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The Proteogenomics of Prostate Cancer 
Radioresistance 
Roni Haas1,2,3,4, Gavin Frame5,6, Shahbaz Khan7, Beth K. Neilsen1,2,3,4,8, Boon Hao Hong9, Celestia P.X. Yeo9, 
Takafumi N. Yamaguchi1,2,3,4, Enya H.W. Ong9, Wenyan Zhao1,2,3,4, Benjamin Carlin1,2,3,4, Eugenia L.L. Yeo9, 
Kah Min Tan9, Yuan Zhe Bugh1,2,3,4, Chenghao Zhu1,2,3,4, Rupert Hugh-White1,2,3,4, Julie Livingstone1,2,3,4, 
Dennis J.J. Poon9, Pek Lim Chu9, Yash Patel1,2,3,4, Shu Tao1,2,3,4, Vladimir Ignatchenko7, Natalie J. Kurganovs7, 
Geoff S. Higgins10, Michelle R. Downes11,12, Andrew Loblaw6,13, Danny Vesprini6,13, Amar U. Kishan8, 
Melvin L.K. Chua9,14,15, Thomas Kislinger5,7, Paul C. Boutros1,2,3,4,5, and Stanley K. Liu5,6,13 

�
 ABSTRACT 

Prostate cancer is frequently treated with radiotherapy. Unfortunately, 
aggressive radioresistant relapses can arise, and the molecular underpin-
nings of radioresistance are unknown. Modern clinical radiotherapy is 
evolving to deliver higher doses of radiation in fewer fractions (hypo-
fractionation). We therefore analyzed genomic, transcriptomic, and pro-
teomic data to characterize prostate cancer radioresistance in cells treated 
with both conventionally fractionated and hypofractionated radiotherapy. 
Independent of fractionation schedule, resistance to radiotherapy involved 
massive genomic instability and abrogation of DNA mismatch repair. 
Specific prostate cancer driver genes were modulated at the RNA and 
protein levels, with distinct protein subcellular responses to radiotherapy. 

Conventional fractionation led to a far more aggressive biomolecular re-
sponse than hypofractionation. Testing preclinical candidates identified in 
cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. 
POLQ-modulated radioresistance in model systems and was predictive of it 
in large patient cohorts. The molecular response to radiation is highly 
multimodal and sheds light on prostate cancer lethality. 

Significance: Radiation is standard of care in prostate cancer. Yet, we 
have little understanding of its failure. We demonstrate a new paradigm 
that radioresistance is fractionation specific and identified POLQ as a 
radioresistance modulator. 

Introduction 
Prostate cancer is the second most common cause of cancer death in men 
(1). It is usually curable when localized, so standard of care is curative intent 
treatment with either surgery (radical prostatectomy, or RP) or image- 
guided radiotherapy (RT). Both are equally effective in this setting (2), and 
decisions are often made based on the side effects and comorbidities. For 
example, in patients of advanced age, RT is generally preferred (3). 

RT involves the delivery of targeted ionizing radiation with the intent of 
damaging intracellular molecules (4). The common assumption is that DNA 
is the main molecular target of RT, although proteins and lipids are also 
ionized (5). RT may also trigger the immune system and modulate the tumor 
microenvironment. Indeed tumor metastases can be attacked by the immune 
system after RT as part of a rare phenomenon called the abscopal effect (6). 
Thus, RT exerts its therapeutic effects through a complex set of molecular 
and cellular responses. 

Classical RT used a limited number of larger treatment fields, which would 
expose normal cells to significant amounts of radiation, causing dose- 
limiting toxicities (4). Two main strategies have been taken to reduce radi-
otoxicities. First, advanced image-guidance is used to precisely target tumors 
and reduce the dose of radiation that normal cells experience (7). Second, 
conventional fractionation (CF) schedules deliver the total prescribed 
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radiation dose in multiple smaller daily doses (∼2 Gray, Gy) known as 
fractions, over several weeks to allow for normal tissue recovery between 
treatments (8). 

As image-guidance has improved (9), it is increasingly viable to deliver radi-
ation to the tumor with minimal normal tissue exposure. This allows the use of 
higher doses, which might cause more severe cell damage. Hypofractionation 
(HF), or the delivery of fractions sized 2.5 Gy per day or higher, shortens the 
treatment time and thereby reduces time for potential tumor cell recovery 
while increasing patient convenience and compliance. Modern CF and HF 
have similar rates of toxicity, biochemical failure, metastasis, and overall sur-
vival (7, 9–13). Radiorecurrence caused by radioresistance can occur following 
any fractionation schedule and often results in aggressive disease that is 
clinically challenging to manage (14–16). The specific molecular and cellular 
mechanisms underlying radioresistance are unknown, and it is unclear if CF 
and HF lead to similar or different forms of radioresistance. 

To fill this gap in our knowledge, we characterized the proteogenomic re-
sponse to radiation in both model systems and patient samples. Independent 
of fractionation, radiation resulted in widespread genomic instability and 
subsequent gene expression changes in cancer driver genes. HF-resistant 
cells showed less-aggressive molecular phenotypes than CF-resistant ones. 
Integration of model system and primary prostate cancer patient molecular 
data identified POLQ (DNA Polymerase Theta) as a candidate radio-
sensitizer. Genetic or pharmacologic inhibition of POLQ resensitized radi-
oresistant prostate cancer cells and induced proteomic signatures detectable 
in primary prostate cancer. Taken together, these data demonstrate how the 
precise fractionation schedule applied can significantly change cellular re-
sponses to RT. The adoption of clinical hypofractionation may challenge 
results observed in conventionally fractionated cohorts and model systems. 

Materials and Methods 
Cell culture 
Human prostate adenocarcinoma cell line DU145 (RRID:CVCL_0105) was 
purchased from the American Type Culture Collection (ATCC). DU145-CF 
(2 Gy � 59 fractions) and DU145-HF (5 Gy � 10 fractions) resistant cells 
were generated according to previously described methods (17, 18). The 
process was performed once for each cell type. The characterizations of the 
DU145 CF and HF cells have been previously reported (17, 18), which 
include radiation clonogenic, proliferation, invasive capacity, and tumori-
genic potential assays. After thawing, DU145-PAR, CF, and HF cells were 
cultured for 2 weeks prior to experimentation, to allow cell recovery from 
cryopreservation. We have noted maintenance of the radiation-resistant 
phenotype of both the CF and HF cells for a minimum of 4 months 
in culture. 

After generation, each cell type was divided into three plates, with each plate 
cultured independently, resulting in three biological replicates for each 
sample. Cells were cultured in tissue-culture flasks using Dulbecco’s Modi-
fied Eagle Medium containing 4.5 g/L D-glucose and GlutaMAX (DMEM; 
Gibco) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin- 
streptomycin. The cells were kept at 37°C in a humidified incubator with 5% 
CO2 and were passaged when they reached 80% confluency. 

Parental 22Rv1 prostate carcinoma cell line (RRID:CVCL 1045) was pur-
chased from the American Type Culture Collection (ATCC). An isogenic 

CF-radioresistant 22Rv1 cell line was created by pooling the surviving cells 
following a CF irradiation of 2 Gy for 45 fractions on parental 22Rv1. 
Thawed cells were passaged twice before use. All cell culture reagents were 
purchased from Gibco. Both cfRR and parental 22Rv1 cell lines were 
maintained with RPMI-1640 medium supplemented with 10% fetal bovine 
serum, 100 U/mL penicillin-streptomycin, 1 mmol/L sodium pyruvate, 
2 mmol/L L-glutamine, and 1% non-essential amino acids and incubated at 
37°C in a humidified atmosphere with 5% CO2. 

The DU145 and 22Rv1 cell lines were purchased from ATCC which ensures 
cell line authentication prior to distribution using morphology, karyotyping, 
polymerase chain reaction (PCR)–based approaches, cytochrome c oxidase I 
(COI) analysis, and short tandem repeat profiling. CF and HF cells were 
established directly from these cells. All cell lines tested negative for myco-
plasma contamination. MycoAlert PLUS Mycoplasma Detection Kit (Lonza) 
was used for mycoplasma testing in DU145 cells in July 2019. EZ-PCR 
Mycoplasma Detection Kit (Biological Industries) following the manufac-
turer’s protocol was used for mycoplasma testing in 22Rv1 cells on October 
15, 2018. 

DU145 DNA and RNA extraction 
DNA was extracted in three biological replicates from each sample type, 
using the Qiagen DNeasy blood and tissue kit (Qiagen). Total ribosomal- 
depleted RNA was extracted from three biological replicates for CF- and HF- 
resistant cells, and two for the parental cells, using RNeasy extraction kit 
(Qiagen). 

DU145 cell line WGS and data preprocessing 
DNA samples were sequenced with Illumina HiSeq 2500 using the V4 
chemistry to generate paired end reads of 2 � 125 bases. Sequenced reads 
were tested with FastQC v0.11.8 (RRID:SCR_014583; ref. 19) for quality 
assurance prior to alignment. DNA reads were then mapped to the human 
GRCh38 reference genome using BWA-mem2 v2.2.1 (RRID:SCR_022192; 
ref. 20) and the aligned SAM files were converted to BAM files using 
SAMtools v1.12 (RRID:SCR_002105; ref. 21). Next, using Picard Tool’s 
v2.26.10 (RRID:SCR_006525; ref. 22), the resulting BAM files were sorted in 
coordinate order, duplicates were marked, and the BAM files were indexed. 
The indexed bam files went through realignment using the Genome Analysis 
Toolkit (GATK) v3.7.0 (RRID:SCR_001876; ref. 23) and recalibration using 
GATK v4.1.9 (23) in 18 pairs of parental and radioresistant samples, such 
that each radioresistant replicate sample was paired to all parental replicates. 
That resulted in nine pairs per radioresistant sample (e.g., replicate number 1 
of CF-resistant cells was run with parental replicate numbers 1, 2, and 3). 
Separate BAM files were generated for the radioresistant and parental 
samples and their headers were modified using SAMtools v1.12 (RRID: 
SCR_002105; ref. 21). 

DU145 cell line somatic mutation calling and downstream 
analysis 
Processed bam files from the previous step were taken for mutation calling in 
the same pairs described above, so that the called mutations are those gained 
in a given radioresistant sample compared to the parental (the control, which 
represents a relatively radiosensitive sample). Single-nucleotide variants 
(SNV) were called separately using three tools, Mutect2 of GATK v4.2.0.0 
(23), Strelka2 v2.9.10 (24), and SomaticSniper v1.0.5.0 (RRID:SCR_005108; 
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ref. 25). To increase reliability, SNVs were declared only for sites that were 
detected in all three tools, across all tested pairs for a given cell type 
[i.e., SNV was declared if it was detected 27 times (¼ 3 algorithms � 9 pairs)] 
for a given radioresistant sample. The called SNVs were annotated using 
SnpEff v5.0e (RRID:SCR_005191; ref. 26). Mutational signatures were 
identified using SigProfilerExtractor v1.14 (RRID:SCR_023121; ref. 27) for 
each replicate separately. All detected signatures were detected in three 
replicates for both CF- and HF-resistant cells and their average contributions 
were calculated for visualization. 

Structural variants (SV) were identified using DELLY v0.8.7 (RRID: 
SCR_004603; ref. 28). For reliability, detected sites were filtered to exclude 
germline SVs. Annotations were obtained using biomaRt v2.54.0 (RRID: 
SCR_019214; ref. 29) for the entire SV region in case of deletions, amplifi-
cations, and translocations and for the breakpoints in case of inversions. 

DU145 cell line RNA sequencing and analysis 
RNA Illumina PCR-free libraries were sequenced on the Illumina HiSeq X to 
generate paired end reads of 2 � 150 bases and about 90 to 100 Gbases of 
raw data per sample. Raw sequencing data were tested with FastQC v0.11.8 
(RRID:SCR_014583; ref. 19) for quality control and reads were trimmed for 
low-quality bases accordingly, using fastp v0.20.1 (30). RNA reads were 
aligned to the GRCh38 GENCODE human release 36 using STAR v2.7.6a 
(RRID:SCR_004463; ref. 31), and transcript counts were obtained using 
RSEM v1.3.3 (RRID:SCR_013027; ref. 32). Differential RNA-abundance 
analysis was carried out using DESeq2 v1.30.1 (RRID:SCR_000154; ref. 33) 
with the lfcShrink function and a normal shrinkage. To highlight strongly 
affected genes, an additional stringent test was conducted in the same 
conditions but setting the lfcThreshold parameter to 0.5. FDR (34) was used 
to account for multiple testing. To identify cancer-activating transcripts 
(HCAT), the hallmark cancer gene sets v7.4 were downloaded from GSEA 
(35), and were processed using mGSZ package v1.0 (36) in R. Gene Ontology 
enrichment analysis for hallmark cancer pathways was conducted using 
GSEA (35, 37, 38). Fusion transcripts were identified using STAR-Fusion 
v1.9.1 (39). 

22Rv1 DNA extraction and whole-exome sequencing 
DNA was extracted from both CF-radioresistant and parental cells in three 
biological replicates each using the QIAamp DNA Mini Kit (Qiagen). 
Whole-exome sequencing libraries were prepared using Agilent SureSelect 
Human All ExonV6 Kit (Agilent Technologies) and 150 bp paired-end se-
quencing was performed using Novaseq 6000 (Illumina) to depths of 100�
per sample (at least 10 GB/sample). Both library preparation and sequencing 
were carried out by NovogeneAIT Genomics Singapore Pte Ltd. 

22Rv1 cell line somatic mutation calling and downstream 
analysis 
DNA reads were mapped to the human GRCh38 reference genome using 
BWA-mem2 v2.2.1 (RRID:SCR_022192; ref. 20) and aligned SAM files were 
converted to BAM files using SAMtools v1.12 (RRID:SCR_002105; ref. 21). 
Next, BAM files were sorted by query name with SAMtools v1.15.1 (RRID: 
SCR_002105) and duplicates were marked with MarkDuplicatesSpark [Pic-
ard Tool’s v2.26.10 (22)], resulting in coordinate-sorted and indexed BAM. 
Indel realignment was done with GATK 3.7.0 (RRID:SCR_001876; ref. 23) 
and the base quality score recalibration (BQSR) was done with GATK 4.2.4.1 

(23). Separate BAM files were generated with BQSR and SAMtools 1.12 
(RRID:SCR_002105; ref. 21) was used to reheader appropriately for each 
sample. Mutect2 v4.2.4.1 with the multisample feature was used to call SNVs 
in all radioresistant replicates against every parental replicate, such that all 
three radioresistant replicates were run against every parental replicate 
separately (overall, three outputs). The intersection of SNV sites from the 
three outputs generated the final list of SNVs in the radioresistant samples. 

22Rv1 RNA extraction and processing 
Total RNA was extracted from both CF-radioresistant and parental cells in 
three replicates each, using RNeasy Mini Kit (Qiagen). Stranded RNA-seq 
libraries were prepared by poly(A) mRNA isolation and NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina (New England BioLabs). The 
150 bp paired-end sequencing was performed using Novaseq 6000 (Illumina) 
with at least 50 million reads/sample. Both library preparation and se-
quencing were carried out by NovogeneAIT Genomics Singapore Pte Ltd. 
Adapter sequences and low quality base calls were removed from the raw 
sequence reads using Trim Galore (v0.6.4), a wrapper tool around Cutadapt 
(v2.10; ref. RRID:SCR_011841; ref. 40). Trimmed reads were then mapped to 
the GRCh38 reference genome using STAR v2.6.1d (31) with standard set-
tings. Gene quantification was performed with the “–quantMode Gene-
Counts” option in STAR (RRID:SCR_004463; ref. 31). 

DU145 miRNA data creation and analysis 
NanoString duplicate runs were created for CF- and HF-resistant cells and 
for matched parental duplicate samples corresponding to each radioresistant 
cell type. NanoString data were normalized and differential abundance 
analysis was performed as recommended by Bhattacharya and colleagues 
(41). Targets of miRNAs were identified using the getPredictedTargets 
function (miRNAtap package v.1.32.0) with the default setting. Briefly, this 
function allowed identifying miRNA targets relying on five different sources 
[PicTar (42), DIANA-microT (43), TargetScan (44), miRanda (45), and 
miRDB (46)], while a minimum of two sources were required for a target to 
be considered. For each radioresistant cell type (CF or HF), we tested if 
significantly dysregulated genes (whose transcripts are listed in Supple-
mentary Table S1) were targets of significantly dysregulated miRNAs. 

Subcellular fractionation for shotgun proteomics 
The subcellular fractionation was performed as previously described with 
slight modifications (47). Parental, CF-resistant and HF-resistant DU145 
cells were washed three times with phosphate-buffered saline (PBS) and 
pelleted. The cells were homogenized in lysis buffer containing 50 mmol/L 
Tris-HCL (pH 7.4), 5 mmol/L MgCl2, 0.1% Triton X-100, and protease 
inhibitors and kept on ice for 10 minutes before being further homogenized 
with a loose-fitting pestle. Sucrose (250 mmol/L) was then added to the 
lysates to make an isotonic solution, after which the lysates were centrifuged 
at 800 � g for 15 minutes at 4°C to separate the nuclear fraction. The 
resulting supernatant was used for fractionating cytosol, mitochondria, and 
microsomes (mixed membranes). The nuclear pellet was resuspended in 
2.5 mL of cushion buffer (2 mol/L sucrose, 50 mmol/L Tris-HCl, 5 mmol/L 
MgCl2, 1 mmol/L dithiothreitol (DTT), and Protease inhibitors – Roche) and 
overlaid on top of 2 mL of cushion buffer in 5 mL ultracentrifugation tube 
(Beckman) and centrifuged at 80,000 � g for 45 minutes (Beckman SW 55Ti 
rotor) to isolate the nuclear pellet. The mitochondrial fraction was isolated 
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from the crude lysate by centrifugation at 8,000 � g for 15 minutes to 
retrieve the mitochondrial pellet. The microsomal pellet was isolated by 
centrifuging the supernatant at 150,000 � g for 1 hour. The resulting su-
pernatant was the cytosolic fraction. Nuclear proteins were extracted using a 
lysis buffer containing HEPES, NaCl, and EDTA, after which the pellet was 
passed through an 18-gauge needle several times and centrifuged to isolate 
the soluble nuclear fraction and insoluble pellet. Finally, the organelle pellets 
(mitochondria, nuclear, and microsome) were lysed in [50% (v/v) 2,2,2,- 
trifluoroethanol and 50% PBS]. 

The pellets obtained from the subcellular fractions were lysed by repeated 
freeze-thaw cycles (five cycles, switching between a dry ice/ethanol bath and 
60°C water bath) in a lysis buffer. Samples were sonicated on an ultrasonic 
block sonicator for five 10 seconds cycles at 10 W per tube (Hielscher 
VialTweeter) followed by extraction at 60°C for 1 hour. Disulfide bonds were 
reduced with 5 mmol/L DTT, followed by 30 minutes incubation at 60°C. 
Free sulfhydryl groups were alkylated by incubating the samples with 
25 mmol/L iodoacetamide in the dark for 30 minutes at room temperature. 
The samples were diluted (1:5) with 100 mmol/L ammonium bicarbonate 
(pH 8.0) and 2 mmol/L CaCl2 was added. Proteins were digested overnight 
with 2 μg of trypsin/Lys-C enzyme mix (Promega) at 37°C. Peptides were 
desalted by C18-based solid phase extraction, then dried in a SpeedVac 
vacuum concentrator. Peptides were solubilized in mass spectrometry-grade 
water with 0.1% formic acid. 

Sample preparation for proteomic analysis following 
POLQ knockdown 
Parental CF- and HF-resistant DU145 cells were transfected with scramble 
siRNA (control) or siRNA to target POLQ (see below siRNA transfection 
and novobiocin inhibitor treatment) in six-well plates and grown to 80% 
confluency. After being washed three times with cold PBS, cells were gently 
scraped from the surface of the well and transferred to 1.5 mL micro-
centrifuge tubes. Cells were pelleted by centrifugation, the PBS was removed 
and the pellets were flash-frozen to be stored at �80°C until ready for further 
processing. 

To prepare for shotgun proteomics, cell pellets were lysed by repeated freeze- 
thaw cycles in lysis buffer (50 mmol/L HEPES pH 8, 1% SDS). Samples were 
sonicated on a probe-less ultrasonic sonicator for five 10 second cycles at 
10 W per tube (Hielscher VialTweeter) to shear genomic DNA. Samples 
were centrifuged at 18,500 � g to pellet cell debris and the supernatant was 
used for subsequent steps. Disulfide bonds were reduced with 5 mmol/L 
dithiothreitol, followed by 30 minutes incubation at 60°C. Free sulfhydryl 
groups were alkylated by incubating samples in 25 mmol/L iodoacetamide in 
the dark for 30 minutes at room temperature. An additional 5 mmol/L of 
DTT was added to quench the alkylation reaction and samples were incu-
bated at room temperature for 5 minutes. The magnetic bead-based SP3 
protocol (48) was used to capture proteins prior to digestion. Briefly, mag-
netic beads were added to proteins in a 10:1 (w/w) ratio. Absolute ethanol 
was added to bring the ethanol concentration to 70%. Samples were shaken 
at room temperature for 5 minutes at 1,000 rpm, and the supernatant was 
discarded. The beads were rinsed two times with 80% ethanol and discarded. 
Proteins were digested in 100 mmol/L ammonium bicarbonate containing 
2 μg of trypsin/Lys-C enzyme mix (Promega) at 37°C overnight. Peptides 
were desalted using C18-based solid phase extraction, then lyophilized in a 

SpeedVac vacuum concentrator. Peptides were solubilized in mass 
spectrometry-grade water with 0.1% formic acid. LC/MS-MS data were ac-
quired as previously described (49). 

Mass spectrometry sample processing for proteomic 
analysis 
LC/MS-MS data were acquired as previously described (49) with modifica-
tions. Peptides (2 μg) were loaded on a two-column setup using 2 cm Ac-
claim PepMap 10 column (75 μm, 3 μm, 100 Å) as trap column and a 50 cm 
EasySpray ES803 column (75 μm, 2 μm, 100 Å; Thermo) coupled to an Easy 
nLC 1,000 (Thermo) nanoflow liquid chromatography system connected to 
Q-Executive HF mass spectrometer (Thermo). Peptides were separated by 
reverse-phase chromatography using a 265 minutes nonlinear chromato-
graphic gradient of 4% to 48% buffer B (0.1% FA in ACN) at a flow rate of 
250 mL/minutes. Column temperature was kept at 45°C. Mass spectrometry 
data were acquired in positive-ion data-dependent mode. Data-dependent 
MS analyses were run in a positive top-25 mode. MS1-spectra were acquired 
for a mass range of m/z 350 to 1,800 at a resolution of 120,000, with auto-
matic gain control (AGC) target of 1 to 106 and 45 ms maximum fill time. 
The dependent MS-MS spectra were acquired at a resolution of 30,000, with 
an AGC target of 2 � 105 and 55 ms maximum fill time. The isolation 
window width was set to 1.4 m/z, the isolation offset to 0.2 m/z, and the 
intensity threshold to 1.8 � 103. 

Proteomic data processing and analysis 
Subcellular fractionation raw data were searched in MaxQuant (50) v1.5.8.3 
using the UniProt protein sequence database containing human protein 
sequences from UniProt (RRID:SCR_002380; number of sequences 42,041). 
POLQ siRNA raw data were searched MaxQuant v1.6.3.3 (RRID: 
SCR_014485) using the UniProt protein sequence database containing hu-
man protein sequences from UniProt (complete human proteome; 2019-09). 
Searches were performed with a maximum of two missed cleavages and 
carbamidomethylation of cysteine as a fixed modification. Variable modifi-
cations were set as oxidation at methionine and acetylation (N-term). The 
FDR for the target-decoy search was set to 1% for protein, peptide, and site 
levels. Intensity-based absolute quantification (iBAQ), label-free quantitation 
(LFQ) was enabled, and match between runs were disabled. The proteinG-
roups.txt file was used for subsequent analysis. Proteins matching decoy and 
contaminant sequences were removed and proteins identified with two or 
more unique peptides were carried forward. 

For fractionation data, log2-transformed iBAQ intensities were used. If a 
protein was detected for two out of three replicas for a given sample type, the 
third value was imputed based on the mean of the two others. All other 
missing values were imputed from the lower half of the Gaussian distribution 
(width of 0.3 and downshift of 1.8; ref. 51). Weighted Gene Co-expression 
Network Analysis (WGCNA) was performed using WGCNA package in R 
v1.72-1 (RRID:SCR_003302; refs. 52, 53) based on protein abundance in 
specific subcellular fractions in CF- and HF-resistant cells. Enrichment 
analysis of module genes was performed using gprofiler2 v0.2.1 (54). Dif-
ferences between protein abundances were evaluated between the parental 
cells (control) and each of the radioresistant cell lines in whole cells as well as 
every subcellular fraction using two-sided t tests in R. Three replicates were 
used for CF- and HF- resistant cells in whole cells or subcellular fractions. 
For the parental cells, two replicates were used for the microsome, 
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mitochondria, nuclear soluble, and plasma membrane and three replicates 
otherwise. 

For protein quantitation (55) siRNA knockdown experiments, LFQ inten-
sities were used. Missing LFQ values were replaced with median-adjusted 
iBAQ values (51). Protein intensities were log2-transformed for further 
analysis. Differences between protein abundances were evaluated between 
POLQ-depleted samples and the corresponding control for the parental and 
CF-resistant cells, using two-sided t tests in R. Three biological replicates 
were used for each sample type. FDR (56) was used to control multiple 
testing. Pathway enrichment analyses were performed using the gseGO 
function of the ClusterProfile package in R v4.6.0 (57, 58), relying on gene 
lists that were pre-ranked based on effect sizes. 

Pearson RNA–protein correlations in DU145 cell lines 
Pearson correlations were calculated between median RNA counts and 
median protein intensities for each cellular fraction, across all genes or 
cancer hallmark genes detected in both platforms. For this goal, only non- 
imputed protein intensities were used. Genes for which the RNA or protein 
median values were zero were excluded. 

siRNA transfection and novobiocin inhibitor treatment 
To achieve POLQ knockdown using siRNA degradation, parental, CF- 
resistant, and HF-resistant DU145 cells were seeded in six-well plates, and 
24 hours later, cells were transfected with scrambled siRNA (control; CAT. #: 
SR30004; Origene Inc.) or POLQ siRNA (CAT. #: SR323222; Origene Inc.) 
using siTran 2.0 Transfection Reagent (CAT. #: TT320001; Origene Inc.) and 
left overnight for at least 24 hours before performing experiments. 

To induce POLQ inhibition with novobiocin, parental, CF-resistant, and 
HF-resistant cells were seeded in six-well plates overnight, then treated with 
water (control) or 100 µmol/L novobiocin diluted in water (Cat. #S2492; 
Selleckchem) the following morning. Cells treated with novobiocin were 
given 24 hours for POLQ inhibition. 

Clonogenic survival assay 
Control and treated cells (POLQ-siRNA or novobiocin-treated cells) were 
plated in triplicate on six-well plates and mock-irradiated at 0 Gy or irra-
diated using two fractions of 4 Gy with a 24-hour interval in between. The 
mock-irradiated and irradiated plates were left to incubate at 37°C in a 
humidified incubator with 5% CO2. After 10 to 14 days, the cells were 
stained with crystal violet (Sigma) and the colonies (defined as being >50 
cells) were counted. Surviving fraction of each cell line was determined by 
dividing the plating efficiency of cells given two fractions of 4 Gy by the 
plating efficiency of cells given 0 Gy. 

Quantitative real-time PCR 
To quantify mRNA abundance, total RNA was extracted from cells using 
RNeasy Mini Kit (Qiagen), which was then converted to cDNA for ampli-
fication using SuperScript VILO Master Mix (Thermo-Fisher Scientific). 
TaqMan Fast Advanced Master Mix (Thermo-Fisher Scientific) was added to 
cDNA along with predesigned Taqman Gene Expression Assay primers for 
POLQ (Assay ID: Hs00981375; Thermo-Fisher Scientific) and GAPDH 
(Assay ID: Hs99999905, Thermo-Fisher Scientific) to conduct the qRT-PCR. 
RNA abundance was determined by the comparative Ct method using 

QuantStudio 3 Design and Analysis Software (Thermo-Fisher Scientific). 
GAPDH was used as an endogenous control to assess relative POLQ mRNAs 
in each cell line. 

ICGC patient cohort 
Pathologically confirmed prostate cancer patients with localized disease were 
used for this study. Fresh-frozen treatment and hormone naı̈ve tumor 
specimens were obtained from the University Health Network (UHN) Pa-
thology BioBank or from the Genito-Urinary BioBank of the Centre Hos-
pitalier Universitaire de Québec (CHUQ). Gleason Grades were assessed by 
expert genitourinary pathologists (TvdK, BT, AR) using scanned hematox-
ylin and eosin (H&E)–stained slides. Baseline serum PSA abundance ng/mL 
measurements were taken at the time of diagnosis. Patients were treated with 
either CF external RT or RP. For RT patients, biochemical recurrence (BCR) 
was defined as an increase of more than 2.0 ng/mL above the nadir serum 
PSA abundance. For RP patients, BCR was defined as two consecutive 
measurements of more than 0.2 ng/mL after surgery. 

Selecting radioresistance modulator candidates 
Candidate radioresistance modulators were selected based on their likeli-
hood to affect radioresistance. Selected candidate genes were: (i) driver genes 
impacted highly or moderately by SNVs relying on SNPeff (RRID: 
SCR_005191; ref. 26) estimation (ii) dysregulated driver genes at the RNA 
(Supplementary Table S2) and/or protein levels (Supplementary Table S3) 
based on applying statistical cutoffs (FDR ≤ 0.05; iii) fusion transcripts 
identified in all three replicates for CF- or HF-resistant cells; (iv) genes that 
were directly perturbed by SV that were also dysregulated at the RNA level 
(two levels of indication). Overall, 291 candidates were selected for further 
investigation. 

Association of CNA occurrence with BCR in the ICGC 
cohort 
CNAs were called as previously described (59). Using the entire cohort, the 
rate of BCR was compared between patient samples with a major-class CNA 
event, to those without an event or with the minor-class CNA event, by 
fitting Cox proportional hazard models using the survival R package v3.2-10. 
If the Cox proportional hazard assumption did not hold, a log-rank test or a 
Heinze log-rank test for imbalanced sample sizes (60) was carried out. For 
this analysis, only genes with a major-class CNA event in at least five patients 
were used. 

Patient WGS SNV detection in the ICGC cohort 
Sample preparation and whole-genome sequencing (WGS) were conducted 
as previously described (61, 62). Raw sequencing reads aligned to the human 
genome reference build hs37d5 using BWA (v0.7.12 - 0.7.15; RRID: 
SCR_010910; ref. 20). Lane-level BAM files from the same library were 
merged and duplicates were marked using Picard (v1.121 - 2.8.2; ref. 22). 
Lane-level BAM files from the same were merged as well and no duplicates 
were marked. 

Local realignment and base quality recalibration were done using GATK 
(v3.4.0 - 3.7.0; RRID:SCR_001876; ref. 23), processing tumor and normal 
pairs together. Individual tumor and normal sample BAM files were created 
and SAMtools (v0.1.19 - 1.5; RRID:SCR_002105; ref. 9) was used to correct 
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their headers. Cross-individual contamination was evaluated using GATK 
ContEst (v3.4.0 - 3.7.0; RRID:SCR_001876; ref. 63) for all normal and tumor 
samples. 

Somatic SNVs were detected using SomaticSniper v1.0.5 (RRID: 
SCR_005108; ref. 25) using the default parameters but setting the q option 
(mapping quality threshold) to one. A series of scripts provided by Soma-
ticSniper package v1.0.5 was used to filter out possible false positives. First, a 
pileup Indel file was generated for both normal and tumor BAM files using 
SAMtools v0.1.6 (RRID:SCR_002105; ref. 9), to enable standard and LOH 
filtering. Second, bam-readcount (v0.8.0 dea4199) was run for false positive 
filtering. Lastly, the high confidence filter was used with the default pa-
rameters. In addition, identified SNVs in positions that were not covered by 
a minimum of 10� in normal and 17� in tumor (calculated using bedtools 
v2.26.0 (RRID:SCR_006646; ref. 64) were removed. 

Germline variants were called using GATK (v3.4.0 - 3.7.0; ref. RRID: 
SCR_001876) to enable the filtering of somatic variants. GATK Hap-
lotypeCaller was first used considering the normal and tumor BAM files 
together, followed by GATK VariantRecalibrator and GATK ApplyRecali-
bration. In Germline variant, filtering was performed by removing somatic 
and ambiguous variants (i.e., with more than one alternate base). SNVs were 
filtered using the Perl library Bio::DB::HTS::Tabix v2.10 using public 
germline databases and the germline variants detected in all patient samples. 

The final SNVs were annotated by ANNOVAR v2017-07-16 (RRID: 
SCR_012821; ref. 65) using the RefGene database. Only non-synonymous, 
stop-loss, stop-gain, and splice-site SNVs were considered. 

POLQ RNA associations in the ICGC cohort 
RNA sequencing (RNA-seq) was performed as previously described (66). 
Patient mRNA TPM values for each gene were used for all analysis steps. 
Linear regression was used to associate POLQ RNA abundances in 140 pa-
tients with CNA [identified previously (59)] or SNV events (called as de-
scribed above) in clinically relevant genes (i.e., significant genes following the 
tests listed above: differences in CNA frequencies between RP and RT patient 
groups and/or association of CNA occurrence with BCR). FDR was used to 
control multiple testing separately for POLQ-RNA associations with SNVs 
and with CNAs. Spearman correlations were calculated to evaluate the re-
lationship among RNA abundances of clinically relevant genes in the same 
group of 140 patients, and FDR was used to correct for multiple testing. 
Spearman correlations were calculated to evaluate the relationship between 
POLQ RNA abundances and the following clinical features: age, Gleason 
grades, T category, and serum PSA abundance. FDR was applied to control 
for multiple testing. 

Testing POLQ inhibition signature 
RNA sequencing and proteomics profiling was performed as previously 
described for four previously published prostate cancer datasets: Interna-
tional Cancer Genome Consortium (ICGC; refs. 66, 67), The Cancer Ge-
nome Atlas (TCGA; ref. 68), Khoo (69), and Houlahan (70). For RNA 
sequencing, log2 transformed transcript per million (TPM) was utilized for 
all analyses. For proteomics, LFQ intensities were used for protein quanti-
fication as previously described (69) with missing values imputed using the 
Perseus method. Protein quantification was log2 transformed prior to further 
analysis. Pearson correlation with significance was calculated for each target 

RNA or protein abundance and POLQ RNA abundance. For target protein 
abundance to POLQ RNA abundance correlation, patient-matched samples 
were utilized, and pairwise complete observations were included. Fold 
change was calculated for each target using the log2 transformed mean RNA 
or protein abundance in tumor versus normal tissue samples. Statistical 
significance was calculated using a two-sided t Test. FDR was applied to 
control for multiple testing. Notably, POLQ was not detected within our 
proteomics analysis at either the cell line or patient level. This is not sur-
prising given the large POLQ protein size and the lack of POLQ identifica-
tion by others, according to the Cell Map database (71). 

NCCS patient cohort 
The National Cancer Centre Singapore (NCCS) cohort includes 185 patients 
who were diagnosed with biopsy-proven localized prostate adenocarcinoma. 
These patients underwent treatment RT or androgen deprivation therapy 
(ADT) in combination with RT at the NCCS from April 21, 2011, to No-
vember 30, 2021, with available tissue for molecular profiling. RT was de-
livered using either intensity-modulated RT (IMRT) or IGRT. Patients with 
National Comprehensive Cancer Network–defined intermediate- or high- 
risk prostate cancers received either short-course (≤6 months) or long- 
course (>6 months) ADT in combination with RT. In the definitive setting, 
IMRT/IGRT was delivered at doses of 74 to 78 Gy in 37 to 39 fractions, 57 to 
60 Gy in 19 to 20 fractions, or 36.25 to 37.5 Gy in five fractions. BCR was 
defined based on the Phoenix criteria where nadir PSA + 2 ng/mL after 
undergoing RT. Patients whose sample quality failed the microarray sample 
quality control score were excluded from the analyses. 

The study was explained to the patients, who were then invited to partici-
pate. Written informed consent was obtained from all participants. The 
study was approved by the SingHealth Centralised Institutional Review 
Board (CIRB) and conducted in accordance with the IRB protocol no. 
2019/2177. 

NCCS tumor sampling and RNA abundance profiling 
Treatment-naı̈ve tumors from the NCCS cohort were sampled from 
formalin-fixed, paraffin-embedded diagnostic biopsies following review by 
an expert genitourinary pathologist to delineate the tumor region bearing the 
highest Gleason grade group and cellularity was at least 70%. Two 2-mm 
cores were obtained, and RNA extraction, cDNA amplification, and 
microarray hybridization for gene expression profiling were performed. 
RNA abundance profiling for the NCCS cohort was performed in accordance 
with the protocols used in a Clinical Laboratory Improvement Amendments 
(CLIA)-certified clinical operations laboratory (Veracyte Inc.). RNA data 
were obtained using the Human Exon 1.0 ST oligonucleotide microarray 
(ThermoFisher), which measured the expression of 46,050 genes and non- 
coding RNA transcripts. Microarray data were normalized using Single 
Channel Array Normalization. 

POLQ RNA associations in validation cohorts 
The RNA abundances of POLQ in the NCCS cohort were divided into lower, 
middle, and higher tertiles by using ntile v1.0.10 function of the dplyr R 
package (72). Then, the rate of BCR was compared between patient samples 
with a high POLQ RNA abundance to those with low or intermediate RNA 
abundance by fitting Cox proportional hazard models using the survival R 
package v3.2-10. Spearman correlations were calculated to evaluate the 
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relationship between POLQ and BRCA2 RNA abundance. The raw data used 
for the analysis can be found in Supplementary Table S4. 

In TCGA (68), log2 transformed TPM RNA abundance was used for asso-
ciations. RNA abundances were associated with grade groups and 
T-categories in 483 patients using ordinal logistic regression relying on the 
MASS package in R v7.3.60 (73). Patient-matched samples were utilized to 
test differences between tumor and normal RNA abundances using a paired 
t test. 

Gene counts generated by Ross-Adams and colleagues (74) were downloaded 
from GEO, accession number GSE70770. Following counts per million 
normalization and log2 transformation using edgeR v4.0.16 (RRID: 
SCR_012802; refs. 75, 76) , the rate of BCR was compared between patient 
samples with a high POLQ RNA abundance (upper 20%), to those with low 
or intermediate RNA abundances (lower 80%) by fitting a Cox proportional 
hazard model. 

Visualization and statistical analysis 
Visualizations and statistical analysis for this paper were carried out in the R 
statistical environment v4.2.0. Visualizations were generated using the BPG 
package v7.0.3 (77). 

Data availability 
DU145 and 22Rv1 cell line genomic and transcriptomic data have been 
deposited to SRA under the accession number PRJNA1008743. DU145 cell 
line miRNA NanoString data have been deposited to GEO under the ac-
cession number GSE241078. DU145 cell line proteomic raw data have been 
deposited to the Mass Spectrometry Interactive Virtual Environment 
(MassIVE) with the following MassiVE ID: MSV000092485 and FTP link: 
ftp://massive.ucsd.edu/MSV000092485/. The raw NCCS patient data used in 
this study are available in the Supplementary Material. 

Results 
Radioresistance induces widespread genomic instability 
To characterize the molecular determinants of radioresistance in prostate 
cancer, we exploited isogenic DU145 radioresistant cells created by mim-
icking CF and HF treatment schedules (17, 18). We performed DNA WGS, 
RNA sequencing, and whole-cell and organellar proteomics (Fig. 1A) to 
characterize the molecular response to radiation. We first evaluated the 
number of mutations induced by radiation across the entire genome. CF- 
resistant cells acquired ∼60,000 somatic SNVs per biological replicate after 
RT—mutations absent in the parental cells (Fig. 1B). In contrast, HF- 
resistant cells acquired fewer, at ∼30,000 new SNVs (P ¼ 0.1; Mann– 
Whitney U test; Fig. 1B). 

Relative to the typical few 1,000 SNVs in newly diagnosed localized prostate 
cancers (61, 78), the number of RT-associated point mutations was very 
large. To validate this result, we next created CF-radioresistant 22Rv1 cells 
and again performed DNA sequencing. We saw a comparable increase in 
SNV mutations/Mbp of genomic DNA in this second model system (Sup-
plementary Fig. S1A). CF-resistant cells experienced widespread thymine to 
cytosine mutations, whereas cytosine to thymine predominated in HF- 
resistant cells (Supplementary Table S5). Both CF- and HF-resistant cells 

contained multiple driver-affecting SNVs, including two separate point 
mutations in MTOR in CF-resistant cells (Fig. 1C). 

Independent of fractionation, mutations occurring in radioresistant cells 
showed strong signatures of defective DNA mismatch repair, but there were 
fractionation-dependent differences in the signature types: SBS20 and SBS26 
for CF-resistant cells and SBS14, SBS15, and SBS44 for HF (Fig. 1D). 
Upregulation of proliferating cell nuclear antigen (PCNA) transcript and 
dysregulation of polymerase delta (POLD1) isoforms were detected in CF- 
resistant cells (Supplementary Fig. S2), consistent with the association of the 
CF-exclusive signature SBS20 with POLD1 (79–81). We again confirmed 
these results in CF-radioresistant 22Rv1 cells (Supplementary Fig. S1B). SBS5 
was conserved between CF and HF (Fig. 1D). 

Radioresistance was also associated with increased genomic instability in 
double-stranded breaks, with significant additional SV (Fig. 1E). While the 
total number of SVs was similar between CF- and HF-resistant cells, there 
were no common SV regions. (Fig. 1F). No SVs appeared to directly perturb 
known cancer driver genes, although a subset was associated with gene 
expression changes (Supplementary Fig. S1C). For example, a chromosome 
10 inversion that disrupted MYOF and GRK5 in HF-resistant cells led to the 
presence of MYOF-GRK5 fusion transcripts solely in these cells (Fig. 1G; 
Supplementary Table S6). 

Extensive transcriptional and post-transcriptional 
responses to RT 
We next considered global RNA abundance profiling, where similar num-
bers of transcripts were detected in all groups (Supplementary Fig. S3A; 
Supplementary Table S7) with similar global patterns between groups 
(Supplementary Fig. S3B). Hundreds to thousands of specific transcripts 
were differentially abundant between parental and radioresistant groups 
(Supplementary Fig. S3C–S3E). Consistent with DNA sequencing, the 
transcriptome of HF-resistant cells was less perturbed than that of CF- 
resistant cells (271 vs. 1,416 significant transcripts at the level of FDR ≤ 0.05; 
Supplementary Fig. S3F). This was particularly evident in cancer-driver 
genes, in which almost all changes occurred in CF-resistant but not HF- 
resistant cells (Fig. 2A; Supplementary Table S1). Most of these RNA changes 
translated to differential protein abundance in HF (Fig. 2B) or CF (Fig. 2C) 
cells. Most notable of these was CDH1, a classic prostate cancer driver gene 
that its loss has been previously associated with radioresistance (82). In-
triguingly CDH1 was downregulated at the RNA level only in CF-resistant 
cells but not in HF-resistant cells (Fig. 2A). By contrast, it was significantly 
downregulated in protein for both fractionation schedules, suggesting dif-
fering mechanisms (Fig. 2B and C). Supporting this, cancer hallmark genes 
were preferentially changed in radioresistant cells (Supplementary Fig. S3G) 
and distinguished fractionation schedules (Fig. 2D) much more clearly than 
did the global transcriptome (Supplementary Fig. S3B). Multiple pathways 
were specifically dysregulated in radioresistant cells (Fig. 2E), with CF- 
resistant cells being more disrupted, consistent with genomic and univariate 
transcriptomic data. Similar numbers of significant RNA abundance changes 
in drivers occurred in CF-resistant 22Rv1 cells. 

Furthering this concept of fractionation-specific gene-regulatory pathways, 
we considered long non-coding RNAs (lncRNA). The lncRNA UCA1 has 
been associated with CF radioresistance (17), and consistently here we 
identified four UCA1 isoforms heavily upregulated in CF-resistant cells, but 
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none in HF-resistant cells (Fig. 2F). The RNA counts of the oncogenic 
lncRNA THOR (83) were very low in all samples and did not yield signifi-
cant changes following RT (Fig. 2F). The lncRNA SCHLAP1, which pro-
motes aggressive prostate cancer (84), was not detected in any of the 
samples. 

To further characterize post-transcriptional signaling responses to radiation, 
we then quantified global microRNAs (miRNA) abundance in each condi-
tion. Similar miRNA abundance patterns were observed between groups 
(Supplementary Fig. S3H and S3I). We identified 23 differentially abundant 
miRNAs (Supplementary Fig. S3J; Supplementary Table S8). CF- and HF- 
exclusive miRNAs targeted 14% and 11% of the exclusive CF and HF dys-
regulated genes, respectively (Supplementary Fig. S3K), suggesting that RNA 
abundance differences in CF versus HF are at least in part caused by dif-
ferential regulation of miRNA “master regulators”. We highlighted the 
miRNA target ZEB2, which promotes radioresistance via recombination- 

dependent DNA repair (85) and its regulation by miRNA-200b-3p and 
miRNA-200c-3p (Fig. 2F). Taken together, these data demonstrate wide- 
spread, fraction-specific modes of radioresistance that are significantly sha-
ped by post-transcriptional regulatory processes. 

Protein subcellular responses to RT are fractionation 
dependent 
To better evaluate post-transcriptional regulation in radioresistance, we 
performed subcellular fractionation to enrich for distinct organelles (47), 
which were independently analyzed by proteomics (Supplementary Tables 
S9 and S10). Using network analysis, we identified 28 gene modules (groups 
of co-expressed genes among two data sets) with disparate abundance pat-
terns across fractions (Fig. 3A). Most were more abundant in the cytosols of 
HF-resistant cells, but conversely were more abundant in other subcellular 
compartments of CF-resistant cells. Several of these fraction-biased networks 
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FIGURE 1 The genomic landscape of CF- and HF-resistant prostate cancer cells. A, Schematic of experimental design and workflow. B, Somatic 
SNV count for CF- vs. HF-resistant cells. CF-resistant cells gained twice more SNVs than HF (P ¼ 0.1; Mann–Whitney U test). C, SNVs in cancer driver 
genes. Presented are all driver genes that are predicted to be strongly influenced by SNVs. Considered are SNVs that were identified in all three 
replicates for each cell type. Top, single-base substitution types. Bottom, the predicted annotation. D, Gained SNVs converged on partly similar 
cancer mutational signatures. Most signatures of known etiology, irrespective of the treatment schedule, are associated with defective DNA mismatch 
repair. Signature etiologies: SBS5, unknown; SBS26 and SBS15, defective DNA mismatch repair; SBS1, spontaneous deamination of 5-methylcytosine; 
SBS14, concurrent polymerase epsilon mutation and defective DNA mismatch repair; SBS20, concurrent POLD1 mutations and defective DNA 
mismatch repair; SBS44, defective DNA mismatch repair. E, Somatic SV counts for CF- and HF-resistant cells. The number of somatic SVs is similar 
between CF- and HF-resistant cells (P ¼ 1; Mann–Whitney U test). F, Distinct SVs in CF-resistant cells compared to HF across the genome. Considered 
are SVs that were identified in all three replicates for each cell type. Chromosome numbers are presented on the x-axis. The colored lines represent 
types of SVs: DEL, deletion; DUP, duplication; INV, inversion; TRA, translocation. G, Fusion transcripts that were identified in either CF- and/or 
HF-resistant cells. Purple, the fusion transcript was identified; white, the fusion transcript was not identified. The results are presented for three 
replicates for each cell line. 
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were preferentially associated with specific pathways (Fig. 3B). For example, 
genes involved in RNA splicing (“dark gray” module) were preferentially 
cytosolic in HF-resistant cells but nuclear in CF-resistant cells. 

To understand how specific proteins were associated with radioresistance, we 
performed differential proteomic abundance analysis in each fraction and in 
whole cell lysates. Consistent with our DNA and RNA findings, CF-resistant 
cells were significantly more perturbed in whole cell lysates (Supplementary 
Fig. S4A and S4B). This difference was driven by all subcellular fractions 

(besides the mitochondria, where no dysregulation was observed for both 
cell types) and especially by the nucleus and the plasma membrane (Sup-
plementary Fig. S4C–S4N). Across fractions, a total of 132 cancer driver 
genes showed proteomic dysregulation (Fig. 3C; Supplementary Table S3), 
larger than at either the DNA or RNA levels (Supplementary Fig. S5C). As a 
specific example, CD44 has been proposed as a potential driver of radio-
resistance (18). Its transcriptional dysregulation was restricted to five iso-
forms identified in CF-resistant cells and four in HF-resistant cells 
(Supplementary Fig. S5A); these isoforms have distinctive functional roles 
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(86). Similarly, its protein dysregulation was exclusively reflected in the nu-
clear soluble fraction (Supplementary Fig. S5B). This highlights the isoform- 
and subcellular compartment-specific changes induced by radioresistance. 

Consistent with the presence of significant post-transcriptional and trans-
lational components of radioresistance, RNA and protein abundances were 
only weakly correlated [Supplementary Fig. S5C (left)]. The median corre-
lation was 0.15, lower than the typical 0.3 observed in primary prostate 
cancers (67). By contrast, these correlations strengthened significantly when 
only cancer hallmark genes were considered, most prominently in CF cells 

[Supplementary Fig. S5C (right)]. This suggests that transcriptional regula-
tion was an important mode of radioresistance for cancer-related genes. 
Indeed, a large group of driver genes that were transcriptomically dysregu-
lated were proteomically dysregulated in one or more specific subcellular 
compartments (Supplementary Fig. S5D). Fully 28% of drivers that showed 
RNA and protein changes in CF cells were members of the green module 
(Supplementary Fig. S5D), suggesting that specific network modules may 
reflect specific regulatory patterns. Taken together, these data demonstrate 
that radioresistance significantly reshapes post-transcriptional, translational, 
and post-translational processes. 
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Primary patient data highlights POLQ as a mediator of 
radioresistance 

To determine which genes associated with radioresistance in pre-clinical 
model systems might influence primary patient phenotypes, we interrogated 
the 382 patient ICGC PRAD-CA dataset. This cohort includes patients 
treated with curative intent, either by surgery or RT (Table 1). Of 291 pre-
clinical candidates selected based on the cell line investigations (“Materials 
and Methods”; Supplementary Table S11), 28 were prognostic of BCR; 
(Fig. 4A). Out of these 28 genes, we chose to focus on POLQ, due to its well- 
known role in double-strand DNA (dsDNA) break repair (87). In cell lines, 
POLQ transcripts were upregulated strongly in CF resistant cells (Fig. 2A) 
and modestly in HF (Supplementary Table S2). Amplification of POLQ was 
associated with significantly worse prognosis in treatment-näıve prostate 
cancer [Fig. 4B; hazard ratio (HR) ¼ 2.49; FDR ¼ 7.78 � 10�3; confidence 
interval (CI) ¼ 1.54–4.02]. We validated this finding by demonstrating an 
increased association of POLQ RNA abundance with BCR in two independent 

cohorts: (i) the NCCS cohort of 185 treatment-näıve prostate cancers treated 
with RT (Fig. 4C; Table 1; HR ¼ 2.4; P ¼ 0.06; CI, 0.96–5.71; ii) a cohort by 
Ross-Adams et al. with 93 patients treated with RP (Supplementary Fig. S6A; 
HR ¼ 1.9; P ¼ 0.06; CI, 0.93–3.70). 

To understand the molecular consequences of POLQ dysregulation, we eval-
uated the (74) association of POLQ RNA abundance with known prostate 
cancer drivers and prognostic biomarkers in ICGC PRAD-CA (61, 62, 66, 67). 
High POLQ RNA abundance was associated with increased mutation rates in 
many preclinical candidates and known drivers, including MYC and RAD21 
(linear regression, FDR ≤ 0.05; Fig. 4D; Supplementary Fig. S7). Increased 
POLQ RNA abundances were also associated with amplifications in POLQ 
itself, suggesting that the dysregulation in POLQ at the RNA level is driven, at 
least partly, by POLQ amplification. Positive RNA–RNA correlations were 
widespread between POLQ and multiple cancer driver genes (Fig. 4E) most 
notably BRCA2 (Fig. 4F). We validated this finding in the same 185 patient- 
independent NCCS cohort (Fig. 4G). POLQ RNA abundances were also 

TABLE 1 Prostate cancer cohort characteristics 

ICGC NCCS 

Median (range) 

Age at treatment 66 (42–83) 71 (66–75) 
Pretreatment serum PSA abundance (ng/mL) 7.2 (0.7–39.5) 16.2 (8.6–40.7) 
Gleason score N 

6 65 6 
7 305 109 
8 8 34 
9 2 36 
NA 2 — 

cT category N 

T1 180 75 
T2 202 48 
T3 — 60 
T4 — 2 

Biochemical relapse N 

Yes 127 21 
No 253 165 
NA 2 — 

RNA data N 

Available 140 185 
Not available 242 — 

Treatment N 

RT only 151 43 
RT + short-term ADT — 42 
RT + long-term ADT — 100 
RP 231 — 

Abbreviations: ADT, androgen deprivation therapy; RP, radical prostatectomy; RT, radiotherapy. 
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significantly higher in tumor versus normal samples (Supplementary Fig. 
S6B) linked to pathologic T-categories (Supplementary Fig. S6C) and 
closely associated with grade in two independent cohorts (Fig. 4H; 
Supplementary Fig. S6D; Supplementary Table S12). Collectively, we 
revealed a widespread association of POLQ with somatic and clinical 
features of prostate tumors that marked POLQ as the top radioresistance 
modulator candidate. 

Next, to functionally validate the role of POLQ in radioresistance, we 
knocked it down in parental, CF- and HF-resistant cells using siRNA, fol-
lowed by irradiation (Fig. 5A; Supplementary Fig. S8A–S8C). POLQ 
knockdown significantly radiosensitized all three cell lines (Fig. 5B). POLQ 
pharmacologic inhibition with the inhibitor novobiocin (88) yielded similar 
radiosensitization (Fig. 5C). Proteomic profiling of cells following siRNA- 
mediated POLQ knockdown revealed widespread changes (Supplementary 
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Fig. S8D) and dysregulation of multiple signaling pathways (Fig. 5D; Sup-
plementary Table S13). A signature of 12 individual strongly dysregulated 
proteins (FDR ≤ 0.05) defined POLQ-inactivation (Fig. 5E; Supplementary 
Fig. S8E–S8G). Opposite dysregulation of these genes in untreated CF- 
resistant cells suggests their involvement in radioresistance, while POLQ 
depletion reverses their dysregulation, leading to radiosensitization [Fig. 5E 
(right) two panels]. 

To validate the 12-gene POLQ inhibition signature (Fig. 5D), we used 
transcriptomic (66, 68, 70) and proteomic (67, 69) profiling of primary 
prostate tumors. We first calculated the RNA abundance correlations be-
tween our signature genes and POLQ. Significant positive correlations be-
tween all signature genes and POLQ were identified in TCGA, with a mix of 
positive and negative correlations in the other small datasets used (Fig. 5F; 
Supplementary Table S14). All 12 signature genes showed transcriptomic 
proteomic differential abundance [Fig. 5F (right)], while two were associated 
individually with BCR: PSAT1 and CLPX deletion (Supplementary Fig. S8H 
and S8I). Taken together, these data establish that POLQ is associated with 
radioresistance in preclinical model systems, that its pharmacologic or ge-
netic inhibition reverses this phenotype and that it is associated with a gene 
expression signature that predicts aggressive cancer 

Discussion 
Radioresistance can arise following both CF and HF and is associated with 
aggressive disease that might lead to further adverse oncologic outcomes (15, 
16). There is an urgent need to identify mechanisms and modulators of 
radioresistance. We characterized the proteogenomic response to radiation in 
prostate cancer. Remarkably, CF resulted in a far more aggressive biomolecular 
phenotype than did HF, with more SNVs and strong dysregulation of 
hallmark-cancer and driver genes at the RNA and protein levels. These ex-
tensive biomolecular reactions to CF RT can explain the significantly more 
aggressive phenotype observed following CF RT (18) and are consistent with 
clinical reports suggesting improved disease control with HF (9, 89, 90). 

Ionizing RT causes hard-to-repair dsDNA breaks, resulting in mitotic ca-
tastrophe and cell death. Irrespective of fractionation, we observed immense 
genomic instability dictated by defective DNA mismatch repair, which can 
grant oncogenic advantage. These findings imply a delicate equilibrium 
caused by radiation between lethal dsDNA breaks and tumor-promoting 
mismatch mutations. Understanding this equilibrium may be the key to 
inventing new therapies to improve radiation sensitivity. This equilibrium 
may be less favorable in CF RT compared to HF. In CF RT, small radiation 
doses decrease chances for cancer cell death and multiple treatments en-
hance opportunities to acquire mutations that confer an evolutionary ad-
vantage. In contrast, HF potentially causes more severe damage to cancer 
cells over far fewer treatments, greatly reducing the likelihood of cells sur-
viving and gaining mutations. Thus, our results are logical and support the 
use of HF RT for treating prostate cancer. 

Integrating primary prostate cancer patient data, we pinpoint POLQ as a top 
candidate modulator of radioresistance beyond our model system. POLQ is a 
DNA repair enzyme that plays an essential role in microhomology-mediated 
end joining (MMEJ) for dsDNA break repair. The lack of important 
proofreading activity in POLQ (87, 91) renders MMEJ susceptible to 
mutations. POLQ inhibition in combination with fractionated radiation 

has been shown to safely promote radiosensitization in tumor cells, while 
avoiding damage to normal cells, both in vitro and in vivo (92–95). The 
safety of POLQ inhibition is now being tested in a human clinical trial 
(NCT04991480). Our results show for the first-time radiosensitization in 
radioresistant cells following POLQ inhibition. Thus, we display the po-
tential of targeting POLQ, not only to achieve radiosensitization in 
radiation-naı̈ve tumor cells but also to prevent or treat radio-recurrent 
disease. Detailed mechanistic studies to elucidate POLQ’s contribution to 
radiation response, the use of altered fractionation schedules, and in vivo 
validation studies will be integral to move toward clinical translation. 

We acknowledge the limitations to our study. We primarily utilized two 
common prostate cancer cell lines to derive radioresistant lines. It will be 
ideal in the future to establish additional CF- and HF-resistant lines to better 
capture the molecular heterogeneity that may contribute to radioresistance. 
Furthermore, we plan to utilize primary prostate cancer cell lines that should 
more faithfully reflect the molecular and cellular phenotype of localized 
prostate cancer. 

This study demonstrates the complex proteogenomic response of cancer cells 
to radiation. This response was partly fractionation dependent, demonstrating 
the need to suit future translational studies to the changes in fractionation. Due 
to the recent adoption of HF into clinics, all patients in our cohort were treated 
with CF RT. It would be intriguing to extend our investigation to patients 
treated with HF. Larger cohort sizes of RT patients will enable higher powered 
analysis to identify additional therapeutic targets. Ongoing proteogenomic 
integration will help understand the relationships among radioresistance- 
associated changes at the DNA, RNA, and protein levels. 
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