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Exact Instability Margin Analysis and
Minimum-Norm Strong Stabilization

– phase change rate maximization –
S. Hara, C.-Y. Kao, S. Z. Khong, T. Iwasaki, Y. Hori

Abstract—This paper is concerned with a new opti-
mization problem named “phase change rate maximization”
for single-input-single-output linear time-invariant systems.
The problem relates to two control problems, namely ro-
bust instability analysis against stable perturbations and
minimum-norm strong stabilization. We define an index of
the instability margin called “robust instability radius (RIR)”
as the smallest H∞-norm of a stable perturbation that
stabilizes a given unstable system. This paper has two main
contributions. It is first shown that the problem of finding the
exact RIR via the small-gain condition can be transformed
into the problem of maximizing the phase change rate at the
peak frequency with a phase constraint. Then, we show that
the maximum is attained by a constant or a first-order all-
pass function and derive conditions, under which the RIR
can be exactly characterized, in terms of the phase change
rate. Two practical applications are provided to illustrate the
utility of our results.

Index Terms—phase change rate maximization, instability
analysis, strong stabilization, Nyquist criterion, robust con-
trol

I. INTRODUCTION

Feedback is essential and inevitable for maintaining
the desired behaviors against uncertainties in the target
systems and/or disturbances from the environment as
well as for stabilizing an unstable system. Most tradi-
tional control theories focus on regulation around an
equilibrium point or tracking a class of reference signals.
Robust control theory in particular provides systematic
methods for analyzing and synthesizing feedback sys-
tems with guaranteed stability and control performance
in the presence of model uncertainties (see, e.g., [1]).
The most fundamental problem is the robust stability
analysis: How much uncertainty can be allowed while
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maintaining stability? The answer, called the robust sta-
bility radius, has been exactly characterized by the small
gain theorem, and the robust stability problem has been
well understood.

A fundamental counterpart, the robust instability anal-
ysis, is to investigate the maximum allowable perturba-
tion for a given unstable feedback system to maintain its
instability. The problem has been much less studied so
far but is of engineering significance. Over the last two
decades, feedback control to maintain non-equilibrium
state such as periodic oscillation has garnered more
recognition as an important design problem for engi-
neering applications including robotic locomotion ( [2],
[3]) and as an interesting issue in synthetic biology
(see e.g., [4]–[6]). Robustness of such non-equilibrium
states is difficult to analyze in general. However, robust
instability analysis for linear systems works fairly well
for maintaining certain classes of nonlinear oscillations
as demonstrated in [7], [8], where robust oscillations in
the sense of Yakubovich are guaranteed by instability of
equilibria and ultimate boundedness [9]. Moreover, as
a byproduct of the robust instability analysis, the search
for the worst case stable perturbation provides a solution
to the strong stabilization, a long-standing problem of
practical relevance.

Given the above background, the main focus of this
paper is the analysis of the instability margin, which
poses challenges as described below.

(i) Robust Instability Analysis: The problem is similar to
but quite different from that of robust stability analysis
as pointed out in [7], which demonstrated through nu-
merical examples why robust instability analysis is far
more difficult. Unlike robust stability analysis, the small
gain condition in terms of the L∞-norm only gives a
lower bound of the robust instability radius (RIR) (as
seen in e.g., [10], [11]) because existence of a purely imag-
inary pole does not necessarily imply transition from
instability to stability (although the opposite transition is
implied). Therefore, characterization of the RIR requires
an intricate analysis to ensure not one but all of unstable
poles are perturbed to the left half plane.

(ii) Stabilization by a Minimum-Norm Stable Controller:
The difficulty of the RIR analysis can be understood by
its equivalence to the minimum-norm strong stabiliza-
tion problem ( [7], [8]) where a stable controller with
minimum norm is sought to stabilize a given unstable
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plant. Although the necessary and sufficient condition
for strong stabilizability is known to be the parity in-
terlacing property for single-input-single-output (SISO)
systems, the required order of a strongly stabilizing
controller is unknown [12], [13]. It is also unknown
whether the problem of strong stabilization can be trans-
formed into a convex optimization problem. Hence, no
computationally efficient algorithm is known for solving
such a problem. Minimization of the H∞-norm on some
closed-loop transfer functions has been considered in the
literature, but only partial solutions have been obtained
for the problem in hand due to the difficulty in enforcing
the stability constraint on the controller, e.g. [14]. Hence,
the requirement of strong stabilization with norm con-
straint on the controller makes the optimization problem
extremely difficult.

The instability margin analysis can be formalized by
defining the robust instability radius (RIR) in a manner
analogous to the classical robust stability radius for H∞-
norm bounded perturbations [15]. A sufficient condition
that allows for exact calculation of the RIR is given
in [8]. The main idea was to find a first-order all-pass
function which marginally stabilizes a given unstable
system, and the paper presented a class of third-order
systems to meet the condition with an application to
the repressilator [5], showing the effectiveness of this
approach.

In this paper, we provide conditions on SISO systems
of which the RIR may or may not be given by the
small gain condition, under a very mild assumption
that the class of systems is restricted to those for which
the peak gain occurs at a single frequency. In the cases
where it may, a worst-case perturbation turns out to be a
constant or a first-order all-pass function, justifying the
aforementioned idea outlined in [8].

There are two main theoretical contributions in this
paper. The first contribution is to show that the prob-
lem of finding the exact RIR may be turned into the
problem of maximizing the phase change rate (PCR) at
the peak frequency subject to a phase constraint. The
fundamental tool to show this is an extended version of
the Nyquist criterion for the marginal stability. It should
be emphasized that the problem of PCR maximization is
a completely new problem which has not been investi-
gated in the past. The second contribution is to provide a
complete solution of the maximization problem. We will
prove that the supremum is attained by a constant or
a first-order all-pass function, and derive conditions in
terms of the PCR, under which the exact RIR is attained.
It is somewhat surprising that no higher-order all-pass
function could achieve better PCR than a constant or a
first-order function. This is due to the phase constraint
imposed at the peak gain frequency. This point will be
clarified when we solve the maximization problem.

To illustrate the applicability of our results, two practi-
cal applications are considered. The first one regards the
robustness of the oscillatory behavior of a cyclic gene-
regulatory network called “repressilator.” We apply our

results to analyse robustness of the instability of the
linearized dynamics against dynamic perturbations. The
second one regards strong stabilization of a magnetic
levitation system, where we demonstrate how our results
can be useful for the design of stable discrete-time
controllers with small H∞ norms.

The remainder of this paper is organized as follows.
Section II defines the RIR and briefly summarizes results
in [8] as a basis for the developments in this paper.
Section III characterizes the open-loop transfer func-
tions that yield marginally stable closed-loop systems,
based on an extended version of the Nyquist criterion.
The main results of this paper on the conditions for
marginal stabilization and the exact RIR are presented
in Section IV. In Section V, we formulate a problem
of maximizing the phase change rate and provide a
solution, which plays an essential role in the proofs of
the main results in Section IV. Two practical applications
of our main results are given in Section VI. Proofs of
our main results are given in Section VII, just before the
concluding Section VIII which summarizes the contribu-
tions of this paper and addresses some future research
directions.
Notation: The set of real numbers is denoted by R.
ℜ(s) and ℑ(s) denote the real and imaginary parts of
a complex number s, respectively. The set of proper
real rational functions of complex variable s is denoted
by Rp. Let L∞ denote the set of functions that are
bounded on the imaginary axis jR. The subset of L∞
which consists of real rational functions that are bounded
on jR is denoted by RL∞. The stable subsets of L∞
and RL∞ are denoted by H∞ and RH∞, respectively.
The norms in L∞ and H∞ are denoted by ∥ · ∥L∞ and
∥·∥H∞ , respectively. The open (closed) left and right half
complex planes are abbreviated as OLHP (CLHP) and
ORHP (CRHP), respectively.

II. ROBUST INSTABILITY RADIUS: DEFINITION AND
PRELIMINARY RESULTS

We consider a positive feedback system with per-
turbed loop transfer function h̃(s), represented by the
upper linear fractional transformation (LFT)

h̃(s) = Fu

([
h11(s) h12(s)
h21(s) h(s)

]
, δ(s)

)
(1)

= h(s) + h21(s)δ(s)(1− h11(s)δ(s))
−1h12(s),

where h(s) is the scalar nominal loop transfer function
and δ(s) denotes the norm-bounded stable perturbation.
The LFT representation (1) covers a variety of perturba-
tions, including

Multiplicative-type : h̃(s) = (1 + wm(s)δ(s))h(s),

Feedback-type : h̃(s) = h(s)/(1 + wf (s)δ(s)),

where h11(s), h12(s), and h21(s) are respectively set as
(h11, h12, h21) = (0, h, wm) and (−wf ,−wf , h).

We here assume that the nominal feedback system
is strictly unstable, i.e., the corresponding characteristic
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equation 1 − h(s) = 0 has at least one root in the
ORHP, and we consider the problem of determining
the minimum norm of δ(s) which makes the feedback
system stable. Note that the characteristic equation of
the perturbed system 1− h̃(s) = 0 can be reexpressed as

δ(s)g(s) = 1, (2)

where g(s) is an unstable transfer function given by

g(s) := h11(s) + h21(s)h12(s)/ (1− h(s)) .

Clearly, the weighted sensitivity and complementary
sensitivity functions, gf (s) := wf (s)/(1 − h(s)) and
gm(s) := wm(s)h(s)/(1−h(s)), play an important role in
the robust instability analysis in the same way as in the
robust stability analysis. We also note that (2) presents
the strong stabilization problem, where g(s) and δ(s)
correspond to an unstable plant and a stable stabilizing
controller to be designed, respectively. In what follows,
our theoretical investigation is based on (2).

The rest of the section briefly summarizes some con-
cepts and results from [7], [8], which form a basis for the
developments in this paper. Consider a class of unstable
systems defined by

G := {g ∈ RL∞ | g is strictly proper and unstable.}. (3)

The robust instability radius (RIR) for g ∈ G, denoted by
ρ∗(g) ∈ R, with respect to real rational dynamic pertur-
bation δ ∈ RH∞, is defined as the smallest magnitude
of the perturbation that internally stabilizes the system:

ρ∗(g) := inf
δ∈S(g)

∥δ∥H∞ , (4)

where S(g) is the set of real-rational, proper, stable
transfer functions internally stabilizing g, i.e.,

S(g) := {δ ∈ RH∞ : δ(s)g(s) = 1 ⇒ ℜ(s) < 0,
δ(s) = 0, ℜ(s) > 0 ⇒ |g(s)| <∞ }. (5)

It is noticed from the well known result on strong
stabilizability in [12] that ρ∗(g) is finite if and only if
the Parity Interlacing Property (PIP) is satisfied, i.e., the
number of unstable real poles of g between any pair
of real zeros in the closed right half complex plane
(including zero at ∞) is even. Consequently, the class
of systems of our interest is defined as

Gn := {g ∈ G | g has n unstable poles and
satisfies the PIP condition.},

(6)

where n is a natural number. We aim to give conditions
on g ∈ Gn under which the RIR can be characterized ex-
actly by the lower bounds given analytically as follows:

Lemma 1: [8] Let g ∈ G be given. Then

ρ∗(g) ≥ ϱp := 1/∥g∥L∞ , ∥g∥L∞ := sup
ω∈R
|g(jω)|. (7)

Moreover, if g ∈ G has an odd number of unstable poles
(counting multiplicity) then we have

ρ∗(g) ≥ ϱo := 1/|g(0)|. (8)

Let us introduce some notions of stability to facilitate
clear and rigorous presentation of our theoretical devel-
opments.

Definition 1:
• A rational function h ∈ Rp is called ”exponentially

stable” if all the poles of h are in the OLHP.
• A rational function h ∈ Rp is called ”exponentially

unstable” if at least one of the poles of h is in the
ORHP.

• A rational function h ∈ Rp which is neither expo-
nentially stable nor exponentially unstable is called
”marginally stable” if any pole of h on the imaginary
axis is simple.

• A marginally stable rational function h is called
”single mode marginally stable” if all the poles are
located in the OLHP except for either a pole at
the origin or a pair of complex conjugate poles
on the imaginary axis, say ±jωc. To specify the
mode on the imaginary axis, the system is called
ωc-marginally stable with ωc = 0 for the former and
ωc ̸= 0 for the latter.

• A rational function h ∈ Rp which is neither expo-
nentially stable nor exponentially unstable is called
“polynomially unstable” if at least one of the poles
of h on the imaginary axis is not simple.

An upper bound on the RIR is obtained as ∥δ∥H∞

if a stable stabilizing perturbation δ ∈ S(g) is found.
The following Proposition presented in [8] shows that an
upper bound can always be obtained if marginal stability
is achieved with a single mode on the imaginary axis.

Proposition 1: [8] Consider real-rational transfer
functions g and δo having no unstable pole/zero cancel-
lation between them, where the former is strictly proper
and the latter is proper and stable (possibly a real con-
stant). Suppose the positive feedback system with loop
transfer function δog is single mode marginally stable.
Then, for almost1 any proper stable transfer function δ1,
there exists ε ∈ R of arbitrarily small magnitude |ε| such
that the positive feedback with δε := δo + εδ1 internally
stabilizes g.

Note that marginal stability requires that the transfer
function δo be chosen to satisfy

δo(jωc) = δc := 1/g(jωc), (9)

at a critical frequency ωc ≥ 0, so that s = jωc is a
closed-loop pole. If we parametrize a class of pertur-
bations, then δo satisfying (9) may be determined for
each ωc ∈ R, and an upper bound ∥δo∥H∞ on the RIR
is obtained when the resulting closed-loop poles (i.e.,
roots of δo(s)g(s) = 1) are all in the OLHP except for
s = ±jωc. Note that the exact RIR of g is obtained if
∥δo∥H∞ coincides with one of the lower bounds such
as those stated in Lemma 1. In this paper, we will
focus on the single mode marginal stabilization to derive
conditions for getting the exact RIR.

1This means that an arbitrarily chosen δ1 may or may not work to
stabilize, but when it does not work, a slight modification of it can
always make it work.
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III. OPEN-LOOP CHARACTERIZATION OF MARGINALLY
STABLE CLOSED-LOOP SYSTEMS

In this section, we present an extended version of
the Nyquist criterion for characterizing single mode
marginal stability. The result will be used in Section IV
to derive synthesis conditions on the certain classes of
open-loop systems, which eventually leads to conditions
that characterize the exact RIR of these systems.

A. Gain/phase change rates
This section introduces the gain and phase change

rates for an RL∞ function, which are useful for char-
acterizing the single mode marginal stability.

For a complex function f : C→ C, the logarithmic gain
and the phase angle at point s ∈ C such that f(s) ̸= 0
are defined as ln |f(s)| and ∠f(s), respectively. Here, the
angle ∠f(s) of the complex number f(s) is not uniquely
determined but is chosen so that ∠f(jω) is continuous
on ω ∈ R; such a choice is possible for f ∈ RL∞ with
no zeros on the imaginary axis. For f(s) ̸= 0, log f(s) :=
ln |f(s)| + j · ∠f(s). Let us denote the logarithmic gain
and the phase of frequency response f(jω) by

Af (ω) := ln |f(jω)|, θf (ω) := ∠f(jω). (10)

In order to characterize how these quantities change
when s = jω is perturbed in the direction parallel to
the real or imaginary axis, we consider the logarithmic
gain and phase at point s = σ + jω ∈ C, and introduce
two real functions of two real variables as

Âf (σ, ω) := ln |f(σ+jω)|, θ̂f (σ, ω) := ∠f(σ+jω). (11)

There are four possible directional derivatives A′
f (ω),

θ′f (ω), M ′
f (ω), and ϕ′

f (ω) for a complex function f ∈
RL∞, which are referred to as gain, phase, σ-gain, and
σ-phase change rates (CRs), respectively, and defined as

A′
f (ω) :=

∂Âf

∂ω
(0, ω), θ′f (ω) :=

∂θ̂f
∂ω

(0, ω), (12)

M ′
f (ω) :=

∂Âf

∂σ
(0, ω), ϕ′

f (ω) :=
∂θ̂f
∂σ

(0, ω). (13)

Applying the Cauchy-Riemann equations (see, e.g., [16])
to the complex function log f(s), we have the following
relations among these four change rates.

Lemma 2: For f ∈ RL∞, the following two relations
hold for all ω satisfying f(jω) ̸= 0:

M ′
f (ω) = θ′f (ω), ϕ′

f (ω) = −A′
f (ω). (14)

The features and roles of the four CRs are as follows:
• The phase CR, θ′f (ω), which represents the phase

change rate along the imaginary axis, plays the most
important role in this paper. Since it has a simple
interpretation as the slope of the phase frequency
response curve, all the main theorems in this paper
are presented in terms of the phase CR of the
associated function.

• The σ-gain CR, M ′
f (ω), which represents the gain

change rate along the horizontal line parallel to the

real axis, is equal to θ′f (ω). Hence, its importance
is the same as that of the standard phase CR.
In general, the σ-gain CR is easier to handle and
compute than the phase CR, and hence the σ-gain
CR is often utilized in the proofs of lemmas and
theorems in this paper.

• The gain CR, A′
f (ω), which represents the gain

change rate along the imaginary axis, is instrumen-
tal for one of the key results. It relates to the phase
CR through an integral relationships (a counterpart
of the well-known Bode’s gain/phase integral rela-
tionships) as shown below.

• The σ-phase CR, ϕ′
f (ω), represents the phase change

rate along the horizontal line parallel to the real
axis. It is the negative of the gain CR, and it is the
least important among the four change rates in the
development of main results of this paper.

It should be emphasized that the gain and phase
change rates, A′

f (ω) and θ′f (ω), are not independent
for minimum-phase functions. We have the following
integral relationship linking θ′f (ω), A

′
f (ω), and Af (ω).

Lemma 3: (Gain/phase change rate integral relationships)
Let f ∈ RH∞ be a minimum-phase function. For an
arbitrary ωp ∈ R, we have

θ′f (ωp) =
2

π

∫ ∞

0

ωA′
f (ω)

ω2 − ω2
p

dω. (15)

Furthermore, if ωp is such that |f(jωp)| = 1, i.e., Af (ωp) =
0, we have

θ′f (ωp) =
2

π

∫ ∞

0

Af (ω)
ω2 + ω2

p

(ω2 − ω2
p)

2
dω. (16)

Proof. See Appendix A.
The relations (15) and (16) will be used in the proof of

Lemma 10 as one of powerful tools to derive the main
theorem of this paper.

B. Marginal Stability Criteria via Phase Change Rate

We first establish necessary conditions and a necessary
and sufficient condition for a given positive feedback
system with unstable loop transfer function being either
exponentially stable or marginally stable based on the
Nyquist plot as a preliminary investigation for our anal-
ysis in this paper.

Let us define ν+(·) (and respectively ν−(·)) as the
number of transverse crossing points on the real semi-
interval (1,+∞) from the negative imaginary region
to the positive one (respectively, from the positive to
the negative) for the Nyquist plot of L(jω + ·). Let
νo(·) := ν+(·)− ν−(·).

Lemma 4: Consider a positive feedback system with
loop transfer function L ∈ Gn. The feedback system has
all poles in the CLHP if and only if there exists ϵ+ > 0
such that the following two equivalent conditions hold
for all ϵ ∈ (0, ϵ+).
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(i) The number of counter-clockwise encirclements of
the Nyquist plot of L(jω + ϵ) about 1 + j0 is equal
to n, the number of unstable poles of L.

(ii) νo(ϵ) = n for the Nyquist plot of L(jω + ϵ).
Moreover, the feedback system is marginally stable if
and only if the following two conditions hold in addition
to condition (i) or (ii): (iii-a) ∃ ω such that L(jω) = 1; (iii-
b) If L(jω) = 1, d

dsL(s)
∣∣
s=jω

̸= 0.
Proof. See Appendix B.

Conditions (i) and (ii), in terms of the “perturbed”
Nyquist plot L(jω + ϵ) with small ϵ > 0, can be viewed
as an extended version of the Nyquist criteria for the
closed-loop poles being in the CLHP. The conditions
are obtained by applying Cauchy’s argument principle
with a perturbed Nyquist contour to deal with closed-
loop poles on the imaginary axis. Condition (iii-a) is
equivalent to the existence of a closed-loop pole on
the imaginary axis, while Condition (iii-b) is equivalent
to the imaginary-axis pole(s) being simple. Building on
Lemma 4, the following result gives a condition for ωc-
marginal stability.

Proposition 2: Let ωc ≥ 0, integer n ≥ 1, and transfer
function L ∈ Gn be given. Consider a positive feedback
system with loop transfer function L. Suppose

A′
L(ωc) = 0, i.e.,

d

dω
|L(jω)|

∣∣∣∣
ω=ωc

= 0. (17)

Then, the feedback system is ωc-marginally stable if and
only if condition (i) and one of conditions (ii-a) and (ii-b),
indicated below, are satisfied.
(i) The loop transfer function L satisfies the following:

L(jωc) = 1, d
dsL(s)

∣∣
s=jωc

̸= 0

L(jω) ̸= 1, ∀ ω ̸= ±ωc.
(18)

(ii-a) The Nyquist plot of L(jω) satisfies either νo(0) =
n − 1 if ωc = 0, or νo(0) = n − 2 if ωc > 0, and the
phase change rate at ω = ωc is positive, i.e.,

θ′L(ωc) > 0. (19)

(ii-b) The Nyquist plot of L(jω) satisfies νo(0) = n, and
the phase change rate at ω = ωc is negative, i.e.,

θ′L(ωc) < 0. (20)

Proof. See Appendix C for a proof.
The conditions are obtained by enforcing the extended

Nyquist criteria through the sensitivity analysis at the
critical point L(jωc) = 1, resulting in the conditions on
the phase change rate θ′L(ωc).

The idea for the sensitivity analysis can be illustrated
by several patterns shown in Fig. 1. Under (18), the
Nyquist plot of L(jω) passes through the critical point
1 + j0 (red dot) at ω = ±ωc once (ωc = 0) or twice
(ωc > 0). With a small ϵ > 0, the Nyquist plot of L(jω+ϵ)
is a slightly perturbed version of L(jω) with its shape
remaining similar, and hence can still be approximately
represented by the blue curve if the real axis is shifted

accordingly. When θ′L(ωc) is positive/negative, the real-
axis crossing point L(jωc) is perturbed to the right/left
to become L(jω̃c + ϵ) since θ′L(ωc) = M ′

L(ωc), where
ω̃c ≈ ωc. This means that the location of the critical point
1 + j0 relative to the perturbed Nyquist plot L(jω + ϵ)
with small ϵ > 0 can be visualized as the green dot
relative to the blue curve in Fig. 1.

Now, for ωc-marginal stability, 1 + j0 should be en-
circled n times by the perturbed Nyquist plot L(jω + ϵ)
(Lemma 4). This happens if the crossing of 1 + j0 by
L(jω) at ω = ωc is either (ii-a) upward (θ′(ωc) > 0) with
νo(0) = n − nc where nc is the number of times L(jω)
passing through 1 + j0, or (ii-b) downward (θ′(ωc) < 0)
with νo(0) = n as shown in Fig. 1.

(a) ωc > 0

(b) ωc = 0

Fig. 1. Examples of the Nyquist plot perturbed from L(jω) to L(jω+
ϵ). The blue curve indicates the usual Nyquist plot of L(jω), where the
red dot marks the real axis crossing at L(jωc) = 1 + j0. The Nyquist
plot of L(jω + ϵ) can also be approximately represented by the blue
curve with an appropriate shift of the real axis, where the critical point
1 + j0 is now marked by the green dot. The top figure illustrates the
scenario for ωc > 0, while the bottom figure is for ωc = 0.

Single model marginal stabilization will be our main
focus in the next section, which is instrumental for
obtaining the exact RIR of certain classes of systems.

IV. MAIN RESULTS

In this section, Proposition 2 is applied to find condi-
tions for marginal stabilizability of g belonging to some
subclass of Gn. This in turn leads to the exact RIR of g.
Specifically, we will consider the subclasses of Gn where
each system has a unique peak frequency. To this end,
we define the following two subsets of Gn:

G0n := {g ∈ Gn | ∥g∥L∞ = |g(0)| > |g(jω)| ∀ω ̸= 0}, (21)

G#n := {g ∈ Gn | ∃ ωp > 0 such that
∥g∥L∞ = |g(jωp)| > |g(jω)| ∀ω ̸= ±ωp}. (22)
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The assumption on the unique peak frequency is not
unreasonable, as most practical systems in reality are
expected to have such a characteristic. The case where
a system has multiple peak frequencies is discussed in
Remark 6 after the presentation of our main results.

A. Conditions for marginal stabilization
The following theorem provides necessary and suffi-

cient conditions for marginal stabilization of system g
in G0n or G#n , by some system f satisfying ∥f∥H∞ =
1/∥g∥L∞ . As 1/∥g∥L∞ is a lower bound on the RIR of
g, single mode marginal stabilization of a g by such f
implies that g has the exact RIR equal to 1/∥g∥L∞ by
Proposition 1.

Theorem 1:
(I) Given g ∈ G0n, g can be marginally stabilized by a

stable system f with ∥f∥H∞ = 1/∥g∥L∞ = 1/|g(0)|
if and only if n = 1 and

θ′g(0) > 0. (23)

(II) Given g ∈ G#n for which the peak gain occurs at ωp,
g can be marginally stabilized by a stable system f
with ∥f∥H∞ = 1/∥g∥L∞ = 1/|g(jωp)| if and only if
n = 2 and

θ′g(ωp) > |sin(θg(ωp))/ωp| . (24)

Proof. For the sake of readability, we postpone the full
proof to section VII-A.

Let us briefly explain the main idea behind the two
stabilizability conditions (23) and (24). These conditions
are obtained by applying Proposition 2 to the positive
feedback system with loop transfer function L := gf .
Due to the norm constraint on f , the open-loop transfer
function L must have peak gain ∥L∥L∞ = 1 at frequency
ωp, which leads to condition (ii-a) of Proposition 2, and
condition (19) is equivalent to θ′g(ωp) + θ′f (ωp) > 0. We
can also see that condition (ii-b) does not hold. Hence,
g is marginally stabilizable by some f when θ′g(ωp) is
larger than the infimum of −θ′f (ωp) over the set of all
suitable f , given in (23) and (24).

More accurately, stabilizability conditions (23) and (24)
emerge from the following phase change rate maximiza-
tion problem:

sup θ′f (ωp) subject to f ∈ RH∞, f(jωp)g(jωp) = 1,

|f(jω)| ≤ |f(jωp)| = 1/∥g∥L∞ ; ∀ω ∈ R. (25)

We make the following claim.
Claim: The maximum of the phase change rate maxi-
mization problem (25) is equal to 0 when ωp = 0, and
−| sin(θg(ωp))|/|ωp| when ωp ̸= 0.

Section V is devoted to solving the phase change
rate maximization problem (25) and proving the above
claim; see Theorem 3. Meanwhile, several remarks on
Theorem 1 are in order.

Remark 1: Note that the norm constraint on f implies
that the loop transfer function L has a single peak gain at

ωp. Therefore, the marginal stability stated in Theorem 1
is single mode. That is, there is only one “marginally
stable” pole (at the origin) for case (I), and a pair of
“marginally stable” poles (at ±jωp) for case (II).

Remark 2: Note that sin(θg(ω))/ω → θ′g(0) as ω → 0.
Therefore, inequality (23) is not simply the limiting case
of inequality (24).

Remark 3: For g ∈ G0n or G#n with n ≥ 3, it may be
possible to find a stable f with ∥f∥H∞ = 1/∥g∥L∞ such
that all poles of the feedback system are in the CLHP.
However, since the loop transfer function L has a single
peak gain as a result of the norm constraint on f , the
poles on the imaginary axis must be located at 0 or
±jωp, and hence must have multiplicity larger than one.
In such cases, the closed-loop system is polynomially
unstable.

B. Conditions for exact RIR
Based on Theorem 1 and Proposition 1, conditions for

attaining the RIR of a system exactly given by the small
gain condition are derived. Moreover, we also show that
for some systems, their RIR’s are not given by the small
gain condition.

Theorem 2:
(I) (Necessity) Let g ∈ Gsn := G0n ∪ G#n for some positive

integer n, and ωp be its peak-gain frequency. Define

µg(ωp) :=

{
0 if ωp = 0;
|sin (θg(ωp)) /ωp| otherwise.

(26)

If ρ∗(g) = 1/∥g∥L∞ , then θ′g(ωp) ≥ µg(ωp).
(II) (Sufficiency) Let g ∈ G01∪G

#
2 , and ωp be its peak-gain

frequency. Then ρ∗(g) = 1/∥g∥L∞ if

θ′g(ωp) > µg(ωp), (27)

where µg(·) is defined in (26).
(III) Let g ∈ G#n , where n is a positive odd integer. For

such g, we have ρ∗(g) > 1/∥g∥L∞ .
Proof. See Section VII-B for a proof.

Several remarks are in order.
Remark 4: For g ∈ G01 ∪ G

#
2 , the gap between the

necessary and the sufficient conditions is due to the
cases where the exact RIR is attained through the poly-
nomial instability. For example, consider the reduced-
order model for the magnetic levitation system gr(s) =
k/(−s2 + p2) (see Section VI-B). One can readily verify
that gr ∈ G01 , ∥gr∥L∞ = |gr(0)| = k/p2, and θ′gr (0) = 0.
It is shown in [17, Section 3] that the exact RIR of
gr is 1/∥gr∥L∞ , and the critical controller results in a
closed-loop system with double poles at the origin. This
example shows that (27) is not necessary.

Remark 5: For g ∈ G0n with n ≥ 2, or g ∈ G#2m with m ≥
2, the RIR of g may be given by the small gain condition.
In these cases, one must find a critical controller withH∞
norm equal to 1/∥g∥L∞ such that the closed-loop system
has all its poles in the CLHP, and multiple poles at the
origin (for g ∈ G0n), or ±jωp (for g ∈ G#2m). The reasoning
for this fact is similar to that given in Remark 3.
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Remark 6: For g ∈ G1 or G2 with multiple peak
frequencies, it can be single mode marginally stabilized
by some f with H∞-norm arbitrarily close to 1/∥g∥L∞ ,
and hence has the exact RIR, if

• for g ∈ G1, |g(0)| = ∥g∥L∞ and inequality (23) holds;
• for g ∈ G2, there exists one peak frequency where

inequality (24) holds.
For such g, one can apply an inverse notch filter which
maintains the gain at the frequency where (23) or (24)
holds and decreases the gain at all other frequencies by
an appropriately small amount. This way, the filtered
g has a unique peak frequency for which Theorems 1
and 2 become applicable. This in turn leads to the
aforementioned results. For details, please refer to [18,
Section 6].

Example 1: We here apply Theorem 2 to a class of
second-order unstable systems g ∈ G represented by

g(s) = 1/(s2 + ps+ q) ; q ̸= 0 (28)

to show the effectiveness of the results.
First note that g ∈ G1 if and only if q < 0; g ∈ G2 if and

only if q > 0 and p < 0. Also note that |g(jω + ϵ)|2 :=
1/Dϵ(Ω), where Ω := ω2,

Dϵ(Ω) := (Ω2 + (p2 − 2q)Ω + q2) + 2p(Ω + q)ϵ+ o(ϵ),

and o(ϵ) represents the terms with ϵ of second or higher
orders. The peak gain frequency ωp of g can be found by
minimizing D0(Ω) subject to the constraint Ω ∈ [0,∞).
One can readily verify that the minimum of D0(Ω)
occurs at Ωp := q − p2/2 when q ≥ p2/2, and at Ωp = 0
otherwise. Thus, we conclude that

• for any g ∈ G1, ωp = 0 because q − p2/2 must be
negative; i.e., g ∈ G1 implies g ∈ G01 .

• for g ∈ G2, ωp = 0 when 2q ≤ p2; otherwise, ωp > 0
and ω2

p = q − p2/2 = Ωp.
Now the σ-gain change rate can be calculated based on
the form of (13). One can verify that

M ′
g(Ω) = −p(Ω + q)/

(
Ω2 + (p2 − 2q)Ω + q2

)
, (29)

and we have M ′
g(0) = −p/q and M ′

g(Ωp) = −2/p.
Applying Theorem 2, we have the following results.
(I) Suppose g ∈ G1, i.e., q < 0. Then, ρ∗ = ϱo :=

1/|g(0)| = |q| holds if and only if p ≥ 0.
(II) For any g ∈ G#2 , i.e., p < 0, 2q > p2 > 0, we have

ρ∗ = ϱp := 1/∥g∥L∞ = 1/|g(jωp)| where ω2
p = Ωp =

q − p2/2.
The proofs of the results (I) and (II) are as follows.

Regarding (I), p ≥ 0 is equivalent to M ′
g(0) = −p/q ≥ 0.

Although statement (I) of Theorem 2 only gives the
necessity for p = 0, we can readily show that a constant
δ marginally stabilizes even for p = 0, which gives
rise to the sufficiency. This completes the proof of (I).
We compare the values of | sin(θg(ωp))/ωp| with −2/p
to show (II). We can show that | sin(θg(ωp))/ωp|2 =
4/(4q−p2) < 4/p2 = M ′

g(Ωp)
2, since 2q > p2 is equivalent

to 4q − p2 > p2. This completes the proof of (II).
For g ∈ G02 , i.e., the case where p < 0, 0 < 2q ≤ p2, we

do not yet know whether g has the exact RIR.

V. SUPREMUM OF PHASE CHANGE RATE OVER STABLE
TRANSFER FUNCTIONS

In this section, the phase change rate maximization
problem (25) is solved and the claim stated in the
previous section is proven. It will be shown that the
supremums are attained by the zeroth-order and the
first-order all-pass functions for ωp = 0 and ωp ̸= 0,
respectively.

A. Phase change rate maximization

To solve the optimization problem described in (25)
for ωp ≥ 0, notice that the constraint g(jωp)f(jωp) = 1 is
equivalent to the gain and phase conditions:

Af (ωp) ·Ag(ωp) = 0, θf (ωp) + θg(ωp) = 0. (30)

Also notice that the phase variation θ′f (ω) of a function
f is invariant to a constant scaling on f . Therefore, the
essential aspects of the constraints in (25) are the phase
of f at ωp, and that f attains its H∞-norm at ωp. The
magnitude of f at ωp is immaterial because the first
equation in (30) can always be satisfied via a constant
scaling on f . As such, without loss of generality, we will
assume that the functions under consideration in this
section have unit norm. To facilitate development, let us
introduce two classes of transfer functions f(s) based on
its frequency response f(jω) = |f(jω)|ejθf (ω). Define

RFωp,θp := {f ∈ RH∞ | 1 = ∥f∥H∞ =|f(ωp)|,
θf (ωp) = θp}.

This represents a class of proper real rational stable func-
tions of which the H∞-norm is attained at a specified
frequency ωp and the phase at that frequency is equal to
a specified value θp. Moreover, let us also consider

APωp,θp := AP ∩RFωp,θp ,

where AP := {f ∈ RH∞ | |f(jω)| = 1, ∀ω} is the
set of all stable real rational all-pass functions with
unit norm. Note that AP includes 0th-order all-pass
functions, which take values ±1 over the entire complex
plane. Clearly, APωp,θp is a subset of AP containing all-
pass functions whose phase at ωp is constrained to be a
specified value θp.

Using RF•,•, we consider the following equivalent
maximization problems of (25):
[phase change rate maximization]

sup
f∈RFωp,−θg(ωp)

θ′f (ωp) ≡ sup
f∈RFωp,−θg(ωp)

M ′
f (ωp). (31)

The equivalence of the two problems follows straightfor-
wardly from Lemma 2. Also note that not only the two
problems have the same supremum, but the arguments
of supremum are also identical.

To solve (31) (with −θg(ωp) replaced by θp for nota-
tional simplicity), we will show that the supremum of
θ′f (ωp) and M ′

f (ωp) over RFωp,θp is in fact the same as
that over APωp,θp . This follows from a key observation
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that the minimum-phase factor of a stable function does
not “help” in elevating the phase change rate at the
peak frequency. To this end, let us consider the following
problem whose solution is a lower bound for (31)

sup
f∈APωp,θp

θ′f (ωp) ≡ sup
f∈APωp,θp

M ′
f (ωp). (32)

Proposition 3: Consider the optimization problem (32).
(I) For ωp = 0, we must have θp ∈ {0, π} (mod 2π). In

this case,

sup
f∈AP0,θp

θ′f (0) = sup
f∈AP0,θp

M ′
f (0) = 0.

The supremum is attained by f(s) = 1 or f(s) = −1.
(II) For ωp ̸= 0 and θp ∈ (−π, π] (mod 2π), we have

sup
f∈APωp,θp

θ′f (ωp) = sup
f∈APωp,θp

M ′
f (ωp) = −

∣∣∣∣ sin(θp)ωp

∣∣∣∣ .
(33)

Moreover, when θp ̸∈ {0, π}, the supremum is
attained by the first-order all-pass function of the
form f(s) = a−s

a+s or f(s) = s−a
a+s satisfying the

phase constraint θf (ωp) = θp. When θp ∈ {0, π},
the supremum is attained by a zeroth-order all-pass
functions; i.e., f(s) = 1 or f(s) = −1.

Furthermore, the key observation that leads to the
solution of (31) can be formulated as follows.

Proposition 4: Optimization problems (31) and (32)
have the same solutions. That is,

sup
f∈RFωp,θp

θ′f (ωp) = sup
f∈APωp,θp

θ′f (ωp). (34)

Proofs of Propositions 3 and 4 can be found in
Sections VII-C and VII-D, respectively. With these two
propositions, we arrive at the main result of this section.

Theorem 3: Consider the optimization problem (31).
(I) For ωp = 0, we must have θp ∈ {0, π} (mod 2π). In

this case,

sup
f∈RFωp,θp

θ′f (ωp) = 0. (35)

(II) For ωp ̸= 0 and θp ∈ (−π, π] (mod 2π), we have

sup
f∈RFωp,θp

θ′f (ωp) = − |sin(θp)/ωp| . (36)

Moreover, the supremum is attained by f(s) = 1 or
f(s) = −1 when it is zero. When the supremum is not
zero, it is attained by a first-order all-pass function as
described in statement (II) of Proposition 3.
Proof. The result follows from Propositions 3 and 4 in a
straightforward manner.

One may find the results in Proposition 3 and The-
orem 3 somewhat counter-intuitive, as one may think
a higher-order all-pass function would give better result
due to more optimizable parameters it provides. This ad-
ditional “freedom” is not useful because of the constraint
on the phase at ωp. To better understand this point, let us

compare the phase change rate of a generic second-order
all-pass function with that of the first-order.

Example 2: We here evaluate the phase change rate of
the second-order all-pass function

f(s) :=
a− bs+ s2

a+ bs+ s2
, a, b > 0.

Since the phase and the σ-gain change rates are the same,
we calculate the latter instead. For given θp and ωp, the
phase constraint θf (ωp) = θp requires that the parameters
a and b be chosen so that

sin(θp) = −
2(a− ω2

p)bωp

(a− ω2
p)

2 + b2ω2
p

(37)

holds. Furthermore, one can verify that

M ′
f (ω) = −

2(a− ω2)b

(a− ω2)2 + b2ω2
− 4ω2b

(a− ω2)2 + b2ω2
. (38)

For ωp ̸= 0, substituting (37) into equation (38) yields

M ′
f (ωp) =

sin(θp)

ωp
+

2ω2
p

a− ω2
p

sin(θp)

ωp
. (39)

Suppose sin(θp) = 0. This implies a − ω2
p = 0, and (38)

implies M ′
f (ωp) < 0. If sin(θp)/ωp < 0, then a − ω2

p > 0
and clearly (39) implies M ′

f2
(ωp) < −| sin(θp)/ωp|. Finally,

M ′
f2
(ωp) < −| sin(θp)/ωp| also holds when sin(θp)/ωp >

0. To see this, note that in this case a − ω2
p < 0 and one

can verify that 1+2ω2
p/(a−ω2

p) < −1. Thus we conclude
that the best first-order all-pass function is better than
any second-order one, as the phase change rate of the
first-order all-pass function with the same constraint is
equal to −| sin(θp)/ωp|.

VI. PRACTICAL APPLICATIONS

In this section, we apply our main results to analyze
(in)stability properties of system models that are derived
from real-world applications. Section VI-A is concerned
with exact robust instability analysis for a biological
network oscillator called “repressilator”, of which the
linearized model used is in G#2 . Section VI-B is about
digital stable controller synthesis for a magnetic levita-
tion system, where the model belongs to G01 . The goal is
to illustrate that our theoretical results are applicable to
problems of significance to provide useful information.
Note that the problem settings here are more practical
than those considered in [17].

A. Robust Instability Analysis for Repressilator
Consider the repressilator with three dynamical units

in a cyclic loop [5]. Its linearized model around an
equilibrium state is approximated by a positive feedback
system with loop-transfer function represented by

he(s) =
−keDτ (s)

(s+ α1)(s+ α2)(s+ α3)
,

where ke > 0 depends on the equilibrium state of the
original nonlinear system [8] and Dτ (s) denotes a Padé
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approximation of the time-delay transfer function e−τs.
The nominal system with the characteristic equation
1 = he(s) is assumed to be exponentially unstable.
The subscript •e is used to indicate that the quantity
• depends on the equilibrium state, which is subject to
the DC-gain of the uncertainty δ(s) denoted by e := δ(0).
For more details about the repressilator model, see [8].

We are interested in assessing robust instability against
a ball type multiplicative perturbation with a frequency
weight function wm(s) := (1 + ζTms)/(1 + Tms). As
explained at the beginning of Section II, the correspond-
ing characteristic equation is 1 − δ(s)ge(s) = 0, where
ge(s) = wm(s)he(s)/(1 − he(s)). We set the parameters
of the nominal system be the same as in [8], i.e., α1 =
0.4621, α2 = 0.5545, and α3 = 0.3697, and the fifth-order
Padé approximation is used for the delay with τ = 0.25,
which mainly accounts for maturation time of protein.
The weight function wm(s) is defined with Tm = 0.3 and
ζ = 10.

Since ge is parametrized by the DC-gain of its sta-
bilizing perturbation δ, obtaining its instability margin
requires a more elaborated analysis. For a given e, we
apply Lemma 4 of [8] to verify whether ge has the exact
RIR equal to 1/∥ge∥L∞ . According to the lemma, it is
so if the following conditions hold: (a) |e| < 1/∥ge∥L∞ ;
(b) ge has even number of ORHP poles; and (c) ge
can be marginally stabilized by a stable perturbation
δ with ∥δ∥H∞ = 1/∥ge∥L∞ . Numerical computations
show that (a) holds for e ∈ (−0.193, 0.174) =: I1 and
that ge(s) ∈ G#2 , which implies that (b) is satisfied for
e ∈ [−0.94, 1) =: I2. Thus, 1/∥ge∥L∞ gives the exact RIR
for the interval I1 ∩ I2 = (−0.193, 0.174) if (c) is satisfied.
Condition (c) can be readily verified by the phase change
rate condition (27) stated in Theorem 2 and it indeed
holds for any e ∈ I1 ∩ I2. It should be emphasized that
Theorem 2 is applicable to any rational functions, while
its counterpart in [8] holds only for a particular class of
third-order transfer functions.

For illustration purposes, let e = 0.1, and we construct
a stabilizing perturbation δ(s) with ∥δ∥∞ = 1/|ge(jωp)| =
0.178. A stabilizing perturbation δ(s) is constructed using
a first-order all-pass function and a high-pass filter that
makes the DC gain δ(0) equal to e:

δ(s) = (1 + ϵ)
s+ γξ

s+ ξ
· b
(
s− a

s+ a

)
,

where a = 0.901, b = 0.178, ξ = 0.01, and γ =
−e/(b(1 + ϵ)) with a non-negative constant ϵ. The sys-
tem is marginally stabilized when ϵ = 0 and becomes
asymptotically stable when the gain of δ(s) is slightly
increased by making ϵ > 0. The nonlinear repressilator
models with ϵ = 0.05 and ϵ = −0.05 are simulated,
and the results are shown in Fig. 2 (left and right
figures, respectively). Clearly, δ(s) with ϵ = −0.05 is
not able to stabilize ge(s) and the closed-loop system
exhibits oscillatory behavior. On the other hand, δ(s)
with ϵ = 0.05 stabilizes ge(s) and the oscillatory behavior
ceases to exist.

Fig. 2. Time-course simulations of the closed-loop systems. Left: ge(s)
and δ(s) with ϵ = 0.05. Right: ge(s) and δ(s) with ϵ = −0.05.

B. Discrete-time Strong Stabilization for Magnetic Levitation
Systems

A typical linearized model for the magnetic levitation
system [19] at an equilibrium is represented by

g(s) = k/
(
(−s2 + p2)(τs+ 1)

)
, (40)

where k > 0, and the pair of poles at ±p is due to the
mechanical aspect of the system while the stable pole at
−τ−1 comes from the electrical part. A summary of the
results in [17] on the minimum-norm continuous-time
stabilization by a stable controller c(s) is as follows:

1

∥g∥L∞

=
1

|g(0)|
=

p2

k
< inf

c∈S(g)
∥c∥H∞ ≤

1 + p2τ2

∥g∥L∞

. (41)

We can see that the upper bound approaches the lower
bound when τ > 0 tends to zero, which is consistent
with the case of reduced order model (i.e., τ = 0) where
the infimum is exact.

We consider minimum-norm strong stabilization
of (40) with τ = 0 in the digital control setting, where a
reduced-order model represented by

gr(s) = k/(−s2 + p2), (42)

is used for simplicity to avoid the complicated formulae.
This is reasonable in practice since τ−1 ≫ p typically
holds and hence we may neglect the factor (τs + 1) for
control design purpose.

The first step is to derive the discretized plant model
gd(z), where we assume that an ideal sampler and a syn-
chronized zeroth-order hold with the sampling period
T > 0 are placed around the continuous-time plant gr(s).
The discretized model with one sample computational
time delay (1/z) is given by

gd(z) = κ(z + 1)/
(
(z − e−pT )(z − epT )z

)
, (43)

where κ := k(1−epT )(1−e−pT )/(2p2). Note that the static
gain is preserved, i.e., gd(1) = gr(0) = k/p2.

Our theoretical results in the continuous-time setting
can be applied to discrete-time systems by introducing a
bilinear transformation z ← (1+s)/(1−s). In particular, a
continuous-time equivalent of gd(z), denoted by gd,c(s),
can be derived as follows:

gd,c(s) = kc
(s− 1)2

(s− q)(s+ q)(s+ 1)
, q :=

1− e−pT

1 + e−pT
,
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where kc := 2κ/((1 + epT )(1 + e−pT )). Note that kc
can also be expressed as kc = −kq2/p2. Therefore, we
have gd,c(0) = k/p2 = gr(0), which is also equal to
|gd(1)| = ∥gd∥L∞ . This is simply because the bilinear
transformation preserves the gain of the corresponding
frequency. It is also noticed that the unstable pole at s = q
is in the interval (0, 1), implying that it is located to the
left of the non-minimum-phase zero at s = 1 and hence
the PIP condition holds.

One can readily verify that gd,c ∈ G01 and θ′gd,c(0) < 0.
To see this, note that A′

gd,c
(ω) and θ′gd,c(ω) are the real

and imaginary parts of d
dω log gd,c(jω), respectively. They

are found as follows

A′
gd,c

(ω) =
−ω(ω2 + 2− q2)

(ω2 + 1)(ω2 + q2)
, θ′gd,c(ω) =

−3
ω2 + 1

.

By these expressions, we have A′
gd,c

(0) = 0, A′
gd,c

(ω) < 0
∀ω > 0, and θ′gd,c(0) = −3. Thus, by Theorem 2, we
conclude that

inf
c∈S(gd,c)

∥c∥H∞ > 1/∥gd,c∥L∞ = 1/|gd,c(0)| = p2/k

since the necessary condition for gd,c to have the exact
RIR is violated. This in turn implies that the norm of
the minimum-norm strongly stabilizing controller for gd
must also be larger than p2/k = 1/∥gd∥L∞ .

To obtain an upper bound on infc∈S(gd,c) ∥c∥H∞ (which
is also an upper bound on the norm of the minimum-
norm strongly stabilizing controller for gd), let us apply
the lead compensator of the form

(
bs+1
as+1

)m
:= fℓ(s) to

gd,c, where m ≥ 1 is an integer and b > a > 0. The
values of these parameters are to be chosen later. Let
g̃d,c(s) := gd,c(s)fℓ(s). One can readily verify that

θ′g̃d,c(ω) = θ′gd,c(ω) +m · (a− b)abω2 + (b− a)

(b2ω2 + 1)(a2ω2 + 1)
,

A′
g̃d,c

(ω) = A′
gd,c

(ω) +m · ω(b2 − a2)

(b2ω2 + 1)(a2ω2 + 1)
.

Thus for θ′g̃d,c(0) = −3+m(b−a) > 0, we set b = a+3ϵ/m,
where 3ϵ := 3+ϵ, and ϵ > 0 is arbitrarily small. With this
selection of b, θ′g̃d,c(0) > 0 and A′

g̃d,c
(0) = 0 regardless of

the value of a. Furthermore, with b = a + 3ϵ/m, it can
be verified that A′

g̃d,c
(ω) ≤ 0 when ω → 0+ if and only

if a ≤ 1
3ϵ

(
1/q2 − (32

ϵ/m+ 1)/2
)
=: ā. The condition also

implies that A′
g̃d,c

(ω) ≤ 0, ∀ ω ≥ 0. Thus, g̃d,c belongs
to G01 with positive PCR at the zero frequency for any
a satisfying 0 < a ≤ ā. Note that the upper bound ā is
positive if m is sufficiently large, since 1/q2 is larger than
1. Applying Theorem 2, we have

inf
c∈S(g̃d,c)

∥c∥H∞ = 1/∥g̃d,c∥L∞ = 1/|g̃d,c(0)| = p2/k.

Suppose c∗ is a (minimum-norm) strongly stabilizing
controller for g̃d,c. Then c∗fℓ is a strongly stabilizing
controller for gd,c, and therefore ∥c∗fℓ∥H∞ ≈ (p2/k)(1 +
3ϵ/(ma))m is an upper bound on infc∈S(gd,c) ∥c∥H∞ . To

minimize the upper bound, we shall choose a = ā, which
results in

1 < inf
c∈S(gd,c)

∥c∥H∞

p2/k
≤

(
1 +

2q2 · 32
ϵ

m(2− (
32
ϵ

m + 1)q2)

)m

(44)

As a final remark, recall that q := (1 − e−pT )/(1 + epT ),
which is a monotonically increasing function of pT , and
takes 0 value when pT = 0. As such, we see that the
upper bound approaches the lower bound as pT → 0;
i.e., when the sampling is arbitrarily fast, we recover the
continuous-time result, which is expected. Furthermore,
for a given pT , one can try to minimize the upper bound
over m under the constraint ā > 0; i.e., m is a positive
integer satisfying m > q2 · 32

ϵ/(2− q2).

VII. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1
The arguments for proving both statements are simi-

lar; here we will focus on the derivation for statement
(II), and then point to key differences that lead to state-
ment (I).

We start with proving the sufficiency part of statement
(II). Let g ∈ G#n . Suppose n = 2 and (24) holds. For the
case sin(θg(ωp)) = 0, let f be the constant function with
real value 1/g(jωp) and L = gf . As g ∈ G#2 , we see that
L ∈ G#2 , and |L(jω)| < L(jωp) = 1 for all ω ̸= ±ωp. Fur-
thermore, since θ′L(ωp) = θ′g(ωp) + θ′f (ωp) = θ′g(ωp) > 0,
we also have d

dsL(s)
∣∣
s=jωp

̸= 0. Thus, (17) and condition
(i) of Proposition 2 hold with ωc = ωp > 0. Lastly, since
|L(jω)| ≤ 1 for all ω, we see that 0 = νo(0) = 2− 2 with
θ′L(ωp) > 0, and hence condition (ii-a) of Proposition 2
also holds. By Proposition 2, we have that f marginally
stabilizes g. For the case sin(θg(ωp)) ̸= 0, let

f(s) =


1

∥g∥L∞

(
a−s
a+s

)
if θg(ωp) mod 2π ∈ (0, π)

1
∥g∥L∞

(
s−a
s+a

)
if θg(ωp) mod 2π ∈ (−π, 0)

,

where a > 0 is chosen such that θf (ωp) + θg(ωp) =
0 (mod 2π). Specifically, a = ωp/ tan(θg(ωp)/2) when
θg(ω) (mod 2π) ∈ (0, π), and a = ωp tan(−θg(ωp)/2)
when θg(ω) (mod 2π) ∈ (−π, 0). Since f is an all-pass
function satisfying g(jωp)f(jωp) = 1, the loop transfer
function L satisfies |L(jω)| < L(jωp) = 1 for all ω ̸= ±ωp.
Furthermore, one can verify that for a given ω ̸= 0,
θ′f (jω) = −| sin(θf (ω))/ω|; thus, we again have θ′L(ωp) =
θ′g(ωp) + θ′f (ωp) > 0 by (24). Therefore, the same argu-
ments apply and we conclude that f marginally stabi-
lizes g and the feedback system has a pair of single poles
at ±jωp. Note that, in both cases, the feedback system is
ωp-marginally stable and the stabilizing (sub)system f is
stable and satisfies ∥f∥H∞ = 1/∥g∥L∞ .

We note that the phase change rate condition (24)
(resp. (23) for case (I)) renders d

dsL(s)
∣∣
s=jωp

̸= 0, which
in turn implies that the closed-loop poles at ±jωp (resp.
at the origin for case (I)) must be simple.

For the necessity part of statement (II), let g ∈ G#n for
which the peak gain of g occurs at ωp. Let f be the stable
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system that satisfies ∥f∥H∞ = 1/∥g∥L∞ and marginally
stabilizes g. Since the feedback system is marginally
stable and the loop transfer function L := gf satisfies
∥L∥L∞ := ∥gf∥L∞ ≤ 1, we must have |L(jω)| = 1 for
some frequency. This can only occur when f satisfies
1/∥g∥L∞ = |f(jωp)| ≥ |f(jω)| for any ω ̸= ±ωp, which in
turn implies that 1 = |L(jωp)| > |L(jω)| ∀ ω ̸= ±ωp.
Since f is stable, we have L ∈ G#n with peak gain
occurring at ωp and equal to 1. This further implies that
the feedback system must be ωp-marginally stable. By
Proposition 2, L must satisfy condition (ii-a) or condition
(ii-b). Note that ∥L∥L∞ ≤ 1 implies that νo(0) = 0 and
condition (ii-b) can never be satisfied. Thus, condition
(ii-a) must hold and we conclude that n = 2 as the cor-
responding ωc is equal to ωp, which is strictly larger than
0. Moreover, the necessary condition θ′L(ωp) > 0 implies
that θ′g(ωp) > −θ′f (ωp). Inequality (24) emerges as one
finds the infimum of −θ′f (ωp) over the set of all suitable
f ’s. This results in the optimization problem we stated
in (25), and the claim thereafter gives condition (24).

Regarding statement (I), we note that the statement
deals with the special case where ωp = 0; hence its
proof is almost identical to that of statement (II). For
sufficiency, notice that since g(j0) is real, the arguments
for the case where sin(θg(ωp)) = 0 apply. The marginally
stabilizing f is equal to 1/g(j0). The remaining argu-
ments are identical, except when we verify condition (ii-
a) of Proposition 2, we have the corresponding ωc = 0
and n = 1. For necessity, again, the same arguments for
proving the necessity part of statement (II) apply. As
such, condition (ii-a) of Lemma 4 implies that n = 1,
and θ′g(0) must satisfy θ′g(0) > −θ′f (0). Inequality (23)
emerges as the infimum of the right hand side is equal
to 0, as we have stated and has been shown in Section V.

B. Proof of Theorem 2
To prove statement (I), we need the following lemma,

whose proof is given in Appendix D.
Lemma 5: Given ωc ≥ 0, an integer n ≥ 1, and a

transfer function L ∈ Gn, consider the positive feedback
system with loop transfer function L satisfying the fol-
lowing condition

1 = |L(jωc)| = ∥L∥L∞ ,

|L(jω)| < |L(jωc)|,∀ω ̸= ±ωc.
(45)

If the closed-loop system has all its poles in the CLHP,
then θ′L(ωc) ≥ 0.

Now suppose g ∈ G0n has the exact RIR equal to
1/∥g∥L∞ . This implies that one can find a stable f ,
∥f∥H∞ = 1/∥g∥L∞ , such that the closed-loop system,
with loop transfer function L := gf , has all its poles
in the CLHP. Note that ∥L∥L∞ ≤ 1; therefore L must
satisfy (45) with ωc = 0, whereby θ′L(0) = θ′g(0)+θ′f (0) ≥
0. This implies θ′g(0) ≥ −θ′f (0), and hence θ′g(0) ≥ 0
as the infimum of the right hand side is equal to 0,
which is stated in the proof of Theorem 1 and has been
shown in Section V. The arguments for g ∈ G#n are

identical, except that in this case we have ωc := ωp > 0,
θ′g(ωp) ≥ −θ′f (ωp), and the infimum of the right hand
side is now | sin (θg(ωp)) /ωp|.

To see statement (II), note that by Theorem 1, con-
dition (24) implies g can be marginally stabilized with
a single pole at 0 (for n = 1) or ±jωp (for n = 2)
by a stable system f with ∥f∥H∞ = 1/∥g∥L∞ . Further,
by Proposition 1, an arbitrarily small perturbation of
f can exponentially stabilize g. Thus, by definition,
ρ∗(g) = 1/∥g∥L∞ .

To prove statement (III), consider a stable f and the
feedback system with loop transfer k ·L, where k ∈ (0, 1]
and L := gf . Suppose that, when k = 1 all poles of
the closed-loop system are in the CLHP. Since L has an
odd number of unstable poles, at least one unstable pole
must be on the positive real axis, and there must be a
k ∈ (0, 1] such that the closed-loop system has at least
one pole at the origin. That is to say, 1 = k · g(0)f(0)
for some k ∈ (0, 1]. This implies |f(0)| = 1/(k · |g(0)|) ≥
1/|g(0)| > 1/∥g∥L∞ . The last inequality follows from the
fact that |g(0)| < |g(jωp)| := ∥g∥L∞ (for some ωp > 0)
since g ∈ G#n . This shows that, any stable f which
renders all closed-loop poles in the CLHP must satisfy
∥f∥H∞ > 1/∥g∥L∞ . Hence, ρ∗(g) > 1/∥g∥L∞ .

C. Proof of Proposition 3
To prove Proposition 3, we require the results stated

in the following technical lemmas. The proofs of these
lemmas can be found in the Appendix.

Lemma 6: For any f ∈ RH∞, we have

M ′
f (ω) = M ′

−f (ω) = M ′
f (−ω). (46)

Lemma 7: Let θi belong to [−π, 0], i = 1, · · · , n. Then

sin(θ1) + · · ·+ sin(θn) ≤ −| sin(θ1 + · · ·+ θn)|. (47)

The next result provides an upper bound for the σ-
gain change rate as in (13) of any all-pass function that
has real poles. Notice that the bound is tight for zeroth-
order or first-order all-pass functions.

Lemma 8: Let H(s) be a stable nth-order all-pass
function with real poles (or no pole when n = 0). Then
for a given ωp ̸= 0,

M ′
H(ωp) ≤ − |sin(θH(ωp))/ωp| . (48)

Moreover, when n = 0 and n = 1 the equality holds for
all ωp ̸= 0.2

By Lemma 2, we have the same upper bound
for the phase change rate θ′H(ωp); i.e., θ′H(ωp) ≤
− |sin(θH(ωp))/ωp| for any ωp ̸= 0. Our next result shows
that the σ-gain change rate (and hence the phase change
rate) of a second-order all-pass function with complex
poles is upper bounded by that of a corresponding
second-order all-pass function with real poles.

Lemma 9: Let Hr(s) and Hc(s) be rational second-
order stable all-pass functions with two real poles and a

2When n = 0, clearly M ′
H(ωp) = 0 for all ωp, including ωp = 0.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3324263

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

pair of complex conjugate poles, respectively. For given
ωp ̸= 0, if θHr (ωp) = θHc(ωp), then

M ′
Hc

(ωp) < M ′
Hr

(ωp). (49)

Now we are ready to prove Proposition 3. Let f be an
nth-order real-rational all-pass function with unit norm.
Then f can be factorized as ±f1f2 · · · fm, where fi, i =
1, · · · ,m is either a first-order all-pass function of the
form a−s

a+s , where a > 0, or a second-order one of the
form a−bs+s2

a+bs+s2 , where a, b > 0 are such that the poles are
a pair of complex conjugates. This follows from results
on finite Blaschke products [20].

First consider the case where ωp ̸= 0. By Lemma 9,
any second-order factor fc of f can be replaced by the
product of two first-order all-pass functions fr := fr1fr2,
such that θfc(ωp) = θfr (ωp) and M ′

fc
(ωp) < M ′

fr
(ωp). As a

result, the supremum of (32) can be found by searching
over the subset of APωp,θp containing real-rational all-
pass functions which are constant functions or can be
factorized as products of first-order factors. Furthermore,
among these all-pass functions, Lemma 8 shows that

M ′
f (ωp) ≤ −

∣∣∣∣ sin(θf (ωp))

ωp

∣∣∣∣ = − ∣∣∣∣ sin(θp)ωp

∣∣∣∣ ≤ 0.

When θp ̸∈ {0, π}, the supremum is attained by first
order all-pass function in the form of a−s

a+s or s−a
a+s . The

value of a > 0 is chosen such that sin(θp) =
−2aωp

a2+ω2
p
< 0, or

sin(θp) =
2aωp

a2+ω2
p
> 0. One can readily verify that such an

a always exists. When θp ∈ {0, π}, it is clear that f(s) = 1
or f(s) = −1 would satisfy the angular constraint and
attain the supremum of the phase change rate, which is
equal to 0.

For the case where ωp = 0, first we note that, since
we consider real rational function f , f(j0) is necessarily
real and thus θf (0) can only assume value 0 or π (mod
2π). Since M ′

f (·) = M ′
−f (·) by Lemma 6, without loss

of generality we can consider only all-pass functions f
such that f(j0) > 0; i.e., the corresponding θp is set to 0.
The factorization of f implies that M ′

f (·) =
∑m

i=1 M
′
fi
(·).

Note that for a first-order factor of the form a−s
a+s , the

σ-gain change rate at 0 is equal to −2/a, while for a
second-order factor of the form a−bs+s2

a+bs+s2 , the change rate
is −2b/a. Therefore, one concludes that M ′

f (0) is strictly
less than 0 if the order of f is larger than or equal to 1.
Hence, the supremum of M ′

f (0) (= θ′f (0)) is equal to 0,
obtained by the zeroth-order all-pass functions f(s) = 1
or f(s) = −1.

D. Proof of Proposition 4
To prove Proposition 4, we need the following lemma

which provides an upper bound for the phase change
rate of any minimum-phase stable function at the peak-
gain frequency.

Lemma 10: Given minimum-phase f ∈ RH∞, suppose
ωp ̸= 0, θf (ωp) ∈ (−π, π], and |f(jωp)| = ∥f∥H∞ . Then

θ′f (ωp) ≤ − |θf (ωp)/ωp| .

Moreover, if ωp = 0, then θ′f (ωp) ≤ 0.
The proof of Lemma 10 can be found in the Appendix.

To facilitate the development, let us also define

Oωp,θp := {f ∈ RH∞ : f is minimum-phase,
|f(jωp)| = ∥f∥H∞ , and θf (ωp) = θp}.

First consider the case where ωp ̸= 0 and θp ∈
(−π, π]. Since every f ∈ RH∞ admits an inner-outer
factorization f = fifo with fi ∈ RH∞ being all-pass
and fo ∈ RH∞ being minimum-phase, it follows that
|fo(jωp)| = ∥fo∥H∞ and

sup
f∈RFωp,θp

θ′f (ωp) = sup
f=fifo∈RFωp,θp

(
θ′fi(ωp) + θ′fo(ωp)

)
≤ sup

θ∈(−π,π]

(
sup

fi∈APωp,θ

θ′fi(ωp) + sup
fo∈Oωp,θp−θ

θ′fo(ωp)

)

≤ sup
θ∈(−π,π]

(
−| sin(θ)|
|ωp|

− |θp − θ|
|ωp|

)
≤ −

∣∣∣∣ sin(θp)ωp

∣∣∣∣ ,
where the second inequality follows from Proposition 3
and Lemma 10, and the last inequality follows from the
fact that |b−a|+| sin(a)|−| sin(b)| ≥ 0 for all a, b ∈ (−π, π].
Lastly, since − |sin(θp)/ωp| = supf∈APωp,θp

θ′f (ωp) ≤
supf∈RFωp,θp

θ′f (ωp), we conclude that the supremum of
θ′(ωp) over RFωp,θp is the same as that over APωp,θp .

Now consider the case where ωp = 0 and θp ∈ {0, π}.
The reason why the value of θp is restricted to 0 or π is
due to f being real rational and therefore θf (ωp) ∈ {0, π}.
The rest of the derivation follows the same arguments.
By the inner-outer factorization of f , we have

sup
f∈RF0,θp

θ′f (0) = sup
f=fifo∈RF0,θp

(
θ′fi(0) + θ′fo(0)

)
≤ sup

θ∈{0,π}

(
sup

fi∈AP0,θ

θ′fi(0) + sup
fo∈RF0,θp−θ

θ′fo(0)

)
≤ sup

θ∈{0,π}
sup

fi∈AP0,θ

θ′fi(0) = 0.

The second inequality follows from Lemma 10, where
it is shown that θ′fo(ωp) ≤ 0 for any minimum-phase
fo ∈ RH∞. The last equality follows from Proposition 3,
which concludes the proof.

VIII. CONCLUSION

This paper examined the exact RIR condition mo-
tivated by robust instability analysis against stable
perturbations and minimum-norm strong stabilization.
We have shown that the problem of finding the exact
RIR may be turned into the problem of maximizing the
phase change rate at the peak frequency with a phase
constraint. It has been proven that the supremum is
attained by a constant or a first-order all-pass function,
which yields conditions for which we can find the exact
RIR in terms of the phase change rate. Two practical
applications have been provided to demonstrate the
effectiveness of our theoretical results in practice.
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APPENDIX

A. Proof of Lemma 3
Given a minimum-phase function f ∈ RH∞, let

h(s) := d
ds log f(s) = f ′(s)

f(s) . Note that h ∈ RH∞ and is
strictly proper, and h(jω) = θ′f (jω)− jA′

f (jω).

Now let k(s) := s · h(s) ∈ RH∞. Then, we have

k(jω) = jωh(jω) = ωA′
f (jω) + jωθ′f (jω).

Following the derivation in [21, Sec. 3] gives the integral
formula for θ′f (jωp) stated in (15). Now rewrite the right-
hand-side of (15) as

2

π
lim
ϵ→0

[∫ ωp−ϵ

0

ωA′
f (jω)

ω2 − ω2
p

dω +

∫ ∞

ωp+ϵ

ωA′
f (jω)

ω2 − ω2
p

dω

]
.

Applying integration by parts to the two terms in the
parentheses yields

ωAf (jω)

ω2 − ω2
p

∣∣∣∣ωp−ϵ

0

+
ωAf (jω)

ω2 − ω2
p

∣∣∣∣∞
ωp+ϵ

+∫ ωp−ϵ

0

(ω2 + ω2
p)Af (jω)

(ω2 − ω2
p)

2
dω +

∫ ∞

ωp+ϵ

(ω2 + ω2
p)Af (jω)

(ω2 − ω2
p)

2
dω.

Since

lim
ω→0

ωAf (jω)

ω2 − ω2
p

= lim
ω→∞

ωAf (jω)

ω2 − ω2
p

= 0

holds, the boundary terms become

(ωp − ϵ)Af (j(ωp − ϵ))

(ωp − ϵ)2 − ω2
p

− (ωp + ϵ)Af (j(ωp + ϵ))

(ωp + ϵ)2 − ω2
p

=

(
2ω2

p − ϵ2

ϵ2 − 4ω2
p

)
Af (j(ωp − ϵ)) +Af (j(ωp + ϵ))

ϵ

+
ωp(Af (j(ωp + ϵ))−Af (j(ωp − ϵ)))

ϵ2 − 4ω2
p

.

Note that Af (jωp) = 0, and thus by L’Hôpital’s rule we
have

lim
ϵ→0

Af (j(ωp − ϵ)) +Af (j(ωp + ϵ))

ϵ
= lim

ϵ→0
−A′

f (j(ωp − ϵ)) +A′
f (j(ωp + ϵ)) = 0,

which in turn implies that the boundary terms approach
zero as ϵ→ 0. Thus we have∫ ∞

0

ωA′
f (jω)

ω2 − ω2
p

dω = lim
ϵ→0

(∫ ωp−ϵ

0

(ω2 + ω2
p)Af (jω)

(ω2 − ω2
p)

2
dω +

∫ ∞

ωp+ϵ

(ω2 + ω2
p)Af (jω)

(ω2 − ω2
p)

2
dω

)
=

∫ ∞

0

Af (jω)
(ω2 + ω2

p)

(ω2 − ω2
p)

2
dω

as claimed in the second part of the lemma.

B. Proof of Lemma 4
The idea for a proof of (i) is based on the Nyquist

stability criterion, where a positive feedback system with
unstable loop transfer function is stable if and only if
the number of counter-clockwise encirclements by the
Nyquist plot about 1+j0 is equal to the number of open-
loop poles in the ORHP, “n” in this case. The proof is
trivial by considering the Nyquist plot of L(jω+ ϵ) with
a sufficiently small positive number ϵ > 0 instead of
the original Nyquist plot of L(jω) so that any pole of
the closed-loop system on the imaginary axis are placed
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outside of the Nyquist contour. Noting that L is a strictly
proper RL∞ function, the equivalence of (i) and (ii)
follows from continuity and boundedness of L(jω + ϵ)
in addition to the property L(jω + ϵ)→ 0 as ω → ±∞.

It is clear that conditions (iii-a) and (iii-b) are necessary
for marginal stability since they mean existence of simple
roots of 1+L(jω) = 0 on the imaginary axis. Conversely,
condition (i) or (ii) implies that all the poles are in the
closed left half plane, and hence additional conditions
(iii-a) and (iii-b) are sufficient for marginal stability.

C. Proof of Proposition 2
First note that the phase change rate at ω = ωc cannot

be equal to zero. The reason is as follows. Suppose
θ′L(ωc) = 0, then together with (17) this implies L′(jωc) =
0, i.e., there are at least two feedback poles at jωc. There-
fore, θ′L(ωc) cannot be 0. As such, the strict inequality
conditions (19) and (20) can be equivalently replaced by
θ′L(ωc) ≥ 0 and θ′L(ωc) ≤ 0, respectively. They will be
treated as such when we prove the necessity of these
two conditions.

Necessity: Condition (i) is necessary from the require-
ment on the closed-loop pole location on the imaginary
axis for ωc-marginal stability. The necessity of condition
(ii-a) or (ii-b) is derived from condition (ii) in Lemma 4,
which is νo(ϵ) = n for sufficiently small ϵ > 0.

When ωc > 0, condition (i) implies that there are two
segments of the Nyquist plot of L(jω) passing through
the critical point 1 + j0, which corresponds to the two
different frequencies ±ωc. Moreover, we see that the two
curves go across the real axis in the same direction since
the Nyquist plot is symmetric about the real axis, i.e.,
L(jω) and L(−jω) are complex conjugate to each other
for all ω ∈ R. This means that the possible increment or
decrement of νo(ϵ) for L(jω+ ϵ) is two or zero when ϵ is
slightly perturbed away from zero. Hence, we have the
following three possibilities: νo(0) = n− 2, n, and n+ 2.
Note that the first requirements of conditions (ii-a) and
(ii-b) correspond to cases νo(0) = n − 2 and νo(0) = n,
respectively.

Let us first consider the case νo(0) = n − 2, where
the necessity of the second condition of (ii-a) can be
shown by contradiction. Suppose the phase change rate
is negative. Since θ′L(ωc) = M ′

L(ωc) < 0, the Nyquist
plot of L(jω + ϵ) with small ϵ > 0 crosses the real axis
to the left of the critical point 1 + j0 in the downward
direction as seen in the second row of the top figure
of Fig. 1. This implies that ν+(ϵ) and ν−(ϵ) are constant
for sufficiently small ϵ ≥ 0, and hence νo(ϵ) = n − 2
is preserved for small ϵ > 0. This means violation of
condition (ii) in Lemma 4, implying that the feedback
system is not marginally stable. By contradiction, the
necessity of the second condition (ii-a) is proved.

The idea for showing the necessity of condition (ii-b)
for the case νo(0) = n is the same as that of condition
(ii-a), i.e., by contradiction. We assume that the phase
change rate is positive, which yields that the Nyquist
plot of L(jω + ϵ) with small ϵ > 0 passes through the

real axis on the right of the critical point 1 + j0 in the
upward direction as seen in the first row of the top figure
of Fig. 1. This implies that ν+(ϵ) increments by 2 and that
ν−(ϵ) does not change when ϵ is perturbed positively
away from zero. Therefore, we have νo(ϵ) = n + 2 for
sufficiently small ε > 0, contradicting condition (ii) in
Lemma 4. Thus, the necessity of the second condition
(ii-b) is proved.

It should be noticed that the case νo(0) = n+ 2 never
happens, because the change of the number (νo(0) ̸=
νo(ϵ)) with small perturbation ϵ > 0 occurs only if the σ-
gain change rate M ′

L(jωc) is nonnegative as seen in the
first row of the top figure of Fig. 1, which always gives
the increase of the number (νo(0) < νo(ϵ) = n) due to
the non-negativity of the phase change rate θ′L(jωc).

Finally, the proof for the case ωc = 0 is almost the same
as that for ωc > 0. The only difference is the number of
the Nyquist plot segments crossing the real axis at the
critical point 1 + j0, which is one instead of two when
ωc = 0. Other than this difference, the arguments above
are still valid.

Sufficiency: The proof of the sufficiency is similar to
that of the necessity, and hence we only outline suffi-
ciency of condition (ii-a). When the phase (or σ-gain)
change rate is positive, the Nyquist plot of L(jωc + ϵ)
passes through the real axis on the right of the critical
point 1 + j0 in the upward direction as shown in the
first row of the top figure of Fig. 1. This implies that
the number of crossing points on the real semi-interval
(1,+∞) from the negative imaginary region to the pos-
itive imaginary region increases by one (resp. two) for
ωc = 0 (resp. ωc > 0). Hence we have νo(ϵ) = n for
sufficiently small ϵ > 0, which guarantees the marginal
stability due to Lemma 4.

D. Proof of Lemma 5
Define νo(·) as in Proposition 2. Clearly, νo(0) = 0

due to the fact that |L(jω)| ≤ 1 for all ω. Suppose
θ′L(ωc) < 0. By the arguments stated in Proposition 2, this
would imply that νo(ϵ) = νo(0) = 0 for sufficiently small
positive ϵ, which in turn implies that the feedback system
does not have all its poles in the CLHP by Lemma 4.
Note that by Lemma 4, νo(ϵ) = n is needed for having
all closed-loop poles in the CLHP.

E. Proof of Lemma 6
To see the first equality, simply note that |f(σ+ jω)| =
| − f(σ + jω)|. To see the second inequality, note that
f(σ − jω) = f̄(σ + jω), where f̄(·) denotes the complex
conjugate of f(·). This is because f is a real rational func-
tion. Hence, we again have ln |f(σ−jω)| = ln |f(σ+jω)|,
and therefore M ′

f (ω) = M ′
f (−ω).

F. Proof of Lemma 7
Let k be a non-negative integer such that θ1 + · · · +

θn + kπ ∈ [−π, 0]. Note that (47) is equivalent to

sin θ1 + · · ·+ sin θn ≤ sin(θ1 + · · ·+ θn + kπ). (50)
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To see this, notice that the right-hand side is equal to
sin(θ1+ · · ·+ θn) if k is even, and − sin(θ1+ · · ·+ θn) if k
is odd. Since the right-hand side is always non-positive
given the range of θ1+ · · ·+ θn+ kπ, the right-hand side
of (50) is equivalent to −| sin(θ1 + · · ·+ θn)|. Given this,
we will proceed to prove (50).

The claim can be proven by induction. The claim is
obviously true when n = 1. Suppose it is true for i =
1, · · · , n− 1. With n terms, we have

∑n
i=1 sin θi ≤ sin θ̂+

sin θn, where θ̂ = θ1 + · · ·+ θn−1 +mπ for some m such
that θ̂ ∈ [−π, 0). The rest of the proof boils down to
analyzing three possible scenarios: both θ̂ and θn belong
to [−π/2, 0], both θ̂ and θn belong to [−π,−π/2), and
lastly, one is in [−π/2, 0] and another is in [−π,−π/2).

Suppose both θ̂ and θn belong to [−π/2, 0]. Then we
have θ̂ + θn ∈ [−π, 0], and sin θ̂ + sin θn ≤ sin θ̂ cos θn +
sin θn cos θ̂ = sin(θ̂ + θn). The inequality holds because
cos θn, cos θ̂ ∈ [0, 1] and sin θn, sin θ̂ ∈ [−1, 0]. Thus we
conclude

∑n
i=1 sin θi ≤ sin(

∑n
i=1 θi + kπ), where k := m

and
∑n

i=1 θi + kπ ∈ [−π, 0].
Now suppose both θ̂ and θn belong to [−π,−π/2). We

have θ̂ + θn ∈ [−2π,−π) and cos θn, cos θ̂ ∈ [−1, 0). This
implies sin θ̂ + sin θn ≤ sin θ̂(− cos θn) + sin θn(− cos θ̂) =
− sin(θ̂ + θn) = sin(θ̂ + θn + π). Thus we again conclude∑n

i=1 sin θi ≤ sin(
∑n

i=1 θi + kπ), where k := m + 1 and∑n
i=1 θi + kπ ∈ [−π, 0].
Lastly, suppose without loss of generality that θn ∈

[−π/2, 0] and θ̂ ∈ [−π,−π/2). This time, θ̂ + θn ∈
[−3π/2,−π/2). Depending on θ̂ + θn ∈ [−π,−π/2) or
θ̂ + θn ∈ [−3π/2,−π), we apply arguments similar
to those in the previous two paragraphs to conclude
inequality (50). Note that the inequality sin θ̂ + sin θn ≤
sin θ̂(± cos θn) + sin θn(± cos θ̂) holds regardless of the
signs of cos θ̂ and cos θn, because sin θ̂, sin θn ≤ 0 and
cos θ̂, cos θn ∈ [−1, 1]. This concludes the proof.

G. Proof of Lemma 8
In light of Lemma 6, we can consider only positive

ωp without loss of generality. Furthermore, as a con-
sequence of results on finite Blaschke products [20],
given an nth-order real-rational all-pass function H with
unit norm and only real poles, H can be factored into
H(s) = cH1(s)...Hn(s), where Hi(s) =

ai−s
ai+s with ai > 0,

i = 1, · · · , n, and c ∈ {−1, 1}.
First consider c = 1. Let ωp > 0 and θi := ∠Hi(jωp).

One can readily verify that

Hi(jωp) =
ai − jωp

ai + jωp
=

(a2i − ω2
p)− j(2aiωp)

ω2
p + a2i

,

and therefore sin θi =
−2aiωp

ω2
p+a2

i
< 0. This implies θi ∈

(−π, 0). Moreover, as ∥Hi∥H∞ = 1, we have

M ′
H(ωp) =

n∑
i=1

M ′
Hi

(ωp) =
n∑

i=1

−2ai
ω2
p + a2i

=
n∑

i=1

sin θi
ωp

.

Thus,

M ′
H(ωp) ≤

−| sin(θ1 + θ2 + · · ·+ θn)|
ωp

= −
∣∣∣∣ sin(θH(ωp))

ωp

∣∣∣∣ ,

where the inequality follows from Lemma 7 and ωp > 0,
and the last equality follows from θH(jωp) =

∑n
i=1 θi.

Next consider c = −1. In this case we have

M ′
H(ωp) = M ′

−H(ωp) ≤ − |sin(θH(ωp))/ωp| .

Here we use the fact that sin(θ−H(ωp)) = sin(θH(ωp)). It
is clear that the inequality (48) becomes equality if the
order of H is one. It is also clear that, for the zeroth-order
all-pass functions H(s) = 1 and H(s) = −1, M ′

H(ωp) = 0
and sin(θH(ωp)) = 0. So the equality also holds when the
order of H is zero.

H. Proof of Lemma 9
Without loss of generality, let us consider the generic

rational second-order stable all-pass function H(s) =
s2−bs+a
s2+bs+a with unit gain. Since H is stable, we have a > 0
and b > 0. Furthermore, since |H(jω)| = | −H(jω)|, the
theorem statement remains correct for the case where
one or both of Hr and Hc have DC gain equal to −1.
One can readily verify the following formulas:

H(jω) =
((a− ω2)2 − b2ω2)− j(2(a− ω2)bω)

(a− ω2)2 + b2ω2
,

cos(θH(ω)) =
α2 − β2

α2 + β2
, sin(θH(ω)) =

−2αβ
α2 + β2

,

where α := a−ω2, β := bω. Also we note that whenever
a ̸= ω2,

M ′
H(ω) =

sin(θH(ω))

ω
+

2ω sin(θH(ω))

a− ω2
. (51)

Now let Hr(s) =
s2−brs+ar

s2+brs+ar
, and Hc(s) =

s2−bcs+ac

s2+bcs+ac
. We

require ar > 0, br > 0, ac > 0, bc > 0, and ar ≤ b2r/4,
ac > b2c/4 so that both Hr and Hc are stable, the former
has real poles, and the latter complex conjugate poles.

By Lemma 6, we can assume, without loss of general-
ity, that ωp > 0. First, consider the case where ar−ω2

p > 0.
In this case, sin(θHr (ωp)) = sin(θHc(ωp)) implies that the
two pairs (ar, br) and (ac, bc) must satisfy

2(ar − ω2
p)brωp

(ar − ω2
p)

2 + b2rω
2
p

=
2(ac − ω2

p)bcωp

(ac − ω2
p)

2 + b2cω
2
p

:= γ. (52)

The equality leads to

(ar − ω2
p − γ̄ωpbr)(ar − ω2

p − γωpbr) = 0;

(ac − ω2
p − γ̄ωpbc)(ac − ω2

p − γωpbc) = 0,
(53)

where γ̄ = 1
γ (1 +

√
1− γ2) and γ = 1

γ (1 −
√
1− γ2).

Note that both γ̄ and γ are positive. Thus both (ar, br)
and (ac, bc) need to satisfy one of the following affine
equations: a = ω2

p + γ̄ωpb, and a = ω2
p + γωpb. Moreover,

for cos(θHr (ωp)) = cos(θHc(ωp)) to hold, (ar, br) and
(ac, bc) must satisfy the same affine equation, which then
leads to θHr (ωp) = θHc(ωp).

Now suppose (ar, br) and (ac, bc) satisfy a = ω2
p+γ̄ωpb.

The inequality ar ≤ b2r/4 implies that

(br − 2γ̄ωp)
2 ≥ 4(1 + γ̄2)ω2

p

⇐⇒ ar − ω2
p ≥ 2γ̄(γ̄ +

√
1 + γ̄2)ω2

p.
(54)
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On the other hand, the inequality ac > b2c/4 implies
that 0 < ac − ω2

p < 2γ̄(γ̄ +
√
1 + γ̄2)ω2

p. Putting them
together yields ar−ω2

p > ac−ω2
p > 0. In view of (51) and

noting that 2ωp sin(θHr (ωp)) = 2ωp sin(θHc(ωp)) < 0, we
conclude that inequality (49) holds because the second
term on the right-hand side of (51) is less negative for
Hr. Apparently the same arguments will hold if both
(ar, br) and (ac, bc) satisfy the other affine equation, as
one simply replaces γ̄ by γ.

If ωp is such that ar − ω2
p < 0, similar arguments will

lead to inequality (49). In this case, γ in (52) is negative,
the affine equations derived from (53) are replaced by
a = ω2

p − γ̄ωpb and a = ω2
p − γωpb, where the forms

of γ̄ and γ are defined as those below (53) but with γ
replaced by |γ|. The inequalities for ar and ac (stated in
(54)) become

ar − ω2
p ≤ −2γ̄(γ̄ +

√
1 + γ̄2)ω2

p < 0,

0 > ac − ω2
p > −2γ̄(γ̄ +

√
1 + γ̄2)ω2

p.
(55)

Now with 2ωp sin(θHr (ωp)) = 2ωp sin(θHc(ωp)) > 0, we
again have (49).

Finally, if ar − ω2
p = 0, we have ac − ω2

p = 0 and
M ′

Hc
(ωp) = −4/bc, M ′

Hr
(ωp) = −4/br. Again, we con-

clude inequality in (49) because −4/bc < −2/√ac =
−2/√ar ≤ −4/br.

I. Proof of Lemma 10
As θf (ω) and θ′f (ω) are both scale invariant, we can

assume without loss of generality that ∥f∥H∞ = 1. We
proceed to show that

|ωp|θ′f (ωp) ≤ − |θf (ωp)|

= −2|ωp|
π

∣∣∣∣∫ ∞

0

Af (ω)−Af (ωp)

ω2 − ω2
p

dω

∣∣∣∣ . (56)

Since ∥f∥H∞ = 1, we have Af (ω) ≤ 0 for all ω ∈ R and
Af (ωp) = 0. Suppose ωp ̸= 0. By Lemma 3, we have

|ωp|θ′f (ωp) =
2|ωp|
π

∫ ∞

0

Af (ω)
ω2 + ω2

p

(ω2 − ω2
p)

2
dω.

Since ω2+ω2
p

(ω2−ω2
p)

2 ≥
∣∣∣ 1
ω2−ω2

p

∣∣∣ for ω ∈ [0, ωp) ∪ (ωp,∞), it
follows

|ωp|θ′f (ωp) ≤
2|ωp|
π

∫ ∞

0

(Af (ω)−Af (ωp))

∣∣∣∣ 1

ω2 − ω2
p

∣∣∣∣ dω

= −2|ωp|
π

∫ ∞

0

∣∣∣∣Af (ω)−Af (ωp)

ω2 − ω2
p

∣∣∣∣ dω
≤ −2|ωp|

π

∣∣∣∣∫ ∞

0

Af (ω)−Af (ωp)

ω2 − ω2
p

dω

∣∣∣∣ .
Thus (56) holds. Moreover, when ωp = 0, by Lemma 3

we have θ′f (ωp) =
2

π

∫ ∞

0

Af (ω)/ω
2 dω. Since Af (ω) ≤ 0,

we conclude that θ′f (ωp) ≤ 0.
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