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Abstract

Most serum immunoglobulin M (IgM) is “natural IgM,” which is produced apparently 

spontaneously by a distinct subset of B cells requiring no exogenous antigenic or microbial 

stimuli. Natural IgM is an evolutionarily conserved molecule and reacts with a variety of epitopes 

expressed on both self- and non-self antigens. It has long been understood that secreted (s) IgM 

contributes to the removal of altered self-antigens, such as apoptotic and dying cells. As we outline 

in this review, it is thought that this sIgM housekeeping function removes potential triggers of 

autoresponse induction. However, we recently demonstrated an unexpected and distinct role for 

sIgM in the control of autoreactive B cells: the regulation of bone marrow B cell development. The 

absence of sIgM blocked pro- to pre- B-cell transition and greatly altered the BCR repertoire of 

the developing B cells and the peripheral B-cell pools in genetically engineered mice. This finding 

strongly suggests that IgM is critical for B-cell central tolerance induction. Given that treatment of 

sIgM-deficient mice with polyclonal IgM corrected these developmental defects, therapeutic 

application of IgM could be of clinical relevance in the treatment of some B-cell–mediated 

autoimmune diseases.
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I. INTRODUCTION

Secreted IgM (sIgM) is the most evolutionary conserved antibody isotype, present in all 

vertebrate species, and it is also the earliest isotype to be expressed during immune 

development. Despite its short half-life, sIgM presents at high levels in the serum of both 

mice and humans (mean concentrations in human sera: 147 ± 84 μg/μl mean ± SD with t ½ 

of 5 days, and in sera from C57BL/6 mice: 220 ± 90 μg/μl with t ½ of 2 days).1–5 Most 

circulating IgM is “natural” IgM; thus, IgM is produced spontaneously without known 
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exogenous antigenic or microbial stimuli. Even mice, raised under germ-free conditions and 

fed a diet that is free from foreign antigens, develop normal serum levels of IgM and an 

apparently normal natural antibody repertoire.6–8

Studies by numerous groups have shown that in mice, at least 80% of circulating IgM is 

derived from IgM-secreting B-1 cells residing predominantly in the spleen and bone 

marrow.9–13 A recent study by Kelsoe et al., however, suggested that non B-1 cell-derived 

bone marrow plasma cells are a main source of serum IgM in naïve mice.14 Ongoing studies 

in our laboratory have confirmed that these plasma cells contribute to natural IgM 

production. We find, however, that these cells are also B-1 cell-derived (Savage H.P. Yenson, 

V. and Baumgarth N, 2016, under review). Murine B-1 cells, phenotypically identified as 

IgM+ IgDlo/− CD23− CD19hi CD43+ CD5+/−, are distinct in development, tissue 

distribution and function from the majority of conventional B cells.15,16 Their development 

appears to be dependent on a positive selection step requiring intact BCR signaling and 

binding to self-antigens.16,17 This explains the skewed repertoire of B-1 cells, which are 

enriched in particular for VH11 and VH12 heavy chains.16,18–23 Given the independence of 

natural IgM production on exposure to foreign antigen, and the requirement for self-antigen 

selection of B-1 cells, the data suggest that natural IgM production is triggered by 

interaction with self-antigens. However, the mechanisms controlling natural IgM production 

remain unknown.

While it is clear that natural IgM is present in humans, as it is in all other jawed 

vertebrates,24 the cellular origins of natural IgM in humans are still controversial. An 

orthologous human B-1 cell population has not been clearly identified, and the presence and 

phenotype of human B-1 cells is still debated.25–28

Natural IgM is encoded by unmutated germline variable gene segments associated with 

polyreactive binding specificities.23 We define here polyreactivity as the ability to bind 

shared structures and epitopes that may be present on a variety of unrelated self-and non–

self-antigens. For example, natural IgM can recognize epitopes on phosphorylcholine (PC), 

which is present not only on cell membranes of apoptotic cells but also on cell-wall 

polysaccharides of many microbes and parasites, including Streptococcus pneumonia, 
Neissaeria meningitides, Haemophilus influenzae, Aspergillus fumigatus, and 

Heligmosomoides polygyrus.29–32 Other known specificities of natural IgM include nucleic 

acids, phospholipids, and carbohydrates, such as PC, phosphatidyl choline (PtC), 

lipopolysaccharide (LPS), low-density lipoprotein (LDL), single-stranded DNA (ssDNA), 

and double-stranded DNA (dsDNA).15,33,34 Frequencies of polyreactive IgM are higher in 

neonates than in adults in both mice and humans.30,35–37

There are three main known forms of secreted IgM: monomeric, pentameric, and hexameric. 

The monomeric form is not regularly seen in healthy individuals, but it is frequently found 

in patients with autoimmune diseases, such as systemic lupus erythematosus (SLE), 

rheumatoid arthritis (RA).38,39 The mechanistic association linking monomeric IgM with 

autoimmune disease has not been elucidated. In healthy people, circulating IgM exists 

predominantly in the pentameric form. Pentameric IgM is formed in the endoplasmic 

reticulum, containing 5 monomers of IgM linked together by a J- (joining) chain.40,41 Thus, 
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the pentameric structure has 10 potential Ag-binding sites enabling IgM high avidity 

interactions with antigens despite potential low affinity for each antigen-antibody binding 

site interaction. The least frequent form of IgM in healthy people is the hexameric form, 

which lacks a J-chain.42 Its functional significance is largely unknown.

sIgM plays various roles as part of the immune system. During infections, sIgM directly 

neutralizes harmful pathogens, induces complement activation, enhances antigen 

presentation, and thereby enhances subsequent adaptive immune responses.43–48 In the 

absence of overt infections, IgM seems crucial in enforcing immune homeostasis by 

preventing the development of autoimmune antibody production and dampening 

inflammatory responses. In this review, we focus on the latter. We summarize existing 

evidence demonstrating the importance of IgM in immune homeostasis and then discuss the 

potential mechanisms that allow natural IgM to play such a critical role in ensuring system 

health.

II. AUTOREACTIVE IGM AND IGG IN AUTOIMMUNE DISEASES

Studies of mice genetically engineered to lack sIgM (μs−/− mice) have demonstrated a need 

for sIgM in protection against antibody-mediated autoimmunity diseases. μs−/− mice 

showed greatly enhanced spontaneous IgG autoantibody development, which included 

development of antibodies to nuclear autoantibody components (ANA), dsDNA, and ssDNA 

as well as increased susceptibility for development of arthritis and lupus-like diseases.49–51 

Breeding μs−/− mice onto a lupus-prone (lpr) genetic background resulted in offspring that 

developed more severe lupus nephritis than the control lpr mice. Disease prevalence further 

increased with age.49 Lpr/μs−/− mice suffer from more severe glomerulonephritis and 

reduced survival compared to lpr mice. After 1.5 years, the survival rates were only 48% for 

Lpr/μs−/− mice compared to 78% for controls.49 Increased morbility and mortality 

correlated with increased deposits of autoreactive IgG immune complexes in glomeruli.

Selective IgM deficiency is a relatively rare primary immunodeficiency of humans, which 

reportedly occurs at a rate of 0.03% in both children and adults without gender bias.52 A 

study showed that 13% of patients with selective IgM deficiency had pathogenic antinuclear 

antibodies (ANA) and 14% developed autoimmune diseases such as arthritis and SLE.53 

Thus, in humans as well as in mice, deficiency in sIgM increases an individual’s 

susceptibility for autoimmune diseases.

Autoreactive IgM levels are greatly elevated in various autoimmune diseases, such as SLE, 

rheumatoid arthritis, and autoimmune liver diseases.34,54,55 This association likely does not 

reflect a causative relationship between autoreactive IgM and disease occurrence. Rather, it 

could reflect a compensatory mechanism by which the increased IgM might dampen 

systemic chronic inflammation, accumulation of autoantigens, and/or the potential for 

increased exposure of antigen-reactive B and T cells to self-antigens. Consistent with this 

hypothesis, the presence of autoantibodies of the IgM isotype seem to be protective, while 

antibodies with similar specificity, but of the IgG isotype, are often pathogenic. Higher titers 

of IgM anti-dsDNA as well as and a higher ratio of IgM to IgG anti-dsDNA are negatively 

correlated with the occurrence of glomerulonephritis and renal diseases in SLE patients.54,56 
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Furthermore, SLE patients that have higher levels of sIgM and a more diverse repertoire are 

associated with reduced disease development and lower incidence of atherosclerotic 

cardiovascular diseases.57 Thus, even though IgG and IgM autoantibodies in patients with 

autoimmune disease have similar specificities and can bind to the same antigens, mostly the 

self-reactive IgG antibody is pathogenic. This finding suggests that the function of the 

constant region of immunoglobulins, the Fc-region rather than their specificity, directs the 

biological functions of antibodies, potentially through binding to specific Fc receptors. 

Overall, these studies suggest that autoreactive IgM serves as a regulatory molecule that 

helps to maintain tissue homeostasis and to prevent the development of inflammatory- and 

autoimmune diseases.

III. NATURAL IGM BINDS TO SELF-ANTIGENS ON APOPTOTIC CELLS AND 

ENHANCES THEIR PHAGOCYTIC CLEARANCE

One of the fundamental functions of the immune system is the recognition and removal of 

cells having undergone apoptotic cell death. It is well understood that apoptotic cell death 

avoids the release of damage-associated molecular patterns (DAMPs) and other triggers of 

inflammation. Apoptotic cells are frequently cleared by phagocytes (macrophages and 

dendritic cells (DCs)) in a process called efferocytosis. 58–60 Multiple studies have shown 

that polyclonal IgM and some monoclonal IgM antibodies can enhance the clearance of 

apoptotic components released from dying cells.61–66 Polyclonal IgM binds to apoptotic 

cells and has been shown to enhance the clearance of these cells by alveolar macrophages in 

the lung.67 Monoclonal T15 IgM, which recognizes PC determinants, enhances apoptotic 

clearance by DCs and macrophages.64,65 Mice lacking sIgM showed delayed clearance of 

apoptotic cells after their injection into the peritoneal cavity compared to controls.62

Natural IgM might help not only to remove auto-antigens but also to actively dampen 

inflammatory responses. Recently, it was shown that the presence of sIgM led to enhanced 

production of the anti-inflammatory cytokine IL-10 by T and B cells following apoptotic 

cell transfer.51 Furthermore, monoclonal T15 IgM inhibited the secretion of pro-

inflammatory IL-6 and TNF-α by LPS-stimulated macrophages in vitro,64 and the transfer 

of autoreactive IgM reduced frequencies of pro-inflammatory Th17 cells in FcγRIIB/TLR9 

double-knockout mice.68 Together, these studies highlight the contribution of natural IgM in 

enhancing apoptotic cell clearance and in preventing the development of inflammation.

The binding of natural IgM to apoptotic cells recruits the early complement factors C1q, 

which activates the classical pathway of complement, and promotes opsonization and 

phagocytosis of apoptotic cells by phagocytes (macrophages and dendritic cells) (Fig. 

1A).62,64,65 Mice, deficient in C1q or sIgM, showed reduced apoptotic cell clearance and 

cellular C3 deposition.62 Moreover, C1q deficiency in humans is associated with severe 

lupus-like autoimmune disease,69–71 potentially linking the IgM with complement activation 

for removal of self-antigens.

However, the roles of the complement receptors (CR1 or CR2) in autoimmune disease 

development are incompletely resolved. In one study, deficiency in CR2 or CR1 on an lpr/lpr 

background was shown to cause more severe autoimmune disease. Lpr/CR2−/− mice had 
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significantly higher autoantibody titers (ANA, anti-dsDNA and Rh factor) and autoimmune 

disease manifested at an earlier age than in the lpr/WT controls.72 In contrast, another study 

that generated CR1/CR2-deficient MRL/lpr mice showed that disease development was for 

the most part unaffected. 73 Indeed, in that study significantly lower levels of pathogenic 

IgG3 autoantibodies were measured compared to controls.73 The discrepancies on the 

impact of the CR2 are potentially due to distinct genetic backgrounds of the knockout mouse 

strains used.72–74 On mixed C57BL/6 x 129/lpr backgrounds, lack of CR2 led to severe 

disease development with early onset disease induction and glomerulonephritis 

development.72 When CR2−/− mice were fully backcrossed onto C57BL/6 background, the 

effects of CR2 deficiency in lpr diseases appeared to be milder and to occur later in life.74 

CR2-deficiency on a MLR/Lpr background caused higher autoantibody titers (ANA, anti-

dsDNA), without affecting the rate of autoimmune disease manifestations, such as 

lymphadenophathy and splenomegaly, compared to control lpr mice.75 While a link between 

complement activation and immune response induction has been made previously,76 studies 

with mice harboring a point mutation in the third constant domain of μ-heavy chain, which 

renders IgM unable to activate complement, still showed normal humoral immune 

responses.77 Whether the effect of natural IgM in enhancing apoptosis clearance is mediated 

mainly or at least in part via the activation of complement might depend on the specific 

tissue location or presence of particular cell types. Further studies are required to fully 

elucidate the interaction of IgM with complement and CR and their effects on autoimmune 

response induction.

Thus, convincing evidence exists showing that natural IgM is polyreactive, can bind to 

complement, and can contribute to auto-antigen clearance. However, despite previous 

assertions, there is actually very little direct evidence that enhanced clearance of apoptotic 

cells and other cellular components by sIgM complement interactions leading to the control 

of autoimmune disease development. Various BCR transgenic and knock-in mice, which 

express a highly restricted oligoclonal or monoclonal B-cell compartment and often lack B-1 

cells and/or B-1 cell–derived IgM, do not appear to suffer from autoimmune diseases, 

despite lacking polyreactive IgM.78–81 As we outline below, these data could suggest that 

sIgM has other/additional functions that contribute to appropriate control of autoimmune 

disease development.

IV. NATURAL IGM CONTROLS B-CELL DEVELOPMENT AND SELECTION

Immunological tolerance is tightly controlled at multiple checkpoints during lymphocyte 

development to eliminate pathogenic self-reactive B- and T-cell clones. These checkpoints 

serve to prevent the development of autoimmune disease. Our recent study has shown that 

sIgM regulates B-cell selection steps that usually prevent autoreactive B cells from escaping 

mechanisms of “central tolerance” induction in the bone marrow (Fig. 1B).82 μs−/− mice, 

i.e., mice that lack sIgM, showed reduced B-cell output from the bone marrow compared to 

wild-type mice, as measured by B-cell reconstitution in spleen and bone marrow 12 days 

after sublethal irradiation.82 FACS analysis and PCR analysis of V-gene usage showed that 

non-manipulated μs−/− mice have altered frequencies of bone marrow pre-B cells and 

immature B cells and altered BCR repertoires at multiple checkpoints during B-cell 

development. Surprisingly, the absence of sIgM even seemed to block the very early pro-to 
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pre-B-cell transition stage, as frequencies of pro-B cells were increased and those of pre-B 

cells decreased. An effect was also notable at the transitional B-cell stage (T1) in the spleen 

and all peripheral B-cell subsets. The noted changes were consistent with a failure of central 

tolerance induction in the bone marrow, as the periphery contained high frequencies of 

anergic CD5+ B cells in the spleen and other tissues that seemed to have escaped appropriate 

tolerance induction.

Given these significant alterations in B-cell development, it was not surprising that μs−/− 

mice had high titers of pathogenic autoreactive IgG in sera, even despite lower numbers of 

mature B cells when compared to wild-type mice. These data strongly suggest that the 

developmental defects in B-cell development altered selection in the bone marrow and that 

the resulting repertoire changes caused the accumulation of pathological autoreactive B 

cells.

Lack of sIgM also affected the B-1 cell compartment. Various earlier studies reported 

increases in CD5+ B-1a cell subsets in the peritoneal cavity of μs−/− mice.43,83,84 While our 

studies confirmed increased frequencies and numbers of CD5+ B cells in spleen and 

peritoneal cavity, the CD5+ cells were CD43neg CD45Rhi and CD19int, thus distinct in 

phenotype from that of B-1a cells. In addition, these CD5+ B cells were short-lived and 

unresponsive to BCR-mediated stimulation, suggesting that they are anergic B cells that 

escape central tolerance induction in the bone marrow. A comprehensive analysis of the 

B-1a and B-1b cell subsets (CD19hi CD45Rlo IgMhi IgDlo CD43+ CD5+/−) in μs−/− mice 

showed that both B-1a (CD5+) and B-1b (CD5−) cells were strongly reduced in the 

peritoneal cavity. This finding was consistent with a 10-fold drop in the number of B-1 cells 

binding to phosphatidyl choline (PtC) and a near complete lack of B-1 cells expressing 

IgHV11, two hallmarks of peritoneal cavity B-1 cells.85,86 Splenic B-1 cell numbers, 

however, were unaffected.82 Thus, sIgM modulates bone-marrow B-cell development, and it 

supports the development of peritoneal cavity, but not splenic, B-1 cells.

In contrast to findings in μs−/− mice, frequencies of total B cells as well as follicular (FO) 

and marginal zone (MZ) B cells in PBMC of adults with primary selective IgM deficiency 

(SIGMD) were comparable to gender and age-matched healthy controls.87,88 This may be 

explained by the different B-cell compartment analyzed (blood versus spleen) and/or genetic 

heterogeneity of SIGMD patients. Interestingly, frequencies of a subset of purported human 

B-1 cells (CD20+ CD70− CD27+ CD43+) were unaffected in SIGMD patients, consistent 

with splenic B-1 cells in μs−/− mice.88 In addition, SIGMD patients show increased 

frequencies of CR2low (complement receptor 2/CD21)-expressing B cells compared with 

healthy controls.88 CD21low/− B cells are expanded in patients having increased risks of 

autoimmune disease development,89 such as patients suffering from rheumatoid arthritis 

(RA) and common variable immunodeficiency. CD21low/− B cells express autoreactive B-

cell receptors (antinuclear and anticytoplasmic) and are unresponsive to B-cell receptor 

and/or CD40 stimulation.89 The expansion of autoreactive and anergic CD21low B-cell 

population in patients with SIGMD is thus similar to findings in μs−/− mice, and our studies 

with μs−/− mice provide a mechanism for the expansion of CD21low autoreactive anergic B 

cells in SIGMD.
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Various mouse models showed that strong BCR signaling during B-cell development 

promotes B-1 and FO B cells, while weaker BCR signals favors MZ B-cell 

development.90–92 The observed increases in MZ, decreases in FO B cells and body cavity 

B-1 cells, and the presence of large populations of anergic B cells in the μs−/− mice are 

consistent with sIgM altering BCR-mediated signaling in the developing B cells. In support 

of these findings, others have demonstrated that B cells from μs−/− mice show reduced 

phosphorylation of downstream targets of BCR signaling after BCR cross-linking: Erk, Syk, 

and Lck.93 We find that splenic μs−/− B cells also have reduced basal expression of catalytic 

(p110) subunit of PI3K enzyme, phosphorylation of Akt (pAkt) and Btk (pBtk) (Fig. 2). 

Together, these data demonstrate that a lack of sIgM leads to reductions in BCR signaling. 

Importantly, polyclonal serum IgM can rescue normal B-cell development and reduce 

autoantibody production by μs−/− B cells.82,83

We conclude that sIgM crucially affects B-cell development and selection, ensuring 

appropriate enforcement of central tolerance induction. We suggest that this regulatory 

function of sIgM controls autoantibody production, either alone or in conjunction with the 

other known housekeeping functions of natural IgM. Patients with SIGMD also showed 

reduced frequencies of GC, and switched memory B cells, suggesting that sIgM might 

regulate B-cell differentiation.87, 88 A careful analysis of B-cell development and 

differentiation in humans with selective IgM deficiency seems indicated.

V. IGM RECEPTORS IN AUTOIMMUNE DISEASEs

Various receptors are reported to bind to sIgM on the surface of B cells and other cell 

populations. Important for the above findings, sIgM was shown to directly bind to B-cell 

precursors in the bone marrow, as well as to mature B cells both in vivo and in vitro. These 

data open up the possibility that direct B-cell–IgM interaction might regulate B-cell 

development.82 However, the above data demonstrate that IgM does not have to be secreted 

by the developing B cells themselves to regulate normal development. Instead, sIgM could 

bind to cells other than B cells and thus function indirectly on B-cell development. We 

provide a summary below on the receptors known to bind IgM and discuss whether they 

could be involved in the regulation of B-cell development and selection by sIgM.

A. Complement Receptors

Complement receptors are expressed broadly by a number of cell types. B cells express 

complement receptors type 1 (CR1/CD35) and complement receptor type 2 (CR2/CD21) on 

the cell surface. These receptors can bind to IgM-antigen complexes via activated 

complement molecules, including C3b and C4b binding to CR1, and iC3b, C3d, g, C3d, and 

C4d binding to CR2.94 CR1/CR2 are first expressed at the transition stage of B cell 

development thus after B cells leave the bone marrow. Thus, it is not surprising that CR1/

CR2−/− mice show normal B-cell development and immunoglobulin levels.95 Based on their 

late expression during B-cell development these receptors are therefore unlikely responsible 

for the observed effects of sIgM on B-cell development.
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B. Fcα/μ Receptors (R)

The Fcα/μR is a type I transmembrane protein that binds both IgA and IgM isotypes. The 

receptor is broadly expressed in humans and mice, and it was reported that B cells and 

macrophages express this molecule.96,97 However, Fcα/μR-deficient mice have shown 

normal B-cell development and normal levels of serum immunoglobulins. Autoimmune 

disease activity has not been reported in these mice.98 Furthermore, our own studies failed to 

find Fcα/μ receptor expression on B cells (Nguyen and Baumgarth, unpublished). Thus, we 

conclude that Fcα/μR cannot be responsible for the role of sIgM in preventing autoimmune 

disease or affecting B-cell development.

C. Polymeric Immunoglobulin Receptor (pIgR)

The pIgR is another receptor with dual specificity for IgA and IgM. This receptor binds 

polymeric IgA and IgM via the J-chain and mediates the transport of polymeric J-chain–

containing immunoglobulins at mucosal sites.99 The pIgR is expressed only on epithelial 

cells, but not on B cells. pIgR-deficient mice showed accumulation of serum IgA, but strong 

reduction of IgA in secretions, supporting transepithelial transport of IgA as a major 

function for this receptor.100 In addition, serum IgM levels appear to be unaffected in pIgR-

deficient mice, and the mice have not been shown to develop autoimmune-related diseases.

D. Fcμ Receptor

The FcμR is the only identified FcR that binds selectively to IgM. Originally identified as 

“Fas apoptosis inhibitory molecule 3” (FAIM3), this receptor was recently rediscovered as 

an IgM-specific Fc receptor. The receptor is a type I transmembrane sialoglycoprotein that 

binds to the CH3 and/or CH4 region of IgM.101,102 The protein contains an intracellular 

domain with several tyrosine residues, but it lacks classical immunoreceptor tyrosine-based 

activation (ITAM) and inhibition (ITIM) motifs.102 The signaling pathways downstream of 

the FcμR are still not well understood.

Gene and protein expression analysis showed that the FcμR is present in a variety of cell 

types, such as macrophages, dendritic cells, T cells; expression is highest in B cells.103–105 

HeLa cells transfected with the FcμR, but not non-transfected cells, bound to and, 

internalized sIgM, from where it was transported into lysosomal compartments for 

degradation. In humans, dysregulated FcμR expression has been correlated with the 

development of various lymphomas.106 Three independent lines of FcμR deficient mice have 

been generated to study the functions of the FcμR.103,107–110 FcμR was reported to be 

expressed relatively early in development, the pre-B cell stage. Together with the increased 

serum IgG autoantibody titers in FcμR −/− mice, the data suggest that natural IgM - FcμR 

interactions may regulate B-cell homeostasis and development.108,109 However, in contrast 

to the μs−/− mice, FcμR−/− mice have no overt B-cell developmental defects.82,103,108,109 

Thus, the mechanism by which the FcμR controls autoantibody production seems to be 

distinct from that noted for sIgM and requires further study.

E. Sialic Acid-Binding Immunoglobulin-Like Lectin (Siglec)

Siglec-G and CD22 both belong to the sialic acid-binding immunoglobulin-like (Siglec) 

family of lectins. They were identified as negative regulators of BCR signaling.111,112 Both 
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receptors are expressed on B-cell membranes and can bind sialic acid residues on sIgM. 

CD22 is expressed in pre-B cells (CD45R+ IgM−) at lower levels than on mature B cells 

(CD45hi IgM+).113 CD22 and Siglec-G–deficient mice showed increased BCR signaling, 

leading to increased numbers of peritoneal cavity B-1 cells and serum IgM levels.114 This 

finding contrasts with the phenotype of μs−/− mice, suggesting that Siglecs may not be 

involved in regulation of B-cell development by sIgM. Interestingly, the absence of either 

Siglec-G or CD22 alone did not result in autoimmune disease development, but the absence 

of both resulted in spontaneous lupus-like disease in mice.112 In humans, Siglecs are also 

associated with several autoimmune diseases. In the absence of Siglec-G and CD22, hyper-

reactivity of B cells due to increased BCR signaling may lead to autoimmune disease 

development.115,116

We conclude that none of the receptors currently known to interact with sIgM are 

responsible, or solely responsible, for the observed defects in B-cell development and 

selection noted in the μs−/− mice. Redundancies in the expression of multiple known sIgM 

receptors, or the presence of an as-of-yet unknown IgM receptor may explain these findings. 

It is also possible that sIgM has additional effects on the control of autoantibody production 

by mechanisms that are independent of B-cell development. While frequencies of total B 

cells as well as CD4 and CD8 T cells are unaffected in patients with SIGMD,87,88 they show 

increases in Bregs and CD8 Tregs.88 Whether these are compensatory changes that aim to 

control autoimmune disease development or that contribute to the disease phenotype require 

further study. At a minimum, these data demonstrate that sIgM directly or indirectly also 

regulates cells other than B cells.

Given the impact of sIgM on B-cell development and autoimmune response induction, 

identification of the underlying mechanisms that cause these devastating diseases will be of 

great importance.

VI. THERAPEUTIC SIGM IN AUTOIMMUNE DISEASES

Some polyclonal and monoclonal IgM treatments have shown promising results in reducing 

autoimmunity and inflammatory diseases in mice and humans. In mice, transfer of 

polyclonal IgM was shown to rescue B-cell development and reduce harmful IgG 

autoantibody titers.82 Treatment with monoclonal IgM T15 clone, which binds to oxidized 

LDL and PC, was shown to suppress inflammatory arthritis in both the anti-collagen induced 

and the anti-collagen antibody passive transfer models.64,65 Furthermore, In murine models 

of lupus-prone diseases, treatment with anti-dsDNA monoclonal IgM at a dosage of 100 μg/

week given for at least 8 weeks reduced glomerulonephritis and renal pathology, causing a 

delay in the onset of lupus nephritis and it improved the survival of (NZBxNZW) F1 and 

MRL/lpr mice.117,118 However, in contrast to this finding, passive transfer of a monoclonal 

IgM specific for α-1,3-glucose, thus not a specificity of natural IgM, was unable to improve 

B-cell development in μs−/− mice.82 This finding suggests that the specificity and ability to 

bind to self-antigen components is a crucial requirement for the protective effects of sIgM.

In human studies, passive transfer of pooled IgM from 2,500 healthy donors containing 90% 

pure IgM (IVIgM) suppressed the activities of IgG-autoantibodies from patients with a 
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variety of autoimmune diseases in vitro.119 Furthermore, IVIgM has been shown to have 

promising therapeutic effects in ameliorating inflammatory diseases, myasthenia gravis in 

experimental models, and multiple sclerosis.119–123

VII. CONCLUSION

In summary, sIgM protects against autoimmune diseases by regulating B-cell development 

and preventing autoreactive B cells to escape central tolerance selection. Despite its short 

half-life and its polymeric structure, treatment regimens based on transfer of natural IgM 

show significant promise in the treatment of certain autoimmune diseases.
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FIG. 1. 
The functions of natural IgM in homeostasis maintenance and autoimmune diseases 

prevention; (A) sIgM enhances apoptotic cell clearance. sIgM binds to apoptotic cells 

thereby forming antigen:antibody complexes. C1q binds to the Fc portion of sIgM. This 

leads to the activation of the classical complement pathway Complement Receptors (CR) on 

phagocytes (macrophages (MQs), dendritic cells (DCs)) can bind to C3b on the immune 

complexes which triggers their uptake. (B) sIgM prevents the escape of harmful autoreactive 

B cells during development and selection in the bone marrow and periphery, apparently by 

enhancing BCR signaling. The absence of sIgM affects all stages of B-cell development and 

leads to the development of a peripheral B-cell compartment that contains increased self-

reactive and anergic CD5+ B cells as well as shifts in the composition of the mature B-cell 

compartment.
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FIG. 2. 
Reduced BCR signaling in μs−/− B cells. Graph summarizes mean fluorescence intensity 

(MFI) ± SD of PI3K-p110, phosphorylated Akt (pAkt), and phosphorylated Btk (pBtk) 

levels in total spleen B cells from sIgM-deficient (μs−/−) and wild-type (WT) mice (n=4–5 

mice/group). Fixed and permeabilized spleen cells were stained with anti-PI3K p110 Alexa 

Fluor 488 (Abcam ab202666, clone EPR5515(2)), anti-phospho-Akt-PE (pS473; BD 

phosphoflow) or with anti-phospho-Btk PE (Y551/Y511; eBioscience) on ice for 30 

minutes. Data are representative of two independent experiments. *p<0.05, **p<0.005 by 

unpaired two-tailed Student’s t-test.
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