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Statistically enriched geospatial 
datasets of Brazilian municipalities 
for data-driven modeling
Livia Abdalla   1,2,4 ✉, Douglas A. Augusto   1,4, Marcia Chame1, Amanda S. Dufek3, 
Leonardo Oliveira   2 & Eduardo Krempser   1,4

The lack of georeferencing in geospatial datasets hinders the accomplishment of scientific studies that 
rely on accurate data. This is particularly concerning in the field of health sciences, where georeferenced 
data could lead to scientific results of great relevance to society. The Brazilian health systems, especially 
those for Notifiable Diseases, in practice do not register georeferenced data; instead, the records 
indicate merely the municipality in which the event occurred. Typically in data-driven modeling, 
accurate disease prediction models based on occurrence requires socioenvironmental characteristics of 
the exact location of each event, which is often unavailable. To enrich the expressiveness of data-driven 
models when the municipality of the event is the best available information, we produced datasets 
with statistical characterization of all 5,570 Brazilian municipalities in 642 layers of thematic data that 
represent the natural and artificial characteristics of the municipalities’ landscapes over time. This 
resulted in a collection of datasets comprising a total of 11,556 descriptive statistics attributes for each 
municipality.

Background & Summary
The lack of georeferencing of scientific data is a serious problem in various biological, ecological, and epide-
miological databases, especially in large countries with high biodiversity, lacking resources for personnel and 
infrastructure. Spatial referencing of these data is often associated with the names of localities, neighborhoods, 
municipalities or states, thus conditioning the scale of analysis to regions with known geographic boundaries1.

The health and species data without georeferencing restrict the accuracy of spatial analysis in various scien-
tific studies, such as in species distribution modeling2 and modeling of emerging zoonoses3. Therefore, it will 
further limit the contribution of the definition of actions and identification of priority areas (states/munici-
palities) for surveillance, allocation of resources and organization of human care, especially when it comes to 
diseases with a wide geographic distribution.

In Brazil, the national official public data on diseases and health-related issues from the Ministry of Health 
are recorded at the municipal level, despite the fact that municipalities present large internal variation in terms 
of area, population, socioenvironmental and economics characteristics. Of course, the environmental and social 
processes that either favor or inhibit health risks are not limited to (artificially delimited) administrative divi-
sions4,5. Although some Brazilian municipalities have greater detail in the localization of these data, which can 
be associated with the names of localities or neighborhoods or even georeferenced, this information is nationally 
scarce and not made publicly available or easily accessible6.

According to Barcellos et al.6, in order for health datasets to serve the purpose of analysis, they need to be 
georeferenced, integrated with environmental and socioeconomic data, and submitted to procedures for assess-
ment of their spatial distribution. Other studies have also highlighted that knowledge of the environmental, 
social, and economic characteristics of the location of occurrence of a given epidemiological event is essential 
for understanding it, since the mere identification of presence or absence of relevant species (hosts, vectors, and 
etiological agents) and the occurrence of diseases in humans do not suffice to completely understand the spatial 
distribution pattern of complex and dynamic epidemiological events7,8.
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Since it is not possible or feasible to retrieve the exact occurrence location of a given epidemiological event, 
we propose with our datasets an approach to enrich each municipality’s socioenvironmental information, aim-
ing at the improvement of spatial modeling that rely on such spatial aggregation units. For that, we have calcu-
lated descriptive statistics for hundreds of thematic layers that cover various natural and artificial features of the 
landscape over time, leading to many thousands of socioenvironmental statistics for each Brazilian municipality.

It is worth noticing that the statistical characterization is not a substitute for georeferencing; however, by 
augmenting the information about the municipality, the likelihood of emerging a set of descriptive statistics 
associated with the underlying phenomenon also increases. Moreover, the methodology adopted here is totally 
applicable to other spatial reference units (localities, neighborhoods, states). It is useful even when there is geo-
referencing in order to characterize species’ areas of circulation (buffers).

The application of data-driven modeling methods over the proposed datasets may reveal many indirect or 
non-obvious relations–but which significantly influence the species and disease distributions–and can contrib-
ute to a more in-depth knowledge and clarification of many questions, relations or assumptions that are still not 
fully understood in Brazil’s complex socioenvironmental context (continental dimension, enormous environ-
mental and ecological diversity, social inequalities, and intense anthropization).

The provided datasets were conceived by our research group in the context of predictive modeling of occur-
rence of Sylvatic Yellow Fever in Brazil. They were further developed in Abdalla’s 2019 doctoral dissertation9 
and later they were used to build predictive models which appeared in the “Contingency plan for public health 
emergency response” published in 2021 by the Ministry of Health10.

We believe that our descriptive statistical characterization of the Brazilian municipalities will eventually con-
tribute to society through the advancement of scientific studies that investigate the association of socioenviron-
mental features with a given event. Furthermore, the methodology employed here can be readily replicated to 
other countries or regions and thus benefit them as well.

Methods
The procedure began by obtaining the boundaries of Brazil’s municipalities, which are the most precise spatial 
reference units available from the Brazilian Ministry of Health of data records on diseases and health events. The 
boundaries were obtained from the geographic database of the Brazilian Institute of Geography and Statistics 
(IBGE)11, corresponding to the territorial grid of 2015, with a total of 5,570 Brazilian municipalities.

A broad and diverse set of thematic data was used to compose the datasets, spanning a range of time periods 
(from 1981 to 2021) according to the temporal regularity of individual layers (annual, quinquennial, atemporal, 
or without temporal regularity), thus covering spatial and temporal variations over Brazil’s territory. It is worth 
noticing that during the period of 1981 to 2021 the number of municipalities grew from 3991 to 557012, which 
of course led to major changes to their boundaries, in addition to the creation of the state of Tocantins in 1988 as 
a result of the division of the state of Goiás13. Most of the changes, though, are subdivisions of one municipality 
into two or more municipalities. To provide statistics that are invariant over the period we would have to resort 
to using clusters of municipalities (“artificial municipalities”) by means of the Minimum Comparable Areas 
(MCA) strategy14. Due to the time-consuming process we preferred to characterize only the current territorial 
division, thus providing the most refined statistical characterization of Brazil’s municipalities. Still, one can find 
it useful to aggregate our characterization according to an MCA territorial division; for that we refer the reader 
to the article by Ehrl14.

A total of 19 thematic layers were used, obtained from different Brazilian government and international 
agencies (Tables 1 and 2, illustrated by Figs. 1–4). Each layer may have multiple thematic classes or variables, 
depending on the nature of the theme, totaling 642 thematic classes or variables. For each class, 18 descriptive 
statistics were calculated (9 raw statistics plus 9 normalized by municipality’s area–Table 3) for all the available 
years, totaling 11,556 attributes per municipality.

The annual thematic layers for land use and land cover include 25 thematic classes from 1985 to 2020 for 
the entire Brazilian territory with spatial resolution of 30 m. (Except for the Fernando de Noronha archipelago, 
municipality geocode 260545, for which there is no land user/cover data due to the absence of historical series 
Landsat satellite images for that region.) These layers were produced and made available by the online platform 
MapBiomas15, collection 6.0. Annual land use and land cover maps were produced via automatic classification 
processes applied to Landsat satellite images16. The MapBiomas Project is a multi-institutional initiative coordi-
nated by the Greenhouse Gas Emissions Estimation System (SEEG) from the Climate Observatory’s and consists 
of a collaborative network of cocreators including nongovernmental organizations (NGOs), universities, and 
companies. The objective is to produce annual land cover and land use maps of Brazil from 1985 to the present.

The annual temperature and precipitation layers include 19 different types of data from 1981 to 2020 for the 
entire land surface, with spatial resolution of 5 km (0.05°). These fields were derived from two different obser-
vational gridded datasets, one for precipitation and another for temperature. The observed precipitation came 
from the Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS)17, with a daily temporal 
resolution and a spatial resolution of approximately 5 km (0.05°). The observed temperature drawn from the 
NCEP Climate Forecast System Reanalysis (NCEP/CFSR)18 at a 6-hour temporal resolution and a spatial resolu-
tion of approximately 50 km (0.5°). The NCEP/CFSR gridded dataset was spatially downscaled to a higher spatial 
resolution of 5 km (0.05°) using bilinear interpolation in order to have the same spatial resolution as CHIRPS. 
(As with land use and land cover, there is no temperature/precipitation data for the Fernando de Noronha archi-
pelago (geocode 260545).)

The quinquennial layers for Population Count and Population Density were obtained from the 
Socioeconomic Data and Applications Center (SEDAC)19 through NASA’s Earth Observing System Data 
and Information System (EOSDIS), and is hosted by the Center for International Earth Science Information 
Network (CIESIN) at Columbia University. This dataset estimates the population count for the years 2000, 2005, 
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2010, 2015 and 2020, based on national censuses and population records, and is available in raster graphics with 
spatial resolution of 1 km. The official population demographics data from IBGE census is not used because it 
is available only as a tabular data aggregate count per census sector or municipality and therefore cannot yield 
meaningful descriptive statistics.

Atemporal data include the following themes: Climatological Normals for Temperature; Altitude; 
Geomorphology; Soils; Phytophysiognomies; and Biome boundaries. Climatological Normals for Temperature 
came from Worldclim20 and correspond to observational data, representative of 1950 to 2000, which were 

Temporality Thematic layers # classes # attributes # instances

Annual (1981 to 2020)
Land use and cover (Mapbiomas v6.0; 1985–2020) 25 450 200,484

Temperature and precipitation (NCEP/CFSR and CHIRPS) 19 198 + 144 445,520

Quinquennial (2000 to 2020)
Population count (SEDAC - NASA) 1 18 27,850

Population density (SEDAC - NASA) 1 18 27,850

Atemporal

Climate normals for temperature and precipitation (Worldclim) 67 846 + 360 11,140

Altitude (SRTM - NASA) 1 18 5,570

Geomorphology (IBGE) 10 180 5,570

Soils (IBGE) 65 1170 5,570

Phytophysiognomies (IBGE) 52 936 5,570

Biome boundaries (IBGE) 6 108 5,570

No temporal regularity

Mining areas (ANM) 336 6048 5,570

Roads (IBGE) 1 18 27,850

Railways (IBGE) 1 18 27,850

Waterways or watercourse (IBGE) 2 36 27,850

Hydroelectric plants (IBGE) 1 18 27,850

Dams (IBGE) 1 18 27,850

Conservation unit areas (MMA) 1 18 5,570

Indigenous lands and Quilombola territories (IBGE) 1 18 5,570

Zone climates and regional subunits (IBGE) 51 918 5,570

Total 642 11,556 902,224

Table 1.  Thematic layers comprising the dataset collection. The column number of attributes is calculated as 
the number of classes × 18 (number of statistics), whereas number of instances is the number of years × 5,570 
(number of municipalities).

Thematic layers
Original 
data format

Resulting 
geometry

Unit of 
measurement

Scale or spatial 
resolution

Land use and cover (Mapbiomas v6.0) raster polygon m2 30 m

Temperature and precipitation (NCEP/CFSR and CHIRPS) raster point Kelvin, mm 5 km

Population count (SEDAC - NASA) raster point quantity 1 km

Population density (SEDAC - NASA) raster point quantity/km2 1 km

Climate normals for temperature and precipitation (Worldclim) raster point °C × 10, mm 1 km

Altitude (SRTM - NASA) raster point m 30 m

Geomorphology (IBGE) vector polygon m2 1:5,000,000

Soils (IBGE) vector polygon m2 1:5,000,000

Phytophysiognomies (IBGE) vector polygon m2 1:5,000,000

Biome boundaries (IBGE) vector polygon m2 1:5,000,000

Mining areas (ANM) vector polygon m2 1:1,000,000

Roads (IBGE) vector line m 1:250,000

Railways (IBGE) vector line m 1:250,000

Waterways or watercourse (IBGE) vector line m 1:250,000

Hydroelectric plants (IBGE) vector point quantity 1:250,000

Dams (IBGE) vector line m 1:250,000

Conservation unit areas (MMA) vector polygon m2 1:100,000

Indigenous lands and Quilombola territories (IBGE) vector polygon m2 1:250,000

Zone climates and regional subunits (IBGE) vector polygon m2 1:5,000,000

Table 2.  Original data format, resulting geometry, unit and scale/resolution of the thematic layers.
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Fig. 1  Examples of thematic layers with annual temporality in the territorial extension of the municipality of 
Rio de Janeiro.

Fig. 2  Examples of atemporal and no temporal regularity thematic layers in the territorial extension of the 
municipality of Rio de Janeiro.
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Fig. 3  Examples of bioclimatic variables from Worldclim in the territorial extension of the municipality of Rio 
de Janeiro.

Fig. 4  Climate data for total precipitation, maximum, mean and minimum temperature from Worldclim in the 
territorial extension of the municipality of Rio de Janeiro for the month of January.
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interpolated to a resolution of 1 km. These temperature values are in degree Celsius, but for historical reasons 
they are scaled by a factor of 10. The used mean, minimum and maximum values of temperature include infor-
mation from different remote sensors onboard the MODIS and NOAA satellites which operate to jointly capture 
surface temperature and air humidity values. Besides the annual temperature data, we also included clima-
tological normal data because they provide monthly mean values for temperature. These values complement 
the annual information (considerably influenced by climate events like El Niño and La Niña) and serve as an 
important reference on seasonal temperature variation patterns, a factor that directly influences the repro-
duction and survival dynamics of species such as vectors. The altitude data came from NASA’s Shuttle Radar 
Topography Mission digital elevation model (SRTM) 1 ArcSecond Global, conceived to provide consistent 
high-quality near-global elevation data21. The original data are radar images with spatial resolution of 30 m, 
version 3, reprocessed to fix inconsistencies and fill missing data (“voids”). The other themes–Geomorphology, 
Soils, Phytophysiognomies, and Biome boundaries–were obtained from IBGE22. These provides regional details, 
and were constructed from interpretation of satellite images and various field studies throughout Brazil begin-
ning in 199023.

The layers without temporal regularity include: Mining Areas; Roads; Railways; Waterways or watercourses; 
Hydroelectric Plants; Dams; Conservation Units; Indigenous Lands; and Zone Climates and Regional Subunits. 
The Mining Areas layer has 336 classes, representing the different types of minerals explored in Brazil’s territory, 
provided by the Brazilian National Mining Agency (ANM). The boundaries of Conservation Units were pro-
vided by the Brazilian Ministry of Environment (MMA). The other layers are single classes of Roads, Railways, 
Waterways/watercourses, Hydroelectric Plants, Dams, obtained from the Continuous Cartographic Bases24 and 
Indigenous lands and Quilombola territories25, all this datasets from IBGE. The roads category comprises all its 
available classifications, covering data from subcategories such as highways and dirt roads. The same unifica-
tion was adopted for the railways and waterways categories. The layer on Zone Climates and Regional Subunits 
represents the different climate zones in Brazil’s territory, grouped by temperature and humidity. This layer also 
identifies the climate types, characterized by shades and hues: tropical, subtropical, mild mesothermal, and 
median mesothermal26.

Considering the heterogeneity of the data sources and the structural particularities of the thematic layers 
acquired, it was essential to conduct a pre-processing and structuring stage with the datasets in order to proceed 
with the calculation of the descriptive statistics. All the raw data, whose total size amounted to 195 GB, were 
pre-processed in QGIS v3.1027. This stage required standardizing the geospatial data’s cartographic characteris-
tics, correcting topological errors, eliminating duplicate information, and uniformizing the attribute tables. The 
data were generally organized in two major groups: vector data and matrix data (raster).

To be able to process the Land Use and Land Cover features at the original 30 m spatial resolution, we had 
first to break down each annual raster (1985 to 2020) into 5,569 smaller raster pieces, one for each municipality, 
by using the gdalwarp tool from the Geospatial Data Abstraction Library (GDAL). Next, we converted all the 
resulting rasters to vector format (geopackage) via the script gdal_polygonize.py, also from GDAL. 
The conversion was necessary because the vector format (geopackage) allowed the calculation of the polygons’ 
statistics for all the Land Use and Land Cover features, which is not possible with the raster format with the 
techniques and functions used (described in the Code availability section). All that pre-processing took about 
600 hours running in parallel on an Intel Core i7 computer with 8 physical CPU cores and 64 GB of RAM.

The data on Temperature, Precipitation, Population Count/Density, Altitude, and Climatological Normals, 
also provided in matrix format, were converted to point geometry, since they are inherently points but which 
had been interpolated by their sources before making them available. The conversion of Altitude from raster to 
vector was the most computationally demanding operation due to the need to process 10.6 billion points (spread 
across 821 tiles of 3601 × 3601 points each) at the resolution of 30 m. It took about one month of uninterrupted 
parallel processing on a 20-core Intel Xeon E5-2690 machine with 128 GB of RAM.

Statistics Description

count Quantity of features/geometries for each class or variable in the thematic layers contained in each municipality

sum Sum of the areas, lengths, or values of each class or variable in the thematic layers contained in each municipality

mean Mean area, length, or value for each class or variable in the thematic layers contained in each municipality

sd Standard deviation of the areas, lengths, or values for each class or variable in the thematic layers contained in 
each municipality

min Minimum area, length, or value for each class or variable in the thematic layers contained in each municipality

max Maximum area, length, or value for each class or variable in the thematic layers contained in each municipality

25th percentile (perc25) First quartile of the areas, lengths, or values of each class or variable in the thematic layers contained in each 
municipality

50th percentile (perc50) Median of the areas, lengths, or values of each class or variable in the thematic layers contained in each 
municipality

75th percentile (perc75) Third quartile of the areas, lengths, or values of each class or variable in the thematic layers contained in each 
municipality

_normalized suffix This means that the statistic preceding the suffix was divided by the municipality’s area in m2

Table 3.  Statistics calculated for the features/variables in the scope of the municipalities.

https://doi.org/10.1038/s41597-022-01581-2
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For the vector data, it was first necessary to homogenize the cartographic references using South America 
Albers Equal Area Conic (EPSG:102033) for data requiring calculation of areas (polygons), South America 
Equidistant Conic (EPSG:102032) for data requiring calculation of distances (lines), and SIRGAS 2000 Geodetic 
Reference (EPSG:4674) for data with restricted localization (points)28. It was also necessary to correct some 
topological errors in the vector data regarding the line and polygon geometries, which are artifacts intro-
duced during the data construction/vectorization stage. The vector data correspond to the following themes: 
Geomorphology; Soils; Phytophysiognomies; Biome Boundaries; Mining Areas; Roads; Railways; Waterways or 
watercourses; Hydroelectric Plants; Dams; Conservation Units; Indigenous lands and Quilombola territories; 
Zone Climates and Regional Subunits.

For the statistical description of the municipalities’ socioenvironmental characteristics, we calculated the 
measures of central tendency such as mean and median, and measures of dispersion such as maximum and min-
imum values, standard deviation, and percentiles. For each descriptive statistic we also calculated a correspond-
ing normalized statistic, simply dividing the original statistics value by the municipality’s area. The values were 
normalized due to the wide variation in the territorial area of Brazil’s municipalities. For example, Altamira, in 
the state of Pará, is Brazil’s largest municipality, with an area of 159,533 km2, while Santa Cruz de Minas, in the 
state of Minas Gerais, is the smallest one, with only 3,565 km2 29. This wide territorial variability might otherwise 
skew the modeling towards the identification of distorted correlations, such as the identification of relations 
between higher proportions of natural or anthropic features and higher concentration of cases, which is merely 
due to the municipality’s larger territorial dimensions.

Based on structuring of the graphic, we executed a spatial data intersection with the municipal boundaries 
by means of different routines from PostGIS30, an extension that adds spatial and geographic objects to the 
PostgreSQL object-relational database.

geocode datetime

Urban_
infrastructure-
count

Urban_
infrastructure-
sum

Urban_
infrastructure-
mean

Urban_
infrastructure-
sd

Urban_
infrastructure-
min

Urban_
infrastructure-
max

330455 2020 344 667214841.91 1939578.03 32714160.03 358.29 607070012.49

Table 4.  Values of descriptive statistics calculated in PostgreSQL/PostGIS for the Urban Infrastructure class in 
the municipality of Rio de Janeiro (areas in m2). The count statistic refers to the number of urban areas.

geocode datetime Roads-count Roads-sum Roads-mean Roads-sd Roads-min Roads-max

330455 2013 118 333061.81 2822.56 2876.17 16.65 12426.91

Table 5.  Values of descriptive statistics calculated in PostGIS/PostgreSQL for the Roads class in the 
municipality of Rio de Janeiro (lengths in meters). The count statistic refers to the number of roads.

Fig. 5  Values of descriptive statistics calculated in QGIS for the Urban Infrastructure class in the municipality 
of Rio de Janeiro (areas in m2). The count statistic refers to the number of urban areas.

https://doi.org/10.1038/s41597-022-01581-2
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Calculation of the descriptive statistics.  The meaning of the statistics described in Table 3 actually 
depends on both feature’s geometry and unit of measurement, which are reported in Table 2 for each thematic layer.

For polygons, such as conservation units, the area of each unit is computed in square meters and the set of all 
conservation units’ areas in the municipality forms the statistical population upon which the descriptive statis-
tics will be calculated for that municipality. This means that the minimum statistic will refer to the smallest area 
among the conservation units in the municipality, the mean statistic to the average area, the count statistic will 
refer to the number of conservation units in the municipality, and so forth. Analogously, when the feature type 
is line, e.g. roads, the set of all road stretches’ lengths (in meters) is the statistical population.

The procedure differs a bit for point features, such as altitude and temperature. In this case, except for the 
count statistic (which refers to the number of points in the municipality), the actual value at each feature point 
is taken; for instance, the altitude and temperature at a given location. Differently from the polygons and line 
cases, the associated unit cannot be predefined (in square meters or meters), and it will depend on the actual unit 
of the underlying layer–for altitude it is meters, but for temperature it could be either Celsius or Kelvin. Some 
point-type features, such as hydroelectric plants, do not have a unit per se, i.e. they merely refer to a quantity. 

Fig. 7  Values of descriptive statistics calculated in QGIS for the Altitude variable in the municipality of Rio de 
Janeiro (in meters). The count statistic refers to the number of altitude data points. The points colored in brown 
have lower altitudes, in white intermediate altitudes, and in green the highest altitudes.

Fig. 6  Values of descriptive statistics calculated in QGIS for the Road class in the municipality of Rio de Janeiro 
(lengths in meters). The count statistic refers to the number of roads.

https://doi.org/10.1038/s41597-022-01581-2
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Once the set of all point-type feature values are taken, we have a statistical population of values and the calcula-
tion of the statistics proceeds exactly as described with the other two feature types.

For each descriptive statistic, there is a corresponding normalized one which is calculated by dividing the sta-
tistic by the municipality’s area (in m2). Those normalized statistics complement the set of descriptive informa-
tion and provide the notion of proportion or density. As an example, the statistic sum_normalized corresponds 
to the percentage of occupation of a given polygon-type thematic layer in the municipality, or an estimation of 
density for line-type layers such as roads.

Data Records
The complete collection comprises 22 datasets in CSV format, with 21 datasets containing each the descriptive 
statistics of the variables relative to a thematic layer for each of the 5,570 municipalities, and an additional data-
set that contains municipalities’ information (name, state, region and area in m2). Overall there are 642 sets of 
descriptive statistics distributed among the datasets, totaling 11,556 statistics attributes. The dataset collection 
along with the data dictionary as a PDF document describing the 642 variables are available for downloading at 
Open Science Framework (OSF)31. The dataset collection has a size of roughly 2.6 GB and the data dictionary 
about 3 MB. Each CSV dataset has a header and the records are organized as follows:

	 1.	 The first field is named geocode and corresponds to the municipality’s geocode;
	 2.	 The second field, datetime, is the approximate year (YYYY format) on which the thematic layer–not the 

statistics–was gathered;
	 3.	 The remaining fields are the sets of 18 descriptive statistics for all variables, i.e. the statistics of the munic-

ipality’s socioenvironmental characteristics; those fields are labeled according to the grammar <vari-
able>-<statistic>. Examples include Altitude-max, which corresponds to the maximum Altitude 
value, and Urban_infrastructure-perc75_normalized, the normalized (by municipality’s area) 75th percentile 
of Urban infrastructure areas (Tables 4–6).

Regarding the temporality, in Table 7 the reader can find a list of all the years for which there are calculated 
statistics for each thematic layer.

Technical Validation
The proposed datasets were validated by comparison of the final descriptive statistics calculated by two methods 
from different software platforms: one was using the PostGIS scripts illustrated in the Code availability section, 
whose the resulting statistics can be seen in Tables 4–6; and the other one using the spatial analysis tools from 
QGIS v3.10, shown respectively in Figs. 5–7.

Since this was a validation stage, only exemplars of each of polygon, point, and line-type thematic layers of 
randomly sampled municipalities were used for comparison. For brevity, the tables and figures only describe 
the statistics for the Rio de Janeiro municipality (geocode 330455) with respect to the following thematic layers: 
Urban Infrastructure (polygon geometry, in square meters); Roads (line geometry, in meters); and Altitude 
(point geometry, in meters). First, it was necessary to perform a spatial intersection of each layer with the munic-
ipality of Rio de Janeiro using the clip tool, thus extracting the geometries that overlay the municipality’s region. 
Afterwards, the area and length of each geometry were calculated, respectively for the Urban Infrastructure and 
Roads. Since Altitude is a point geometry, the statistics were calculated for the values rather than the geometries. 
After obtaining the values for each geometry in each thematic class/variable, the statistics were verified upon the 
attributes table, in which it is possible to describe the statistics in numerical-type fields (how many values the 
field has, as well as the sum, minimum, mean, maximum and standard deviation of those values).

As demonstrated in the validation process, the statistics produced by means of the PostGIS script could 
also be obtained via tools available in graphical Geographic Information Systems (GIS). However, the scripting 
streamlined the process, since the SQL queries do not require rendering of the geometric features and also no 
user interaction is required.

Usage Notes
The proposed dataset can be used in a myriad of ways in various research fields; in practice, any study that relies 
on summary statistics of socioenvironmental characteristics of Brazil’s territory (up to the scale of municipal-
ities) over time can take advantage of the dataset. Still, the dataset was originally conceived to be used in eco-
logical and emerging diseases studies whose objective is to identify consistent patterns or systematic relations 
between socioenvironmental conditions in geographic space and the occurrence of different zoonotic diseases. 
In particular, we have been using extensively the dataset in the context of data-driven modeling of Sylvatic 
Yellow Fever occurrences by means of machine-learning algorithms. In this category of application, a training 
dataset is assembled by joining the presence of Yellow Fever Virus (YFV) in humans and non human primates 
with the socioenvironmental statistics dataset, using the municipalities’ geocodes as joining keys.

geocode datetime Altitude-count Altitude-sum Altitude-mean Altitude-sd Altitude-min Altitude-max

330455 2000 1369182 119077300 86.97 147.50 −28 1014

Table 6.  Values of descriptive statistics calculated in PostGIS/PostgreSQL for the Altitude variable in the 
municipality of Rio de Janeiro (in meters). The count statistic refers to the number of altitude data points.
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As a hypothetical example, suppose for instance that there are reported cases of a given zoonotic disease on 
the municipalities identified by the geocodes X and Y. Suppose also that municipality Z is known not to be sus-
ceptible to the disease (according to some evidences). Considering only the mean altitude for simplicity (out of 
thousands of attributes), imagine that their values are, respectively for X, Y and Z: 415.3 m, 560.7 m and 124.0 m. 
The resulting training dataset ready for learning a binary classification model would be like the one described in 
Table 8. A machine-learning model for this hypothetical example would possibly separate the positive from the 
negative cases by using the altitude of 306 m as the threshold, thus suggesting a hypothesis of how the disease 
is associated with the socioenvironmental characteristics. If we were to predict the likelihood of disease occur-
rence of a municipality with mean altitude of 350 m, this municipality would be classified as positive according 
to this imaginary model. By applying trained models to all the Brazilian municipalities we would end up with a 
susceptibility map, which would be helpful to identify priority areas for health surveillance, control and preven-
tion actions, such as vaccination.

It is worth noticing that, since the proposed dataset consists of thousands of attributes–which typically out-
numbers by a large margin the amount of disease cases–a pre-processing step for reducing the attributes dimen-
sion is required in order to make the learning problem well posed32.

Code availability
Initially, all the thematic layers and municipal boundaries were imported to a database created in the database 
management system PostgreSQL/PostGIS via the ogr2ogr, a command line tool33. Scripts were then developed 
to calculate the statistics. These scripts used regular SQL queries and the ST_AREA and ST_INTERSECTION 
spatial functions from PostGIS. We also used the aggs_for_arrays plugin, version 1.3.234, which is an 
extension that offers various functions for optimized computation of different statistics on array of numbers. The 
calculation of the descriptive statistics for the 642 thematic classes/variables took more than three hundred hours 
of parallel processing on an Intel Core i7 desktop workstation equipped with 8 physical CPU cores and 64 GB of 
RAM. The following is an example of a script for calculating the maximum forest area statistics per municipality. 
This same script were used for all of them:

By using similar PostGIS scripts with slightly different statistics functions we were able to calculate for all 
the 5,570 Brazilian municipalities the following statistics: count, minimum, maximum, mean, sum, standard 
deviation, 25th percentile, 50th percentile (median), and 75th percentile, and the normalized counterparts as well 
(Table 3).

Thematic layers Available years

Land use and cover (Mapbiomas v6.0) 1985 to 2020

Temperature and precipitation (NCEP/CFSR and CHIRPS) 1981 to 2020

Population count (SEDAC - NASA)
2000, 2005, 2010, 2015, 2020

Population density (SEDAC - NASA)

Climate normals for temperature and precipitation (Worldclim) Climate normals from 1950 to 2000

Altitude (SRTM - NASA) 2000

Geomorphology (IBGE) 2006

Soils (IBGE) 2006

Phytophysiognomies (IBGE) 2004

Biome boundaries (IBGE) 2006

Mining areas (ANM) 2021

Roads (IBGE)

2013, 2015, 2017, 2019, 2021

Railways (IBGE)

Waterways or watercourses (IBGE)

Hydroelectric plants (IBGE)

Dams (IBGE)

Conservation unit areas (MMA) 2020

Indigenous lands and Quilombola territories (IBGE) 2019

Zone climates and regional subunits (IBGE) 2002

Table 7.  List of available years for each thematic layer.

Mean altitude (m) occurrence

415.3 yes

560.7 yes

124.0 no

Table 8.  Illustrative example of an assembled training dataset.
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As a hypothetical example, suppose for instance that there are reported cases of a given zoonotic disease on 
the municipalities identified by the geocodes X and Y. Suppose also that municipality Z is known not to be sus-
ceptible to the disease (according to some evidences). Considering only the mean altitude for simplicity (out of 
thousands of attributes), imagine that their values are, respectively for X, Y and Z: 415.3 m, 560.7 m and 124.0 m. 
The resulting training dataset ready for learning a binary classification model would be like the one described in 
Table 8. A machine-learning model for this hypothetical example would possibly separate the positive from the 
negative cases by using the altitude of 306 m as the threshold, thus suggesting a hypothesis of how the disease 
is associated with the socioenvironmental characteristics. If we were to predict the likelihood of disease occur-
rence of a municipality with mean altitude of 350 m, this municipality would be classified as positive according 
to this imaginary model. By applying trained models to all the Brazilian municipalities we would end up with a 
susceptibility map, which would be helpful to identify priority areas for health surveillance, control and preven-
tion actions, such as vaccination.

It is worth noticing that, since the proposed dataset consists of thousands of attributes–which typically out-
numbers by a large margin the amount of disease cases–a pre-processing step for reducing the attributes dimen-
sion is required in order to make the learning problem well posed32.

Code availability
Initially, all the thematic layers and municipal boundaries were imported to a database created in the database 
management system PostgreSQL/PostGIS via the ogr2ogr, a command line tool33. Scripts were then developed 
to calculate the statistics. These scripts used regular SQL queries and the ST_AREA and ST_INTERSECTION 
spatial functions from PostGIS. We also used the aggs_for_arrays plugin, version 1.3.234, which is an 
extension that offers various functions for optimized computation of different statistics on array of numbers. The 
calculation of the descriptive statistics for the 642 thematic classes/variables took more than three hundred hours 
of parallel processing on an Intel Core i7 desktop workstation equipped with 8 physical CPU cores and 64 GB of 
RAM. The following is an example of a script for calculating the maximum forest area statistics per municipality. 
This same script were used for all of them:

By using similar PostGIS scripts with slightly different statistics functions we were able to calculate for all 
the 5,570 Brazilian municipalities the following statistics: count, minimum, maximum, mean, sum, standard 
deviation, 25th percentile, 50th percentile (median), and 75th percentile, and the normalized counterparts as well 
(Table 3).

All the statistics were stored in temporary tables, which were aggregated via the INNER JOIN function (using 
the geocode of each municipality as the junction field) in a final table. At the end of the execution, the per-mu-
nicipality statistics for each layer were integrated and structured as a collection of datasets containing 11,556 
attributes that represent the temporal and spatial plurality of the main socioenvironmental characteristics of the 
Brazilian municipalities.
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