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ABSTRACT OF THE THESIS

Computer Vision to Analyze Protests in Social Media

by

Alexander Chan

Master of Science in Statistics

University of California, Los Angeles, 2020

Professor Yingnian Wu, Chair

Images are central to understanding protests and mass activism today for its impact in

shaping public opinion.

Previously, analyzing protest images required human annotation, which is laborious and

expensive. In the modern era of social media, an automated and systematic method is

required to analyze the vast amounts of social media images.

In this thesis, I introduce a deep-learning computational framework to analyze protest

images. This system comprises of (1) processing and parsing social media images from

Twitter, (2) a model to identify common protest image characteristics, such as violence,

fire, and police, models to (3) detect and (4) classify faces of protesters to understand

demographics, and (5) an deduplication algorithm to identify the most shared images.
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CHAPTER 1

Introduction

Images play an increasingly greater role in the swaying public opinion on social issues. The

advent of social media has given rise to the images and videos as the dominant medium

for sharing and reporting on social movements. Images are impactful, they are able convey

power, magnitude, and emotion in ways text simply cannot. No words can illustrate the

gravitas and power imbalance of the Black Lives Matter movement as the iconic ”Taking

a Stand in Baton Rouge,” where police brutality on Black communities is highlighted by 2

police in complete riot gear forcibly arresting a Black woman in a dress. Images are also

succinct, which are important with ever decreasing attention-spans [12].

Figure 1.1: Taking a Stand in Baton Rouge by Jonathan Bachman

Social media images in particular have several distinct advantages when studying protests

and mass activism. In general, social media are: closer to the action and subject to less

censorship than traditional news-media. While traditional news media may have a large

team of reporters across the world that may respond to events quickly, there is still a delay

between when an event and media from the event being published. More often than not,

1



social media posts are published instantaneously at the scene by participants and bystanders

of the protest. Traditional news-media may miss quick skirmishes that, occur spuriously, such

as the split-second when the first shot was fired in the Hong Kong anti-government protests

in 2019. Social media is also more resistant to censorship than traditional media. Due to

its decentralized nature, social media users in many countries are able to post without prior

approval of an editor who may be under government supervision. While censorship of social

media does exist in certain countries, it is often done on a lesser extent than traditional news

media.

Figure 1.2: First shot fired of the HK Protests

Previous work on studying social movements have been dominated by surveys of protesters

after a protest [15, 14], or formal and quantitative models [10, 11, 13]. Social scientists have

previously studied images, however, much of these analyses were done on few images that

were manually annotated. This is prohibitively expensive in terms of cost and time due

to the scale of social media images. Images that were manually annotated were manually

selected, which can lead to potential biases, such as cherrypicking data. In order to study

images on a large scale, an automated and systematic way of analyzing images is needed.

There has also been several works in social multimedia and computer vision that use

visual recognition to answer questions in political science and communication. Researchers

have analyzed the perceived personalities from politician photographs on social media, where

an automated system was able to infer perceived social traits such as intelligence, honesty

and competence [5].

2



In this paper, I demonstrate a novel protest image pipeline to analyze images on social

media. The protest image analysis pipeline consists of 5 main parts:

1. Twitter Image and Metadata Collection

2. Protest Image Classifier

3. Facial Detection

4. Facial Demographic Classifier

5. Image Deduplication Algorithm

3



CHAPTER 2

Twitter Data Collection

The data used in this project is from Twitter. Twitter is a social media platform where more

than 500 million tweets per day are posted. Of those 500 million tweets, our server extracts

the tweets using Twitter’s streaming API and saves 5 million tweets per day. For a given

protest event, we filter for tweets that match the country, time period of the protest, and

those that contain an image. Twitter’s tweets are arranged in a JSON format. Furthermore,

we extract the metadata from tweets and make them into tabular CSV format. The metadata

fields are listed below in Table 2.1.

Table 2.1: Metadata Table.

Metadata Field Description

created at UTC time when this Tweet was created.

text The actual UTF-8 text of the Tweet.

id The integer representation of the unique identifier for

this Tweet.

source Utility used to post the Tweet. (Web, Mobile, etc.)

user.id The integer representation of the unique identifier for

this User.

user.location The user-defined location for this account’s profile. Not

necessarily a location, nor machine-parseable.

user.followers count The number of followers this account currently has.

user.friends count The number of users this account is following.

Continued on next page
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Table 2.1 – continued from previous page

Metadata Field Description

user.name The name of the user, as they’ve defined it.

user.screen name The screen name, handle, or alias that this user identi-

fies themselves with. screen names are unique but sub-

ject to change.

user.statuses count The number of Tweets (including retweets) issued by

the user.

user.created at The UTC datetime that the user account was created

on Twitter.

user.utc offset User’s timezone

user.verified Indicates that the user has a verified account.

user.lang User’s language

geo.type For Tweets with exact location, the type of location

(e.g. Point)

geo.coordinates For Tweets with exact location, the coordinates of the

point.

place.place type The type of location represented by this place. (e.g.

City)

place.name Short human-readable representation of the place’s

name. (e.g. Manhattan)

place.country code Shortened country code representing the country con-

taining this place. (e.g. US)

place.bounding box.coordinates A bounding box of 4 coordinates which encloses this

place.

lang Indicates a BCP 47 language identifier corresponding to

the machine-detected language of the Tweet text.

Continued on next page
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Table 2.1 – continued from previous page

Metadata Field Description

entities.media.media url If Tweet contains image, this field contains the URL

Finally, of tweets that contain images, I download the images using the link media url

field. These images are used in later in the pipeline.
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CHAPTER 3

Protest Image Classification

3.1 Protest Dataset Construction

To create a protest image classifier, a protest image dataset was created to train the classifier.

40,764 images were collected from Twitter and annotated by users on Amazon Mechanical

Turk. Of the 40,764 images, 11,659 images are protest images. Among these protest images,

we needed ground truth data on visual attributes, such as signs, fire, law enforcement,

children, groups, flags, etc.

To annotate the 11,659 protest images, 58,295 image pairs were randomly sampled and

10 workers compared each pair to indicate which image of the pair looks more violent. The

Bradley-Terry model was used to estimate the score of perceived violence - differentiated

by state violence and protestor violence. The list of annotated visual attributes is listed in

Table 3.1.

More details can be found in Won, et. al’s ”Protest Activity Detection and Perceived

Violence Estimation from Social Media Images”[16].

3.2 Protest Model

Convolutional Neural Networks (CNN) are used to train models to detect such visual at-

tributes. The model was jointly trained for the 2 tasks - protest classification and visual

attribute classification. Binary cross entropy loss was used to train the binary variables

7



Attribute Description

Sign A protestor holding a visual sign (on paper, panel, or wood)

Photo A protestor is holding a sign containing a photograph of a person

Fire There is fire or smoke in the scene

Law Enforcement Police or military are present in the scene

Children There are children in the scene

Group 20 There are roughly more than 20 people in the scene

Group 100 There are roughly more than 100 people in the scene

Flag There are flags in the scene

Night It is at night

Shout One or more people shouting

Table 3.1: Protest Model: Visual Attributes and Descriptions

(protest and visual attributes).

LBCE = − 1

N

N∑
n=1

[ynlog(pn) + (1 − yn)log(1 − pn)] (3.1)

where pn is the predicted label and yn is the ground truth binary label for the nth image

respectively. MSE was used to train the continous violence variables.

LMSE = − 1

N

N∑
n=1

(yn − pn)2 (3.2)

where p is the predicted value and y is the ground truth value.

The model architecture is based on a ResNet 50 - which consists of 50 convolutional

layers with batch normalization & ReLU layers. The architecture of the model is listed in

Table 3.2.
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Layer Output Size Building Blocks

Conv 1 112 x 112 7 x 7, 64, stride 2

Conv 2 56 x 56
3 x 3 max pool, stride 2

1 × 1, 64

3 × 3 64

1 × 1, 256

× 3

Conv 3 28 x 28


1 × 1, 128

3 × 3 128

1 × 1, 512

× 4

Conv 4 14 x 14


1 × 1, 256

3 × 3 256

1 × 1, 1024

× 6

Conv 5 7 x 7


1 × 1, 512

3 × 3 512

1 × 1, 2048

× 3

Pooling 2048 average pooling

Classification 14 1-d fc (protest) 3-d fc (violence) 10-d fc (visual attribute)

Table 3.2: Protest Model Architecture
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CHAPTER 4

Facial Detection

One problem of particular interest of researchers is understanding the people behind the

protests. One avenue of approaching this is finding faces in an image and analyzing them.

In the first stage, we detect faces, and in the second stage, we classify faces.

To detect faces, we use a CNN detector in dlib. The CNN model consists of 8x down-

sampling blocks. Each 8x downsampling block consists of 5x5 convolution layers that does

2x downsampling, and 3x3 convolution layers that do not perform any downsampling, with

relu and batch normalization. The MMOD loss function is used, also called the Max-Margin

Object Detection[8].

Commonly when an object detector is trained, large amounts of positive and negative

training windows are presented to a binary classifier. The binary classifier is trained on these

windows (or regions) of images. Furthermore, the classifier needs to be trained on completely

negative images, where there are no targets in the image at all. The MMOD optimizer runs

through all windows and minimizes the number of missed detections and false alarms[9].

The superb optimization performed by the MMOD can be seen by comparing its per-

formance with Faster RCNN’s face detection performance[4]. The MMOD detector out-

performed Faster RCNN’s detector in terms of recall and number of false alarms, though

MMOD detector was trained with only 4600 faces while Faster RCNN was trained with

159,424 faces[7].
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CHAPTER 5

Facial Demographic Classifier

Once human faces from each protest image were detected, they were cropped and classifica-

tion was performed on them. In this classification problem, we were particularly interested

in understanding the age, race, and sex of protest constituents (protestors and law enforce-

ment).

5.1 FairFace Dataset Construction

To train a model that included protestor race, we first needed a dataset with human faces

with ground truth labels for their race. While there were some existing datasets on this,

such as LFWA+ and UTK, they only contained few races and missing important ones (or

grouped as other) for Latino, East Asian, South East Asian, South Asian, etc. Moreover,

datasets were highly unbalanced, with White faces highly over-represented compared to the

rest of the dataset. For example, LFWA+, CelebA, and Coco all consist more than 85%

of White faces[6]. Using unbalanced datasets is problematic, as unbalanced datasets create

models that will over-classify classes that are over-represented, and under-classify classes

that are underrepresented. Unbalanced datasets lead to models that are biased towards

overrepresented classes.

As a result, we constructed a balanced dataset called FairFace, images were extracted

from Flickr’s YFCC-100M dataset and annotated using Amazon Mechanical Turk. Each

race consisted of no more than 20% of observations. In total, about 108K human faces were

annotated for the race, age, and sex.
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Layer Output Size Building Blocks

Conv 1 112 x 112 7 x 7, 64, stride 2

Conv 2 56 x 56
3 x 3 max pool, stride 23 × 3 64

3 × 3 64

× 3

Conv 3 28 x 28

3 × 3 128

3 × 3 128

× 4

Conv 4 14 x 14

3 × 3 256

3 × 3 256

× 6

Conv 5 7 x 7

3 × 3 512

3 × 3 512

× 3

Pooling 512 average pooling

Classification 13 7-d fc (Race) 9-d fc (Age) 2-d fc (Gender)

Table 5.1: Facial Demographic Model Architecture

5.2 FairFace Model

Preliminary models to classify human faces were also trained. The model trained was a

variant of the ResNet-34 that was altered to provide racial, gender, and age classification.

The model architecture can be seen below in Table 5.1. The races classified by the model

are: White, Black, Latino, East Asian, South East Asian, Middle Eastern and South Asian.

The age groups classified by the model are: 0-2, 3-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69,

and 70+. More details can be found in FairFace: Face Attribute Dataset for Balanced Race,

Gender, and Age [6].

Even with no hyperparameter tuning, the model trained on FairFace outperformed mod-

els trained on LFWA+ (Labeled Faces in the Wild) [3] and UTK Face [17].

12



CHAPTER 6

Image Deduplication Algorithm

Another research question that we wanted to answer from a public policy and communica-

tions research perspective was ”What images are most commonly shared?” This is useful to

identify images that are visually striking and persuasive in shaping public opinion. While

counting the number of retweets were handled by Twitter’s API, an image deduplication

algorithm was needed to count duplicate images from posted from original (non-retweeted)

Tweets.

To deduplicate images, we extracted 1,000 features from a pre-trained ResNet50 model

[2]. Conventional image preprocessing methods for deep learning models were used. Each

image was resized to 256 x 256 px. Then, a center-crop of 224 x 224 px was performed.

Finally, the cropped images were normalized to the mean and standard deviation of the

ImageNet dataset [1].

The 1,000 feature vector of each sample was normalized to unit norm. The L2 distance

among the normalized data is computed, and images are considered duplicates if the distance

is less than a threshold of 0.2. This threshold was chosen after observing the pairwise

distances of numerous duplicate and non-duplicate images.

13



Figure 6.1: Pairwise distances histogram
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CHAPTER 7

Case Study: 2019-2020 Hong Kong Protests

Starting in 2019 Summer, Hong Kong has been in a series of protests stemming from a con-

troversial extradition bill. This bill would have allowed suspects to be extradited from Hong

Kong, Special Administrative Region, to Mainland China, thus providing a legal conduit

between Hong Kong’s legal system with China’s legal system. At the protest’s peak, up to

2 million people, or about a quarter of Hong Kong’s population, were protesting on Hong

Kong’s streets.

7.1 Protest Visual Attribute Classification

Although the protests are still ongoing, the protest periods of March 2019 to Dec 2019 were

analyzed. The daily time series figures below show the proportion of protest images that a

particular visual attribute is observed. A 10 day moving average was used as a smoother.

The Group 20 and Group 100 plots (Figure 7.1) show that a large proportion (40 to 80%)

of the images show groups of at least 20, while a lesser, but non-trivial proportion (around

10%) of images show groups at least 100. This is because most images shot by protesters

are up close, with a small field of view, to include groups of at least 20 protesters. While

some images are far enough away to show at least 100 protesters.

We are also able to analyze the proportion of images with fire and flags (Figure 7.2).

Flags were used throughout the HK protests. Some flags demonstrated a growing sentiment

of anti-establishment, such as the Black Bauhinia flag, while some flags were an international

plea for help. Some protesters also waved the UK Union Jack, reminiscent of Colonial Hong

Kong under British rule. We observe that the proportion of flag images peaked in early

15



Figure 7.1: Time Series: Small and Large Groups

Figure 7.2: Time Series: Fire and Flags
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September 2019. This coincides with the 8 September march, where thousands of protesters

marched to the US Consulate to support for the US Congress’s reintroduction of the Hong

Kong Human Rights and Democracy Act. When the act was passed in US Congress in Nov

2019, 100,000 people rallied at Endinburgh Place where many protesters waived American

flags. While the model was able to detect traditional flags well, it had trouble detecting

non-traditional flags, such as the Black Bauhinia flag. Examples of these are shown in Table

7.1.

(a) Flag: 0.805285215 (b) Flag: 0.134031609

(c) Flag: 0.915045261 (d) Flag: 0.990652561

Table 7.1: Flags in 2019 HK Protests

The use of Fire was correlated with State and Protestor Violence. Fire was prevalent

through the use of Molotov Cocktails and petrol bombs. In November 2019, the proportion

of protest images that were observed with fire peaked around 28%. On 2nd November 2019,

protesters at a rally in Central threw Molotov Cocktails on Lung Wo Road. During the

17



(a) Police: 0.822041035
(b) Police: 0.828614593

(c) Police: 0.911500454 (d) Police: 0.88702124

Table 7.2: Police in 2019 HK Protests

city-wide strike between November 11 and 15th, protestors threw molotov cocktails in a

MTR train bound for Central. Tensions intensified, culminating in the siege of Hong Kong

Polytechnic University from November 17th to 18th, where some protesters threw Molotov

cocktails at the police as they attempted to raid the protesters at the university campus.

18



(a) Fire: 0.906967 (b) Fire: 0.842622

(c) Fire: 0.998881 (d) Fire: 0.936079

Table 7.3: Fire in 2019 HK Protests

Figure 7.3: Time Series: Violence and Night

19



7.2 Facial Detection and Classification

We were also able to detect faces in protest images. Below is an example taken from a mass

protest.

(a) SEAsian/M/20s (b) E Asian/M/20s (c) NA (d) NA

(e) NA (f) E Asian/M/20s (g) NA (h) E Asian/M/20s

(i) E Asian/M/20s (j) E Asian/M/30s (k) NA (l) NA

(m) NA (n) E Asian/F/20s

Table 7.4: Facial Detection and Classification

20



As we see above, the facial detection algorithm performs well for large faces, but does

not perform well for small faces. Further, the facial classification algorithm requires faces to

be large. The detected faces marked NA did not meet the facial classification size-threshold

of 50 px × 50 px. Age ranges 20s means 20-29, and 30s means 30-39, etc.

7.3 Deduplication

Using the deduplication algorithm, we are able to see which photo has been Tweeted the

most on Twitter.

The most Tweeted photo was Tweeted 46 times, show below in Figure 7.4. This is

a scene during the Siege of Hong Kong Polytechnic University, where riot police raided a

stronghold of protesters in the university.

Figure 7.4: Tweeted 46 Times
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The 2nd most Tweeted photo was Tweeted 26 times, show below in Figure 7.5. This is

another scene at the end of the Siege of Hong Kong Polytechnic University. Police arrested

everyone who came out of the university, including medical volunteers and journalists as seen

here.

Figure 7.5: Tweeted 26 Times
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The 3rd most Tweeted photo was Tweeted 14 times, show below in Figure 7.6. This

photo caused an outcry where riot police pointed a shotgun directly towards a protester’s

head.

Figure 7.6: Tweeted 14 Times
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The 4th most Tweeted photo was Tweeted 13 times, show below in Figure 7.7. This

was another photo taken during the Siege of Polytechnic University. People were outraged

after seeing a protester’s head being stepped on by riot police.

Figure 7.7: Tweeted 13 Times
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The 5th most Tweeted photo was Tweeted 9 times, show below in Figure 7.8. Again,

this photo was taken at towards the end of the Siege of Polytechnic University. In this photo,

a riot policeman points his weapon at a protester as he tries to escape arrest.

Figure 7.8: Tweeted 9 Times
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CHAPTER 8

Discussion

The model pipeline demonstrated so far can reasonably detect protest images and classify

faces. However, there are some aspects where the computational framework could use some

improvement.

The protest model sometimes has difficulty detecting non-traditional forms of protest

(false negatives), and commonly identifies non-protests images as protests (false positives).

The protest model also has difficulty identifying non-traditional flags, such as the Black

Bauhinia flag. Since the model was trained on commonly colored flags, it missed blag flags.

A more diverse training dataset and hyperparameter tuning can help to improve the precision

and accuracy of the protest model.

The facial detection model performs well. However, it is limited by how it is trained.

DLib trained the model with faces of size 50 px × 50 px or larger. As a result, the model

struggles to identify smaller faces. Since the facial classification model is also trained on

faces larger than 50 px × 50 px, it also struggles to classifies small faces. Thus, when trying

to identify and classify faces from a large group of protesters, the model is accurate only

with the participants close to the camera, which are larger. We particularly saw this in the

facial detection example in the HK protests. A possible method to improve this is to train

both models with smaller faces.

The deduplication algorithm is functioning, however it suffers from two main drawbacks:

(1) the algorithm’s time and memory complexity, and (2) misses from slight variations among

visually identical images. The deduplication algorithm is reliant on a O(N2) distance calcu-

lation matrix. Likewise it the memory complexity is O(N2). While the distance calculation

implementation has been modified to perform calculations in batches to avoid running out of

26



memory, it is still not very feasible to run the deduplication algorithm on very large image-

sets. As a result, when using this algorithm, we have only selected images that are protest

images. However, many common images shared on social media related to a protest are

not typical protesting images (e.g. large groups, police, weapons, fire etc.). These common

images can be a banner or poster as a rallying cry. As a result, when using the deduplication

algorithm in this manner, it will miss these images.
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