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Explanation-based Learning Algorithms

Wendy E. Sarrett and Michael J, Pazzani
Department of Information and Computer Science
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October 6, 1989

Abstract

We present an approach to modeling the average case behavior of
learning algorithms. Our motivation is to mathematically model the
performance of learning algorithms in order to better understand the
nature of their empirical behavior. We are interested in how differences
in learning algorithms influence the expected accuracy of the concepts
learned.

We present the Average Case Learning Model and apply the model
to three learning algorithms: a purely empirical algorithm (Bruner's
Wholist), an algorithm which prefers analytical (explanation-based)
learning over empirical learning (EBL-FIRST-TM) and an algorithm
integrating both analytical and empirical .learning (lOSC-TM). The
Average Case Learning Model is unique in that it is able to accurately
predict the expected behavior of learning algorithms. We compare av
erage case analysis to Valiant's Probably Approximately Correct (PAC)
learning model.

KEYWORDS: Machine Learning, Analysis of Algorithms, Empir
ical Learning, Explanation-based Learning, Average Case Analysis
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1 Introduction

In this paper, we introduce the Average Case Learning Mode/and apply the
model to several learning algorithms. Average case analysis measures an al
gorithm's expected performance. The model predicts the expected accuracy
of a learning algorithm as a function of the number of training examples.
Accuracy is defined as the percentage of the population that is classified cor
rectly. This is measured experimentally by taking a sample of the population
and calculating the percentage of the sample that is correctly classified. We
will compare theoretical andexperimental results to demonstrate that apply
ing the model does indeed lead to a correct model of the algorithms' average
case behavior.

We have three goals in performing this work:

1. Model the behavior of various machine learning algorithms. This con
sists of:

• Estimating empirically how accurate the hypothesis created by a
algorithm is after a number of training examples.

• Deriving a model to predict theexpected accuracy ofthe hypothe
sis created by an algorithm as a function ofthenumber of training
examples.

• Comparing the estimates with the value predicted by the model
to verify that the formula is correct.

2. Compare the accuracy of various machine learning algorithms and find
the conditions under which one learning algorithm is expected to be
more accurate than another.

3. Gain insight into how the algorithms' differences influence their perfor
mance.

Combining average case analysis and experimentation is an important as
pect of our work. Experimentation serves two purposes. First, it allows the
accuracy ofdifferent algorithms to be compared and yields further insight on
how the algorithms' differences influence their performance. Second, it pro
vides evidence further that our theories about the algorithms' performance
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are correct. Both average case analysis and experimentation are beneficial
because the results from the two techniques support each other. The experi
mental results provide evidence that the theoretical results are correct, while
the theoretical results provide an explanation of the experimental results.

We concern ourselves with average case analysis rather than worst case
analysis for two reasons. First, we want to gain an understanding of the
algorithms' behavior in practice. Second, we prefer average case analysis
because the results obtained can be tested experimentally. Currently, in
machine learning, some researchers validate learning algorithms by running
experiments on sets of standardized problems. Others perform complexity
analyses of algorithms to gain an understanding of the class of concepts that
are learnable (or approximately learning). We have unified these approaches
by performing an average case analysis that permits a direct comparison of
experimental and theoretical approaches.

In the remainder of this paper, we describe the learning framework and
the Average Case Learning Model. Next, we apply the Average Case Learn
ing Model to several learning algorithms.

2 An Overview of Our Approach

In presenting the framework for concept learning wedefine three components.
First, we define the concept description language, and thereby define the class
of learnable concepts. Second, we define the class of learning algorithms we
analyze. Finally, we define the performance task that describes how the
concept definitions are used.

2.1 Framework for Learning

The concept representation language defines the class of concepts that the
algorithms can learn. Currently, we restrict our attention to conjunction
of Boolean features. Learned concepts are represented as conjunctions of
surface features. For example, a piece of crystal might be represented as
{glass A expensive), where "glass" and "expensive" are surface features. ^

^This is a fairly restrictive concept definition language. However, our intention is to
begin with the simplest algorithms and representations and extend our results to more
powerful algorithms and more expressive representation languages.
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A training example consists of a set of surface features. These surface
features are a subset of the surface features in the concept description lan
guage. Positive examples must include those surface features required by
correct definition. However, they also may include irrelevant features. For
example, if the concept being learned is A A B, any positive example must
include at least A and B. Negative training examples must not include the
conjunction of the surface required by the concept definition.

We consider both empirical and analytical learning techniques. Empiri
cal learning algorithms create hypotheses for concept definitions by finding
correlations among several training examples. Analytical learning algorithms
use existing knowledge to create new concepts that are implications of the
existing knowledge [1]. We consider "one-sided" learning algorithms that
maintain a single hypothesis about a concept definition and make the hy
pothesis more general in response to classification errors. A hypothesis is
generalized by dropping features from the conjunctive expression describing
the hypothesis. As long as the concept being learned is representable as a
pure conjunctive expression, the hypothesis will never be more general than
the correct definition.

The hypothesis produced by a learning algorithm is used to classify test
examples. Since the algorithms are one-sided, negative examples will always
be classified correctly. A positive example will be incorrectly classified if the
hypothesis contains an irrelevant feature that is not present in the example.
For example, suppose the current hypothesis is A A B A C and the true
concept definition is A A B. If a positive example A,B, E is drawn it will
be classified, incorrectly, as negative since the current hypothesis requires
C to be present in any positive example. The accuracy of a hypothesis is
determined by computing how many correct classifications it makes on a set
of test examples.

2.2 The Average Case Learning Model

Our model for analyzing the behavior of learning algorithms consists of de
termining 1) under what conditions a feature is dropped from a hypothesis,
2) how often do these conditions occur, and 3) how does dropping a feature
improve accuracy.

In the algorithms we study, there are two conditions that could result
in dropping a feature from a hypothesis. Empirical algorithms drop an ir-
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relevant feature that does not appear in a positive example. Suppose a
hypothesis requires that a particular feature be present in positive examples.
If a positive example does not contain the feature, then clearly the feature's
presence is not required in positive examples of the concept. Thus, it should
be dropped from the hypothesis. Analytical algorithms drop a feature that
is not supported by the domain theory. A concept being learned by an
explanation-based algorithm is defined as the conjunction of preconditions of
rules in the domain theory used to explain why the concept belongs to a par
ticular class. Therefore, if the domain theory does not require the presence
of a given feature, then the feature is not included in the hypothesis.

Once we know the conditions under which a feature will be dropped, the
next question to answer is how often do these conditions occur. This is a
function of the distribution of training examples and the probability that
an irrelevant feature appears in positive training examples. An irrelevant
feature that has a high probability of appearing in a positive example will
require more training examples in order to be dropped.

The extent to which dropping a feature improves accuracy is a function
of the probability of the feature appearing in a positive test example. If a hy
pothesis contains an irrelevant feature that rarely appears in a test example,
then the hypothesis will be fairly accurate.

2.3 Assumptions

In performing our analysis we make three assumptions;

• Training examples are drawn from a known uniform distribution.

• The probabilities of features appearing in positive examples are inde
pendent.

• A true hypothesis can be represented as a conjunction of the given
features.

3 The Algorithms

The purpose of this section is three-fold:

• Present the empirical, analytical and integrated algorithms.
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• Demonstrate how the model predicts the accuracy of an empirical learn
ing algorithm.

Discuss how the model extends to learning the domain theory for ana
lytical learning.

3.1 Wholist

Wholist [2] is the simplest algorithm to which we apply the Average Case
Learning Model. It is a strictly empirical algorithm. A more recent variation
of this algorithm is known as the one-sided algorithm for pure conjunctive
concepts [3].

Bruner's Wholist: '

Input: h — Hypothesized definition of the concept being learned,
t— A training example consisting of a set of features.
Member?-Boolean, indicates if t is a training example

Output: h' — Updated hypothesized definition of the concept
being learned.

Wholist(h, t. Member?)
begin

C = Classify(h,t);
If (C =0 and Member? = True)

Then Let h' = Drop_Features(h,t)
endif;

end.

The hypothesis, h, is a conjunction of base-level features, h is initialized to
the conjunction of all surface features. Each training example, t, is a set of
surface features, h' is the new hypothesis created by removing features that
are not present in the training example from the hypothesis. Both h and t
may be represented as Boolean vectors of length |F| where F is the set of
features in the concept definition language. A value of 1 means the feature
is present and 0 means the feature is absent. DropJ'eatures(h,t) returns the



Page 7

Boolean AND of h and resulting in the deletion of features from h that
are not in t. Since this algorithm only drops features from h, h' will always
be identical to or more general than h. h' can now be used to classify test
examples as positive or negative. The procedure Classify returns 0 if t is a
negative example of h and 1 if t is a positive example of h. t is classified as
positive example by /i if t has a value of 1 for every feature that h has a value
of 1.

3.2 Wholist Model

The purpose of this average-case analysis is to estimate the accuracy of the
hypothesis maintained after a given learning algorithm sees N training exam
ples. Positive training examples are drawn with a fixed probability from the
set of all training examples. Since the hypothesis never misclassifies negative
examples, our analysis predicts the probability that a positive example will
be correctly classified.

Before discussing the model we must define some notation:

• Let S = the set of positive examples.

• Let F = the set of features in the concept definition language.

• Let li^l = the cardinality of F.

• Let H = the set of possible hypotheses.

• Let h = the current hypothesis in H. h will be represented as a Boolean
vector of length |F| where 0 means the feature is irrelevant, 1 means
relevant. This Boolean vector represents a conjunction of the relevant
features.

• Let X = the concept being learned.

• Let = a positive example, i.e., T"*" G S. T'^ is represented as a
Boolean vector of length [F] where 0 means the feature is not present
in a training example and, 1 means that the feature is present.
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• Let Pr(5) = the probability that a positive training example is selected.^

• Let R = the set of relevant features in F (i.e., those features with value
= 1 in all T"*" € S.

• Let I = the set of irrelevant features in the definition of the concept
before any training examples are seen. 1 C F. Note that I U R = F.

• Let fj = an element of /. In a given or h, fj = 1 and fj = 0 denotes
the presence or absence of a feature, respectively.

• Let |/| = the cardinality of /.

• Let Pr(/j) = the probability that irrelevant feature fj = 1 in T"*".
These probabilities are assumed to be independent. In addition, note
that Pr(5) is independent of Pr(/j).

• Let N = the total number of training examples seen.

• Let b(i, N, Pr(5)) = the probability, as given by the binomial formula,^
of drawing i positive training examples if there are a total of N training
examples and the probability of a drawing a positive example is Pr(5').

Lemma 1 After IV training examples, the probability that an irrelevant fea
ture fj = 1 in h is Pr(/j)' where i is the number of positive examples in that
set of N.

Proof:

fj = I in h only if fj = 1 for all i positive examples. Since Pr(/j) is
independent of whether fj = 1 in previous training examples, the probability
that fj has appeared in all i positive examples is Pr(/j)'. •

Lemma 2 V/i G 6 S and fj € I, (fj causes to be misclassified by
h) O' {fj = 1 in h and fj ^ 1 in T"*").

^Pr(5) does not equal 1 for two reasons: 1) negative training examples are allowed,
and 2) the algorithm may incrementally learn more than one concept at a time. Pr(5)
represents the probability that a given example is a positive example of a given concept.

N

i *p'(l ~ where p is the probability of "success"; in this case Pr(5).
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Proof:

This follows directly from the VVholist algorithm. We will prove {fj causes
to be misclassified) -> {{fj = 1 in h)A{fj 7^ 1 in T+)) by proving the con-

trapositive: ^{{fj = 1 in h)A{fj 7^ 1 in T+)) -y ^{fj causes r+ to be misclassified ).
There are two cases.

Case 1: fj = 0 in indicates that the hypothesis considers fj to be
irrelevant. Therefore, the value of fj in T"*" cannot cause a positive example
to be falsely classified as a negative example.

Case 2: fj = 1 in /i and fj = 1 in The feature fj in has the
correct value. Therefore, this feature can not cause T"'" to be misclassified.

Since these are the only possible cases and h, fj and T'^ were chosen with
out any special properties, we can conclude that V/i € H, fj 6 I and T"*" € S:

= 1 in /i) A{fj 7^ 1 in T"^)) -+ ^{fj causes to be misclassified ).
Thus by contrapositive we can conclude:

and T+|(/j causes T"'" to be misclassified) —> {fj = I in h Afj ^
1 in r+)}.

Suppose fj = I in h but fj = 0 in T^. h requires that fj = 1 in r+ in
order for T""" to be correctly classified as positive. Since fj = 0 in T""" it will
be incorrectly misclassified as negative.

Since h, fj and T"*" were chosen without any special properties, we can
conclude that Vi7,/j and T""": if fj = I in h and fj = 0 in T"*" then fj will
cause to be misclassified. •

The major result of this section is the following theorem:

Theorem 1 After N training examples, the expected accuracy of the hypoth
esis maintained by Wholist is:

N

E
«=o

Id

b{i,N,Pr{S)) * n(l - Pr(/,)'(1 - Pr(/i)))

Proof: Suppose Wholist has seen N training examples including i elements
of S where 0 < i < A''. By Lemma 2 the probability that a given fj will
cause a hypothesis to misclassify a given T'̂ is the probability that fj = 1
in h and does not appear in T"*". By lemma 1 we know that the probability



Page 10

that the feature fj = 1 in /i is Pr(/j)'. Furthermore, it is assumed that
fj = 1 in with probability Pr(/;) (and the probability that fj = 0 is
(1 - Pr(/j))). Since the probability that fj = I'm h after i positive examples
and the probability that fj = 0 in T""" are independent, the probability that
they both occur is Pr(/;)'(1 - Pv{fj)). Thus the probability that feature fj
does not cause the hypothesis to misclassify T"*" is 1 —Pr(/,)'(1 —Pr(/j)).
For T'̂ to be classified correctly, none of these features can cause the hy
pothesis to misclassify Since these probabilities are independent, the
probability that no feature causes the hypothesis to misclassify T"*" is the
product over all j of the probability that feature fj does not cause the hy
pothesis to misclassify T+: nj=i(l - Pr(/j)'(l - Pr(/j))). Note that since
the only constraint on i is that it must lie from 0 to A'' inclusive we can
conclude that this result holds {Vi|0 < i < N}. The probability that a test
example will be misclassified after i positive training examples is weighted
from z = 0 to A'' according to the probability that i of the N training ex
amples are positive examples. This probability is given by the binomial
formula, b{i, N,Pr{S)). Thus the expected accuracy of the hypothesis is
EL [6(i,iV, Pr(5)) . nl'i,(l - Pr(/,)'(1 - Pi(/,»)]. •

To further verify the Average Case Learning Model for Wholist, we ran a
simulation with an artificially constructed training and test set. The concept
to be learned was constructed from a set of 10 features, 5 of which were
relevant, 5 of which were irrelevant. The probability of a given irrelevant
feature appearing ranged from 5% to 35%. In this simulation, the probability
of a positive example being selected is 40%.

[Figure 1 goes here]
All simulations presented in this paper were run in the following man

ner. In each simulation, 100 learning trials were run and report the average
accuracy of these trials as a function of the number of training examples.
The algorithm was presented with training examples until it has learned the
concept completely, i.e., has eliminated all the irrelevant features from the
hypothesis. After every two training examples, the current hypothesis was
used to classify 100 positive test examples as either positive or negative. In
the figures in this section the scatter points are the averageaccuracy obtained
in the simulation, the Y-Bars are the 95% confidence interval, and the curve
is the theoretical estimates obtained by the Average Case Learning Model.
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3.3 EBL-FIRST-TM

3.3.1 Performance and Foundational Examples

The goal of presenting EBL-FIRST-TM, a simplified version of explanation-
based learning [4],[5], is to understand the analytical learning component of
the integrated algorithm (lOSC-TM) we will present in the next section. In
order to understand EBL-FIRST-TM and lOSC-TM, two different kinds of

training examples must be defined. Performance examples are training ex
amples of the complete performance task. For example, imagine a small child
learning when other people will become angry. Performance examples would
be examples of people becoming angry when the child performs some action
(e.g., breaking Daddy's watch). Foundational examplesare training examples
from which a domain theory can be learned. Learning a domain theory can
be viewed as a subproblem of the performance task. One way of decomposing
the performance task of predicting what will anger a person is to learn what
actions will cause an object to break and to learn the class of objects which
when broken will anger a class of people. More formally, assume the domain
knowledge is of the form: Xi and Xi,2 —*• X^, X2 and X2,z —> X^ and we
wish to acquire a predictive relationship: Xi and Xi,3 —>• .^^3. If the goal is
to learn the relationship "If you drop an expensive, glass object, the owner
will become angry.", then Xi represents dropping an object, X2 represents
an object breaking, and X^ stands for a person getting angry; A'1,2 represents
a number of conditions that restrict the class of objects that are broken when
dropped (e.g., objects composed of glass); ^"2,3 refers to additional conditions
that are needed to determine what class of persons will become angry when
what class of objects breaks (e.g., the owner becomes angry when an expen
sive object breaks). These conditions are not specified in the domain theory;
they must be acquired empirically from foundational examples. The goal of
learning is to acquire Xi,3. This can be learned empirically from performance
examples, or analytically (Xi,3 = Xi,2 AX2,3) from a domain theory acquired
from foundational examples.

3.3.2 EBL-FIRST-TM Algorithm

While Wholist learns only from performance examples, EBL-FIRST-TM
learns only from foundational examples.
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EBL-FIRST-TM:

Input: h — Hypothesized definition of the concept being learned.
B — domain theory explaining h.
t — A training example consisting of a set of features.
MemberT-Booleain, indicates if E is a training example.

Output: h' — Updated current hypothesis of concept definition

EBL-FIRST-TM(h, B, t, Member?)
begin

C = Classify(h,t);
If (C = negative and Member? = True)

Then If Explained(t,B)
Then Let h' = EBL(t,B);
Else

begin
Let h' = Drop_Features(h,t);
For each h2 that depends on h

Let h2' = EBL(h2,B');
end

endif;

endif;

end

EBL-FIRST-TM prefers EBL but uses an empirical method (Wholist)
when the training example is not explained by the domain theory. Note that,
by definition, the domain theory can explain performance examples but not
foundational examples. The domain theory is a set of implications whose
antecedents are pure conjunctions learned by Wholist. Note that TM stands
for truth maintenance. An explanation-based learning algorithm with truth-
maintenance will update a hypothesis for a performance concept whenever
a performance example is misclassified or whenever the domain knowledge
is updated. In contrast, an algorithm without truth maintenance will only
update a hypothesis for a performance concept when an error is made in
classifying a performance example. A simple truth maintenance algorithm
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is used to rederive the definition of any performance concept that depends
on a foundational concept when the definition of a foundational concept is
changed.

In EBL-FIRST-TM B' is the domain theory with the hypothesis h re
placed by h'. When his a. hypothesis for a foundational concept, the explanation-
based learning with the new domain theory will produce a new hypothesis
for the performance concept. The function EBL(t,B) creates a hypothesis
by taking the conjunction of the hypothesized definitions of the concepts in
B that explain t.

3.3.3 EBL-FIRST-TM Model

Extending the results of the previous sections to EBL-FIRST-TM requires
the following changes; First, the binomial formula must be replaced by the
multinomial formula, an extension of the binomial formula to multiple "suc
cess" events to account for the fact that, in EBL-FIRST-TM, training ex
amples for several foundational concepts and for a performance concept are
intermixed; and second, the formula for the probability that fj = 1 after i
positive examples must be replaced by a formula reflecting how EBL-FIRST-
TM removes features from the hypothesized definition of Xi^l+i

Before presenting these results some notational extensions must be noted:

• Xm,n = those conditions that allow Xn to be inferred if Xm is known.
Xm,m+\ is abbreviated as Xm- m goes from 1 to L where L is the length
of the inference chain used to explain a performance concept. Xi^l^i
denotes the performance concept.

• km =• the current hypothesis for foundational concept Xm- de
notes the current hypothesis for the performance concept X\^l,+i-

• im = the number of the N training examples that are examples of
foundational concept Xm- ii,L+i denotes the number of the N training
examples that are examples of the performance concept.

Sm = the set of positive examples of foundational concept m. m goes
from 1 to L where L is the number of foundational concepts.
denotes the set of examples of the performance concept.

Tm = an element of Sm- denotes an element of
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Pr(5'm) = the probability that a training example is a positive example
of Sm- Pr(5i,L4.i) denotes the probability that a training example is
a positive example of Note that Pr{S\^L+i) + Pr('S'i) + ••• +
Prl'S'L) < 1. The probabilities need not sum to 1 because these are the
only probabilities of drawing a positive training example.

• PTmifj) = the probability that /, is 1 in a example of concept m (T^ 6
Sm). Pri ,L+i{fj) denotes The probability that fj = 1 in a example of
the performance concept (Ti,l+i G

• z'l, ••• ,iL, N, Pr(5i,i:,+i), Pr(5i), •••, Pr(5£,)) = the multinomial
formula for calculating the probability that after N training examples

are selected from and z'l are selected from Si, etc.

Lemma 3 Given N training examples where ii.n+i o.re elements of Si^i+i,
ii are elements of Si, i^ are elements of S^, ••• ii are elements of Sl the
probability that fj = 1 in hi^L+i is (1 - nm=i(l " (Prm(/j))''")).

Proof:

When EBL-FIRST-TM sees N training examples where ii,L+i are exam
ples of Ti^l+1, ii are examples of Ti, etc. By definition of the algorithm,
fj = l\nh unless it has been eliminated by all L foundational concepts.
The probability that fj = 1 in hm after im examples drawn from Sm are seen
is, by a symmetric argument to Lemma 1, (Pr„,Thus the probability
that fj = 0 in hm is (1 —(Prm(/i))''")- Since these probabilities are indepen
dent, the probability that fj = 0 for all hm e H is nm=i(l " (Prm(/j))''").
Therefore, the probability that fj = 1 in at least one hm and thereby equals
1 in hi^L+i is (1 - nm=i(l - {Pvmifj))'"')). •

For EBL-FIRST-TM, we are primarily concerned with accuracy of the
hypothesis for the performance concept. (Of course, the accuracy of the per
formance concept is related to the accuracy of the foundational concepts.)
Therefore, accuracy is defined here as the probability that a randomly gen
erated ri,L+i G Si,L+i is classified correctly. The major result of this section
is the following extension of Theorem 1 :

''An extension of the binomial formula;
N

ii,L+iii
binomial formula, respectively the probability of event m occurring and the number of
such events in N trials.

jxiension oi ine nmomiai lormma;

N \. ,• ) *Pr(5i,i+i)"'^+' •••Pr(5jr)'£ where Pr(5m) and im are, as with the
.*1 * * ' /
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Theorem 2 After N training examples, the expected accuracy of the hypoth
esis maintained by EBL-FIRST-TM is:

[m(ii,£,+i, ii, •••,ic,N, Pr(5i,£,+i), Pr(5'i), •••, Pr(5:,)) * A]
«l,L+l=Oti=0 12=0 ii=0

Where

|/| L

A= n(l - (1 - n (1 - (PrmC/i))'-)) *(1 - Pr:,i+i(/,)))
jssl m=l

Proof: Suppose EBL-FIRST-TM sees N training examples where ii,L+i were
drawn from 51,^+1, Zi are drawn from Si, etc. By Lemma 3 we know the prob
ability that a given fj = 1 in /ii,z,+iis (1 - nm=i(l " i^^mifj))''"))- Further
more by a symmetric argument to Theorem 1 we then know the probability
of classifying a Ti.i+i correctly is A: (nj=i(l - (1 - nm=i(l " (Prm(/j))''")) *
(1 —Pri,z,+i(/j))) (i.e., the probability no irrelevant feature, fj, is 1 in
and 0 in ri,£,+i). By a symmetric argument to Theorem 1, we weight each
combination of I'l, • • •, by the probability of that combination occur
ring when N examples are seen. This probability comes from the multinomial
formula (m(zi,i,+i,ii, •••, i'l, A'", Pr(5i,L+i), Pr(5i), •••, Pr(S'i,))). •

Figure 2 shows a simulation verifying this result. In this experiment,
the performance concept is a conjunction of five features. In addition, there
are five irrelevant features. The probability of an irrelevant feature~appearing
ranges from 5% to 35%. The probability of drawing a positive training exam
ple of the performance concept is 40%. There are two foundational concepts;
the probability of drawing a positive example of a foundational concept is
30%.

[Figure 2 goes here]

3.4 lOSC-TM

3.4.1 lOSC-TM Algorithm

The lOSC-TM algorithm combines both the EBL-FIRST-TM and Wholist
algorithms.[6] The EBL-FIRST-TM component eliminates features not sup
ported by the domain theory, while the Wholist component eliminates fea
tures absent from a training example. lOSC-TM can eliminate a feature for
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either of these two reasons. In the case of a performance example, lOSC-TM
operates by forming an empirical hypothesis using the Wholist algorithm
and an analytical hypothesis using EBL. A composite hypothesis is formed
by dropping any feature not appearing in both hypotheses. In the case
of a foundational example, when the domain theory is updated the truth
maintenance component of lOSC-TM will update the hypothesis for the per
formance concept by eliminating any irrelevant feature no longer appearing
in the hypothesis created by applying the EBL algorithm to the updated
domain theory.

lOSC-TM:

Input: h — Hypothesized definition of the concept being learned.
B — Domain theory explaining h.
t — A training example consisting of a set of features.
Member?-Boolean, indicates if E is a training example.

Output: h' — Updated current hypothesis of concept definition

IOSC-TM(h, B, t, Member?)
begin

C = ClassifyCh.t);
If (C = negative sind Member? = True)

Then If Explained(t,B);
Then Let h' = Drop_features(Drop_Features(h,t),EBL(t ,B))
Else

begin
Let h' = Drop_Features(h,t);
For each h2 that depends on h

h2' = Drop_Features(H,EBL(h2,B')):
end

endif;

endif;

end

lOSC-TM relies on the fact that the hypothesis formed by Wholist is
never more general than the true concept definition. Similarly, the hypoth-
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esis formed by EBL with a domain theory learned by Wholist is also never
more general than the true hypothesis. Note that the result of EBL is a
conjunction of the preconditions of the rules used to explain a performance
training example. Since the antecedents of these rules are conjunctions (be
cause the antecedents are learned by Wholist), the result of EBL is also a
conjunction. Since the analytical and empirical hypotheses are never more
general than the true concept definition and they are both represented as
conjunctions of surface features, they may be merged into a composite hy
pothesis that is also never more general than the true definition.

3.4.2 lOSC-TM Results

Extending our previous results to lOSC-TM is straightforward. The only
change required is changing the formula for the probability of fj = 1 in
hi,L+i to reflect the fact that for fj to equal 1 in hi^L+i it must equal 1 in the
hypothesis as created by EBL{t, B) and the hypothesis created empirically.

Lemma 4 Given N training examples: ii,L+i from H from S\, 1*2
from S2, ••• ih from Sl probability that fj = I in hi l+i is Pri (1—
nL,(l - (Pr«(/i))'"))

Proof: Suppose lOSC-TM has seen N training examples. From Lemma 3
we know the probability of fj = 1 in the hypothesis created analytically
(by EBL(t,B)) is (1 —nm=i(l ~ (P'^m(/;))''"))- Furthermore from Lemma 1
we know the probability of /j = 1 in the hypothesis created empirically
is Pri,i,+i(/j)'''^+'. Since these are independent (as Pri,x,+i(/,) and all L
Pimifj) are independent) we can take the product giving us Pri l-)-i(/j)'''^''"' (1—
nLi(i-(Pr„(/i))'»)) •

For lOSC-TM, the Average Case Learning Model makes the following
prediction about the expected accuracy of a hypothesis learned by 10SC-
TM:

Theorem 3 After N training examples, the expected accuracy of the hypoth
esis maintained by lOSC-TM is:

E E ,E ••• T>i'̂ ('̂ 'L+uh,--',iL,N,PTiSi,L+l),PTiSi),---,PliSL))*A]
Jl2,+i=0ii=0 12=0 «L=0
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Where

|/| L

A= n(l - (Pri.L+i(/i)'̂ '̂ +^(l - n (1 - (Prm(/,•))•'"))) ♦ (1 - Pri,L+i(/i)))
j=l m=l

Proof:

From Lemma 4 and a symmetric argument to Theorem 3. Note that the
extra Pri,£,+i(/j)''.^+> in A comes from substituting Lemma 4 for Lemma 3
in defining A. •

Figure 3 shows a simulation verifying this result. The test was run in the
same manner, using the same concepts, as the simulation of EBL-TM.

[Figure 3 goes here]

4 Using the Model to Compare Algorithms

In this section, we describe how the Average Case Learning Model can be
used to compare different algorithms' behavior under a number of different
conditions.

To gain an understanding of the class of situations under which EBL-
FIRST-TM is moreaccurate than Wholist, we used the model to compare the
algorithms under a variety of circumstances. In addition, we ran simulations
of these circumstances to verify that our analysis is accurate. Clearly, if
the domain theory is accurate, it is best to use explanation-based learning
techniques to acquire a new concept since these techniques can create an
accurate hypothesis from a single example. However, if the domain theory
is inaccurate (e.g., if the domain theory is being learned by Wholist from
foundational examples at the same time that the domain theory is being
used to explain performance examples), then it may be best to simply ignore
the inaccurate domain theory and use an empirical technique such as Wholist.

We ran our first group of simulations on a concept with 40 features. The
performance concept to be learned consisted of a conjunction of 10 of these
features. There were foundational concepts constructed from the same 40
features. The ten features deemed relevant in the performance concept were
those features deemed relevant in at least one foundational concept. The
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probability of a given irrelevant feature appearing ranged from 1% to 80%.
For each algorithm, we ran two simulations. For the first simulation, we set
the probability of a performance example at 50%, two of the foundational
examples at 15% and the third at 20%. For the second simulation, we set
the probability of a performance example at 25% and all three foundational
examples at 25%. Figures 4, 5 and 6 display the results of these simulations.

[Figures 4-6 go here]
Wholist converges to 100% accuracy more quickly when there is a larger

proportion of performance examples, while EBL-FIRST-TM converges more
quickly when there is a larger proportion of foundational examples. lOSC-
TM only slightly outperforms Wholist in the 50% case but does significantly
better than both EBL-FIRST-TM and Wholist in the 25% case.

Our second group of simulations was run on a concept with 75 features.
The performance concept consisted of a conjunction of 12 of these features.
Two foundational concepts were constructed from the same 75 features. As
before, the set of relevant features in the performance concept were those
features deemed relevant in at least one foundational concept. The proba
bility of a given irrelevant feature appearing ranged from 1% to 30%. For
each algorithm we ran two simulations. For the first simulation, we set the
probability of a performance example at 80%, and both of the foundational
examples at 10%. For the second simulation, we set the probability of a per
formance example at 20% and both foundational examples at 40%. Figures
7, 8 and 9 display the results of the analysis and simulation. Although there
are more irrelevant;,features in this set of simulations than there are in the
previous set of simulations, faster learning rates were achieved in this set
because the probability of an irrelevant feature appearing is smaller. The
analysis and simulation also replicates the finding of the previous situation
in which Wholist learns faster as the proportion of performance examples
is increased and EBL-FIRST-TM learns more quickly as the proportion of
foundational examples is increased.

[Figures 7-9 go here]
The Average Case Learning Model can make general predictions that

would require running a large number of simulations to produce. For exam
ple, it can be shown by simple algebra that for a given probability distribu
tions, lOSC-TM will always achieve an accuracy greater than or equal to the
accuracy of EBL-FIRST-TM or Wholist. This is an intuitive result in that
lOSC-TM learns from both performance and foundational examples, while
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EBL-FIRST-TM only learns from foundational examples and Wholist only
learns from performance examples.

For any given distribution of foundational and performance examples,
we can solve for the expected accuracy of each algorithm and predict which
learning algorithm will be more accurate. Furthermore, given the length of
the inference chain, we can find the proportion offoundational to performance
examples at which both algorithms will have an equal expected accuracy.
When there are more foundational examples, then FBL-FIRST-TM will be
more accurate; when there are fewer, then Wholist will be more accurate.

5 Previous Work

Comparisons can be made between the Average Case Learning Model and
Valiant's Probably Approximately Correct (PAC) model[7],[8],[3]. There are
two major differences:

• The goals of the Valiant model are different from the goals of our model.

• The Valiant model is distribution free. We make specific assumptions
about the distribution from which the training and test examples are
selected, enabling us to avoid some of the limitations of the Valiant
model.

The goals of our analysis differ from those of the Valiant model. Haussler
[3], building upon the Valiant model, developed formulae for calculating the
upper bound on the sample size necessary to attain a given learning accuracy
with high probability. Since these results are upper bounds, the sample
size predicted for a given accuracy is actually much larger than what would
be needed on average. This is very different from our model. We model
the expected behavior of a learning algorithm. We wish to estimate the
classification accuracy expected after giving a learning algorithm N training
examples. Underadverse circumstances accuracy could be significantly lower.
Under fortuitous circumstances, accuracy may be much higher. Clearly, these
two types of analysis answer very different questions.

Our analysis assumes a known sampling distribution and determines the
expected accuracy of the concept definition after seeing a sample of N train
ing examples. To demonstrate how our results differ from those produced by
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the Valiant model, consider the convergence rate of the one-sided conjunc
tive algorithm [3]. Suppose we have a conjunctive concept with 15 relevant
features and 85 irrelevant features. If we want to be extremely confident

= 0.01) that the error rate will be at most 5%, the Valiant model would
require a sample size of some constant times ~ 35200. Our analysis, in con
trast, predicts that on average it takes less than 200 examples in order to
learn the concept with an accuracy of greater than 95%.

[Figure 10 goes here]
Figure 10 compares the mean accuracy, the accuracy predicted by the

Average Case Learning Model, the minimum accuracy achieved from 100
learning trials and the bounds predicted by the Valiant model. Note the
large difference between the bounds derived from the Valiant model and the
expected accuracy predicted by our model. Furthermore, note the difference
between the Valiant bounds and the minimum accuracy achieved on any of
the 100 learning trials.

Valiant's model, and indeed most of the recent work in computational
learning theory, is distribution free. This results in certain limitations.
Valiant's definition of learnable requires that the bounds hold for all dis
tributions D of positive examples of concept F [7],[8],[3]. Thus, the Valiant
model does not model an algorithms' expected behavior. Rather, it provides
a lower bound on sample size. In addition, the model does not allow for
inductive bias. As pointed out by Buntine [9], these limitations result in
the PAC model producing overly-conservative estimates of error (as we have
found via simulation). The Probably Approximately Correct model has re
sulted in many valuable findings on the relative difficulty of various learning
tasks. However, this model does not match the induction process as it is
commonly implemented in machine learning systems.

By taking advantage of the information .available to machine learning
programs, we are able to accurately predict their average case performance.
We utilize knowledge about the distribution of training examples and assume
training examples are drawn from a known uniform distribution and each fea
ture appears in positive examples with an independent uniform distribution.
This allows us to more accurately model an algorithm's behavior. Finally,
we incorporate inductive bias. For example, we assume that the concepts
are representable as pure conjunctions and thus limit the hypothesis space
to pure conjunctive hypothesis.
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Although our model addresses some of the limitations of the Valiant
model, it is very restrictive. Our analysis requires both prior knowledge
of the distribution and an independence assumption. Furthermore, our anal
ysis requires knowledge about the number of relevant and irrelevant features.
In spite of these restrictions, the Average Case Learning Model has proven
useful. We have demonstrated that it allows us to compare the performance
of different learning algorithms on the same problem. In addition, it allows
us to better understand how the distribution of examples affects a learning
algorithm's performance. Our future plans are to apply the model to more
complex learning algorithms and problems:

• Apply the Average Case Learning Model to more powerful representa
tion languages such as k —CNF. This is a relatively straightforward
extension of the model since there are one-sided algorithms analogous
to Wholist for this representation.

• Extend our results to incorporate noise. The work of Angluinand Laird
[10] may provide a good starting point.

We are particularly interested in forging a compromise between Valiant's
distribution free model and our distributionspecific model. Byestimatingthe
true distribution during the training process we can remove one assumption
and increase the class of situations in which the model may be applied.

6 Conclusions

In this paper, we have presented the Average Case Learning Model that is
capable of predicting the performance of machine learning algorithms. The
key aspect of applying the model is to understand the probability that a
training example will be encountered that causes an inaccurate hypothesis
to be revised and to understand the effect of revising a hypothesis on the
accuracy of the hypothesis. We have applied the model to Wholist, a simple
empirical learning algorithm; EBL-FIRST-TM, a simple analytical learning
algorithm; and lOSC-TM, an algorithm that combines empirical and analyt
ical learning.

The Average Case Learning Model is unique in that it is capable of pre
dicting the performance of a class of learning algorithms. We have verified
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both formally and through simulation that the model accurately predicts the
expected behavior of learning algorithms. We have used the model to com
pare learning algorithms and gain insight into the conditions under which
each algorithm is most accurate.
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axis is the number of training instances and the y-axis is the percent of test instances
correctly classified. The boxes represent the empirical means, the y-bars the 95% confidence
interval around those means and the curve is the value predicted by the Average Case Learning
Modei.
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Figure 3: A comparison of the expected and actual accuracy of the lOSC-TM algorithm.
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Figure 5; Test showing the behavior of EBL-FIRST-TM with 25% and 50% performance examples.
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Figure 6: Test showing the behavior of lOSC-TM with 25% and 50% performance examples.
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Figure 7: Test showing the behavior of Wholist with 20% and 80% performance examples.
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Figure 8: Test showing the behavior of EBL-FIRST-TM with 20% and 80% performance examples.
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Figure 10: This figure compares the average case performance with the minimum accuracy in
the empirical test and the Valiant model. For the Valiant calculations we assumed a feature
space of ten (the total number of features in our concept) and 5 = 0.05. The X-axis is the
required N predicted by the Valiant model and the Y-axis is l-e. Note that the scale of the X
axis is logorithmic.




