
UCLA
UCLA Previously Published Works

Title
Self-Sorting Microscale Compartmentalized Block Copolypeptide Hydrogels

Permalink
https://escholarship.org/uc/item/7x6860c6

Journal
ACS Macro Letters, 8(10)

ISSN
2161-1653

Authors
Sun, Yintao
Bentolila, Laurent A
Deming, Timothy J

Publication Date
2019-10-15

DOI
10.1021/acsmacrolett.9b00669
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7x6860c6
https://escholarship.org
http://www.cdlib.org/


Self-sorting microscale compartmentalized block

copolypeptide hydrogels

Yintao Sun,a Laurent A. Bentolilab,c and Timothy J. Deminga,b,c*
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b Department of Chemistry and Biochemistry, University of California, Los Angeles, 

CA 90095

c California NanoSystems Institute, University of California, Los Angeles, CA, 90095,
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Abstract Multicomponent  interpenetrating  network  hydrogels  possessing

enhanced  mechanical  stiffness  compared  to  their  individual  components  were

prepared via physical mixing of diblock copolypeptides that assemble by either

hydrophobic  association  or  polyion  complexation  in  aqueous  media.  Optical

microscopy  analysis  of  fluorescent  probe  labeled  multicomponent  hydrogels

revealed that the diblock copolypeptide components rapidly  and spontaneously

self-sort to form distinct hydrogel networks that interpenetrate at micron length

scales.  These  materials  represent  a  class  of  microscale  compartmentalized

hydrogels  composed of degradable,  cell-compatible components,  which possess

rapid self-healing properties and independently tunable domains for downstream

applications in biology and additive manufacturing.
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Hydrogels can display a broad range of structural and functional properties,

and are being developed for many applications including as cell scaffolds, depots

for therapeutic delivery, contact lenses, and coatings.1-3 For certain applications, it

is  desirable  to  introduce  multiple  network  components  into  hydrogels  to  alter

mechanical  properties  or  to create distinct  functional  environments,  as can be

found in  biological  materials.1-4 Examples  include  covalently  crosslinked  double

network  hydrogels  possessing  remarkable  increased  strength  and  toughness

compared  to  their  individual  single  network  components,5,6 as  well  as

multicomponent  hydrogels  containing  orthogonally  self-assembled  physical

networks  that  can  respond  differently  to  various  external  stimuli,  similar  to

cytoskeletal components found within cells.7-11 Most of these hydrogels consist of

networks  that  interpenetrate  at  molecular  length  scales,  and  there  has  been

considerable  recent  effort  to  develop  multicomponent  hydrogels  capable  of

possessing  microscale  compartmentalization  akin  to  that  found  in  cells  and

biological scaffolds.12-14 Here, we report that mixtures of diblock copolypeptides are

able to rapidly self-sort during assembly to spontaneously give dual compartment

(DC)  physical  hydrogels  containing  distinct  networks  that  interpenetrate  at

micrometer  length  scales.  These  DC  hydrogels  also  possess  significantly

increased,  and  tunable,  mechanical  properties  compared  to  their  individual

components (Figure 1).
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Figure  1. Schematic  showing  preparation  of  dual  compartment  diblock

copolypeptide  hydrogels  (DCHDC)  via  combination  of  (MOA)155E55 +  (MOA)155K55

(DCHPIC)  and  (MOA)200L30 (DCHMO),  which  spontaneously  self-sort  into  physical

interpenetrating  microscale  networks  in  water  via  polyion  complex  and

hydrophobic interactions, respectively. 

Our lab has created a variety of diblock copolypeptide hydrogels (DCH),15-18

where some have been developed for applications including localized delivery of

molecules and cells within central nervous system tissues,19,20 and as antimicrobial

coatings for wounds and surgery.21 DCH are readily formulated by addition of solid

copolypeptide  to  aqueous  media  that  may  contain  various  molecules  or  cells,

resulting in hydrogel formation at moderate temperatures and in different buffers

or  media.15-18 These physically  associated hydrogels  are composed of  branched

and  tangled  nanoscale  tape-like  assemblies  that  can  be  deformed  by  applied
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stress and injected through narrow diameter needles, after which they rapidly self-

heal  into  elastic  gel  networks.15-18 DCH are  also  porous  hydrogels  that  contain

microscopic water-filled channels that allow for rapid diffusion of molecules within

the networks.15-18 Inspired by the multicomponent hydrogel  strategies described

above,  we  sought  to  introduce  compartmentalization  and  mechanical

enhancement  into  DCH  through  combination  of  different  block  copolypeptide

components that would generate dual compartment DCH (hereafter DCHDC). Since

DCH networks are formed by direct self-assembly of copolypeptides in water, it

was necessary to develop mixtures of DCH that could self-sort into two distinct

networks during assembly, as opposed to co-assembling into a single network of

mixed composition.

The challenge to prepare DCHDC is similar to that found in the self-assembly

of  mixtures  of  low  molecular  weight  gelators  (LMWG)  used  to  form  one-

dimensional fibrils in water.7-11 These LMWGs can also either co-assemble to give

single networks, or self-sort to give DC hydrogels. Adams, van Esch, Smith, and

others  have  reported  strategies,  relying  on  features  including  LMWG size  and

shape, and conditions such as pH, which allow LWMGs to self-sort into fibrils to

form interpenetrating dual network hydrogels.7-11  In these systems, the networks

all interpenetrate at molecular length scales, and thus are homogeneous at larger

scales.7-11 Using external inputs such as photo-patterning or formation of aqueous

two-phase emulsions, microscale compartmentalization has also been introduced

to some of these systems.12,13 A significant recent achievement has shown that a

mixture of LMWGs was capable of unprecedented spontaneous self-sorting at both

the  nanoscale  and  microscale,  giving  hierarchically  compartmentalized
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hydrogels.14 Some  potential  limitations  of  this  system  were  the  restricted

compositions of components, weak mechanical properties (G′ ~ 40 Pa), and time

required  for  full  structure  development  (ca. 5  hours).14 Inspired  by  these

precedents,  our  design  of  DCHDC was  focused  on  combination  of  block

copolypeptides  that  assemble  in  water  via  orthogonal  mechanisms in  order  to

favor DC formation instead of co-assembly.

Most  DCH  are  based  on  amphiphilic  diblock  copolypeptides  that  utilize

assembly of hydrophobic segments in water to form hydrogels.15,16 An example is

DCHMO, which is based upon nonionic, hydrophilic L-methionine sulfoxide (MO) and

hydrophobic L-leucine residues.18 We recently reported an alternative strategy for

DCH formation where dual hydrophilic block copolypeptides assemble via polyion

complexation  between  oppositely  charged  segments,  hereafter  DCHPIC.17 DCHPIC

possess many features that are similar to amphiphilic  DCH, but have improved

stability against dilution. Since charged polypeptide segments were not expected

to interact with hydrophobic polypeptide segments, the combination of amphiphilic

copolypeptides with charged copolypeptides was explored as a means to prepare

self-sorting DCHDC via self-assembly. The samples selected for this study were the

previously  reported  poly(L-methionine  sulfoxide-stat-L-alanine)155-block-poly(L-

lysine-HCl)55,  (MOA)155K55,  and poly(L-methionine  sulfoxide-stat-L-alanine)155-block-

poly(L-glutamate-Na)55,  (MOA)155E55 for  DCHPIC,17 and poly(L-methionine  sulfoxide-

stat-L-alanine)200-block-poly(L-leucine)30,  (MOA)200L30 for amphiphilic  DCHMO (Figure

1).18 Non-ionic hydrophilic  segments are essential for DCHPIC formation,  and the

readily prepared and degradable MOA segments were chosen since they have been

previously shown to give DCH that resist cell attachment and are cell compatible.18
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The different modes of assembly in DCHPIC and DCHMO were expected to favor self-

sorting during network formation to yield interpenetrating hydrogel networks. 

The copolypeptides in Figure 1 were prepared as previously described by the

stepwise addition of appropriate NCA monomers to growing chains initiated using

Co(PMe3)4,17,18 and  gave  samples  with  segment  lengths  and  compositions  that

agreed  with  predicted  values  (see  supporting  information  (SI),  Table  S1).

Subsequent  oxidation  of  methionine  residues  resulted  in  their  conversion  to

methionine  sulfoxides,17,18 and  removal  of  protecting  groups  in  DCHPIC samples

gave the final copolypeptides in high overall yields after purification (see Table

S1).  As  control  samples,  single  network  hydrogels  were  prepared  by  either

dissolving  DCHMO copolypeptides  or  mixing  aqueous  solutions  of  DCHPIC

copolypeptides at different concentrations in 1x PBS, which was chosen since this

buffer provides improved DCHPIC formation compared to DI water.17 As expected

from  prior  studies,  all  samples  formed  translucent  hydrogels  over  a  range  of

copolypeptide concentrations as quantified using oscillatory rheology, and all were

found to display elastic behavior (G′ » G″) over a range of frequency (see Figures

S1,  S2).  All  hydrogels  were  also  found  to  break  down  under  high  strain,  as

expected for these physical hydrogels (see Figure S2).17,18 Hydrogel stiffness (G′)

was found to increase with sample concentration for all samples, and the specific

compositions  of  DCHMO and  DCHPIC were  chosen  to  give  comparable  hydrogel

stiffness at equivalent concentrations (see Figures S1, S2).

Next, we sought to prepare multicomponent hydrogels by combining DCHMO

and  DCHPIC copolypeptides  during  formulation.  The  successful  formation  of  DC

hydrogels may depend on the method of mixing, where there are many possible
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pathways. Since DCHMO forms networks directly upon dilution,  while DCHPIC only

forms networks upon mixture of both components, it was expected that relative

rates of  dissolution  and mixing could affect resulting  network structures.  Since

dissolution of (MOA)200L30 is slow (minutes) compared to DCHPIC formation (seconds),

we decided to fully dissolve (MOA)200L30 before formation of the DCHPIC networks.

Initially,  dissolution  of  (MOA)155K55 or  (MOA)155E55 copolypeptides  into  separate

viscous  solutions/hydrogels  of  (MOA)200L30 was  compared  against  dissolution  of

(MOA)200L30 copolypeptide into separate solutions of (MOA)155K55 or (MOA)155E55. It was

observed that dissolution of (MOA)200L30 into solutions of charged copolypeptides

was more efficient than the reverse,  likely  since the viscosities of  the charged

copolypeptide  solutions  are much lower  than that  of  dissolved (MOA)200L30 thus

allowing better physical mixing. Further, it was observed that (MOA)200L30 dissolved

much faster in (MOA)155K55 solutions compared to (MOA)155E55 solutions, possibly due

to H-bonding interactions between MO sulfoxide groups and the ammonium groups

in (MOA)155K55.22 
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Figure  2. Mechanical  properties  of  single  and  dual  compartment  diblock

copolypeptide hydrogels. (A) G′ (Pa, black) and G″ (Pa, white) of DCHDC composed

of 5 wt% DCHPIC  and varying concentrations of DCHMO  in 1× PBS buffer at 25 °C.

Data  for  individual  5  wt% DCHPIC  and DCHMO  hydrogel  components  at  different

concentrations in 1× PBS buffer at 25 °C are included for reference. (B) G′ (Pa,

black), and loss modulus, G″ (Pa, white), of DCHDC composed of 3 wt% DCHMO and

varying concentrations of DCHPIC in 1× PBS buffer at 25 °C. Data for individual 3 wt

% DCHMO and DCHPIC  hydrogel components at different concentrations in 1× PBS

buffer at 25 °C are included for reference. All G′ and G″ values were measured at

an angular frequency of 5 rad/s and a strain amplitude of 0.01, and are averages

of triplicate runs with bars indicating standard deviations.
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Studies on DCHDC formation were subsequently focused on the combination

of  solutions  of  (MOA)200L30 dissolved  in  (MOA)155K55 with  solutions  of  (MOA)155E55

(Figure 1). In the first series of experiments, the final concentration of DCHPIC was

maintained at 5.0 wt% (combined mass of equimolar (MOA)155K55  and (MOA)155E55)

while the final concentration of DCHMO was varied between 1.5 and 4.0 wt% (mass

of  (MOA)200L30)  (Figure  2A).  To  favor  rapid  dissolution,  all  the  (MOA)200L30  was

dissolved in  (MOA)155K55  in  80% of  the final  volume 1x PBS,  and this  was then

combined with the (MOA)155E55  dissolved in 20% of the final volume 1x PBS. The

resulting viscous solutions/hydrogels were then vortex mixed for 20 seconds and

then let stand whereupon they all formed translucent hydrogels within 30 seconds.

By visual inspection (i.e. tube inversion and agitation), all of the resulting DCHDC

samples were more resistant to flow or deformation compared to their individual

components.  Rheological  analysis  of  the  samples  verified  that  all  the  DCHDC

samples were ca. 3 to 5 times stiffer (i.e. increased storage modulus G′) than the

sum of their components (Figure 2A). All samples in Figure 2 were analyzed within

one hour of  preparation,  and were found to show no differences in rheological

properties over one week.  It is worth noting that other methods of mixing, such as

including  (MOA)200L30  in  both  precursor  solutions  and/or  using equal  volumes of

precursor solutions, gave similar results, yet at the cost of slower initial (MOA)200L30

dissolution.

The results  in  Figure  2A show that  DCHDC stiffness  increased with  DCHMO

concentration  up  to  3.0  wt%,  but  then  reached a  plateau  and  then  began  to

decrease at higher concentrations. This plateau may be due to incomplete physical

mixing  of  DCHPIC components  since  elasticity  of  the  DCHMO solutions  increases

9



significantly above 3.0 wt%. Holding the final DCHMO concentration constant at 3.0

wt%, a second series of samples was prepared following the protocol described

above where the final concentration of DCHPIC was varied between 2.5 and 7.0 wt%

(Figure  2B).  All  of  these  formulations  formed  translucent  hydrogels  within  30

seconds,  and  rheological  analysis  also  showed  that  DCHDC samples  were

significantly  stiffer  than  the  sum  of  their  components  (Figure  2B).  The  key

difference here was the finding that there was no plateau in  DCHDC stiffness as

DCHPIC concentration increased, allowing flexibility in preparation of DCHDC with a

range of ratios of DCHPIC to DCHMO,  where hydrogel  stiffness increases with the

amount of DCHPIC added. These results showed that a consistent enhancement of

hydrogel stiffness was present in all DCHDC formulations.
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Figure 3.  Mechanical recovery of 5 wt% DCHPIC, 5 wt% DCHMO and DCHDC  (3 wt%

DCHMO + 5 wt% DCHPIC) over time in 1× PBS buffer at 25 °C (G′ = solid symbols; G″

= open symbols) after application of stepwise large-amplitude oscillatory break

down (gray regions = strain amplitude of 10 at 10 rad/s for 120 s) followed by low-
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amplitude linear recovery (white regions = strain amplitude of 0.01 at 5 rad/s for

300 s).

A  common  characteristic  of  DCHMO and  DCHPIC is  that  each  possess

thixotropic properties, or the ability to rapidly self-heal after deformation.17,18,23 To

determine if DCHDC also possess self-healing mechanical properties, a sample of

DCHDC (3 wt% DCHMO + 5 wt% DCHPIC) was subjected to high amplitude oscillatory

strain (1000 %), followed immediately by monitoring the recovery of elasticity over

time by measuring  G' at a much smaller strain (1%), Figure 3. During the initial

100 s of high strain amplitude,  G' dropped significantly to below the level of  G'',

indicating that the hydrogel was broken down to a viscous liquid. Upon switching

to low strain amplitude, the sample began recovering its elastic properties over

time with greater than 90% recovery of  G' within seconds. It  is  possible some

initial network structure is destroyed when the as-formed DCHDC are subjected to

high  strain,  yet  this  appears  to  be  only  a  minor  component,  and  most  of  the

hydrogel stiffness is recovered after multiple strain breakdowns.  Although DCHMO

and DCHPIC are each known to self-heal individually (Figure 3), it was interesting to

see that DCHDC were also able to reform after exposure to repeated high strain.

Near complete recovery of mechanical properties after repeated breakdown under

high  strain  suggests  that  the  self-assembled  structure  of  DCHDC is  able  to

spontaneously  reform  and  is  not  significantly  altered  after  repeated  stress.

Furthermore, DCHDC were also found to be resistant to dissolution in media similar

to  DCHPIC formulations (see Figures S3, S4).17 This media stability and rapid self-

healing behavior are desirable as they allow deposition of  hydrogel  via injection
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through small bore needles, which has utility in applications for hydrogel depot

formation in vivo as well as for additive manufacturing.  

To better understand DCHDC  formation and the structural origins of DCHDC

mechanical  behavior,  individually  fluorescent  labeled  DCHMO and  DCHPIC

components  were prepared for  analysis  of  DCHDC  using laser scanning confocal

microscopy (LCSM). Previously, single component DCH were found to be composed

of nanoscale networks that form hydrogels containing microscopic channels filled

with  water.15,17 LCSM imaging of  the DCHMO component  (red)  in  a  dual  labeled

DCHDC  (3 wt% DCHMO + 5 wt% DCHPIC) sample, confirmed that microscale porosity

of the DCHMO component was also present in DCHDC (Figure 4). Separate imaging of

the DCHPIC component (green) revealed similar formation of a microporous DCHPIC

network.  Overlays  of  the green and red channels,  in  both  2D and 3D images,

showed that  the  DCHMO and DCHPIC networks  were  mutually  exclusive,  forming

segregated, interpenetrating DC structures of microscale dimensions (Figure 4).

Images collected within  one hour  of  sample preparation  were indistinguishable

from those collected after one week. These images support the formation of self-

sorted  compartmentalized  networks  in  DCHDC,  where  interpenetration  does  not

occur at the level of individual fibrils or polymer chains as in other multicomponent

hydrogels,7-11 but at the much larger length scale of distinct microscopic hydrogel

domains. The observed rapid formation of fully segregated dual networks in DCHDC

may be due to limited or poor thermodynamic mixing of the different polypeptide

components  in  aqueous  media.  The  high  molecular  mass  of  the  polypeptides,

compared  to  LMWGs,  may favor  phase separation  of  the  aqueous  polypeptide

solutions,24 leading  to  the  rapid  segregation  of  DCHPIC and  DCHMO components
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during  assembly.  The  microscale  DC  morphology  seen  here  also  resulted  in

significant  mechanical  enhancement  of  DCHDC  compared  to  its  individual

components. It is plausible that replacement of the aqueous channels of a single

DCH  network  with  an  additional  DCH  network,  as  found  in  DCHDC,  provides

mechanical reinforcement for both networks, thus inhibiting deformation of each

and leading to enhanced stiffness. 

In  summary,  physical  mixing  of  hydrophobically  assembled  DCHMO and

polyion complex assembled  DCHPIC components in aqueous media was found to

result in formation of DC hydrogels, DCHDC, which possess enhanced mechanical

stiffness while retaining the self-healing properties of the individual components.

LSCM analysis of dual labeled fluorescent DCHDC revealed that  DCHMO and DCHPIC

components  rapidly  self-sort  during  formulation  to  spontaneously  form distinct

hydrogel  networks that interpenetrate at micron length scales. These materials

represent a new class of  multicompartment hydrogel  composed of degradable,

cell-compatible  components,  which  possess  rapid  self-healing  properties  and

independently  adjustable  and  functionalizable  domains  for  downstream

applications in biology and additive manufacturing.     

A B C 
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Figure 4. Laser scanning confocal microscopy (LCSM) images of DCHDC  (3 wt%

DCHMO + 5 wt% DCHPIC). (A−C) LSCM images of DCHDC prepared using Alexa Fluor

488 labeled (MOA)155E55 and Alexa Fluor 633 labeled (MOA)200L30  components that

show separate interpenetrating networks  of  DCHMO (red)  and DCHPIC  (green)  (z-

thickness = 0.896 μm). (A) Alexa Fluor 488 channel, (B) Alexa Fluor 633 channel,

(C)  merged  image  of  (A)  and  (B).  (D-F)  3D  renderings  of  DCHDC  z-slice  stacks

showing separate interpenetrating networks of DCHMO (red) and DCHPIC (green). (D)

Alexa Fluor 488 channel, (E) Alexa Fluor 633 channel, (F) merged image of (D) and

(E). All scale bars = 10 μm.
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