, further investigation into the 

four Y chromosome candidate genes—Ddx3y, Kdm5d, Uty, and Eif2x3y—is needed.  

Analysis of online GEO datasets indicates that three of the identified Y chromosome 

candidate genes, KDM5D, UTY and DDX3Y, are also expressed in human lung and heart 

tissue (Table 1). If one or more of these genes is responsible for the protection against 

PH in mice, it could have exciting implications for human PAH and give rise to novel 

therapeutic strategies. Notably, analysis of online human PAH and control lung 

microarray datasets indicates that KDM5D and UTY expression is significantly 

downregulated in PAH (Table 2). This finding further highlights the potential role of Y 

chromosome genes, namely KDM5D and UTY, in PAH pathogenesis and protection. 

Additionally, this study identifies the effects of sex chromosomes in the absence of sex 

hormones; however, future studies are needed to examine the complex relationship 

between PH development and sex chromosomes within the influential hormonal milieu. 
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Subsequent studies investigating these genes may uncover a much-needed novel 

strategy for the treatment of PAH in patients.  
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Chapter 3: Y-Chromosome gene, Uty, protects against pulmonary hypertension by 

reducing proinflammatory chemokines 
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Abstract  

Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary 

vascular disease characterized by increased pressure, right ventricular failure and death. 

PAH exhibits a striking sex bias and is up to 4x more prevalent in females. Understanding 

the molecular basis behind this sex difference is paramount to elucidating PAH 

pathophysiology and uncovering novel therapies.  

Objectives: We previously discovered the Y-Chromosome is protective against hypoxia-

induced PH which explains the reduced PAH prevalence in males. Here, we identify the 

gene responsible for Y-Chromosome protection, investigate key downstream autosomal 

genes, and demonstrate a novel therapy. 

Methods, Measurements and Main Results: To test the effect of Y-Chromosome genes 

on PH development, we knocked-down each Y-Chromosome gene expressed in the lung 

via intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia. 

Knockdown of Y-Chromosome gene Uty resulted in more severe PH measured by 

increased right ventricle pressure and decreased pulmonary artery acceleration time. 

RNAsequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 

as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in 

human PAH lungs, with more robust upregulation in PAH females. Treatment of human 

pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. 

Inhibition of CXCL9 and CXCL10 activity in female PH rats significantly reduced PH 

severity.  

Conclusions: ChrY gene, Uty, is protective against PH. Reduction of Uty expression 

results in increased expression of proinflammatory cytokines CXCL9 and CXCL10 which 
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trigger endothelial cell death and PH. Inhibition of CXCL9 and CXCL10 activity rescues 

PH development. 
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Introduction  

Pulmonary arterial hypertension (PAH) is a pulmonary vascular lung disease 

characterized by increased pressure in the pulmonary arteries leading to right ventricular 

(RV) hypertrophy, RV failure, and death. Pressure overload begins in the distal pulmonary 

arteries which undergo vascular remodeling largely characterized by vascular endothelial 

cell (EC) dysfunction and aberrant smooth muscle cell proliferation (1). Inflammation may 

play a key role in this vascular remodeling, since it is known that PAH is concomitant with 

a proinflammatory lung milieu and inflammatory regulators are associated with PAH 

disease progression and severity (1–3). 

The idiopathic form of PAH exhibits striking sex differences where females are up to 4x 

more likely to be diagnosed than men (4). As female sex is a risk factor for developing 

PAH (5), the interplay between sex hormones and PAH pathogenesis has been actively 

investigated with particular attention to estrogens. Estrogens have been implicated in 

PAH pathogenesis and shown to reduce expression of bone morphogenic protein 2 

(BMPR2), a mutation whose loss is associated with PAH (6, 7). However, studies have 

also demonstrated that circulating estrogens are protective against PH severity, and 

estrogen treatment has been shown to prevent and rescue PH in animal models (8–10) 

through mediating RV compensation to pressure overload (11, 12). The culmination of 

these powerful yet paradoxical studies indicates that other sex-biasing factors contribute 

to the sex differences observed in PAH.  

Our group was the first to examine the influence of sex chromosomes in PH where we 

found, in the absence of circulating gonadal hormones, the male-specific Y chromosome 

(ChrY) is protective against experimental pulmonary hypertension (PH) (13). While this 
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study helps explain why males are more protected against developing PAH, the 

mechanism by which ChrY protection is achieved has yet to be discovered and may lead 

to a greater understanding around the pathogenesis of PAH and elucidate novel 

therapeutic strategies. ChrY genes are known to have widespread effects on autosomal 

gene regulation (14) and have been implicated in systemic diseases (15, 16).  

In the present study, we investigated the role of the four ChrY genes that are expressed 

in lung tissue for their potential involvement in PH protection. We identified Uty as the 

protective ChrY gene, because reduced Uty expression in hypoxic (Hx) mouse lungs was 

sufficient to eliminate ChrY protection. We also identified two proinflammatory 

chemokines, CXCL9 and CXCL10, downstream of Uty that contribute to PH pathogenesis 

in a sex-specific manner and targeted these cytokines as a novel therapeutic approach. 

We found that inhibiting the shared CXCL9 and CXCL10 receptor significantly rescues 

PH development in female rats, suggesting that targeting autosomal genes downstream 

of Uty is sufficient to extend ChrY protection to females with PH.  
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Methods  

Models of experimental PH and treatments 

All experimental protocols received institutional review and Animal Research Committee 

approval.  

siRNA knockdown in hypoxia-induced PH: Male C57BL/6J mice aged 6-8 weeks were 

purchased from Jackson Laboratories. Mice underwent gonadectomy (GDX) surgery 

under isoflurane anesthesia to remove gonads. After 30 days, mice were randomly 

divided into two groups where they received recurring intratracheal instillation of either 

short interfering RNA (siRNA) targeting a ChrY gene of interest or a scrambled siRNA 

every 5 days (1nmol/instillation, Dharmacon Accell mouse SMARTpool: Si-Kdm5d: E-

054675-00-0005; Si-Ddx3y: E-043317-00-0005; Si-Eif2s3y: E-046339-00-0005; Si-Uty: 

E-046843-00-0010; Si-Scrm: siGENOME Non-Targeting siRNA Pool #2, D-001206-14-

05). Mice were housed in hypoxic (Hx, 10% oxygen) conditions for three weeks while 

receiving their instillations (Fig. 1A).  

Cxcr3 inhibition in monocrotaline-induced PH: Young, female intact Sprague Dawley rats 

(~200g) were purchased from Charles Rivers laboratories. At day 0, all animals received 

a subcutaneous injection of monocrotaline (MCT, 60mg/kg, Sigma). At day 14, animals 

were randomly divided into control or treatment groups (n=8/group). Rats were injected 

subcutaneously 2x/day at 12-hour intervals with small-molecule CXCR3 inhibitor 

AMG487 (Tocaris, cat# 4487) at a dose of 1.5mg/kg. AMG487 was dissolved in sterile 

20% hydroxypropyl-β-cyclodextrin (Sigma) prior to injection for a final volume of 

250ul/injection. Rats in the control group were injected twice daily with vehicle (250ul 

sterile 20% hydroxypropyl-β-cyclodextrin). Injections were performed on familiarized rats 
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without the use of anesthesia and continued 2x daily for the remainder of the MCT 

protocol (2 weeks, Fig. 5A). Prior to the termination of the experiment, rats underwent 

echocardiography followed by open-chested catheterization. 

Echocardiography 

Noninvasive echocardiography was performed for all animals using Vevo 2100 

(Visualsonics) at baseline, before treatment, and prior to terminal catheterization under 

isoflurane anesthesia. Two-dimensional doppler echocardiography and long axis B-mode 

recordings were used to evaluate and quantify pulmonary artery acceleration time (PAAT) 

and RV fractional area changes (RVFAC), respectively. All quantifications were 

performed on blinded samples.  

Hemodynamics and gross histological evaluation  

Animals were anesthetized with isoflurane, placed on a heating pad to keep body 

temperature of ~37oC and mechanically ventilated via tracheostomy. RV systolic pressure 

(RVSP) was measured via direct, open-chested catherization (Millar SPR-671) of the RV, 

which was recorded via a pressure transducer (Power Lab, ADInstruments). RVSP 

measurements were obtained blindly and a RV pressure recording was recorded for 5 

mins/animal. Following RV catheterization, the catheter was inserted into the left ventricle 

(LV) and LVSP was recorded as a control for potential blood loss. The heart was excised, 

dissected into components of RV wall, LV wall and interventricular septum (IVS), and 

weighed to calculate the Fulton index of RV hypertrophy, a ratio of RV weight to LV plus 

IVS weight ([RV/(LV+IVS)]).  

Tissue preparation, staining and imaging 
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All excised murine tissues were immediately fixed in 4% paraformaldehyde, soaked in 

20% sucrose solution, and embedded in OCT compound (Tissue-Tek).  

For RNAscope, lungs were sectioned at 7um and pretreated and stained following 

protocols outlined by ACD Bio RNAscope assay (Uty validation and quantification: 

RNAscope® 2.5 HD-RED, Mm-Uty cat# 451741; Colocalization: RNAscope® Multiplex 

Fluorescent Detection Kit cat# v2323110, Mm-Uty cat# 451741; Mm-Cxcl9-C2 cat# 

489341-C2, Mm-Cxcl10-C2 cat# 408921-C2, Mm-Cd68-C3 cat# 316611-C3, Hs-UTY 

cat# 420851, Hs-CD68-C2 cat# 560591-C2, Hs-CXCL9-C3 440161-C3, Hs-CXCL10-C3 

cat# 311851-C3). Images were acquired using a Nikon Confocal (Nikon Eclipse Ti, A1R 

MP) at 40-60X magnification using Z-stack capture and compressed and analyzed using 

ImageJ. For images acquired for quantification, at least 5 images were randomly taken 

per animal per slide. Quantification of RNA transcripts was performed on stained sections 

as RNAscope is demonstrated to have single-transcript resolution (17). All quantification 

was performed by two separate, blinded individuals on at least five images per animal.  

For immunofluorescence, rat lung samples were prepared as described above and 

sectioned at 5μm. The sections were washed (PBS+0.1%TWEEN (Sigma) three times 

for 5 minutes) and incubated with 10% fetal bovine serum in PBS+0.1% TWEEN for 30 

min to block the background. The sections were incubated with cleaved-caspase3 

antibody (1:400, Cell Signaling Technology, cat# 9661S) and CD31 antibody (10ug/mL, 

Novus Biotech, cat# NB100-2284) in PBS+0.1% Triton+ 3% fetal bovine serum at 4oC 

overnight. The sections were washed and incubated with the secondary antibody (1:500, 

Alexa Fluor 488, Thermo Fisher, cat# A-11055) in PBS+0.1% TWEEN + 3% fetal bovine 

serum at room temperature for 1 hour. The sections were washed and incubated with 
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secondary antibody (1:1000, Alexa Fluor 594, Thermo Fisher, cat# A-11012) in 

PBS+0.1% TWEEN + 3% fetal bovine serum at room temperature for 1 hour. After 

washing, slides were mounted using Prolong gold with Dapi (Thermo Fisher) for imaging. 

Images were acquired using a Nikon Confocal (Nikon Eclipse Ti, A1R MP) at 40X 

magnification and analyzed using ImageJ. For images acquired for quantification, at least 

5 images were randomly taken per animal per slide and cleaved caspase-3 expressing 

nuclei proximal to positive CD31 expression were considered positive. Quantification was 

obtained blindly. 

Human lung samples were obtained from Pulmonary Hypertension Breakthrough 

Initiative repository as fixed, paraffin-embedded sections. Slides were deparaffinized, 

underwent target retrieval using boiling Sodium Citrate Buffer (10mM Sodium Citrate, 

0.05% Tween 20, pH 6.0) prior to staining for immunofluorescence. Slides were washed 

(PBS, 5 minutes, 3 times) and then blocked with PBS+ 5% normal donkey serum at room 

temperature for 1 hour. Slides were then incubated at 4oC overnight in PBS+5% normal 

donkey serum primary antibody+ primary antibody (10μg/mL, R&D Systems, CXCL9 cat# 

AF392-SP, CXCL10 cat# AF-266-SP). Slides were washed and then incubated at room 

temperature for 30 minutes with PBS+5% normal donkey serum+ secondary antibody 

(1:500, Alexa Fluor 488, Thermo Fisher, cat# A-11055). After washing, slides were 

mounted using Prolong gold with Dapi (Thermo Fisher) for imaging. Images were 

acquired using a Nikon Confocal (Nikon Eclipse Ti, A1R MP) at 40X magnification  

Real-time qPCR 

For in vivo experiments, total lung RNA was isolated using Trizol (Thermo Scientific), and 

for in vitro experiments, RNA was isolated from cells using Trizol followed by RNeasy 
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Micro Kit (Qiagen). Mouse and human RNA were reverse transcribed with polydT primers 

using Omniscript reverse transcription kit (Qiagen), except rat RNA was reverse 

transcribed using gene specific primers. Real-time quantitative PCR was performed on 

polyA+ cDNA with primers for using iTaq Universal SYBR® (Bio-Rad). Actb (mouse), 

Gapdh (rat) and RPLP0 (human) were used as housekeeping genes. See 

Supplementary Table E1 for primer sequences used.   

Bioinformatic Analysis 

Total lung RNA was isolated using Trizol extraction and purified using RNeasy Mini Kit 

(Qiagen). Libraries for RNA-seq were prepared by the Technology Center for Genomics 

& Bioinformatics at UCLA and sequenced using paired-end Hiseq 3000 (Illumina). 

HISAT2 version 2.1.0 was used to align RNA-seq reads to the Mus musculus genome 

(mm10, Ensembl 84). StringTie version 1.3.3b was used to assemble RNA-seq 

alignments into transcripts and estimate expression levels of all genes detected. 

Differential expression analysis was performed using DESeq2 R package version 

1.25.16. Differently expressed genes (DEGs) with false discovery rate <0.1 were 

considered statistically significant. Pathway enrichment analysis and clustering was 

performed using Cytoscape software (18). Publicly available human microarray data (19) 

was analyzed using the limma package for R to define a list of inflammatory genes 

expressed higher in female PAH patient lungs vs male PAH lungs.  

Cell studies 

PAEC experiments: PAEC from a healthy, nonsmoking male patient (Lonza) were 

cultured in tissue culture plates or on cover slips and spiked with recombinant CXCL9 [2 

μM, R&D Systems], CXCL10 [5 μM, R&D Systems] or vehicle (medium) for 24 hours for 
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EC apoptosis assay measured via cleaved caspase-3 immunofluorescence (1:250, Cell 

Signaling Technology, cat# 9661S) and 72 hours for cell viability and proliferation via 

CCK-8 assay (Dojindo Molecular Technology). For the viability assay, 3-4 separate 

experiments were performed with 5-6 technical replicates per experiment. For the 

apoptosis assay, 4 separate experiments were performed with 2 slides per experimental 

group in each experiment. Images were captured with using a Nikon Confocal (Nikon 

Eclipse Ti, A1R MP) at and analyzed using ImageJ.  400-500 cells were counted per slide 

to determine the percent apoptotic cells. In both studies, experimental replicates were 

averaged and the value was considered one experimental data point. 

Bone marrow-derived macrophage experiments: We compared WT and Uty-KO mice 

(B6.129P2(CD1)-UtyGt(XS0378)Wtsi/Mmnc) at  8-10 weeks old (Shpargel, et al (20), Mutant 

Mouse Resource & Research Centers strain #37420). WT and KO mice had comparable 

genetic backgrounds (8 generations of backcross from CD1, with a strain 129 Y 

chromosome). To generate these groups, a C57BL/6 mouse (male for WT group, female 

for Uty-KO group) was bred with another mouse (female for WT group, KO male for the 

Uty-KO group) that derived from the strain #37420 and was backcrossed from CD1 to 

C57BL/6 for 7 generations. Bone marrow (BM) was flushed from the tibia and fibula of 

mice using sterile PBS with 1% Antibiotic-Antimycotic (Thermo Fisher) through a sterile 

needle and incubated on ice with ACK lysing buffer (Thermo Fisher, cat# A1049201) 

followed by wash steps. BM was incubated with colony stimulating factor (20ng/mL, 

Sigma) for six days to induce macrophage differentiation. Once adherent, cells were 

treated with interferon gamma (IFNg, 10ng/mL, Thermo Fisher) for four hours. Cxcl9 and 

Cxcl10 expression was determined via RT-qPCR on isolated BM-derived macrophages 
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as described above. Macrophage identity and polarization were confirmed using primers 

for Cd68 and MhcII (See Supplemental Table E1 for primer sequences).  

Lung Macrophage Isolation 

Fresh lung tissue from age-matched WT and Uty-KO male mice (as described above) 

was minced with scissors prior to enzyme dissociation. Tissue was incubated in 

enzymatic solution (DMEM, Thermo Fisher, cat# 11965-092), Liberase (400 ug/mL, 

Sigma), Elastase (100 ug/mL, Worthington Bio), and DNase (20 units/mL, Sigma) at 37oC 

with continuous horizontal agitation (300 rpm). After incubation, dissociated tissues were 

sequentially passed through 70- and 40-micron cell strainers with centrifugation at 300g 

for 5 minutes. Cells were treated with ACK lysing buffer (Thermo Fisher, cat# A1049201) 

for 3 minutes at room temperature and quenched with PBS and pelleted. The cell pellet 

was incubated with viability dye for 20 minutes (0.1 uL/test, Thermo Fisher, cat# L34965) 

and Fc block (Cd16 antibody, 0.5uL/test, Thermo Fisher, cat# 14-0161-82) for 20 minutes 

on ice in the dark. After being washed and spun at 300g for 3 minutes, the cell pellet was 

stained with CD64 antibody (0.4 μg/test, Thermo Fisher, cat# 46-0641-80) and then 

washed and pelleted. Pellets were kept on ice and in the dark in PBS with 5% fetal bovine 

serum until cell sorting. Fluorescent activated cell sorting was carried out by the UCLA 

Flow Cytometry Core Facility on a BD FACSAriaIII. The cell population obtained for 

Western blot experiments consisted of live (viability dye negative) CD64+ cells 

(Supplemental Fig. E3C).  

Protein isolation, SDS-PAGE and Western Blotting 

Whole cell protein lysates were prepared from whole lung tissue and isolated lung 

macrophages using RIPA lysis buffer (50 mM NaCl, 50 mM Tris pH 8, 1% NP-40, 0.5% 



 

 

 

78 

sodium deoxycholate, and 0.1% SDS, all from Sigma) containing protease and 

phosphatase inhibitors (Roche #04-906-845-001 and #118-3615-3001). Proteins (whole 

lung: 75 ug/well, isolated macrophages: 5 ug/well) were diluted in 4x Laemmli sample 

buffer (BioRad #161-0747), boiled, separated on 20% gels by SDS-PAGE and 

subsequently transferred onto nitrocellulose membranes (Biorad #170-4270) using semi-

dry blotting (TransBlot Turbo System, BioRad). After transfer, membranes were blocked 

with 5% bovine serum albumin (Sigma #A9647) and incubated with antibodies directed 

against Histone H3K27 (1:300, Abcam, cat#ab6002) and Histone H3 (1:500, Abcam, 

cat#ab1791). IRDye-conjugated secondary antibodies (1:10.000, LI-COR #32210 and 

#68070) were used for detection and blots were scanned using the LI-COR Odyssey 

Infrared Imaging System. Band intensity was quantified using Image Studio Lite. 

Statistics 

For comparisons of two normally distributed, independent groups, we used an unpaired 

t-test. For the in vitro cell studies using PAEC, a paired t-test was used to compare viability 

and apoptosis between control and experimental groups within the same experimental 

batch. For a comparison between two nonparametric groups, we used a Mann-Whitney 

test. A significance level less than 5% (p<0.05) was deemed statistically significant. 

Analyses were made with Graph Pad Prism v.7 software. Values are expressed as mean 

± SEM. 
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Results 

Lung-specific knockdown of Uty, but not other ChrY genes expressed in the lung, 

eliminates ChrY protection against Hx-induced PH. 

Our previously published work demonstrated that ChrY is protective against Hx-induced 

PH in mice (13). We identified only four protein coding ChrY genes expressed in mouse 

lung tissue, Ddx3y [Y-linked DEAD-box helicase 3], Eif2s3y [eukaryotic translation 

initiation factor 2, subunit 3, structural gene Y-linked], Kdm5d [lysine demethylase 5D], 

and Uty [ubiquitously transcribed tetratricopeptide repeat containing, Y-linked] (13). Three 

of these genes, Ddx3y, Kdm5d and Uty, are conserved in humans, and KDM5D and UTY 

were both found to be downregulated in male PAH patient lungs when compared to 

healthy patient lungs (13).  

To determine which ChrY gene is responsible for PH protection, we individually knocked 

down (KD) each ChrY candidate gene in the lungs of GDX Hx mice and measured the 

effect on PH development (Fig. 1A). We found no significant change in the RVSP of mice 

with KD of Kdm5d (Fig. 1B), Ddx3Y (Fig. 1C), or Eif2s3y (Fig. 1D). However, KD of Uty 

resulted in significantly elevated RVSP compared to the Si-Scrm control group in two 

separate experiments (Fig. 1E). Mice that received Si-Uty demonstrated a significantly 

lower PAAT (Fig. 1F). We found Uty expression in Si-Uty treated lungs was reduced by 

~50% compared to Si-Scrm lungs (Fig. 1G).  

These data indicate that Uty is likely the sole ChrY gene that confers protection because 

reduction of Uty, but not the other ChrY genes expressed in the lung, is sufficient to 

exacerbate PH. 
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Fig. 1. Lung-specific knockdown of Uty, but not other ChrY genes expressed in the 

lung, eliminates ChrY protection against Hx-induced PH. A. Experimental protocol. 

30 days after gonadectomy (GDX), Male mice receive scramble Si-RNA or Si-RNA 

targeting ChrY genes every 5 days and are placed in hypoxia chamber for 3 weeks. B-E. 

RVSP measured by direct RV catheterization. F. PAAT measured by echocardiography. 

G. Quantification of Uty transcripts in lung tissue via RNAscope in situ hybridization 

(normalized to Si-Scrm). *p<0.05, **p<0.01, ***p<0.001.  
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Proinflammatory chemokines CXCL9 and CXCL10 are autosomal downstream 

deterrents of Uty protection and are upregulated in PAH patient lungs in a sex-

specific manner.  

To unravel the molecular mechanism underlying Uty protection in PH, we performed 

RNAseq on Hx Si-Scrm and Si-Uty mouse lung tissue and identified 523 DEGs (Fig. 2A). 

Pathway enrichment analysis highlighted five main pathways including cell signaling, 

extracellular matrix, transcription, translation, and inflammation (which was particularly 

enriched, Fig. 2B). Because inflammation is implicated in PAH pathogenesis and severity 

(2), we focused on DEGs localized in inflammatory pathways. We cross-referenced our 

inflammatory DEG set with an online microarray from PAH patient lung tissue (19) and 

searched for genes that were elevated in both Si-Uty compared to Si-Scrm, and female 

PAH samples compared to male, since females do not have the UTY gene. This analysis 

yielded two top genes of interest: proinflammatory chemokines CXCL9 and CXCL10 (Fig. 

2C), both of which we validated to be upregulated in male and female PAH lungs with a 

more robust upregulation in female patients (Fig. 2D-G) as represented by 

immunofluorescence images of human healthy and PAH lungs (Fig. 2F,G).  

Taken together, we found that downregulation of Uty is associated with upregulation of 

Cxcl9 and Cxcl10 in Uty-KD mouse lungs (Fig. E1 of Supplement) and that CXCL9 and 

CXCL10 expression levels are upregulated in human PAH lungs in a sex-specific manner. 
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Fig. 2. Proinflammatory chemokines CXCL9 and CXCL10 are autosomal 

downstream deterrents of Uty protection and are upregulated in PAH patient lungs 

in a sex-specific manner. A. Comparison of RNAseq data from Si-Scrm and Si-Uty Hx 

mouse lungs revealed 523 differently expressed genes (DEGs). B. Pathways enriched 

with DEGs. C. Integration of RNAseq data with an online microarray dataset of male and 

female human PAH lung samples revealed Cxcl9/CXCL9 and Cxcl10/CXCL10 as 

upregulated in PAH females (vs PAH males) and Si-Uty mice (vs Si-Scrm). Relative 

expression of CXCL9 (D) and CXCL10 (E) in human lungs as measured by RT-qPCR. 

*p<0.05. Representative immunofluorescence staining of CXCL9 (F) and CXCL10 (G) in 

male and female lung tissue from healthy (CTRL) and diseased (PAH) patients. *p<0.05 
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Uty, Cxcl9 and Cxcl10 are co-localized in macrophages and Uty expression is 

inversely related to Cxcl9 and Cxcl10 expression. 

Given the importance of macrophages in inflammation and their known expression of 

CXCL9 and CXCL10 (21), we tested for Uty expression in macrophages. Stained tissue 

sections from male mouse and human lungs confirmed Uty expression within Cd68+ 

macrophages (Fig. E2A of Supplement). Although we found Uty inversely related to  

chemokines Cxcl9 and Cxcl10, we examined male mouse and human lung tissue for 

colocalization within macrophages and found Uty transcripts colocalized with Cxcl9 (Fig. 

3A,C) and Cxcl10 (Fig. 3 B,D).  

To identify whether Uty expression in macrophages directly influences Cxcl9 and Cxcl10 

production, we measured Cxcl9 and Cxcl10 expression in BMDM from male WT and Uty-

KO mice (Fig. 3E). BMDM from Uty-KO mice expressed significantly more Cxcl9 and 

Cxcl10 compared to BMDM extracted from WT mice (Fig. 3 F,G).  

Since UTY is a member of the Jumonji family of histone demethylases and its role as an 

H3K27 demethylase is contested in literature (20, 22–24), we examined whether the 

effects of UTY in the lung were mediated through demethylation. We found that UTY 

expression in whole lung and isolated lung macrophages did not influence levels of 

H3K27 tri-methylated protein as measured by western blot (Fig. E3 of Supplement). 

In summary, we found Uty, which colocalizes with Cxcl9 and Cxcl10 in lung macrophages, 

regulates Cxcl9 and Cxcl10 expression, but has no apparent effect on H3K27 

demethylation. 
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Fig. 3. Uty, Cxcl9 and Cxcl10 are co-localized in macrophages and Uty expression 

is inversely related to Cxcl9 and Cxcl10 expression. Representative images depicting 

colocalization of in situ probes labeling Cd68/CD68 (red), Uty/UTY (green) and 

Cxcl9/CXCL9 (white) in mouse (A) and human (C) lung sections. Representative images 

depicting colocalization of in situ probes labeling Cd68/CD68 (red), Uty/UTY (green) and 

Cxcl10/CXCL10 (white) in mouse (B) and human (D) lung sections. Schematic of bone 

marrow derived macrophage (BMDM) in vitro experiments (E). Relative expression of 

Cxcl9 (F) and Cxcl10 (G) as measured by RT-qPCR in BMDM isolated from wildtype (WT) 

and Uty knockout (Uty-KO) mice. *p<0.05, **p<0.01  
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CXCL9 and CXCL10 expression triggers pulmonary artery endothelial cell 

dysfunction. 

To identify the mechanism by which Uty downstream autosomal genes Cxcl9 and Cxcl10 

promote PH severity, we performed in vitro cell studies using human PAEC, which 

express the shared CXCL9 and CXCL10 receptor and are known to contribute to vascular 

remodeling in PAH. We incubated human PAEC with exogenous recombinant human 

CXCL9 and CXCL10 protein and measured the effect on EC dysfunction, a hallmark of  

PAH pathophysiology (Fig. 4A). Treatment of PAEC with either CXCL9 or CXCL10 

resulted in decreased PAEC viability as measured by CCK-8 assay (Fig. 4B,C) and 

increased PAEC apoptosis as measured by quantification of cleaved caspase-3 staining 

(Fig. 4D,E,F).  

These data demonstrate that proinflammatory chemokines CXCL9 and CXCL10, which 

are upregulated in the absence of Uty, induce PAEC dysfunction in vitro.  

 

Blocking the activity of CXCL9 and CXCL10 is sufficient to rescue PH in female 

MCT rats. 

Since we identified that Uty expression regulates Cxcl9 and Cxcl10, we hypothesized that 

Uty protection against PH is mediated through reduced levels of proinflammatory 

chemokines CXCL9 and CXCL10. We tested whether we could extend the mechanism 

of Uty protection to females with PH by blocking the effects of CXCL9 and CXCL10 using 

a small-molecular inhibitor (AMG487) targeting their shared receptor, CXCR3 (Fig. 5A).  

To better highlight protective effects, we used a more severe model of PH which was 

induced by MCT injection in rats. We tested our preclinical treatment strategy on gonad- 
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Fig. 4. CXCL9 and CXCL10 recombinant protein triggers pulmonary artery 

endothelial cell dysfunction. Schematic of human PA endothelial cell (PAEC) 

experiments (A). Relative viability of PAEC treated with CXCL9 (B) or CXCL10 (C) as 

measured by CCK-8 assay. Representative images of cleaved caspase-3 (CC-3, red) 

immunofluorescence in vehicle, CXCL9 and CXCL10 treated cells (D). Quantification of 

percent apoptosis measured in PAEC treated with CXCL9 (E) or CXCL0 (F) as 

measured by CC-3 immunofluorescence. *p<0.05, **p<0.01, ****p<0.0001  
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intact females to determine if targeting CXCL9 and CXCL0 would be a viable treatment 

strategy for the most at-risk PAH population. We found that AMG487 sufficiently rescued 

PH development as treated rats had significantly lower RVSP (Fig. 5B). Fulton index 

measurements revealed that reduced RV pressure was concomitant with a reduction in 

RV hypertrophy (Fig. 5C). AMG487 treated rats exhibited increased PAAT (Fig. 5D) and 

RV fractional area change (RCFAC, Fig. 5E) indicative of lower PA pressure and 

improved RV function, respectively.  

Since CXCL9 and CXCL10 induce PAEC apoptosis and reduce viability in vitro (Fig. 4), 

we aimed to delineate whether this cellular mechanism underlies the PH protection 

conferred by AMG487 treatment in rats. We found reduced EC apoptosis in the lungs of 

AMG487 treated rats, as observed by less cleaved caspase-3 expression in EC, 

indicating that blocking the actions of CXCL9 and CXCL10 reduced pulmonary vascular 

EC dysfunction (Fig. 5F,G). 

Taken together, we demonstrate that inhibiting the shared CXCL9 and CXCL10 receptor 

in gonad-intact female rats is a viable preclinical treatment strategy as it reduced PH 

severity and lung vascular EC dysfunction. 
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Fig. 5. Blocking the activity of CXCLl9 and CXCL10 is sufficient to rescue PH in 

female MCT rats. Schematic of in vivo experiments in female rats (A). RV systolic 

pressure (B), PA acceleration time (C), Fulton index (RV/LV+IVS) (D); and RV fractional 

area change (E) measured in AMG487 treated rats compared to vehicle controls. 

Quantification (F) and representative images (G) of apoptotic EC cells in CD31 (green) 

and cleaved-caspase 3 (CC3, pink) labeled sections from vehicle and AMG treated lungs. 
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Discussion  

We recently demonstrated that ChrY is protective against experimental PH (13), and this 

study is the first to investigate the role of each ChrY gene expressed in the lung in 

protecting against PH. We found that KD of Uty, but not ChrY genes Eif2s3y, Ddx3y or 

Kdm5d, within the lung tissue of GDX male mice exposed to Hx increased PH severity 

thereby eliminating ChrY protection (Fig. 1). We examined Uty in the context of PH 

pathogenesis and found that loss of Uty expression in PH lungs resulted in an 

upregulation of proinflammatory chemokines Cxcl9 and Cxcl10 (Supplemental Fig. E1). 

Interestingly, CXCL9 and CXCL10 are upregulated in PAH patient lungs in a sex-specific 

manner with a more robust upregulation in female patients compared to males (Fig. 2). 

We found that stimulating human PAEC with exogenous CXCL9 or CXCL10 was 

sufficient to trigger PAEC dysfunction, a hallmark of PAH pathogenies (Fig. 4). 

Furthermore, blocking CXCL9 and CXCL10 action is a novel strategy for the treatment of 

PH because it reduced EC apoptosis and PH severity in female rats (Fig. 5). Figure 6 

summarizes our findings. 

UTY is a member of the Jumonji family of H3K27 histone demethylases and is the ChrY 

homolog of the ChrX gene Kdm6a (25). Although KDM6A is a known H3K27 demethylase 

(26), the demethylase activity of UTY is contested (20, 23, 24). While structurally very 

similar to KDM6A, UTY has undergone biochemical changes and is known to have unique 

functions (15, 20, 27). While Walport et al demonstrated residual demethylase activity in 

the human UTY enzyme (22), Lan et al, Hong et al, and Shpargel et al found no UTY 

enzymatic activity (20, 23, 24). We investigated whether UTY expression influences the 

H3K27 histone residue and found no significant difference in H3K27 methylation between  
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male WT and Uty-KO in whole lung tissue or isolated lung macrophages (Supplemental 

Fig. E3). Our data suggest that Uty induced protection is not mediated through epigenetic 

regulation of H3K27.   

Regardless of its loss of catalytic activity, Uty expression was recently demonstrated to 

have widespread effects on autosomal gene expression (14) and is known to be involved 

in cardiac development (20). Dysregulation of UTY is implicated in bladder cancer (28) 

and its expression within macrophages is associated with increased atherosclerosis risk 

in men (15, 29, 30). Our study, however, is the first to identify and examine the role of Uty 

in the context of PH pathogenesis and its contribution to ChrY protection through 

mediating the expression of proinflammatory chemokines Cxcl9 and Cxcl10.  

Since Uty expression was previously found in macrophages (30) and CXCL9 and 

CXCL10 are proinflammatory chemokines secreted by immune cells (21), we confirmed 

colocalization of Uty with Cxcl9 and Cxcl10 in lung macrophages using RNAscope in situ  

hybridization (Fig. 3). In situ probes were used after we determined the commercially 

available UTY antibodies were not specific to UTY as they also recognized KDM6A which 

is expressed in both male and female lung tissue compared to UTY which is exclusive to 

males. We believe our RNAscope images are the first to depict Uty, but not Kdm6a, 

expression in mouse and human lung tissue (Fig. E2B of Supplement).  

As Uty expression is colocalized with Cxcl9 and Cxcl10 in lung macrophages, we tested 

whether Uty expression in macrophages directly influences Cxcl9 and Cxcl10 production. 

We found M1 macrophages derived from Uty-KO BM have higher expression of Cxcl9 

and Cxcl10 indicating that Uty expression in macrophages regulates Cxcl9 and Cxcl10 

production (Fig. 3).  
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Fig. 6. Proposed mechanism of Uty/Cxcl9/10 axis in PH pathogenesis. Uty/UTY 

absence (in females) or reduced expression (males with PAH or Uty-KD or KO mice) 

results in an upregulation of proinflammatory chemokines CXCL9 and CXCL10 in the 

lung. CXCL9 and CXCL10 trigger vascular EC dysfunction resulting in increased PH 

severity. Blocking CXCL9 and CXCL10 activity by pharmacologically inhibiting their 

shared receptor, CXCR3, is a novel treatment strategy to rescue PH development. 
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CXCL9 and CXCL10 are proinflammatory chemokines that act through the same G 

protein-coupled receptor, CXCR3 (21). Dysregulation of these small proteins, which are 

known to promote chemotaxis and immune cell differentiation, is associated with a myriad 

of systemic inflammatory diseases including cancers, scleroderma, pulmonary fibrosis 

and even PAH (31–35). Prior to this study, CXCL9 and CXCL10 were associated with 

PAH severity, and plasma levels of CXCL10 were found to be upregulated in PAH patients 

compared to healthy controls (33, 34). However, sex differences in CXCL9 and CXCL0 

expression in PAH patients and the mechanism by which they promote PAH development 

were not known. We found that CXCL9 and CXCL10 are upregulated in human PAH lung 

tissues with a more robust upregulation in female patients compared to males (Fig. 2). 

This finding provides further evidence that complex sex differences exist within the 

immune response to PAH which could impact susceptibility, disease severity and 

treatment strategies between male and female patients (36, 37).  

Previous studies found that upregulation of CXCR3 expression and the CXCL9 and 

CXCL10 ligands promote EC apoptosis (38–40). As pulmonary EC are one of the cell 

types most implicated in PAH, we investigated whether CXCL9 and CXCL10 recombinant 

protein directly influence PAH pathogenesis through PAEC. We found treating human 

PAEC with exogenous CXCL9 or CXCL10 was sufficient to trigger PAEC dysfunction as 

measured by decreased PAEC viability concomitant with increased apoptosis (Fig. 4). 

PAEC dysfunction, a hallmark of PAH pathogenies, is known to increase PH severity 

through dysregulation of angiogenesis, altered secretion of vasoactive agents and 

increasing vascular permeability (41).  
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Considering females, who lack ChrY, are particularly susceptible to PAH and that males 

with PAH have reduced expression of UTY, we tested whether blocking the activity of the 

downstream effector genes Cxcl9 and Cxcl10 could reduce PH severity akin to Uty 

protection. We found that blocking the activity CXCL9 and CXCL10 by inhibiting their 

shared receptor is a promising treatment strategy as it significantly reduced RV pressure 

and PH severity in female rats (Fig. 5). We also found in vivo inhibition of CXCL9 and 

CXCL10 reduced vascular EC apoptosis (Fig. 5).  

We chose small-molecule inhibitor AMG487 for our preclinical in vivo studies for its 

efficacy and clinical relevance. Since CXCL9 and CXCL10 are upregulated in PAH 

patients and contribute to PH pathophysiology, blocking the activity of both through 

inhibiting their shared receptor provides an efficient treatment strategy. Furthermore, 

AMG487 compound has been tested as stable, specific, and safe in humans (42). Our 

preclinical experiments demonstrate that identifying and targeting Uty downstream 

autosomal effector genes is a promising and powerful way to extend ChrY protection 

against PAH. 

We believe our current study presents the first and only data to directly explain ChrY 

protection against PH. A recent study from Yan, et al noted a connection between the 

testes determining ChrY gene Sry and the PAH-related gene Bmpr2 in dermal fibroblasts 

(43); however, we do not believe this connection is sufficient to explain ChrY protection. 

Our previous study demonstrating ChrY protection utilized the Four Core Genotypes 

(FCG) mouse model which is well published and highlights striking sex chromosome 

effects in a variety of diseases (44). The FCG model allowed us to determine the effects 

of sex chromosomes, independent of gonadal effects, by producing gonadal male and 
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female mice with either XX or XY chromosomes (13). The model produces XY gonadal 

females lacking Sry, which we found to be protected against PH compared to XX females 

(13). Furthermore, Sry/SRY expression is not detected in lung tissue. Uty is therefore the 

only ChrY gene expressed in the lung tissue that we demonstrate to influence PH severity. 

Our study is the first to provide mechanistic insight into ChrY protection in PH and 

elucidates a novel therapeutic strategy targeting the activity of Uty downstream mediators 

upregulated in male and female PAH patients. We show that reduced expression of Uty, 

which is downregulated as a result of PAH in males and absent in females, upregulates 

proinflammatory chemokines Cxcl9 and Cxcl10 which promote PH severity through PAEC 

dysfunction and that targeting the activity of CXCL9 and CXCL10 reduces PH severity 

(Fig. 6). While these results explain why females, who lack UTY, are more likely to be 

diagnosed with PAH, they do not explain why males have worse prognoses and clinical 

outcomes once diagnosed (45). Since we show Uty expression is involved in mediating 

the immune response, we hypothesize that the reduction of UTY expression in male 

lungs, as a result of PAH, may trigger a harmful immune cascade and imbalance that 

causes severe PAH. As a future direction, we aim to characterize the immune system in 

WT and Uty-KO mice to identify additional downstream effector genes. Investigating 

additional Uty downstream genes and their connection to PAH pathogenesis, as 

demonstrated in this study, is a promising avenue of research that may provide additional 

insight and therapeutic approaches for this rare, terminal disease.  

  



 

 

 

95 

Supplemental Table E1: Primer sequences 

 
Species Gene Sequences (5 ’to 3’) 
Human RPLP0 F: CAGGTGTTCGACAATGGCAG 

R: ACAAGGCCAGGACTCGTTTG 
 CXCL9 F: GGTGTTCTTTTCCTCTTGGGC3 

R: AACAGCGACCCTTTCTCACT 
 CXCL10 F: GGTGTTCTTTTCCTCTTGGGC3 

R: AACAGCGACCCTTTCTCACT 
Mouse Actb F: ATGTGGATCAGCAAGCAGGA 

R: AAGGGTGTAAAACGCAGCTCA 
 Uty F: TGACCCTAATTTTTGCAGAGC 

R: TGAAACTGAATTTCGACACTGG 
 Cxcl9 F: GGAGTTCGAGGAACCCTAGTG 

R: GGGATTTGTAGTGGATCGTGC 
 Cxcl10 F: CCAAGTGCTGCCGTCATTTTC 

R: GGCTCGCAGGGATGATTTCAA 
 MhcII F: AAGGCATTTCGTGTACCAGTTC  

R: CCTCCCGGTTGTAGATGTATCTG 
 Cd68 F: TGTCTGATCTTGCTAGGACCG 

R: GAGAGTAACGGCCTTTTTGTGA 
Rat Gapdh F: GTGCCAGCCTCGTCTCATAG 

R: GGTAACCAGGCGTCCGATAC 
 Uty F: AGACGCTGTTGAACAAGGCA 

R: TTTGCTGCACCATGAGTTCCT 
 Uty (Gene-

specific RT) 
AGGGGTCCTTCAGTCTCACA  
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Supplemental Figures 

 

 

Fig. E1. Knockdown of Uty in Hx male mouse lungs results in increased Cxcl9 and 

Cxcl10 expression. Relative expression of (A) Cxcl9 and (B) Cxcl10 in GDX Hx mouse 

lungs that received intratracheal instillation of either Si-Scrm or Si-Uty. Analysis is based 

on RNAsequencing data from Si-Scrm and Si-Uty Hx mouse lungs. *p<0.05, **p<0.01 
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Fig. E2. Uty is expressed in macrophages in the lungs of male mice and humans. 

A. RNAscope fluorescent in situ duplex hybridization for Uty/UTY (white) and 

macrophage marker, Cd68/CD68 (red) in mouse and human. Nuclei are stained with dapi 

(blue). Small dotted boxes are shown at higher magnification. B. RNAscope in situ 

hybridization shows Uty signal in male mouse lung (red dots) but not in female.  
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Fig. E3. Uty protection in PH is not mediated through an epigenetic modification. 

Western blot depicting relative expression of tri-methylated H3K27 normalized to H3 (n=4 

or 6/group) in whole lung tissue (A) or lung macrophages (B) from Uty-KO and WT male 

mice. (C). Representative images of fluorescent activated cell sorting of live CD64+ 

macrophages isolated from WT and UTY-KO lungs. 
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Introduction 

Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease caused by a 

decrease in pulmonary vascular compliance which leads to an increased pulmonary 

artery and right ventricular pressures. Reduced pulmonary vascular compliance is due to 

aberrant vasoconstriction and cellular dysfunction within the medial and distal pulmonary 

arterioles (1, 2). The idiopathic form of PAH exhibits complex sex differences where 

females are more likely to be diagnosed with PAH yet are more likely to respond to 

treatment (3, 4). While there is no cure for this rare but terminal disease, the mainstay of 

patient care, which include treatment with prostacyclin, nitric oxide and endothelial 

receptor antagonists (ERAs), largely focus on vasodilation and increase median patient 

lifespan from 5 to 7 years (5). Once diagnosed, females generally have a better prognosis 

and are more responsive to treatment with ERAs; however, the underlying cause of this 

sex disparity in ERA treatment remains unknown (3, 4).  

We previously found that the male-specific Y chromosome gene Uty is protective against 

experimental pulmonary hypertension through attenuating the deleterious effects of 

proinflammatory chemokines Cxcl9 and Cxcl10 which trigger vascular endothelial cell 

(EC) dysfunction and more severe PH ((6), Chapter 3). In the current study, we found 

that ET-2, a member of the Endothelin family of potent vasoconstrictive peptides, is also 

upregulated in the lungs of mice with PH as a result of Uty knockdown. Additionally, we 

found CXCL9 and CXCL10 treatment was sufficient to trigger the secretion of ET-2 by 

dysfunctional vascular EC indicating that there is crosstalk between these downstream 

pathways that are regulated by Uty expression. 
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Endothelin-1 (ET-1), which shares the same ETA and ETB receptors, is known to be 

upregulated in PAH lungs and linked to pulmonary vasoconstriction and elevated PA 

pressure (5, 7); however, ET-2 has not been studied in the context of PAH. We found ET-

2 is exclusively upregulated in the lungs of female PAH patients, but not male PAH 

patients, compared to healthy controls. We also found a sex-specific and PAH-specific 

expression of ET receptors, ETA and ETB. In healthy lung tissue, females exhibited 

increased expression of ETA compared to males; and in PAH lung tissue, females 

exhibited increased expression of ETB compared to males. Regardless, the expression 

of ET receptors seems to be upregulated in females compared to males, indicating that 

ET-2 signaling is increased in the lungs of PAH females compared to those of PAH males 

and healthy males and females.  

Both ETA and ETB receptors are the targets of ERA therapies used to block the 

vasoconstrictive effects of ET-1 in PAH. It is known that females, while more likely to be 

diagnosed with PAH, exhibit a better prognosis and respond more strongly to ERA 

treatment. Sex hormones and sex chromosomes are known to contribute to the marked 

sex differences in PAH disease susceptibility; however, the underlying cause of sex-

specific responses to ERA therapies is not known. Our findings are the first to suggest 

sex differences in response to ERA treatment in PAH patients may be due to increased 

ET-2 expression as well as higher expression of ET receptors in female PAH patients 

compared to male patients driven by lack of UTY expression.  
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Methods 

Uty knockdown in mice 

Uty knockdown experiments in mice with hypoxia-induced PH were performed in a 

previous study described in Chapter 3. Briefly, male C57BL/6J mice aged 6-8 weeks 

were purchased from Jackson Laboratories and underwent gonadectomy (GDX) surgery 

under isoflurane anesthesia to remove gonads. After 30 days, mice were randomly 

divided into two groups where they received recurring intratracheal instillation of either 

short interfering RNA (siRNA) targeting a Uty or a scrambled siRNA every 5 days 

(1nmol/instillation, Dharmacon Accell mouse SMARTpool: Si-Uty: E-046843-00-0010; Si-

Scrm: siGENOME Non-Targeting siRNA Pool #2, D-001206-14-05). Mice were housed 

in hypoxic (Hx, 10% oxygen) conditions for three weeks while receiving instillations. Upon 

the termination of these experiments, mouse lungs were quickly excised, perfused with 

PBS, snap snap frozen in liquid nitrogen, and stored in -80oC until use.  

Bioinformatic Analysis 

Total lung RNA was isolated using Trizol extraction and purified using RNeasy Mini Kit 

(Qiagen). Libraries for RNA-seq were prepared by the Technology Center for Genomics 

& Bioinformatics at UCLA and sequenced using paired-end Hiseq 3000 (Illumina). 

HISAT2 version 2.1.0 was used to align RNA-seq reads to the Mus musculus genome 

(mm10, Ensembl 84). StringTie version 1.3.3b was used to assemble RNA-seq 

alignments into transcripts and estimate expression levels of all genes detected. 

Differential expression analysis was performed using DESeq2 R package version 

1.25.16. Differently expressed genes (DEGs) with false discovery rate <0.1 were 
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considered statistically significant. Pathway enrichment analysis and clustering was 

performed using Cytoscape software (8).  

Human samples: 

Human samples were obtained from UCLA lung transplant group or Pulmonary 

Hypertension Breakthrough Initiative. Control samples were collected from failed donor 

lung tissue or resected tissue during lung biopsy. Patients in control group do not exhibit 

PAH. PAH lung samples were collected from patients with a clinical PAH diagnosis at the 

time of lung transplantation. All tissue samples were snap frozen in liquid nitrogen and 

stored in -80oC until use.  

Real-time qPCR 

RNA was isolated from tissue samples using Trizol reagent (ThermoFisher). Mouse and 

human RNA were reverse transcribed with polydT primers using Omniscript reverse 

transcription kit (Qiagen). Real-time quantitative PCR was performed on polyA+ cDNA 

with primers for using iTaq Universal SYBR® (Bio-Rad). Actb (mouse) and RPLP0 

(human) were used as housekeeping genes.  

Cell studies 

Human pulmonary artery EC from a healthy male were incubated at 37oC with human 

recombinant CXCL9 or CXCL10 protein or vehicle. After 72 hours, ET-2 expression in the 

conditioned culture medium of treated EC was measured by ELISA (FineTest).  
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Statistics  

For comparisons of two normally distributed, independent groups, we used an unpaired 

t-test. For comparisons of sex differences, we compared male and female values from 

each experimental group (healthy or PAH). For a comparison between two nonparametric 

groups, we used a Mann-Whitney test. A significance level less than 5% (p<0.05) was 

deemed statistically significant.  

 

Results 

Knockdown of Y chromosome gene Uty in the lungs of PH mice results in an 

upregulation of ET-2 expression. 

We previously found that the male-specific Y chromosome is protective against PH 

development and that knocking down Y chromosome gene Uty within the lungs of PH 

mice is sufficient to eliminate this protection (Chapters 2, 3). We Integrated RNA 

sequencing data from Uty knockdown mouse lungs with an online microarray dataset of 

male and female human PAH lung samples which revealed Endothelin-2 (ET-2) is 

upregulated in both Uty knockdown mice compared to wildtype and PAH females 

compared to males (Figure 1). We validated that the lungs of mice with Uty knockdown 

exhibited elevated ET-2 expression compared to wildtype PH controls (Figure 2A). 

Expression of ET-1 and ET receptors ETA and ETB did not change as a result of Uty 

knockdown in PH mouse lungs (Figure 2B).  
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Figure 1. Schematic of bioinformatic analysis to identify Uty- and sex-specific 

candidate genes. A. A heatmap depicting 523 differently expressed genes as a result 

of Uty knockdown (Uty-KD) in hypoxic mouse lungs. B. A heatmap depicting genes that 

are expressed higher in both Uty-KD lungs (vs wildtype (WT)) and female PAH patients 

(vs male PAH patients) (red boxes).  
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ET-2 expression is upregulated in the lungs of PAH female patients but not male 

PAH patients.  

After identifying the upregulation of ET-2 in PH mouse lungs as a result of reduced 

expression of the Y chromosome gene Uty, we examined the effect of sex on ET-2 

expression in human PAH lung tissue. We found female PAH patients exhibited elevated 

ET-2 lung tissue expression compared to healthy female patients (Figure 3). ET-2 

upregulation in PAH patient lungs was not observed in males (Figure 3). Thus, elevated 

ET-2 expression in PAH lung tissue is sex-specific and exclusive to female patients.  

 

ET receptor expression is upregulated in healthy female lungs compared to healthy 

males and altered in PAH in a sex-specific manner.  

Following the identification of a robust, female-specific elevation of ET-2 as a result of 

PAH, we examined the expression of ET receptors, ETA and ETB, in the lung tissue of 

males and females with and without PAH. We found that in healthy lung tissue, ET 

receptors are elevated in females compared to males with a significant upregulation of 

ETA and a trend toward upregulation of ETB (Figure 4A). We identified that the sex 

differences in ET receptor expression were also altered as a result of PAH. In male and 

female PAH lung tissue, female upregulation of ETA is no longer significant; however, 

both ETA and ETB trend toward elevated expression compared to males (Figure 4B). 
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Figure 2. Knockdown of Y chromosome gene Uty in the lungs of PH mice results in 

an upregulation of ET-2 expression. A. Expression of ET-2, but not ET-1, is increased 

in the lungs of Uty knockdown mice vs. wildtype (WT) controls. *p<0.05. B. Expression of 

ETA and ETB receptors is not altered as a result of Uty knockdown in the lung. 
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Figure 3. ET-2 expression is upregulated in the lungs of PAH female patients but 

not male PAH patients. Expression of ET-2 is increased exclusively in the lungs of PAH 

women, but not in men. Expression in females is normalized to corresponding males. 

*p<0.05. 
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Taken together, female healthy and PAH lung tissue have slightly elevated expression of 

ET receptors compared to males, and this sex difference in ET receptors is altered, but 

not eliminated, by PAH development.  

 

Vascular endothelial cell dysfunction by treatment with Cxcl9 and Cxcl10 triggers 

ET-2 production. 

EC dysfunction, which is characteristic of PAH, is known to contribute to expression of 

endothelins. Since we previously identified the proinflammatory chemokines CXCL9 and 

CXCL10 as a sex-specific source of EC dysfunction that are upregulated in PAH females 

compared to PAH males (Chapter 3), we hypothesized that CXCL9- and CXCL10-

induced EC dysfunction could contribute to the increased ET-2 expression found in 

female PAH lungs. We measured the production of ET-2 by EC in the presence of 

elevated CXCL9 and CXCL10 and found human pulmonary artery EC incubated with 

exogeneous human CXCL9 and CXCL10 exhibited increased ET-2 secretion as 

measured by ELISA (Figure 5).  
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Figure 4. Endothelin receptor expression is upregulated in healthy female lungs 

compared to healthy males and altered in PAH in a sex-specific manner. A. In 

healthy human lungs, expression of ETA receptor is significantly higher in females 

compared to males (n=5-7/group). *p<0.05. B. In human PAH lungs, expression of ETB 

receptor is higher (though not significant, p=0.06) in PAH females compared to PAH 

males.  
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Figure 5. Human recombinant CXCL9 and CXCL10 chemokines promote ET-2 

secretion by vascular endothelial cells. Quantification of ET-2 secretion in cultured 

medium of PAEC treated with Cxcl9 (A), or CXCL10 (B) as measured by ELISA.  

p<0.05 vs vehicle.   
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Discussion 

This study identified a link between the expression of the protective Y chromosome gene 

Uty and the expression of ET-2 in the lung. Male mice with reduced Uty expression and 

female PAH patients with no UTY expression both exhibit elevated ET-2 expression in 

lung tissue. We found that both healthy and PAH females have increased expression of 

ET receptors compared to their male counterparts. This indicates that ET-2 signaling is 

increased in PAH females and may contribute sex-bias in disease susceptibility, 

progression, and response to treatment. Furthermore, we found crosstalk between the 

Cxcl9 and Cxcl10 inflammatory pathways (Chapter 3) and ET-2 upregulation, all of which 

we identified to be inversely related to Uty expression and correlated with PH disease 

severity. 

While the powerful vasoconstrictive peptide ET-1 is known to be upregulated in male and 

female PAH patents, ET-2 upregulation in PAH female lungs has not been reported. Like 

ET-1, ET-2 signaling is also associated with vasoconstriction. In this way, we believe that 

elevated ET-2 signaling in female PAH lungs results in increased vasoconstriction in 

female patients. Previous studies also found additional cellular responses are altered as 

a result of ET-2 binding. ET-2 is known to inhibit EC proliferation and new vessel formation 

in the eye (9) and promote smooth muscle cell (SMC) proliferation in myometrium (10). 

ET-2 peptide, whose structure is similar to that of a CXC chemokine (11), has also been 

found to act as a proinflammatory signaling factor to recruit macrophages (12). All of these 

cellular pathways are known to contribute to PAH development. EC apoptosis, reduced 

angiogenesis, and aberrant SMC proliferation are hallmarks of the vascular dysfunction 

associated with PAH pathogenesis including formation of plexiform lesions, loss 
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pulmonary vascularization, and the muscularization and hypertrophy of distal arterioles 

(1, 13). Furthermore, elevated inflammation and altered macrophage ratio in the lung 

have been associated with, and even found to play a causal role in, PAH development 

(14, 15).  Because of the overlap between ET-2 functions and PAH pathogenic pathways, 

we believe there is evidence to support a pathogenic role for ET-2 in PAH pathogenesis. 

We hope to continue to study the effects of ET-2 within the context of PAH and shed light 

on these important contributions to the disease.  

Since ET-2 elevation is exclusive to females with PAH, alterations in ET-2-driven 

pathways are sex-specific. ET-2 shares the same receptors as ET-1, which are inhibited 

as a common therapy for PAH patients. Treatment with ERAs exhibit sex differences in 

efficacy since females are known to be more responsive to treatment than males (3, 4). 

We believe that our data help explain the molecular mechanism behind this sex 

difference. Since elevated ET-2 levels contribute to excess vasoconstriction and 

potentially other pathogenic pathways associated with PAH development, blocking the 

activity of ET-2 through ERA treatment attenuates these dysfunctional pathways which 

are excusive to females. In this way, female PAH patients report greater effects from ERA 

treatment since the benefit is multifactorial through the inhibition of both ET-1 and ET-2 

driven pathogenic pathways.    

Our data indicate that sex-specific elevation of ET-2 in PAH females is a result of sex 

differences imparted by sex chromosomes. ET-2, but not ET-1, is upregulated in male PH 

mice as a result of knockdown of the Y chromosome gene Uty. We previously found that 

Uty protects against PH and that loss of or no Uty expression results in elevated 

expression of proinflammatory chemokines Cxcl9 and Cxcl10 and increased vascular 
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endothelial cell dysfunction (Chapter 3). We found evidence of crosstalk between these 

pathways since incubation of EC with CXCL9 or CXCL10 was sufficient to increase ET-2 

production by dysfunctional EC. Additionally, we previously found that Uty is expressed 

in the lung by macrophages, and proinflammatory macrophages lacking Uty produce 

increased levels of Cxcl9 and Cxcl10 (Chapter 3). Since ET-2 is a known macrophage 

chemoattractant, we believe lack of Uty in the lungs results in a proinflammatory positive 

feedback loop regulated by increased expression of Cxcl9, Cxcl10, and ET-2. In this way, 

we believe that a combination therapy blocking both the effects of Cxcl9, Cxcl10, and ET 

receptors could provide additive benefit to PAH patients compared to treatment with 

ERAs alone. Testing the potential synergistic effect between these two treatment 

strategies is another future direction for this project.  

In summary, our working model is that Uty, a male-specific Y chromosome gene, protects 

against PH development. The absence of Uty in females results in more severe PH, in 

part, through increased expression of ET-2. Elevated ET-2 expression in female PAH 

patients contributes to PAH severity through increased vasoconstriction, vascular 

dysfunction, and inflammation. Blocking the action of ET-2 via ERAs reduces the severity 

of PH in a sex-specific manner rendering ERA treatment more effective in females 

(Figure 6). This work identifies a novel gene associated with PAH development, provides 

an explanation to the marked sex-disparities in ERA treatment, and highlights a potential 

combination treatment strategy for PAH patients.   
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Figure 6. Schematic of ET-2 overexpression in female PAH lungs. Females with 

PAH exhibit elevated ET-2 expression in their lungs with contributes to worsening PAH 

through increased vasoconstriction and inflammation. Blocking the activity of ET-1 and 

ET-2 through treatment with endothelin receptor antagonists (ERAs) exhibits a greater 

response in female PAH patients compared to males.  
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Chapter 5: Conclusions and Future Directions 
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Conclusions 

PAH is a rare but terminal pulmonary vascular disease originating in the pulmonary 

arterioles that exhibits a marked female predominance. While PAH is subdivided based 

on shared or overlapping characteristics, the exact cellular mechanism by which 

pulmonary arteriole remodeling is triggered remains largely elusive. The work included in 

this dissertation presents a novel approach to study PAH pathological triggers using a 

hypothesis-based approach centered around the associated sex differences.  

The original hypothesis explored in this dissertation was an attempt to better understand 

the complex sex differences found in PAH both clinically and experimentally. While 

females are up to 4x more likely to be diagnosed with PAH, they suffer from a milder form 

of the disease and are more responsive to treatment than males (1, 2). Experimental 

investigation into sex differences associated with PAH are paradoxical as well, and the 

“Estrogen Paradox in PAH” is a term coined to describe the culmination of decades of 

research being conducted on the role of estrogens in an attempt to understand these 

complex sex differences. In short, estrogens were found to be largely protective in animal 

models of PH despite female sex being a risk factor for the development of PAH. 

Estrogens have been shown to prevent and rescue PH development in animal models of 

PH by attenuating pulmonary vascular remodeling and reducing RV dilation and 

hypertrophy (3–6). Taken together, it is clear that other sex biasing factors influence PAH 

predisposition and disease severity, and this dissertation is a compilation of work 

highlighting the previously unknown sex chromosome contributions to this disease.  

In the absence of circulating gonadal hormones, we found that the male-specific Y 

chromosome is protective against hypoxic PH in mice (7). This study was made possible 
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by the use of the Four Core Genotypes mouse model, which allowed us to parse apart 

the effects of sex chromosomes independent of gonadal sex, and the XY* mouse model, 

which allowed us to distinguish if our sex chromosome effect was due to the number of X 

chromosomes or the presence of a Y chromosome (Chapters 1, 2). Following 

gonadectomy, mice with XY chromosome complement exhibited reduced RV pressure 

and less pulmonary vascular muscularization compared to hypoxic gonadal male and 

female mice with XX chromosome complement. We then identified that this protective 

effect was due to the presence of the Y chromosome, and not a result of X chromosome 

dosage, since hypoxic gonadectomized mice with a Y chromosome (XY and XXY) 

exhibited decreased RV pressure compared to those without a Y chromosome (XO and 

XX) regardless of the number of X chromosomes (Chapter 2). This exciting finding led 

us to identify which genes encoded by the Y chromosome are expressed in the heart and 

lung tissue that could contribute to PH protection. We found four coding genes were 

expressed in these tissues (Kdm5d, Uty, Ddx3y and Eif2s3y), three of which were also 

conserved in human tissues (KDM5D, UTY, DDX3Y). Interestingly, our bioinformatic 

analysis of online human microarray data revealed two of these genes, KDM5D and UTY, 

were downregulated in lung tissue isolated from PAH males compared to healthy male 

lung tissue (Chapter 2).  

By knocking down each Y chromosome gene expressed in gonadectomized hypoxic male 

mouse lungs via recurring intratracheal instillation of siRNA, we found that reduction of 

Uty, but not the other three Y chromosome encoded genes, was associated with loss of 

Y chromosome protection against PH (Chapter 3). In light of this evidence, we believe 

Uty to be the Y chromosome encoded gene responsible for Y chromosome protection. 
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While Uty is a member of the Jumonji family of histone demethylase enzymes which are 

known to remove methyl groups from histone 3 lysine residue 27, our studies did not find 

evidence of histone modification at this residue as a result of Uty expression. This finding 

is supported by the literature where multiple studies reported a loss of demethylase 

activity in the Uty gene (8–10), potentially as a result of the increased rate of mutation 

associated with Y chromosome genes due to the biological redundancy of X chromosome 

paralog genes and reduced evolutionary pressure (11). Understanding the mechanism of 

Uty gene action within the context of PH is a focus of future directions, but molecular 

pathways downstream of Uty expression that contribute to PH severity have already been 

elucidated by the studies in this dissertation. 

We found that knockdown of Uty in hypoxic mouse lungs resulted in profound gene 

expression changes and inflammatory pathways being particularly perturbed (Chapter 

3). Out of these genes, we identified the proinflammatory chemokines Cxcl9 and Cxcl10 

as upregulated in both Uty knockdown mouse lungs and human female PAH patients, 

which have no Uty expression, compared to male patients. Indeed, the proinflammatory 

chemokines Cxcl9 and Cxcl10 are both upregulated in male and female PAH patient 

lungs compared to healthy control tissue with a more robust upregulation in female PAH 

lungs compared to male PAH lungs.  

Using fluorescent in situ hybridization in mouse and human male lung tissue sections, we 

showed that Uty was not highly enriched in vascular cell types but was expressed by 

Cd68+ lung macrophages. We further identified that Uty, Cxcl9, and Cxcl10 transcripts 

colocalized in Cd68 expressing macrophages in the lungs and found a Uty expression 

directly affects Cxcl9 and Cxcl10 production within macrophage cells. Proinflammatory 
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bone marrow derived macrophages from Uty total knockout mice exhibited increased 

Cxcl9 and Cxcl10 expression when compared to those isolated from age-matched 

wildtype mice with Uty expression (Chapter 3). Since CXCL9 and CXCL10 chemokines 

elicit a proinflammatory response in tissues through binding the shared CXCR3 receptor 

on cells, including immune cells, we believe increased production of these chemokines in 

Uty-null macrophages produces a positive feedback loop by recruiting more Uty-null 

macrophages. 

In addition to inflammatory cells, endothelial cells are also known to express the CXCR3 

receptor. We further linked increased Cxcl9 and Cxcl10 expression to PAH pathogenesis 

using an in vitro assay of vascular endothelial cell dysfunction. Exogenous CXCL9 and 

CXCL10 treatment in healthy human endothelial cells isolated from the pulmonary artery 

resulted in cellular dysfunction as characterized by decreased viability and increased 

apoptosis (Chapter 3). Damaged endothelial cells are a hallmark of PAH pathogenic 

response and also trigger a vascular inflammatory response by expressing 

proinflammatory chemokines in turn (12, 13). We believe this is a catalyst for vascular 

remodeling in the lung that is compounded by vascular inflammation as a result of 

reduced or no Uty expression. 

We found that in vivo inhibition of the activity of the proinflammatory chemokines 

downstream of Uty was sufficient to extend Y chromosome protection to females in a 

preclinical animal model. Administration of the small-molecule CXCR3 antagonist, 

AMG487, twice a day was able to rescue PH development in intact female rats with 

monocrotaline-induced PH (Chapter 3). We determined that AMG487 treatment was able 

to recue PH development, at least in part, by blocking Cxcl9- and Cxcl10-induced 
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vascular endothelial cell dysfunction since histological sections from treated lungs 

exhibited less vascular endothelial cell apoptosis compared to vehicle treated control 

lungs. We believe that this already FDA approved compound has clinical potential which 

is discussed in the future directions section below.  

We also found a Uty-specific and sex-specific upregulation of the gene that encodes the 

ET-2 peptide (Chapter 4). ET-2 is a member of the vasoconstrictive endothelin family of 

peptides which includes ET-1. ET-1 is known to be upregulated in the lungs of PAH 

patients and is a target of many mainstay PAH therapies used clinically; however, the role 

of ET-2 was not previously known studied in PAH. While the expression of ET-1 is 

unchanged in the lungs of hypoxic mice as a result of Uty knockdown, ET-2 is upregulated 

in Uty knockdown lungs versus experimental control lungs. We found ET-2 upregulation 

in female PAH lungs compared healthy female lungs; however, we did not see an 

increase of ET-2 in male PAH lungs compared to healthy male lungs. Interestingly, it is 

known that female PAH patients are more responsive to endothelin receptor antagonist 

treatment than male patients (2), but the source of this sexual dimorphic response is not 

known. We hypothesize that ET-2 plays a female-specific pathogenic role in PAH 

development, and that blocking the activity of ET-2 through administration of an 

endothelin receptor antagonist is more effective in females since it attenuates the activity 

of both ET-1 and ET-2 signaling by blocking their shared endothelin receptors. 

Vasoconstrictive agents, like ET-1 and ET-2, contribute to increased pressure in the 

pulmonary vasculature which worsens PAH severity (12, 14).  

Interestingly, we found evidence of crosstalk between ET-2 expression and the Uty 

downstream proinflammatory chemokines, Cxcl9 and Cxcl10. CXCL9 and CXCL10 
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treated vascular endothelial cells express increased levels of ET-2 peptide (Chapter 4). 

The structure of ET-2 peptide is strikingly similar to the proinflammatory chemokines, and 

it is known that ET-2 elicits an inflammatory response as well (15, 16). We think this is 

further proof of a proinflammatory feedback loop in the lungs that is mitigated by Uty 

expression in healthy males and pathogenic in males or females with reduced or no Uty 

expression, respectively.  

Taken together, this dissertation provides compelling evidence that the Y chromosome 

gene Uty influences the sexually dimorphic predisposition and clinical response in PAH 

and highlights a sex-specific immune response in PAH patients that influences disease 

development which can be targeted as a novel therapeutic pathway (Figure 1). Further 

investigation into the molecular mechanism of Uty action and its downstream pathways 

will likely lead to even greater understanding of the PAH disease process and associated 

sex differences. These future studies are outlined in the following section. 
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Fig. 1. Schematic of the proposed mechanism of Y chromosome gene, Uty, 

protection in PH through the downstream genes Cxcl9/10 and ET-2 and potential 

therapeutic targets. Panel A: Integration of our RNAseq analysis with an online 

microarray dataset of male and female human PAH lung samples revealed Cxcl9/10 and 

ET-2 as potential downstream effector genes in Uty mediated PH protection. Panel B: 

Proposed mechanism of Uty/Cxcl9/10 and Uty/ET-2 axes in PH pathogenesis. CXCL9/10 

promote endothelial cell apoptosis and increase ET-2 secretion supporting a cross talk 

between CXCL9/10 and ET-2. Increased ET-2 expression results in increased 

vasoconstriction. Both downstream pathways contribute to increased PAH severity. Panel 

C: Overview of downstream Uty therapeutic targets via Cxcl9/10 and ET-2 which can be 

blocked using AMG487 alone or in combination with endothelin receptor antagonists 

(ERAs).  
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Future Directions 

The experiments performed in this dissertation to identify the Y chromosome protective 

effect in experimental PH and further identify Uty as the Y chromosome protective gene 

were all carried out in the absence of circulating gonadal hormones. Gonadal hormones, 

including estrogens, progesterone, and testosterone, have been studied in the context of 

PH and found to have an effect in disease severity (17). We performed gonadectomy on 

our animals 30 days prior to the start of our experiments, which investigate the role of sex 

chromosomes and their genes, in order to eliminate gonadal hormone effects as a 

variable. While this was a viable strategy to identify the role of the Y chromosome and 

Uty gene within PH, it limits our understanding of Y chromosome and Uty protection within 

a gonadally intact environment. There is the possibility that Y chromosome protection 

through Uty interacts with gonadal hormones in a direct or indirect way, and sex 

chromosome-sex hormone interactions have been previous described in literature (18). 

To test for any interaction between gonadal hormones in Uty protection against PH, we 

would first perform Uty knockdown experiments in gonad-intact male mice to identify 

whether loss of Uty still aggravates PH development in the presence of gonadal 

hormones. If the effect of Uty knockdown is enhanced or eliminated within the gonadal-

intact environment, a comparison of the lung transcriptome of Uty knockdown mice in the 

presence and absence of gonads would help elucidate pathways downstream of Uty that 

are affected by a hormonal interaction. Based on these differences, cell-specific in vitro 

experiments could be performed with and without testosterone to further identify 

downstream Uty pathways that are testosterone dependent. The downstream hormone 
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interaction studies would focus on testosterone since it is the main gonadal hormone 

found in males, and our research identified a PH protective effect specific to males.  

While Uty downregulation within the hypoxic lung resulted in 523 differently regulated 

genes, the exact mechanism as to how Uty imparts large transcriptomic changes is not 

known. Our studies investigating Uty as a histone demethylase in the context of PH 

echoed the literature which concludes that the Uty protein has lost its demethylase 

activity. Still, research suggests that Uty does play a role in epigenetic modification 

potentially through indirect mechanisms by associating with the BRG1 methyltransferase 

complex which alters the methylation state of the histone 3 lysine residue 4 (9). Further 

experiments looking at the methylation state of the H3K4 residue in the presence and 

absence of Uty could explore this hypothesis. Since there is no specific antibody for Uty, 

however, it is difficult to determine the direct chromatin or protein interactions of Uty. 

Ultimately, the generation of a flag-tagged Uty knock-in mouse or macrophage cell line 

would allow for the chromatin immunoprecipitation or co-immunoprecipitation 

experiments necessary to further parse apart the cellular mechanism of UTY.  

Our data found that UTY is downregulated in lungs of mice exposed to chronic hypoxia 

versus normoxia and in male PAH patient lungs versus healthy lungs. This suggests that 

UTY expression is associated with PAH, and our further investigation found that Uty 

downregulation is also causal in PAH development. However, we do not know if hypoxia 

alone is sufficient to trigger the Uty downregulation found in hypoxic mice and PAH 

patients with poor gas exchange. Future studies aimed to investigate this could expose 

male wildtype lung macrophages, and other Uty expressing lung cell types, to hypoxic 

insult and measure the effect on Uty expression. If Uty is downregulated in cells as a 
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result of hypoxic insult alone, experiments could determine if loss of Uty expression is a 

hypoxia-inducible factor-alpha (HIF-1α) regulated process. Experiments could challenge 

cells with HIF-1α stabilizers and inhibitors and then measure if Uty expression is 

downregulated or unchanged, respectively. If Uty downregulation is HIF-1α dependent, it 

would explain why Uty is downregulated in hypoxic experimental conditions and in 

hypoxic male PAH patient lung tissue.  

This work uncovered a sex-specific pathogenic immune response in PAH related to Uty 

expression. Males who express Uty in their lungs are protected from PAH development 

and exhibit lower Cxcl9 and Cxcl10 proinflammatory chemokines levels. Alternatively, 

males or females with little or no Uty expression exhibit an upregulation of these 

inflammatory factors and worse PAH. Since we found Uty expression in macrophages 

inversely regulates Cxcl9 and Cxcl10 expression which drives Uty-associated PAH 

protection or development, we hypothesize that bone marrow transplant experiments with 

bone marrow reconstitution from a wildtype male mouse to a male total Uty knockout 

mouse would be sufficient to extend Uty protection. Conversely, bone marrow 

reconstitution from a male Uty knockout mouse to a male wildtype mouse should 

eliminate Y chromosome protective effects in these animals.  

To our knowledge, the in situ hybridization images using Uty/UTY-specific mRNA probes 

are the first to demonstrate Uty localization in male mouse and human lung tissue. Based 

on these images and our co-labeling with macrophage marker Cd68, we know that lung 

macrophages express Uty. These images also show Uty positive nuclei that lack Cd68 

expression which indicates that Uty is also expressed in other lung cell types. Single-cell 

sequencing of male mouse lungs in combination with duplex in situ hybridization for Uty 
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and various cell-specific markers could be performed to identify other lung cell types that 

express Uty in the lung. Once identified, in vitro gain and loss of function studies could be 

performed to determine the cell-specific functions of Uty in relation to PAH development.  

This dissertation presents a novel therapeutic strategy for the treatment of PAH through 

blocking the activity of the CXCL9 and CXCL10 chemokines via administration of a small 

molecule inhibitor of their shared receptor, CXCR3. We show that two-week treatment is 

sufficient to rescue PH development in intact female rats with monocrotaline-induced PH. 

Prior to moving this FDA-approved therapy to clinical trials for PAH, it is important to test 

the efficacy of this treatment in intact males and in a second animal model of PH. Since 

UTY is downregulated in PAH male lungs, it is reasonable that a therapy targeting the 

activity of chemokines regulated by Uty would be a viable strategy in PAH males as well 

as females who lack Uty altogether. However, it remains to be seen if testosterone 

interacts with or blocks Uty-mediated effects. Testing the efficacy of AMG487 therapy in 

intact males and comparing the protective effect to that of treated females would shed 

light on whether this treatment is applicable for both male and female PAH patients.  

Furthermore, considering the animal models of PH that we use preclinically fail to 

perfectly recapitulate PAH in humans, it is important to also test our novel therapeutic 

strategy in an additional animal model of PH. This is particularly important since the 

monocrotaline model of PH is an inflammatory model and our treatment works through 

blocking an inflammatory process. Future studies are needed to test the efficacy of 

CXCR3 inhibition therapy in model where the mechanism of action is not rooted in 

inflammation, such as the Sugen/hypoxia model in rats which promotes PH development 

through vascular endothelial cell death and chronic hypoxia (19). Finally, the most 
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important test would be a clinical trial that examines the efficacy of AMG487 inhibition of 

CXCR3 in humans. Since we show increased Cxcl9 and Cxcl10 expression in the lungs 

increases endothelial dysfunction and production of the vasoconstrictive peptide ET-2, 

we believe that adding AMG487 treatment in combination with an endothelin receptor 

antagonist, which are already prescribed to PAH patients, has the potential to produce an 

additive beneficial effect in PAH patients.  

We found that loss of Uty expression in male mice is associated with an increase in lung 

ET-2 expression. In humans, this increased ET-2 expression is exclusive to female PAH 

patients and could contribute to known clinical sex differences in response to treatment 

with endothelin receptor antagonists.  In addition to vasoconstrictive properties, studies 

have shown that ET-2 can influence angiogenesis and cellular proliferation which are both 

pathways that are altered in PAH (13, 16, 20, 21). Future studies will examine whether 

ET-2 plays a causal role in PAH development via reducing the angiogenic response to 

hypoxia and increasing vascular smooth muscle cell proliferation. In addition, the 

structure of ET-2 peptide is strikingly similar to that of CXC proinflammatory chemokines 

(15). Future experiments should also test macrophage migration in response to ET-2. If 

these experiments show ET-2 contributes in a causal way to PAH development, this will 

identify a novel female-specific PAH disease process.   

As mentioned throughout this text, females are up to 4x more likely to be diagnosed with 

PAH compared to males. Our studies show that males are protected from PAH 

development because of their expression of the Y chromosome gene Uty; however, Uty 

expression does not explain why males, once diagnosed, exhibit a more severe form of 

the disease. We found that UTY is downregulated in PAH males which indicates that the 
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protective effects of Uty may be abrogated in these males. We hypothesize that loss of 

UTY expression in males who are predisposed to PAH development by another factor 

associated with PAH may be a trigger for severe PAH development—similar to the “two-

hit” phenomenon in PAH where those predisposed to PAH development require a 

“second hit” from a secondary PAH-associated factor to develop the disease (22). In this 

way, it would be interesting to examine if Uty downregulation would provoke PH 

development in mice with a heterozygous mutation in the Bmpr2 gene. BMPR2 is the 

most studied hereditary mutation associated with PAH development in patients, however, 

the penetrance of the mutation is low (~20%) (23). It has been shown that in order to 

develop PH, these mice must have an additional PAH-associated phenotype, such as 

inflammation. Since we found loss of Uty expression in male mice is associated with an 

upregulation of proinflammatory factors, we hypothesize that downregulating Uty 

expression will act as a “second hit” in Bmpr2 mutant mice and trigger PAH.  

Finally, all of the findings within this dissertation were a result of studying the effects of 

the Y chromosome gene Uty within the lung; however, PAH patients ultimately succumb 

to right ventricular failure. The ability of the right ventricle to compensate for the increased 

pulmonary pressures in PAH is the greatest indicator of disease severity, prognosis, and 

survival (24). There are known sex-specific differences in right ventricular function in PAH 

patients that are linked to sex hormones. It remails to be seen, however, if sex 

chromosomes influence right ventricular compensation to pressure overload. Studies 

examining the effects of Uty expression in response to pressure overload in a PH-

independent model, such as pulmonary artery banding, would elucidate if Uty is also 

protective in mediating right ventricular failure.  
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Final remarks from the author 

PAH is a rare but terminal pulmonary vascular disease that predominantly affects women. 

The current therapies for this devastating disease are largely inadequate, and research 

into novel therapeutic strategies is paramount to increase patient survival. It has been a 

privilege to study this disease, provide creative insight into its pathogenesis, and extend 

some hope to affected patients. It is my greatest hope that the preclinical therapies 

reported in this work are able to be tested in clinical trials and that this work continues 

beyond the pages of this dissertation. Finally, I hope that this dissertation serves as a 

call-to-action that encourages researchers to segregate data by sex in a well-powered 

and meaningful way, and as a how-to guide for translating a sex-specific phenotype from 

bench to bedside.  
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