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Abstract

A Behavioral Framework for Measuring Walkability
and its Impact on Home Values and Residential Location Choices

by

Fletcher Scott Foti
Doctor of Philosophy in City and Regional Planning

University of California, Berkeley

Professor Paul Waddell, Chair

Walking is underrepresented in large area models of urban behavior, largely due to dif-
ficulty in obtaining data and computational issues in representing land use at such a
small scale. Recent advances in data availability, like the ubiquitous point-of-interest
data collected by many private companies, as well as a worldwide dataset of local streets
in OpenStreetMap, a standard format for obtaining transit schedules in GTFS, etc, pro-
vide the potential to build a scalable methodology to understand travel behavior at a
pedestrian scale which can be applied wherever these datasets are available.

In addition, the recent invention of fast network algorithms like Contraction Hierar-
chies greatly reduce related computational issues, as most network computations in this
work are computable in less than a second. This thesis is a presentation of such a scalable
methodology, which uses widely available datasets wherever possible, with computations
that run quickly to encourage exploration of nuance in urban behavior and transparency
of outcomes.

Additionally, indexes like WalkScore have been widely studied in the literature re-
cently, both to predict walking behavior and real estate home values. This dissertation
takes the position that WalkScore does not su�ciently support the set of destinations it
includes, the weights that are applied, the distance decay function, and most importantly
does not account for variation in behavior based on the demographics of the traveler. It
is also likely that the use of destinations like co�ee shops and bookstores in the index
measures a specific kind of walkability that embeds a certain kind of neighborhood into
its definition.

This dissertation improves on similar indexes like WalkScore by estimating a model
that represents the substitution of destinations around a location and between the modes
of walking, automobile, and transit. This model is estimated using the San Francisco
Bay Area portion of the 2012 California Household Travel Survey to capture observed
transportation behavior, and accounts for the demographics included in the survey. These
representations of travel behavior can then be used as right-hand side variables in other
urban models: for instance, to create a residential location choice model where measures
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of accessibility and available demographics are used to understand why people choose to
live where they do.

In all cases, location choice models - both destination choice and residential location
choice - use a level of detail not common in the literature in order to accurately represent
walkability. This dissertation proposes the concept of "street node geography" which uses
the local street network to define the geography with which to perform aggregations in the
city. In this conceptualization, land uses and other urban data are mapped to their nearest
street intersections, and overlapping aggregations are performed along the street network
up to a given horizon distance. This representation of urban space is equivalent to a
voronoi diagram around the intersections of the local street network, and can be thought
of as having automatically generated set of 226,000 micro-zones in the San Francisco
Bay Area. Street node geography thus provides a novel compromise between detail and
performance for the kinds of computations performed here.

This dissertation is organized into four topics, one for each of chapters 2-5. The first
topic establishes a framework for measuring the network of destination opportunities in
the city for each of the walking, transit, and auto transportation modes. Destinations
in the form of parcels and buildings, businesses, population, and points of interest are
tied to each network so that the distance from each location to every destination can be
computed by mode. The use of a points-of-interest dataset as the set of public-facing
destinations is novel in the context of a traditional travel demand destination model.

This chapter also creates a case study model of trip generation for home-based walking
trips is the 2012 California Household Travel Survey. This model finds that WalkScore is
predictive of walking trips, that residential density and 4-way intersections have an addi-
tional but small impact, and that regional access by the transit network has a synergistic
e�ect on walking, but regional access by auto has no impact when controlling for regional
access by transit.

The second topic engages with the question of the impact of accessibility to local
amenities on home values. Although early research has found that the composite index
WalkScore is positively correlated with home values, this dissertation unpacks the impact
of each category of destination used in WalkScore (as well as several others) on home
values. The model shows that some amenities are far more predictive of home values
in the datasets used here; in particular, cafes and co�ee shops tend to be the indicator
of neighborhood-scale urban fabric that has the largest positive relationship with home
values, where a one standard deviation increase in access to cafes is associated with a 15%
increase in home values.

Although the previous topic provides some evidence that walkable amenities are re-
lated to increased home values with the datasets analyzed here, it does not prove that
households are valuing walking to these amenities; it is equally plausible that households
are capitalizing short driving trips into increased home values. The third topic thus cre-
ates a nested mode-destination model for each trip purpose (with destinations nested into
modes) so that the logsums of the lower nest give an absolute measure of the accessibility
by mode for each purpose for each location in the region.
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These logsums are then weighted by the number of trips made for each purpose, and
segmented by income and weighted by the incomes of the people that live at each location
in the city. The result is an index based only on empirically observed behavior (in this
case, the primary dataset is the 2012 CHTS) which is an absolute measure of walking
behavior, not just of walkability. The methodology from this chapter yields an index
for all three modes, and all indexes are included in the hedonic model described above.
The model shows that a one standard deviation change in the auto index has the largest
impact on home values, but that the walking index is positive, statistically significant,
and almost as large. Although part of the reason for this finding might be that these
neighborhoods are undersupplied, where they exist they are clearly in high demand.

The fourth topic then engages with the question of how many people actually value
walking when making the residential location choice decision. In this section, latent
class choice models are used so that coe�cients on the three mode-specific indexes (and
other neighborhood descriptors) are allowed to change based on selection into unobserved
classes. This can be thought of as a form of consumer preference segmentation for mode-
specific accessibility.

The model shows that there are three large segments present in the Bay Area. One
that is young and moderately high-income that selects into the walkable neighborhoods
of San Francisco, Oakland, and Berkeley (13% of households), one that is transit-oriented
and selects into the relatively less-expensive neighborhoods near BART but outside the
urban core (37% of households), and one that is composed of middle class families that
prefers the idyllic suburbs outside San Francisco (50% of households). Apparently about
50% of Bay Area households value transit access, likely because BART allows commute
access to the thriving labor market in the urban core (e.g. the SOMA neighborhood which
is the target of so much venture capital in the region).

The main research question explored by this methodology is the question of the size of
the segment of the population that is positively a�ected by walking accessibility for the
residential location choice and the results show that this segment exists but is of modest
size. However, a major finding of this research is that for planning interventions that seek
to increase travel by active modes, members of the transit-oriented segment might have
the most latent potential to change their behavior. Perhaps creating denser and more
walkable environments around the less expensive neighborhoods near BART stations in
the region could relieve pressure on the San Francisco housing market as well as create
walkable environments for the lower middle class that appear to be a major component
of residential demand in the region.

A ripe area for future research is to perform a gap analysis that compares neighbor-
hoods that are high probability areas for each of the three classes presented here to test
for the impact of increases in transit service and pedestrian infrastructure on both the
residential location choice and travel behavior. Taking into account the heterogeneity
of preferences explored here, the result of such a study would target the locations that
could have the highest impact on sustainable behavior for the smallest amount of public
investment.
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Chapter 1

Introduction
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1.1 Motivation
Walking is underrepresented in large area models of urban behavior, largely due to

di�culty in obtaining data and computational issues in representing land use at such a
small scale [TRB, 2007]. Recent advances in data availability, like the ubiquitous point-of-
interest data collected by many private companies, as well as a worldwide dataset of local
streets in OpenStreetMap [Zielstra and Hochmair, 2012], a standard format for obtaining
transit schedules in GTFS [Catala et al., 2011], etc, provide the potential to build a
scalable methodology to understand travel behavior at a pedestrian scale which can be
applied wherever these datasets are available.

In addition, the recent invention of fast network algorithms like Contraction Hierar-
chies [Geisberger et al., 2008] greatly reduce related computational issues, as most network
computations in this work are computable in less than a second. This thesis is a presen-
tation of such a scalable methodology, which uses widely available datasets wherever
possible, with computations that run quickly to encourage exploration of nuance in urban
behavior and transparency of outcomes.

Additionally, indexes like WalkScore [WalkScore, 2011] have been widely studied in
the literature recently, both to predict walking behavior and real estate home values [Cor-
tright, 2009, Leinberger and Alfonzo, 2005, Manaugh and El-Geneidy, 2011, Rauterkus
and Miller, 2011, Weinberger and Sweet, 2012]. This dissertation takes the position that
WalkScore does not su�ciently support the set of destinations it includes, the weights
that are applied, the distance decay function, and most importantly does not account for
variation in behavior based on the demographics of the traveler. It is also likely that the
use of destinations like co�ee shops and bookstores in the index measures a specific kind
of walkability that embeds a certain kind of neighborhood into its definition.

This dissertation mproves on similar indexes like WalkScore by estimating a model
that represents the substitution of destinations around a location and between the modes
of walking, automobile, and transit. This model is estimated using the San Francisco
Bay Area portion of the 2012 California Household Travel Survey to capture observed
transportation behavior, and accounts for the demographics included in the survey. These
representations of travel behavior can then be used as right-hand side variables in other
urban models: for instance, to create a residential location choice model where measures
of accessibility and available demographics are used to understand why people choose to
live where they do.

In all cases, location choice models - both destination choice and residential location
choice - uses a level of detail not common in the literature in order to accurately represent
walkability. This dissertation proposes the concept of "street node geography" which uses
the local street network to define the geography with which to perform aggregations in
the city. In this conceptualization, land uses and other urban data are mapped to their
nearest street intersections, and overlapping aggregations are performed along the street
network up to a given horizon distance. This representation of urban space is equivalent
to a voronoi diagram around the intersections of the local street network, and can be
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thought of as having 226,000 micro-zones in the San Francisco Bay Area. Street node
geography thus provides a novel compromise between detail and performance for the kinds
of computations performed here.

To be clear, numerous other indexes of walking attempt to account for various qual-
itative aspects of the built environment, like enclosure, street trees, safety, architectural
aesthetics and others [Parks and Schofer, 2006, Southworth, 2005, Ewing and Handy,
2009, Clifton et al., 2007, Greenwald and Boarnet, 2001]. Although these studies are
generally well regarded, and do capture something which is missing from the framework
proposed in this thesis, it is important to have a methodology that is scalable so that it
can be broadly applied at relatively low cost to the researcher, and this is an important
motivation for the methodology proposed here. For instance, an analysis of statewide data
in California would be a simple extension to the work performed here, with no additional
data collection e�ort.

1.2 Context of the Study
“Partly from historical inheritance and partly from the work of activists who
chose to make the city the focus of their activism, [San Francisco] remained a
walkable, urban paradise compared to most of America.” Gabriel Metcalf in
The Atlantic Cities [Metcalf, 2013]

San Francisco is a contemporary lightning rod for urban policy in the United States. At
the nexus of the issue is its status as a center for technological innovation, combined
with its relatively strict density zoning which controls the increase in supply of housing
in the city of San Francisco. Although the growth of technology firms in the Bay Area
and Silicon Valley in particular has been well documented [Saxenian, 1996], there appears
to be a move by businesses back to the city that has not yet been documented in the
academic literature.

According to data from Dow Jones, 13.5 billion dollars in venture capital were invested
in the San Francisco Bay region in 2011, more than 4 times the capital invested in Boston
or New York [Metcalf, 2013], of which the two zip codes in the neighborhood of SOMA
(South of Market in San Francisco) received more investment than any other zip code.
Mountain View, home of Google and near San Jose, was a distant third. In fact, zip code
94107 near Potrero Hill received 1.8 billion dollars while Mountain View received only 660
million dollars.

Despite the massive job growth, the housing market has failed to keep pace. San Fran-
cisco has produced roughly 1,500 units a year over the past two decades while the roughly
comparable (but significantly smaller) city of Seattle has produced more than 3,000 units
a year over the same period [Metcalf, 2013]. San Francisco is currently undergoing a boom
in new housing - more than 4,220 units are under contract to build in the year 2012 (in
only the first 6 months; current data from the city are over two years out-of-date), and an
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additional 32,120 units have been approved by the planning department for future years,
and applications for another 6,940 units have been filed for review [SPUR, 2012]. In dollar
amounts, over 3.4 billion dollars were spent on new construction from late 2011 to early
2012 in San Francisco.

According to San Francisco Planning and Urban Research (SPUR), the 1,500 units
per year built over the last 20 years is less than half what would have been necessary to
meet demand [SPUR, 2012]. This has helped fuel an increase in residential rent levels -
7.6% in 2011 according to SPUR, but nearly 34% over the 2 year period between Nov
2011 to Nov 2013 according to zillow.com). The increase in rents is a signal to build
more housing, and the cause of the recent boom in development. Although the signal of
increased rents is strong, and apparently has been received by developers as can be seen
in the recent building spate, a boom-bust cycle is not an e�cient housing market.

“A dramatic supply-demand imbalance that fuels rent spikes and a corre-
sponding building boom is not a good strategy for a healthy, responsive hous-
ing market. It reflects a broken housing market where supply is unable to
anticipate and react to rapid demand changes. For decades, San Francisco’s
political environment has hindered new development. As a result, we have
underbuilt housing, creating a longterm structural imbalance of supply and
demand that the current building cycle does not come close to addressing.”
[SPUR, 2012]

This is the context for the research in this dissertation, which uses the CHTS regional
travel survey which was administered in 2012, as well as a dataset of home values in the
same year. Clearly there is much circumstantial evidence for the “return to the city” in
both the non-residential and residential sectors, seen in both the investment of venture
capital and the increase in rents and prices. This dissertation addresses the questions of
what factors best explain current home prices, and why people are electing to live where
they do.

Although the methodology described above is widely applicable, the empirical results
for the San Francisco Region are highly localized due to these particular planning and
economic issues. Much future work has to be done to replicate this work in other locations
and compare behavior amongst urban regions, and that is precisely the motivation for
building a general framework of this kind.

1.3 Organization and Contribution by Chapter
This dissertation is organized into four substantive chapters which explore this question

in separate parts.
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1.3.1 Chapter 2 - Destination framework
Chapter 2 puts forward a new methodology for exploring the question of how acces-

sibility impacts decisions in the city. It is primarily motivated by the lack of a general
framework that allows analyzing destination choices for di�erent travel modes within the
same methodology. Challenges include 1) the computationally intense nature of repre-
senting the entire local street network via OpenStreetMap, since there are over 226K
local street intersections in the Bay Area, each of which is used as a possible destination
in this dissertation, 2) the schedule-dependent nature of the transit network, which has
no counterpart in the on-demand auto and pedestrian networks, as well as the di�culty
in obtaining and processing accurate data for those schedules, and 3) the near impos-
sibility of getting accurate travel times by auto for every arterial in the region, where
time-dependent congested travel times would be ideal.

Chapter 2 addresses these issues to the degree that current data and methods allow,
creating a multi-modal network of transportation options so that urban models can be
estimated with variables for accessibility by mode for each of the pedestrian, transit, and
auto networks. Numerous land use datasets are linked to these networks, including the
built environment (parcels and buildings), businesses (via the NETS dataset), population
(synthesized disaggregate population from the census), and point-of-interest datasets of
specific destinations. This is one of the first bodies of research to use point-of-interest
datasets as a measure of attractiveness of possible destinations in a travel demand frame-
work. As points-of-interest data are available for this research, composite indices like
WalkScore are also computable in this framework.

Chapter 2 also uses these aggregation variables in a case study application of the frame-
work in predicting home-based walking trips in the Bay Area portion of the 2012 California
Household Travel Survey (CHTS). Results reinforce previous findings that WalkScore is
predictive of walking, that residential density has an additional contribution not accounted
for in WalkScore and cumulative accessibility indices, and that regional transit access has
a synergistic e�ect with walking but regional access by auto has no impact on walking
trip generation when controlling for regional access by transit.

1.3.2 Chapter 3 - Impact of local accessibility on home values
Chapter 3 takes cumulative opportunity accessibility measures and uses them as right-

hand side variables in a residential price hedonic model using a large dataset of home prices
from the Bay Area collected in 2012. Although initial research indicates that WalkScore is
predictive of home values, the specific destinations which are most descriptive of increased
home values are not clear when regressing against a composite index like WalkScore. This
research “unpacks” WalkScore into accessibility to the component destinations, as well
as including a number of other possible destinations (there are over 370 categories in the
Factual dataset used here), to measure relative impacts of accessibility to amenities on
home values.
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Results from Chapter 3 indicate that walking scale access to amenities and dis-
amenities has a clear impact on home values, mostly in theoretically expected directions.
Interestingly, some WalkScore destinations, like groceries and restaurants, have a negative
impact on home values when controlling for the others, while destinations like cafes and
co�ee shops have a positive impact on home values. This indicates that some destinations
are more structurally descriptive of increased home values than other destinations, with
a standard deviation increase in accessibility to cafes associated with an increase in home
values of almost 15%.

1.3.3 Chapter 4 - Empirically estimated destination model and
associated impact on home values

Although Chapter 3 provides evidence that walkable amenities are correlated with
increased home values for the datasets analyzed here, this does not prove that households
are actually valuing walking to these amenities; it is equally possible that households
are capitalizing short driving trips into increased home values. This chapter leverages the
networks from Chapter 2 to estimate a nested mode-destination model in which the modes
are the top level of the nests while destinations are the bottom level of the nests. Thus
destinations can be combined into a logsum which is an aggregate, absolute measure of
accessibility by mode for a household at a given location in the city. Consistent with the
long-standing use of nested destination models in travel modeling, these logsums actually
represent the probability of choosing a mode for travel from the home location.

Destination choice models are designed to include positive traits of the destination,
negative traits of travel to the destination, and attributes of the decision maker, which is
an ideal framework to allow highly disparate travel preferences by di�erent income classes
to be adequately represented. Logsums are computed for each purpose, for each income
group, and for each street intersection in the city, yielding 68M total logsums. These
logsums are then combined by weighting each purpose-specific logsum by the number of
trips made for that purpose and then weighting each location in the city by the income
classes of the people who live at each location.

The result is a more theoretically grounded WalkScore - an estimate of walking which
is based on empirical data of how people actually travel, in contrast to the weights used in
WalkScore which are chosen because they are empirically plausible. The weighted logsums
are an empirically estimated index for walking, transit, and auto for each location in the
city that takes into account the number of trips made for each purpose and di�erent travel
behavior by people of di�erent income classes.

These indexes by mode are used in the hedonic model from Chapter 3 to test the
value of actual walking to local amenities in the valuation of home prices. Accessibility
logsums for all three modes are positive, and although the impact of a one standard
deviation change in the index for auto is the largest, the index for walking is positive,
statistically significant, and almost as large. This is a major contribution to the literature
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as it moves from the previous correlational relationship of WalkScore and home values
toward a more robust behavioral explanation that people are valuing the ability to walk
to nearby destinations in their home purchasing decision.

1.3.4 Chapter 5 - Testing variability of accessibility preferences
for residential location choice

Most choice models are used to regress a set of independent variables against a categor-
ical dependent variable - which usually represents the choice among available alternatives,
like travel modes - to estimate a single set of coe�cients that represents the average e�ect
of the the independent variables on the dependent variable in the estimation dataset. Of
course not every decision maker has the same preferences; in fact, in residential choice
preferences for the home location can vary widely according to wealth, cultural back-
ground, age and lifestyle stage, presence of children in the household, and other factors.
Chapter 5 uses latent class choice models (LCCMs) to allow coe�cients of the indepen-
dent variables to vary based on selection of each household into unobserved classes. These
classes can be thought of as consumer segments for the residential housing market, and
in fact most early research using LCCMs came from consumer segmentation studies.

The findings from this chapter show that there are three large segments of accessibil-
ity preferences in the Bay Area datasets used here. The first seems to be the segment of
young professionals discussed in the motivation section. This segment values accessibil-
ity primarily by walking and transit, with the largest coe�cient for walking, and is the
smallest of the three segments, comprising only 13% of households in the Bay Area. The
second segment is the lowest income and selects into neighborhoods near the subset of
BART stations that are in less expensive neighborhoods, and has a positive and statis-
tically significant coe�cient for transit logsums while the coe�cient on walking logsums
is not statistically significant. This segment comprises 37% of the total population of
households. The final segment has the highest average income and selects into the idyllic
suburbs throughout the Bay Area. This segment does not appear to have a positive re-
lationship with accessibility by any mode (when controlling for the other variables used
in the model) as coe�cients on logsums for all three modes are negative and statistically
significant. This segment is by far the largest and comprises 50% of Bay Area households.

The main research topic explored in Chapter 4 is the question of the size of the segment
of the population that is positively a�ected by walking accessibility for the residential lo-
cation choice and the results show that this segment exists but is of modest size. However,
a major finding of this research is that for planning interventions that seek to increase
travel by active modes, members of the transit-oriented segment might have the most
latent potential to change their behavior. Perhaps creating denser and more walkable
environments around the less expensive neighborhoods near BART stations in the region
could relieve pressure on the San Francisco housing market as well as create walkable en-
vironments for the lower middle class that appear to be a major component of residential
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demand in the region.
A ripe area for future research is to perform a gap analysis that compares neighbor-

hoods that are high probability areas for each of the three classes presented here to test
for the impact of increases in transit service and pedestrian infrastructure on both the
residential location choice and travel behavior. Taking into account the heterogeneity
of preferences explored here, the result of such a study would target the locations that
could have the highest impact on sustainable behavior for the smallest amount of public
investment.

1.3.5 Chapter 6 - Conclusions
Chapter 6 provides some brief conclusions, contributions to the literature, policy im-

plications, and a section on future work which has been suggested by this research. To
summarize, it is likely that walkable amenities are being capitalized into increased home
values, and the actual behavior of walking is also associated with increased home val-
ues. Although San Francisco is a very expensive and constrained housing market, a large
proportion of households are transit-oriented (especially BART-oriented) but quite price
sensitive. It is likely that creating dense walkable neighborhoods around BART stations
in less expensive areas would both reduce pressure on the San Francisco housing mar-
ket and create attractive environments for the lower middle class that appear to be the
backbone of demand for pedestrian- and transit-oriented neighborhoods in the region.
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Chapter 2

Substituting Modes: Accessibility to
Destinations via the Multi-modal
Transportation Network
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2.1 Introduction
This chapter develops and applies an accessibility framework that maps activity des-

tinations and other features in the built environment to a multi-modal transportation
network that extends to the local street level of detail, allowing the summation of desti-
nations from the local scale to the regional scale by transportation mode. This chapter’s
contribution is to allow the comparison of di�erent types of accessibility measures in pre-
dicting a given empirical outcome, bringing together the following three threads in the
literature.

First, this framework is designed to accurately represent pedestrian-scale accessibility,
which continues to be a secondary consideration in current travel modeling practice [Wad-
dell, 2009, TRB, 2007]. Second, this framework is extended to be multi-modal, since it
has been theorized that pedestrian demand cannot be measured accurately without also
measuring the relative accessibility of auto travel [Chatman, 2008, Krizek, 2003, Crane,
1996]. Finally, this framework implements 3Ds variables that have been widely used in
sketch planning, but have been criticized on the grounds that these measures do not pro-
pose a behavioral explanation for travel [Crane, 2000, Boarnet and Crane, 2001]. This
framework is motivated by the principle that travel is a derived demand most heavily in-
fluenced by access to destinations, traits of the routes to those destinations, and mediated
by attributes of the decision maker [Cervero, 2002, Guo et al., 2007].

This research makes several methodological advances that allow representation of the
full set of local streets for pedestrian-scale accessibility, a hierarchical multi-modal graph
to represent the tradeo� between modes, and integration of micro-scale land use data to
measure the full population of alternative destinations in the city. This chapter focuses
on a model of home-based non-work pedestrian trip generation using the the Bay Area
potion of the 2012 California Household Travel Survey (CHTS) as a case study of an
application of this framework.

This research is motivated in part by the need for more e�ective methods to assess
the potential impact of policies that encourage compact development in order to reduce
VMT and concomitant greenhouse gas (GHG) emissions [Boarnet et al., 2011, Brown-
stone, 2008] by promoting transportation alternatives such as transit and walking. This
topic is of particular relevance in the state of California, where Senate Bill 375 (SB375)
mandates that each of its MPOs creates a Sustainable Community Strategy (SCS) that
must analyze potential GHG reduction through coordinated land use and transporta-
tion policies [Barbour and Deakin, 2012], and must analyze the impact of policies which
increase residential density on reductions in automobile use and increases in travel by
sustainable modes such as walking, bicycling, and public transit.
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2.2 Literature Review
“Urban form must be evaluated in terms of the set of choices it provides – what kinds of

destinations are found where and served by what transportation modes – and the characteristics
of those choices, including cost and comfort of travel, the amount and quality of the activity
at the destinations, etc. In this framework, for example, it is the set of choices correlated with
density – not density itself – that shape travel behavior” [Handy, 1996b].

For decades the transportation-land use literature has attempted to relate the demand
for travel to aggregate measures of the built environment. Models of travel behavior
analyze an outcome variable – often trip generation, mode choice, or vehicle miles traveled
(VMT) as a function of demographics and measurements of land use. Land use variables
are frequently measured using some variation or extension of the 3Ds Kockelman and
Cervero [1997], which capture in turn the density, diversity, and design of a geographic
area. Variables commonly include residential density, diversity of land uses within the
nearby area, and design of the street grid, and counts of destinations within a constant
time distance (known as an isochrone).

Despite limited microdata available at the time, Ewing and Cervero [Ewing and
Cervero, 2001] developed broad conclusions based on a wide breadth of empirical lit-
erature that trip generation is largely determined by demographics, trip distance varies
primarily with the built environment, and mode choice depends on both demographics
and the built environment, but predominantly on demographics. Although these early
studies were a major contribution to our understanding of the influence of land use on
the demand for travel, this type of study was quickly criticized for its lack of behavioral
foundation Crane [2000], Boarnet and Crane [2001]. Boarnet [Boarnet, 2011] identified
3Ds-style studies as “reduced form” models and argued for the move to “structural mod-
els” which explain why residential density, for instance, might influence travel.

2.2.1 Accessibility Measures
Travel is a “derived demand,” meaning most travel is performed to reach destinations

rather than for the sake of the travel itself, thus the most common causal explanation
for di�erent travel patterns is the relative attraction of available destinations and the
cost of the travel in order to reach those destinations. Two di�erent frames are used
to understand the ability to travel: the first is “mobility,” which measures a person’s
freedom to travel more quickly and reach destinations that are ever further afield, and
“accessibility,” in which land uses are brought closer to the origin of the trip and more
destinations can be reached even if travel conditions are highly congested.

The definition of accessibility used here is “a measure of an individual’s freedom to
participate in activities in the environment” [Weibull, 1976, Miller, 1999]. Accessibility
has been measured using di�erent methods [Handy and Niemeier, 1997, Dong et al., 2006],
including “iscochrones” that sum opportunities within a distance or travel time, “gravity
model” measures which discount the opportunities by some measure of the distance to



12

each destination, and logsum measures [Dong et al., 2006] which estimate coe�cients on
attractors and impedances using a statistical framework, typically using a discrete choice
model.

This work uses the point locations for activities in the city as attractors that gener-
ate travel, consistent with the concept of transportation as a derived demand. However,
because of data limitations 3Ds variables are used to capture traits of the built environ-
ment that are not captured directly by accessibility variables. For instance, residential
density likely proxies for a more pleasant and enclosed walking environment [Chatman,
2008, Cervero, 2002], and in lieu of having subjective data on the quality of the pedestrian
environment along a route which would be more consistent with the theory espoused here,
these types of sketch planning variables must continue to be used to capture such addi-
tional considerations which are of interest to planners and thus both types of variables
are supported in this framework.

2.2.2 Pedestrian Models
Data has become increasingly available at the pedestrian-scale, and a large body of

literature in the demand for pedestrian travel has resulted. Walkscore is a commercially
successful online service that computes and maps a weighted combination of the fine-
grained location of nine types of nearby destinations [WalkScore, 2011], and has grown
to service almost six million queries a day for the WalkScore at specified addresses. The
index combines the closest grocery store (weight 3.0), closest 10 restaurants (weights
varying from .75 to .2, summing to 3.0), 5 retail establishments, 2 co�ee shops, and the
closest bank, park, school, bookstore, and “entertainment venue,” and there is a clear
pattern of decreasing returns to additional destinations (i.e. the closest co�ee shop is
weighted at 1.25 and the second at .75). The current primary application of WalkScore
as a commercial product is in selling residential real estate, and research has identified
price premiums for locations with high Walkscores [Cortright, 2009].

Recent research also shows that Walkscore is predictive of walking trip generation
[Weinberger and Sweet, 2012, Manaugh and El-Geneidy, 2011], but this study uses mod-
eled pedestrian outcomes derived from travel models which themselves misrepresent the
walking environment by ignoring local streets and fine-grained land uses. The theoretical
framework established for Walkscore [Frank et al., 2008, Moudon et al., 2006] is intuitive
and easily applied, but the set of destinations, the weights given to the destinations, and
the distance decay function are empirical questions that merit more investigation (and are
explored in Chapter 4 of this dissertation). Additionally, the relationship of pedestrian
travel to meso- and macro-scale accessibility is largely missing from this line of research,
a shortcoming which is addressed in this framework.
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2.2.3 Discrete Choice Frameworks
Discrete choice frameworks have long been the standard approach for modeling travel

choices, with mode choice being the canonical application of this methodology. Discrete
choice modeling [McFadden, 1980] allows the estimation of indirect utility among a number
of alternatives subject to a linear in parameters utility function and a given distribution
for a random error term. See Ben-Akiva and Lerman [1985] and Train [Train, 2009] for
a thorough treatment of the methods and their application to travel behavior. Williams
[1977] developed the theory for using logsum measures from such models to measure
consumer surplus. In that sense, the use of logsum measures to represent accessibility is
also a measure of consumer surplus.

A framework for mode choice is provided in Cervero [2002], which allows for com-
bining discrete choice estimation of relative utility among travel modes with the use of
3Ds metrics as explanatory variables. This approach is used in Guo et al [2007] which
studies the substitution of pedestrian and auto modes, finding that pedestrian travel is
largely complimentary to automobile travel (in other words, pedestrian access generates
additional walking trips that do not tend to substitute for automobile travel). This chap-
ter contributes to this literature by accounting for all destinations for the walk, auto,
and transit modes in order to test this substitution pattern more closely. Chapter 4 ex-
pands the approach from this chapter by creating an endogenously estimated mode and
destination model using the data and networks described here.

2.3 Framework and Research Questions
This work creates an applied computational framework for computing accessibility

variables for use by planning academics and practitioners. It includes support for multi-
modal networks, for associating any type of land use (or other attribute) to locations
within each network, and for computing the many types of accessibility variables discussed
here. The project is open source and publicly available and can be expanded as new
concepts are added and limitations are addressed. In particular, accessibility variables
can be used within a framework for running regressions and choice models on disaggregate
datasets suitable for modeling urban behavior.

Although this framework is generic and suitable for a wide variety of applications, a
simple application of this framework is developed to predict walking trip generation for
non-work home-based trips, which is used to test three hypotheses:

1. Does Walkscore have independent predictive power for walking trip generation after
controlling for other typical destination accessibility (cumulative opportunity and
gravity-model) variables?

2. Do regional automobile accessibility measures have a negative impact on walking trip
generation (substitutive e�ect) after controlling for local accessibility and regional



14

transit accessibility? In other words, is there evidence that increased automobile
accessibility has a negative impact on walking trip generation?

3. Does population density, an important variable in the 3Ds framework though often
subject to theoretical criticism, have independent predictive power after controlling
for other destination accessibility variables and composite local accessibility indexes
like WalkScore?

2.4 The City as a Network Graph
The foundational assumption in this research is that travel is a derived demand for en-

gaging in an activity at a destination separated from the point of origin by the impedance
required to reach the destination. This is roughly consistent with the motivation for
an aggregate gravity model [Hansen, 1959], which predicts the volume of travel between
two zones based on the size of the origin and destination and the impedance between
them. Unlike the aggregate gravity model, the methodology used here, combined with
the availability of data on the behavior of individual people, supports analysis of the rela-
tive importance of attributes that can include 1) the amount or quality of activity at the
destination 2) aspects of the multi-modal route including local streets and 3) attributes
of the decision maker which modify the influence of the destination and route.

This work proposes a representation of the city as point-specific activity locations
situated within the context of a multi-modal transportation network. This conception is
not new; Kevin Lynch in Image of the City defines urban geography in the vernacular of
networks as “paths, edges, districts, nodes, and landmarks” [Lynch, 1960]. This research
operationalizes the concept with a general framework that unifies numerous spatial data
sources useful for travel demand models and models of other urban behavior (e.g. location
choices), and places the elements of these datasets within the context of the multi-modal
transportation network that enables interaction among di�erent parts of the city. By
unifying multiple datasets, a large set of variables is available to begin to identify the
character of di�erent locations in the city and test for impacts of each variable on an
empirical behavior of interest to planners.

Most geographic spatial data is geo-referenced with a latitude and longitude or other
coordinate system, but much data of use to transportation planners is associated to parcels
of land. In this research, buildings with associated use and size are assigned to parcel
shapes maintained in each region, and thus land uses of this sort are given a geographic
position through the regional parcel map. In general, destinations can be assigned to
the multi-modal transportation network through either latitude and longitude or through
regional parcel identifiers.

A typical schema of urban data relationships is shown in Figure 2.1, which depicts
data frequently used in urban modeling [Waddell et al., 2005, Waddell, 2002a]: households
and businesses are assigned to buildings, which are assigned to parcels, which are in turn
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Dataset Count of Objects
Parcels 2,023,915

Single Family Houses 1,479,511
Non-SF Buildings 456,749

Establishments/Firms 434,302
Jobs 3,395,967

Households 2,608,023
People 6,996,929

Table 2.1: Number of objects per dataset used in this research

placed within the context of the local street network. Other spatial data can be assigned
to a node in the network by latitude or longitude or any other geometry representable in
a geographic information system (GIS).

2.4.1 Assignment of Land Use
To perform accessibility calculations, land use data must first be e�ciently connected

to the transportation network. Datasets are large, and the number of objects of each
type for the Bay Area implementation is shown in Table 2.1. Ideally the synthesized
population and inventory of firms would be assigned to the parcel map, and the parcel
map would contain addresses that define the means of access and egress from each parcel
to the local street network. Every person represented in the region would have access
to every firm and vice versa via these access and egress points, and this complete graph
of parcel connections is referred to here as the Parcel Graph. In an even more data
rich environment, exact pedestrian infrastructure including sidewalks and street crossings
would be represented, and for very short distances pathways inside of buildings might
even by important to accurately capture travel times.

In practical applications such as regional land use and transportation models, creating
a full Parcel Graph using data on parcels, buildings, businesses, and households is complex
and messy, and the interrelationships among these data elements are confounded by error.
Although population might be accurate at higher-level census geographies, the assignment
to buildings is typically performed by iterative fitting to observed marginals [Beckman
et al., 1996] which introduces error in the relationship of agents and buildings. Firm
data is yet more problematic: establishments are tracked in a number of datasets, but
businesses with multiple locations can be assigned to a single building, and geographic
knowledge is often no more specific than assignment to the nearest tract or block group
centroid. Building data are maintained by county assessors and contain myriad errors in
spatial encoding including repeated stacked or overlapping parcels, misrepresentation of
buildings types, and unrecorded informal units.
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Figure 2.1: The land use and transportation datasets used in this research
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2.4.2 Street node geography
An extremely useful simplifying assumption has been made in this research to adopt

local street nodes as the primary unit of geography. In this case, each land use is mapped
to its nearest street intersection and thus all land uses are connected to the vertices of
the network being used, which is referred to here as the Node Graph. Thus the city
can be mapped as a Voronoi diagram [Aurenhammer, 1991] of the local street network
intersections. Spatial data is assigned first to parcels, then parcel centroids are mapped
to the nearest street node, and the relationship between parcels and nodes is used to map
land use to the network.

As walking distances are typically significantly larger than the distance from each
parcel to its nearest local street intersection, this reduces accuracy of models very modestly
within urban areas, while significantly improving computational performance. A dual of
this framework would map land uses to the nearest edge (link) on the network rather
than to the nearest node (vertex). This is “block face” geography [Clifton et al., 2008]
and can be represented by using the “line graph” of the local street network in which
every edge is replaced by a vertex and vice versa. In general, this research adopts street
node geography as its frame of reference, but this choice is primarily for computational
performance and for ease of visualizing inputs and outputs at specific points in space.

Street networks reflect important elements of urban form, such as variability in density
across areas of the city. Thus the street network is an important cue that there is less
density of land uses in areas that have large distances between nodes, and more density
of land uses where there is less distance, and hence using street network geography means
space is more accurately represented where it matters the most. From an information the-
oretic perspective, there is more information where cities are denser and thus street node
geography can be used to compress (in the mathematical sense) the city appropriately.
The accumulation of land uses to the nearest street node reduces the number of land use
elements by almost a factor of ten, which dramatically reduces computational costs while
maintaining walking-scale spatial resolution. Almost all computations performed in this
analysis can be performed interactively (in less than a second).

This abstraction fails for large parcels like urban parks, university campuses, and
corporate o�ce parks. Generally speaking, where location of actual buildings is known,
assignment of building to street node directly should be done. Unfortunately, this in-
formation is often unavailable and large parcels must be allocated proportionally to all
adjacent street nodes. The assignment of land uses can be applied to any network, in-
cluding networks for other transportation modes discussed next.

2.4.3 The Multi-modal transportation graph
E�ciently measuring region-wide pedestrian-scale access on the local street network

is a fundamental goal of this work in order to better represent the opportunities for
walking. To this end, all local streets for the entire Bay Area region are used to represent
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accessibility to destinations via walking. Some have argued that demand for pedestrian
travel is not independent of other transportation networks [Crane, 1996, Krizek, 2003],
theorizing that bringing destinations closer might reduce the cost of automobile travel
at the same time it enables pedestrian travel, possibly inducing more auto travel as the
cost of both modes falls. Thus it has been argued that the full set of options in the
transportation network must be represented in order to capture these tradeo�s, and for
this reason multiple modes are available in this framework.

The multi-modal transportation network (see Figure 2.2) is represented as three sepa-
rate graphs for walk, auto, and transit modes (biking networks can be included in future
work). The walking network is distance based, uses the full set of local streets from
the OpenStreetMap project, and includes information on pedestrian infrastructure where
available. The transit network is obtained through the Bay Area 511 website via the
general transit feed service (GTFS) and is processed into a static network to use in this
research. The automobile network is subject to congestion (i.e. tra�c) and congested
travel times are obtained from the travel model used by the Metropolitan Transporta-
tion Commission (MTC) using a regional network that focuses on collector streets and
highways.

2.4.3.1 Pedestrian network

The pedestrian network used in this research comes directly from the OpenStreetMap
project. OpenStreetMap is derived from the 2007 US Census Tiger line files and has
been edited by the general public using the ‘crowdsourcing’ approach popularized by
Wikipedia. The result is a robust and ubiquitous mapping of roads in the United States
and is now available for most countries of the world. The user base is massive, with
over one million users editing data and over 169 million edges and 176 million nodes
currently represented (OpenStreetMap 2013), and the data quality compares favorably to
proprietary data sources Zielstra and Hochmair [2012].

2.4.3.2 Automobile network

The use of the MTC travel model for congested skims is necessary for several reasons.
First, empirically observed travel times on arterials are simply not available at this time.
Although observed travel times are recorded in California PeMS (Performance Measure-
ment System) for all state highways, similar measurements are not available for the arterial
network. Thus the calibrated MTC travel model is the best source for high-detail con-
gested travel times. Second, integrating the travel model network allows this framework
to be used in scenario planning for the Bay Area SCS and this allows pedestrian-scale
sensitivity for non-base year conditions. Finally, although there are 1454 current TAZs in
the MTC travel model network, a project is underway to increase the resolution of this
network by an order of magnitude. The implementation created as part of this research
can interact with any network, and replacement of networks can be made easily where
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Figure 2.2: Transit, auto, and walking networks are shown in the clockwise direction for
the same geographic area

appropriate.

2.4.3.3 Transit network

The transit network is obtained via the General Transit Feed System (GTFS, origi-
nally called the Google Transit Feed System), which is now in widespread use by transit
agencies to provide schedules to the long list of routing and mapping services geared to-
wards transit. GTFS provides the complete list of stops, routes, trips, agencies, fares, and
the weekly schedule and specification of holidays. Put simply, it is meant to be a repre-
sentation of every transit vehicle and where each vehicle will be when, and is designed to
provide accurate routing information to the public for every time of day. This research
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is focused on the generation of trips which is largely a result of daily trip planning which
would tend to take into account accessibility by transit during a typical service period
(e.g. morning peak), and need not accurately represent to-the-minute transit access for
each time of the day.

The highly time-dependent transit network is converted to a static network usable for
computing accessibility. This is done by taking the first trip from each route after 8AM
and placing an ‘edge’ between adjacent stop locations which has a weight (in seconds)
that is taken directly from the GTFS schedule. Transit access is highly dependent on
the distance between the origin of a trip and the boarding transit stop and between the
destination and the alighting stop, thus the transit network is linked to the local street
network in a single unified network.

Travel times for transit come from the transit schedules while travel times on the
pedestrian network are taken by dividing the link distance by an average walking speed
of three miles per hour. Edges are created between each transit node and the nearest
local street node. Edges that link transit to the walking network are currently attributed
a constant weight which is a user-specified value for average wait time (typically 3-5
minutes) and these edges represent the time spent waiting for the next transit vehicle.
There is significant evidence that wait time and transfers [Taylor and Fink, 2003] are
a significantly higher subjective burden than in-vehicle travel time, and the penalty for
mode transfers can be modified to fit this theory as appropriate.

2.4.3.4 Unified network

Note that the transportation networks described operate at di�erent geographic scales.
Figure 2.2 shows a map at the same scale of the three networks, with the pedestrian
network not included in the transit image for the purpose of visual clarity. Note that
the pedestrian network is the network of local streets that is ubiquitous where there is
development. The automobile network is widespread but not nearly as dense, which
enables computation of accessibility for a much wider radius typically reachable by auto.
Finally, the transit network is moderately widespread but densely concentrated along
corridors. The central location shown in the figure from which many transit lines emanate
(lower right section of downtown) is the TransBay Terminal which services all the buses
across the Oakland Bay Bridge.

Table 2.2 gives basic descriptive information for each network including the data
source, the standard deviation and average number of nodes reachable within fifteen
minutes and the average number of nodes within thirty and forty-five minutes. The 45
minute isochrone is used to delineate the typical set of destinations with the count of all
reachable nodes in all three mode-specific networks summing to 11 thousand alternatives
for the average size of the choice set considered by each person in a destination model.
Note that even though the travel model network is less dense than the local street net-
work, the number of nodes reachable within the same amount of time is much larger via
this network, thus it’s likely the travel model network is scaled with enough detail relative
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Radius (in
minutes)

Local Street
Network

Automobile
Network

Transit
Network

Source OpenStreet-
Map

MTC Travel
Model

Bay Area
GTFS Feed

Count of
Nodes

n/a 226,060 11,999 421,491

Count of
Edges

n/a 287,161 33,136 660,914

Ave number
of Nodes

15 122 1,154 143

Stddev num
of Nodes

15 85 678 213

Ave number
of Nodes

30 432 3,628 1,063

Ave number
of Nodes

45 900 6,565 3,729

Table 2.2: The transportation networks used in the Bay Area SCS implementation, the
source of the data, and various characteristics of the network

to the other networks and reduced detail (not including local streets) in the travel model
network should not a�ect the results here.

2.4.3.5 Multiple Impedances

Although travel time is the primary impedance used in this research, it is important
to note that this framework is ideal for supporting multiple impedances and measuring
the contribution of each to destination choices. For instance, the traits of transit already
discussed such as wait time, number of transfers, vehicle technology (e.g. bus vs. train)
can be added as additional impedances. For auto, congestion could be theorized to have
an independent impact from travel time (for the psychological impact as well as the un-
reliability of travel time). For walking, a number of additional impedances can be added,
including the number of arterials crossed, the presence of sidewalks, and safety along the
route, enclosure and ‘explorability,’ all traits of the route consistent with Southworth’s
theory of walking [Southworth and Owens, 1993]. These traits can even be interacted
with traits of the user to test various hypothesis, e.g. older people might be less willing
to walk far or to cross arterials as younger people. This set of hypotheses, though not
the direct focus of this chapter, are easily testable in a discrete choice microeconomic
framework.



22

2.5 Data and Methodology
2.5.1 Data
2.5.1.1 CHTS 2012 Travel Survey

This research leverages data in three areas: travel surveys, spatial datasets of land
use, and representations of the transportation network. As the networks were discussed
at length above, they won’t be discussed further here.

Although the Bay Area Transportation Survey (BATS) from 2000 has been used widely
in previous research (e.g. Guo et al., 2007, Beckman et al., 1996), the survey did not
contain robust data on latitude and longitude which are necessary to capture pedestrian-
scale travel decisions. The travel survey used here is the Bay Area portion of the California
Household Travel Survey (CHTS) for 2012, which has been recently released and contains
accurate latitude and longitude for all locations in the survey.

To emphasize this point, although CHTS is administered statewide, this re-
search always uses the 9-county Bay Area portion for analysis without ex-
ception. Future work should repeat this analysis elsewhere in California as the data is
readily available.

The Bay Area portion of CHTS 2012 is a survey of 9,719 households comprised of
24,030 people, which consists of an activity diary in which participants record locations
for all activities and travel modes over the course of a one day period. This survey
methodology is limited in that it only tracks a single day of activity rather than the two
day period common in many travel surveys. To be clear, this a sample of 24,030 people
out of the entire Bay Area population of 7.44 million which means each survey taker
represents 310 people in the population. This limits both the detail that can be attained
from knowing peoples’ habitual behavior as well as the variety of people that might
have taken the survey. New methods in data collection, including mobile apps like The
Quantified Traveler [Jariyasunant et al., 2013] would go a long way toward rectifying this
issue, but for now regional travel surveys are performed in most major regions throughout
the world and are considered to be part of the best practices for travel modeling.

CHTS 2012 contains a question not present in BATS 2000 regarding the number
of walking trips in the past week, “including trips for exercise.” Although this research
attempted to use responses to this question as the dependent variable for walking trip
generation, model results were not robust, likely due to problems of self-reporting and
the mixing of trip purposes. Instead, the number of home-based non-work walking trips
from the trip diary portion of the survey are regressed on measures of land use around
the survey-taker’s place of residence. Figure 2.3 shows the histogram of the number of
these walking trips made in the Bay Area portion of the CHTS 2012.
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Figure 2.3: Histogram of counts of home-based non-work walking trips present in the
California Household Travel Survey 2012

2.5.1.2 Land Use Data

Land use information was collected as part of the UrbanSim implementation for the
Bay Area Sustainable Communities Strategy planning e�ort in 2012 [Waddell, 2013]. This
process produced an improved dataset of buildings from county tax assessors that pro-
vides non-residential square footage and residential units by building type at the parcel
level. The project also generated a synthesized population which represents each person
in the Bay Area with associated demographics including age, gender, income, etc. Addi-
tional land use data comes from the Factual Places dataset that provides a complete set
of destinations by functional category (e.g. restaurants, co�ee shops, auto shops, etc).
Finally, the California NETS (National Establishment Time Series) dataset contains de-
tailed employment by sector. Many di�erent forms of variables from these datasets have
been tested as part of this research (see Table 2.3 for a description of the datasets that
have been applied), and significant findings are presented in the results section and in
later chapters.
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2.5.2 Methodology
2.5.2.1 Accessibility

Variables in this research project include 1) traits of the decision maker taken from
the travel survey 2) traits of the routes taken from the transportation network (typically
impedances) and 3) aggregations of the built environment around a point in urban space.
This approach enables the e�cient computation of 3Ds and accessibility metrics for use
as righthand-side variables in urban models. Existing GIS technology is not flexible or
e�cient enough to integrate directly into UrbanSim, R, and other statistical packages,
therefore a generic accessibility library was coded in the C++ language in order to create
and test new variables. The most common analysis using this framework is the ‘bu�er
query,’ which takes four parameters:

• the network to use

• the ‘range’ to use – this is the maximum distance to nodes that is to be included in
this computation

• the ‘aggregation’ type to use – this is typically sum, but can be average, standard
deviation, min, max, etc

• the ‘decay’ to use – this is consistent with the gravity model in that items further
away a�ect the point of interest less than objects nearby. Decays can be linear,
exponential, or flat (which applies no decay).

The summation for a bu�er query takes the same basic form as the gravity model, but
is implemented at a local street node level. For the object x being aggregated within a
set of nodes R with a range defined by a maximum impedance, the bu�er query (B) is
defined for each location:

B = agg(x ú decay(t)) ’ node ‘ R (2.1)
where t is the generalized impedance (typically time or distance) to each node in the

summation. In the common case, the aggregation is simply a sum and the decay is linear
which applies a coe�cient of 1.0 at impedance 0 and 0.0 at the maximum distance (maxt):

B =
ÿ

(x ú maxt ≠ t

maxt

) ’ node ‘ R (2.2)

‘Density’ and ‘Destination’ variables can both be computed using the above equation.
‘Design’ variables typically include the number of intersections, block length, the connec-
tivity to the regional network, and the percent of four way intersections [Southworth and
Owens, 1993], which are all traits of the network and can be computed with special func-
tions built into this framework. ‘Diversity’ variables require two or more density variables
and are calculated using Shannon Entropy [Shannon, 1948]:
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D = P (x) log 1
P (x) ’ x Á X (2.3)

where D represents diversity and X is the set of variables for which to compute the
entropy. For instance, jobs-housing balance is computed by performing a bu�er query on
jobs and one on housing and using the two values to compute an entropy. The same can
be done for mixing of land uses and other possible entropy measures.

2.5.2.2 Accessibility in the context of spatial analysis

Table 2.4 describes the possible metrics that can be computed using the network-based
framework described here. Computations range from simple summary statistics, of which
cumulative opportunity measures are a special case that use a summation aggregation.
Logsum measures are computed within the same framework, but combine multiple input
variables with coe�cients that are estimated using discrete choice models. Disaggregate
measures like those used to compute WalkScore measure the nearest or Nth nearest point
location of a category in a point-of-interest dataset.

Metrics describing the graph of streets have also become popular recently (e.g. Sevt-
suk, 2010). For instance, “centrality” measures the degree to which nodes are included
in the shortest path between other nodes and can indicate high-value locations for land
uses like retail. Finally, ‘mixing’ measures like jobs-housing balance are described as
‘diversity’ measures in the original 3Ds. All of these measures fit within the same frame-
work of network-based aggregations, which are in contrast to traditional GIS techniques
that use aggregations within polygons (TAZs, census geographies, cities, and states) and
point-based statistics or point processes [Snyder, 1975, Daley and Vere-Jones, 2007].

Logsums warrant further explanation as they are the only statistically estimated mea-
sure of accessibility presented here. The definition and derivation of logsums is left to
the methodology section of Chapter 4, though several high-quality discussions exist in
the literature already [Ben-Akiva and Lerman, 1985, Dong et al., 2006]. As used in this
chapter, logsums are a statistically rigorous measure of accessibility to all the destinations
available to a decision maker. Where cumulative opportunity measures simply count the
amount of an object within a radius, logsums estimate the willingness of a certain kind
of person to travel a certain distance to a destination with certain traits, as observed in
an estimation dataset (e.g. the travel survey described above).

The logsums built as part of Chapter 4 use a nested construction that places des-
tination below mode so that the logsum of each lower nest is an aggregate measure of
accessibility for a given mode. By definition, normalizing logsums across modes gives a
prediction of the probability of choosing each mode, thus this particular kind of logsum is
an absolute measure of the accessibility for each mode and can be used in the estimation
of other urban models. Logsums are not used in the model in this chapter, but is critical
to Chapters 4 and 5.
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2.5.2.3 Statistical Methodology

The framework presented in the previous section is a methodology for computing
urban accessibility variables, and these variables can be mapped directly to aid in visual
understanding of data, or can be used as predictors in a variety of statistical models.
Typical methods used in urban modeling include linear regressions (e.g. hedonic models),
poisson and negative binomial regressions (e.g. trip generation), and discrete choice (e.g.
mode choice or destination/location choice). Future applications of this framework could
use these variables in basic machine learning algorithms including clustering, classification,
neural networks, and recommender systems. Generally, machine learning algorithms focus
on predictive power rather than interpretability of coe�cients and causal inference which
makes conventional statistical techniques more common in planning and related social
sciences.

A case study for the application and testing of the accessibility framework described
above is created by regressing the number of home-based non-work walking trips from
CHTS 2012 on various aggregations of land use for di�erent modes of transportation.
Non-work trips are used from the home location as these are frequently short discretionary
trips that are likely to have the walk mode substitute for the automobile mode as built
environment density increases. Trip generation could be performed for each trip purpose
independently, but as the vast majority of households make no walking trips, trip purposes
are merged to gain greater statistical significance for coe�cients. Regressing destination
choice for specific trip purposes on attributes of destinations is performed in Chapter 4.

Ordinary least squares regression (OLS) is suitable for normally distributed contin-
uous outcome variables, of which trip generation is neither. As such, trip generation is
frequently estimated using “count models,” which are based on the poisson and negative
binomial distributions, and the number of trips is modeled using explanatory variables
that include demographics of the person making the trips as well as measures of the built
environment. This work closely follows Ma and Goulias [1999] and uses a Poisson re-
gression to predict the number of trips made, and several other studies have used similar
models [Wallace et al., 1999, Jang, 2005, Wootton and Pick, 1967].

The Poisson model, in which the number of trips is generated from a Poisson process,
is formulated as

P (yi = j | Xi) = e

≠·i⁄i(Ti⁄i)yi

yi!
(2.4)

log⁄i = log⁄(Xi—) = BXi (2.5)
where j is the number of activities, Xi is the set of observed variables for individual

i, — is the set of coe�cients for the variables Xi, and ⁄i is the rate of occurrence of a trip
per unit time, here set to a single day.

The model is estimated using maximum likelihood with the Python statsmodels li-
brary, and simulated using the same. Negative binomial count models are also tested, but
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Variable Coe�cient Z-score Category
Residential Units 0.03 2.9 Built Env
Walkscore 0.37 12.2 Built Env
Median Year Built -0.12 -2.8 Built Env
Percent of 4-way intersection 0.05 3.6 Street Design
Ratio of Cars to Population -0.13 -2.8 Demo/Built
Median Income 0.27 7.9 Demo
% Low Inc HH of Total HH 0.15 4.4 Demo
Ratio of Workers to Population 0.16 4.1 Demo
Jobs by Transit within 45 mins 0.08 4.4 Regional
Older 0.40 3.2 Individual
Employed -0.32 -9.1 Individual
Flex Hours 0.21 3.8 Individual
Constant -1.90 62.0 Constant
Null Log-likelihood -11158
Log-likelihood -10531
Pseudo R-squared .056

Table 2.5: Coe�cients for the preferred model of pedestrian trip generation around the
home location using the Bay Area portion of the 2012 CHTS

Poisson is chosen for better goodness of fit. Explanatory variables include demographic
variables that exist in the estimation dataset (CHTS 2012) such as gender, age, income,
employment status, flexible work hours, and presence of children in the household. Nu-
merous measures of the built environment and demographics in the local neighborhood
are used as explanatory variables in the model, as well as regional accessibility measures
by transit and by auto to capture accessibility at a wider scale. A thorough set of variables
that could be theorized to describe urban neighborhoods is provided in Appendix A to
this dissertation, with a marker for those variables which have been tested in this model
estimation (many variables are not available due to data limitations).

2.6 Results
The preferred model coe�cients and z-scores are provided in Table 2.5. The model in-

cludes all the variables that are significant among the variables that have been tested, and
a list of variables that are theorized as descriptive of neighborhood demographics and built
environment characteristics is provided as Appendix A to this dissertation. In the model
shown here, residential unit density and WalkScore are both significant and positively
related to walking trip generation around the home location, with WalkScore having both
a much larger coe�cient and much higher significance (independent variables are divided
by their standard deviation in order to enable rough comparison of coe�cients). Year
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built is inversely related to walking (i.e. newer neighborhoods have less walking), which
likely is related to the historic older neighborhoods in highly walkable San Francisco.

The only design variable that is significant after controlling for the other variables
shown is the percent of 4-way intersections within a 500 meter radius, which has been
theorized as indicative of highly-connected street networks, and might also be related
to the gridded networks in highly walkable San Francisco. Other design variables tested
include the number of intersections and street length within a radii, average edge curvature
(ratio of geometric distance divided by airline distance), number of cul-de-sacs, and the
number of connection points to the larger street network at the .5km boundary, none of
which are significant when controlling for the variables shown here.

The ratio of cars to population has the expected negative relationship to walking.
Median income in the neighborhood has a positive relationship relationship to walking,
likely indicating safe and pleasant neighborhoods, but the percent of low income house-
holds also has a positive relationship to walking, probably indicating increased likelihood
of walking by lower income people. Although employment status at the individual level is
negatively related to walking, likely due to time constraints, the ratio of employed persons
to total persons in the neighborhood has a positive relationship to walking, which is likely
indicative of the correlation between higher income neighborhoods and safe and pleasant
pedestrian environments.

The only regional accessibility variable that is significant when controlling for the other
variables included in this model is accessibility to jobs (for all sectors) by transit within
30 and 45 minutes. Here the 45 minute radius is used for its slightly higher explanatory
power. Accessibility to jobs by automobile at radii of 15, 30, and 45 minutes and to a
number of individual employment sectors are tested for inclusion but none are significant.

Individual demographics are also included, with older people (age > 50) tending to
walk more, employed people walking less, and people with flexible work schedules walking
more. Income is tested for inclusion in the model and is not found to be significant. This
somewhat surprising result is robust over many model specifications and likely shows that
walking in the San Francisco area is somewhat common across all income classes.

2.7 Discussion
The model presented in this chapter is intended as a case study application of this

framework, but it does provide some insight into several possible correlates of walking as
represented in the Bay Area region of the new California Household Travel Survey. Of note
is the statistical significance of Walkscore in the model, which confirms recent findings as
to WalkScore’s positive correlation with walking behavior [Weinberger and Sweet, 2012,
Manaugh and El-Geneidy, 2011]. Although WalkScore has the higher coe�cient and
much higher significance, nonetheless residential density maintains a separate positive
and significant impact, despite the argument that density is not a causal factor in walking
[Crane, 2000, Boarnet and Crane, 2001]. Note that Chatman [2008] discusses the issue
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and proposes that density might be an easily measured proxy for walkable environments.
Other measures of destination accessibility were tested in the model - e.g. access to retail
jobs within 500 meters - but none were as significant as WalkScore.

On the other hand, many of the street design variables that have been discussed as
being correlates of walking [Ewing and Cervero, 2001, Southworth and Owens, 1993] are
not found to be statistically significant in this model. The only street design variable
which is significant is percent of 4-way intersections, which is likely related to the gridded
historic street networks in highly walkable San Francisco. Although street design is likely
to be an important factor in walking - see, for instance, the renovation and widening of
the Valencia Street corridor and resulting increase in pedestrian activity - it is likely that
currently available data is insu�cient to capture properly these design characteristics.

Finally, it is interesting to note that very few metrics of regional accessibility have a
significant relationship with home-based walking behavior, when controlling for the other
variables included here. The only significant regional accessibility variable among those
tested as part of this research is access to all jobs within 45 minutes via the the transit
network. Other variables tested include: access to all jobs, retail jobs, information sectors
jobs, and FIRE jobs (finance, insurance, and real estate) within 15, 30, and 45 minutes
drive. There appears to be little indication in this travel survey that increased accessibility
at the regional scale by automobile has any negative impact on walking [Handy, 1996a,
Crane, 1996], which is contrary to the finding from Guo et al. [2007].

The statistical significance of regional access by transit does indicate that having access
to destinations via the transit network has a positive and synergistic e�ect on waking,
which is a promising area of future research. While previous work in this area typically
measures transit access as the distance to the nearest transit stop, this work makes a
clear contribution by measuring transit access to destinations along the transit network,
considering the speed of the vehicle, access and egress times, and transfer time. When
accounting for these additional factors, increased regional access by transit has a positive
impact on the generation of walking trips around the home. This model formulation also
allows the di�erentiation of regional accessibility by transit and by automobile: when
controlling for regional access by the transit system, regional access by the automobile
network is not significant in predicting home-based walking trips.

2.8 Conclusion
This chapter has presented a novel new compromise between speed, flexibility, and

understanding in modeling preferences for urban travel. It proposes a concept of land
uses positioned relative to a hierarchical multi-modal graph of transportation options
in the city that allows the computation of accessibility variables by mode to any other
destinations in the city. These measures can then be used as independent variables that
characterize the quality of neighborhoods in models of urban behavior, such as price
hedonic models, location choice models, and travel demand models. The use of street
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node geography is the enabling abstraction that allows land uses to be quickly mapped
to their nearest location on each of the mode-dependent networks and then acted upon
in a parameterized aggregation as described in the methodology section.

Numerous data sources have been unified in order to perform the research presented
here, including OpenStreetMap to represent the local streets, the regional travel model
for capturing congested automobile travel times, and the General Transit Feed Specifi-
cation for representing transit vehicle schedules. Land use data includes a synthesized
population, datasets of businesses and points-of-interest, as well as governmental datasets
of buildings and parcels in the region. The unification of multiple datasets allows the
inclusion of a large number of variables computed to represent di�erent aspects of the
character of a neighborhood’s built environment and demographic makeup.

As a case study application of this framework, a model of pedestrian trip generation
using the Bay Area portion of the new CHTS 2012 survey is developed. The coe�cient
on WalkScore is both large and highly significant, showing that destination accessibility
is very important in understanding the generation of walking trips, but residential unit
density maintains a separate small but significant coe�cient, perhaps serving as a proxy
to an attractive pedestrian built environment. Interestingly, the only regional variable
significant in the model is accessibility to jobs via the transit network, which shows both
the lack of negative impact of increased auto accessibility on walking as well as demon-
strates the strong positive and synergistic relationship of having a strong regional transit
network on walking trips.
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Chapter 3

Measuring the Impact of
Accessibility to Local Amenities on
Home Values
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3.1 Introduction
Hedonic models have long been the primary method used to identify the contributions

of individual aspects of a property to its sales price or rent, but little research has been
performed to date that uses individual neighborhood amenities as explanatory variables
in such models to understand their contribution to home values. High quality point-of-
interest (POI) datasets (datasets that identify destinations by category like restaurants,
co�ee shops, dry cleaners, city parks, etc) are now widely available and are used, for
instance, in the WalkScore algorithm to measure walkability [WalkScore, 2011] and re-
cent work has found that the WalkScore index is correlated with increased home values
[Cortright, 2009].

This is taken as evidence that walkability is valued as a positive trait when purchasing
a house, but this relationship is not necessarily causal. More thorough research must be
done in order to provide convincing evidence that people are actually walking to these
destinations, and that a preference for the choice to walk is being capitalized into increased
home values for homes than enable more of this behavior. This chapter explores the
relationship between local amenities and home values more systematically by testing the
impact of accessibility to individual amenities on home values, and Chapter 4 addresses
the question of whether a preference for walking is being capitalized into home values.

Typical hedonic models [Kain and Quigley, 1970, Rosen, 1974, Kain and Quigley,
1975] include variables that are theoretically related to home values but which are often
limited by data availability. Common variables to include are traits of the unit like square
footage, lot size, number of bedrooms and bathrooms, and view, as well as traits of the
neighborhood, like school districts, crime, architectural quality, and access to amenities
via the multi-modal transportation network. In practice, one of the most predictive
independent variables for home values is average income in the neighborhood [Ramírez
et al., 2008], but this is a fairly tautological relationship. It does not answer the question
of how this neighborhood became preferred by high-income households originally, which
resulted in increasing home values as the residents’ purchasing power increased.

This research proposes and tests the theory that some high income households choose
to live in high income neighborhoods not strictly due to a preference to be around people
like them, known as homophily [Lazarsfeld and Merton, 1954], but because of a preference
to have increased access to amenities they and their neighbors support by patronizing to-
gether. This shared “amenity infrastructure” is easily testable with a point-of-interest
dataset using neighborhood income as a control variable. If the theory is true, the predic-
tive power of neighborhood income should decline as amenities are included in the hedonic
model.

This relationship is also bi-causal as high price amenities do seek to locate near high-
income households, which is the primary motivating principle behind agent-based urban
models like UrbanSim [Waddell, 2002b], which model both residential and commercial
agents. Future work will explore this relationship from the perspective of shops and
restaurants seeking to locate near their clientele.
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3.2 Additional Literature
3.2.1 Hedonic Models

Core theoretical building blocks for this research include bid-rent theory, put forward
in the early development of urban economics as a field [Alonso, 1964, Muth, 1969], and
hedonic regression [Boyle and Kiel, 2001, Cheshire and Sheppard, 1995, 1998], a methodol-
ogy to estimate the implicit prices of amenities in bundled goods, such as housing [Rosen,
1974]. Combining these two building blocks, extensive research has been performed to
analyze how locational amenities such as accessibility are capitalized into residential prop-
erty values [Nelson, 1977, Edmonds Jr, 1983, Waddell et al., 1993, Waddell and Nourzad,
2002, Lee et al., 2010a].

The logic behind this theoretical approach is straightforward: agents that value specific
amenities such as travel time savings will bid more in terms of rent or purchase price at
those locations that have higher values of such amenities, and in so doing, they are more
likely to outbid other agents for the right to occupy those sites. A further consequence of
this logic is that higher competition for advantageous sites results in higher land values
and subsequently translates to a higher development intensity on such sites, as a result
of substitution from increasingly expensive land costs to relatively less expensive capital
costs – in the form of taller buildings – through capital-land substitution.

3.2.2 Commercial Land Uses and Home Values
Bartholomew and Ewing [2011] review the literature on the impact of pedestrian- and

transit-oriented development on home prices, presenting results from numerous studies on
the impact of transit investments and urban design on home values, but with few recent
studies of the impact of mixing of land uses and local amenities on the same. A notable
exception is Matthews Matthews and Turnbull [2007], which presents conflicting results,
depending on the auto-oriented or pedestrian-oriented nature of the neighborhood (i.e.
local amenities only increase value in pedestrian-oriented neighborhoods), a result also
seen in Rauterkus and Miller [2011] when relating WalkScores to home values. Song and
Knaap [2004] investigated the topic using a Portland dataset and found less equivocal
results. They state, “our fundamental conclusion is that mixing certain types of land
uses with single family residential housing has the e�ect of increasing residential property
values,” although they do note that larger commercial areas can have a negative impact
on home values.

Despite the lack of empirical studies, the last decade has produced numerous theories
on the positive impact of local amenities on inter- and intra-regional location choices.
Di�erent authors give this theory di�erent names, of which The Consumer City [Glaeser
et al., 2001, Gottlieb and Glaeser, 2006] and The City as an Entertainment Machine
[Clark, 2003] are two of the most common. In this theory, scarce and high-value goods
like fine restaurants, architectural aesthetics, and natural beauty are seen as drivers of
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economic growth, as high-income (and presumably high-productivity) workers migrate to
regions and neighborhoods replete with these amenities. There are a number of studies
which relate these traits to various measures of economic output, but few that test to see
if intra-regional variation in these amenities is related to the variation in residential home
prices.

The methodology proposed in this work is also supported by the theory of “scenes”
proposed by Terry Nichols Clark, in which available amenities help define the character of a
neighborhood [Silver et al., 2010, 2011]. “These constellations of amenities define the scene
by making available an array of meaningful experiences to residents and visitors” [Silver
et al., 2011]. In their work, Silver and Clark define clusters of amenities into di�erent
axes (e.g. Transgression) and these get clustered into a typology of neighborhoods (e.g.
Bohemian). The approach used here is to test the hypothesis that if such amenities
are valued by citizens of the Consumer City, a residential hedonic model should reflect
this with significant positive coe�cients on accessibility to amenities used as independent
variables.

3.3 Research Objectives
This work seeks to contribute to the following research questions:

• Does WalkScore have a positive correlation with home values in this dataset? As
WalkScore is a weighted combination of access to 9 di�erent amenity categories,
is access to some of the categories more correlated with home values than others?
Are there categories of amenities that are not included in WalkScore that are also
strongly correlated with home values?

• Does adding accessibility to nearby amenities to an hedonic model that includes
the average neighborhood income reduce the significance and size of the coe�cient
on the latter, supporting the theory that people sort into neighborhoods of similar
incomes partially to access a shared set of amenities rather than simply to be near
households of similar demographic makeup?

3.4 Data and Methodology
3.4.1 Data

This research relies on a large number of residential home listings from 2012 in the
San Francisco Bay Area with a limited number of associated attributes. The particular
estimation dataset used contains 209,075 listings with a mean value of 306 dollars per
square foot and a median of 266 dollars per square foot. Throughout this research prices
per square foot is used rather than absolute prices so as to remove rebound e�ects in
which households consume more housing when home prices are cheaper, and given that
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Figure 3.1: Histogram of home prices per sqft in the residential sales listings

price per sqft is the metric most consistent with bid-rent curves described in the literature
review. The histogram of home values from the dataset is shown in Figure 3.1, which
shows the large positive skew in the data: there is a long tail of high priced homes.

The San Francisco Bay Area is one of the most economically rich and scenically beau-
tiful locations in the United States and the observed prices reflect this status. During the
time period this data was collected - spring of 2012 - the median home price in the United
States was roughly 160,000 while the median in the Bay Area is fully 66% higher than
the national average at 275,000. Although home prices throughout the Bay Area remain
high, San Francisco is an especially expensive real estate market with a median almost
four times the national average.

3.4.2 Hedonic Models
Real estate prices are modeled using hedonic regression of the log-transformed prop-

erty value per square foot on attributes of the parcel and the neighbood surrounding each
parcel. The hedonic regression equation encapsulates interactions between market de-
mand and supply, revealing an envelope of implicit valuations for location and structural
characteristics [DiPasquale and Wheaton, 1996]. The model was estimated from residen-
tial listings with Ordinary Least Squares (OLS), using a standard semi-log specification
in which the dependent variable is log-transformed:

log(Pi) = –i + —(Xi) + ‘i (3.1)
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where i indexes observations in the estimation dataset described above, and ‘ is the er-
ror term. All attributes of the residential properties are used in the estimation to attempt
to control for building quality variation, and the variables include: historic buildings (pre-
1940), modern buildings (post-2000), natural log of unit size in square feet, and natural
log of lot size in square feet. Two characteristics of the neighborhood are used as control
variables and these are regional accessibility which sums the number of jobs accessible by
automobile within 30 minutes and the average income of households in the local area,
defined in this case as households within half a kilometer. All distances are network dis-
tances and are computed using the framework described in Chapter 2. Note that because
the dependent variable is the price per square foot rather than an absolute price, the
coe�cient on any transformation of the unit size variable is expected to be negative in
the hedonic model due to decreasing returns of additional square footage to homebuyers.
Ceteris paribus, larger units have a smaller price per sqft.

3.4.3 Point-of-interest Variables
Point-of-interest datasets are now nearly ubiquitous for use in internet applications,

and give latitude-longitude locations for categorized amenities, which include businesses
like restaurants, cafes, groceries, and shopping, as well as personal services like medical
centers, law firms, and accountants, public institutions like city parks and government
buildings, and natural amenities like historic and tourist locales. The quality of these
datasets is also very high compared to typical urban datasets like population datasets
synthesized from aggregate census geographies and datasets of businesses which often fail
to separate interrelationships between di�erent branches of a business. A simple point-
of-interest dataset has value as it contains the “public facing” aspect of a business, and
thus would be the destination for individual travel and the spatial location which would
have value to a home buyer for its proximity to the property. In the simplest terms,
these datasets can be thought of as an online yellow pages, and are used as such by many
websites.

The application of these data in this chapter is to characterize neighborhoods by the
POIs located nearby to every property listing in the estimation dataset. The POI dataset
used in this research was provided by Factual, Inc. and contains 370 di�erent categories of
destinations, and these categories are used without modification as independent variables
in the hedonic model of prices. Although POI datasets have excellent geographic coverage,
one shortcoming of this dataset is that there are no additional descriptive columns in the
data associated with a destination. Thus the flawed assumption that each destination is
equivalent to all others in a given category must be made. Future research can correct this
assumption by including quality data as it becomes available. Most disaggregate indices,
like WalkScore, use a form of destination accessibility that gives the distance to the nearest
(or second or third nearest, etc) destination in a given category directly. This work uses
a cumulative opportunity or gravity measure to sum the available destinations along
the local street network within a parameterized distance. The equation for cumulative
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opportunity [Dong et al., 2006] is :

Ai(R) =
ÿ

j

ajWj (3.2)

where aj is a continuous variable describing an attribute of the environment at each
location in the city (in this research the variable is a binary 0/1 indicating the presence
of a destination at a given locale), and Wj is equal to 1.0 where the local street network
distance is less then the parameterized distance r and 0.0 otherwise. The generalized
gravity model can be expressed as:

Ai(R) =
ÿ

j

ajf(rij) (3.3)

The function f(rij) is called the decay and is also parameterized. The decay used
everywhere in this work that gravity measures are discussed is linear for ease of interpre-
tation. Thus f(rij) = 1 ≠ rij/R so at rij = 0, Wj equals 1.0 and where rij > R, Wj equals
0.0. More simply, the impact of the destination on the measure is reduced according to
the proportion of distance traversed from the location of measurement to the user-defined
horizon. Although these variables can be expressed mathematically, they are more in-
tuitively understood when mapped, and this research uses a new software platform to
enable detailed mapping at the parcel-scale to provide intuitive visual understanding of
these variables.

The POI variables included fall into three categories according to how they are theoret-
ically expected to impact home values. The variables and categories are shown in Table
3.1. The common category contains items that are frequent walking destinations, and
most are used in the WalkScore index. The high-income category contains destinations
that might be expected to indicate amenities valued by high-income households [Silver
et al., 2011], and locally undesirable land uses (LULUs) [Been, 1993] which are expected
to indicate depressed neighborhoods or reduced home values.

3.5 Results
Table 3.2 shows a chloropleth map of destination accessibility for all of the destination

categories used in this analysis (Figure 3.2 shows the region represented in the images
without coloring). These maps show only a portion of the Bay Area including most of
San Francisco, Oakland, and Berkeley, but each variable is computed for the entirety of
the Bay Area when used in the hedonic models. The maps can be interpreted as heat
maps, with darker colors indicating more destinations of that type nearby (all maps are
represented with an equal interval legend so colors and values are evenly spaced from min
to max). The maps are also color-coded such that green represents common destinations,
purple represents high-income destinations, and blue represents the LULU category.
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Name Category Count Sign/Magnitude WalkScore
Restaurants Common 36,441 +, large included
Shopping Common 85,631 +, large included
Groceries Common 5,618 +, large included
Cafes Common 3,918 +, large included
Bookstores Common 1,702 +, small included
Entertainment Venues Common 12,415 +, small included
Parks, Outdoor Sites Common 3,555 +, small included
Florists High-income 2,559 +, small n/a
Yoga High-income 395 +, small n/a
Sushi High-income 330 +, small n/a
Farmer’s Markets High-income 41 +, small n/a
Health Spas High-income 11,742 +, small n/a
Tourist Sites High-income 164 +, small n/a
Historic Sites High-income 44 +, small n/a
Bars LULU 2,235 -, small included
Fast Food LULU 3,409 -, large n/a
Tattoo Parlors LULU 396 -, large n/a
Liquor Stores LULU 4,122 -, large n/a
Pawn Shops LULU 112 -, large n/a
Concerts LULU 1,031 -,large n/a

Table 3.1: Categories of destinations to be used in home price hedonic models with
expected signs and magnitudes
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Figure 3.2: Map of the Bay Area region shown in the cloropleth maps

There is significant overlap in high accessibility locations among amenities in the
common (green) category, with downtown San Francisco being the most common location
for almost all of the destination categories. Berkeley has high accessibility to cafes and
Downtown Oakland’s Lake Merritt area has high accessibility to outdoor space and parks.
The high-income (purple) category has much greater spatial variation, with yoga locations
concentrated away from the region’s CBDs mostly in the a�uent neighborhoods. Sushi
is prevalent in the Chinatown and Richmond neighborhoods, as both neighborhoods have
high East Asian populations. Farmer’s Markets occur at Fisherman’s Wharf and West
Berkeley, and tourist sites occur mostly in The Mission neighborhood of San Francisco. In
the LULU category, bars occur more frequently downtown and in the Mission, Fast Food
near Market Street, Tattoo Parlors on Haight Street, and Pawn Shops in The Tenderloin.
Thus there are subtle but important di�erences in access to each category of destination
that provides some evidence in support of the theory of scenes [Silver et al., 2010]. In
short, concentrations of destinations appear to at least partially explain one’s experience
of the city as a diverse urban fabric.
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Table 3.2: Maps of accessibility to destinations by cate-
gory. Stronger colors indicate more nearby destinations

Restaurants Shopping Cafes

Groceries Concert Halls Bookstores

Entertainment Recreation Florists

Yoga Sushi Farmer’s Markets

Historic Sites Health Spas Tourist Sites

Pawn Shops Bars Fast Food
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Tattoo Parlors Liquor Stores

Once variables are generated for all of the possible destination categories, they can
be used as independent variables in an hedonic model of sales price per square foot.
Figure 3.3 shows a map of average rent in San Francisco for the estimation dataset, but
individual sales prices (and characteristics of individual properties) were used in the model
estimation.

The three estimated models are shown in Table 3.3. Model 1 is the traditional resi-
dential home price hedonic model, which uses all unit-level attributes that are available
in the dataset, as well as a regional accessibility metric and the average income within
the neighborhood. There are positive coe�cients on historic and modern properties, and
on regional accessibility and average income in the neighborhood. There is a negative
coe�cient on unit square footage, indicating that larger units are cheaper per sqft, which
is a pattern that holds in Models 2 and 3. There is a small negative coe�cient on lot
size which does not conform to theory and which doesn’t occur in Models 2 and 3. The
r-squared for Model 1 is the smallest among the three models. Coe�cients are roughly
comparable in magnitude since they are divided by the standard deviation of the variable,
and the coe�cient on average income is the largest which is typical of residential price
hedonic models.

Model 2 tests the amenity value of those destinations which are components of WalkScore
in addition to the variables used in Model 1 (which have similar signs and magnitudes in
both models). Positive coe�cients occur for cafes, entertainment, and bookstores, while
negative values occur for groceries, shopping, and restaurants. This is somewhat mislead-
ing as all WalkScore destinations are positively correlated with residential home values
when used in isolation. There are correlations between di�erent variables in this analysis
due to the colocation of non-residential uses in commercial corridors and centers which
cause some variables to have negative coe�cients when controlling for others. Future
work could use factor analysis to eliminate the correlations among related destinations,
but this would not allow the disambiguation of accessibility impacts that is the purpose
of this research. The r-squared for Model 2 is .504, which is a significant improvement
over Model 1.
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Figure 3.3: Average residential rent per square foot

Model 3 includes all the amenity variables used in this study, again using unit variables
from Model 1 as controls, and all controls have similar magnitudes and signs as Model
1. Model 2 shows that high-income amenities are related to high-value home prices, and
Model 3 extends this hypothesis by including additional high-income amenities like sushi,
yoga, and florists - in addition to the typical WalkScore destinations, as well as a few
LULUs like tattoo parlors and pawn shops. Accessibility to cafes is still the strongest pre-
dictor of the amenity accessibility variables, with large positive coe�cient and statistical
significance.

The additional amenities have theoretically expected signs, with sushi, yoga, florists,
spas, and tourist destinations all having positive and significant coe�cients, while fast
food, tattoo parlors, pawn shops, concert venues, and bars have significant and negative
coe�cients. Somewhat counterintuitively, liquor stores have a small positive and signifi-
cant coe�cient, likely because many urban liquor stores double as groceries and provide
a desired service to the surrounding neighborhood. Outdoor recreation is positive as hy-
pothesized, but is not significant. Shopping, restaurants, and groceries all maintain the
negative and significant coe�cient present in Model 2. Model 3 has an r-squared of .52
which is a small but significant improvement over Model 2.

To increase the interpretability of coe�cients, Table 3.5 shows the actual price impact
(in dollars per square foot) of a one standard deviation change of each of the variables used
in Model 3. The table is also sorted from largest negative impact to largest positive impact
to aid legibility. In other words, an increase in local accessibility to fast food restaurants of
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MODEL 1 MODEL2 MODEL3
Traditional Vars WalkScore Vars All Vars

R-squared 0.42 0.504 0.52

Variables Coe�cient T-score Coe�cient T-score Coe�cient T-score
Historic 0.26 82.59 0.09 27.7 0.05 16.5
Modern 0.18 36.45 0.17 37.4 0.18 39.6
Accessibility 0.16 140.46 .14 117.7 .14 122.4
Ave Income 1.03 294.03 1.03 289.1 .96 262.0
ln of Unit Sqft -0.32 -120.08 -0.36 -142.0 -0.37 -146.6
ln of Lot Size -0.01 -17.79 0.02 33.4 0.02 37.3
Constant -5.55 -148.39 -5.2 -139.3 -4.5 -115.4
Restaurants -0.10 -57.3 -0.08 -39.7
Groceries -0.09 -36.5 -0.11 -40.9
Cafes 0.26 87.5 0.25 80.9
Shopping -0.02 -7.56 -0.04 -14.6
Entertainment 0.13 60.01 0.11 46.6
Bookstores .02 29.1 0.02 18.75
Sushi 0.05 21.2
Yoga 0.06 19.52
Florists 0.03 35.92
Spas .013 6.2
Tourism 0.076 3.17
Recreation .0013 .94
Concerts -0.004 -2.43
Fast Food -0.044 -43.2
Tattoo Parlors -0.043 -15.8
Pawn Shops -0.07 -11.36
Bars / Pubs -0.02 -22.98
Liquor Stores .013 18.28

Table 3.3: Comparison of three hedonic models using 1) traditional accessibility variables
2) destinations used in WalkScore 3) the complete set of destination categories
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Variables Coe�cient Median Sigma Price Equiv
Fast Food -0.044 0.56 1.89 -14.62
Groceries -0.11 0.58 0.75 -14.50
Bars / Pubs -0.02 0.08 3.34 -11.69
Restaurants -0.03 2.04 1.29 -6.56
Shopping -.04 0.24 0.61 -3.90
Tattoo Parlors -.043 0.00 0.47 -3.11
Pawn Shops -0.07 0.00 0.20 -1.93
Concerts 0.004 0.00 1.62 -.50
Recreation .0013 .36 .98 .99
Spas .013 1.07 1.02 3.31
Tourism 0.076 0.00 0.20 3.69
Historic 0.05 0.00 0.33 3.94
Yoga 0.06 0.00 0.51 6.72
Sushi 0.05 0.00 0.64 7.00
Modern 0.18 0.00 0.20 7.80
ln of Lot Size 0.02 8.64 2.31 9.84
Bookstores 0.02 0.04 2.42 10.29
Florists 0.03 0.34 3.17 19.95
Entertainment 0.11 0.93 0.98 22.65
Cafes 0.25 0.44 0.73 39.28
Constant 1.00 6.86
Sum at Median 5.26
Median Price 191.74

Table 3.4: The variables used in the model with the associated impact of an increase of
one standard deviation of that variable on price per sqft

one standard deviation is associated with a $14.62 drop in residential sales price per square
foot, while an increase in accessibility to cafes of one standard deviation is associated with
a $39.28 increase in residential sales price per square foot. The median sales price in the
dataset is $266, so these changes are significant, yielding a -5.5% and +15% change in price
respectively (although most variables are within a range of -5% to +8%). It should be
emphasized that because of the correlated nature of variables included, the dollar impact
of cafes, for instance, is likely to be counterbalanced by a negative impact of restaurant
accessibility since these variables are correlated. Again, signs and magnitudes coincide
with theoretical expectations other than the negative impact of groceries, restaurants,
and shopping. This counterintuitive e�ect is discussed further in the next section.
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3.6 Discussion
The results presented in the last section provide reasonable evidence as to the value

of individual amenities being capitalized into home sales prices. As the dataset contains
a very large count of observations, a larger than normal set of explanatory variables
can be investigated. In Model 3, accessibility to 22 di�erent categories of amenities is
tested, and all but one yields high statistical significance. Although most variables have
theoretically expected signs, Model 2 shows that access to cafes is the variable most
explanatory of higher home values, and when controlling for this and the other amenities
in WalkScore, groceries, restaurants, and shopping have a counterintuitive negative sign.
It should be noted that groceries only occur as a broad category in this dataset, with
local “corner stores” occurring in the same category as large format warehouse groceries.
Although di�erent categories of restaurants and shopping are available, destinations are
not identified as neighborhood or auto-oriented in format.

One interpretation of these results is that di�erent aspects of WalkScore are more
positively related to higher home values than others. In this dataset, high-income ameni-
ties like cafes, bookstores, and certain entertainment destinations are most correlated
with increased nearby home values. Past research which relates the composite WalkScore
index to residential home values is accurate but is somewhat misleading; some destina-
tions in the index are more positively correlated with residential home values than others.
It might provide more insight into the underlying behavior that drives home values to
disambiguate the impact of di�erent categories of destinations.

Additionally, future work should attempt to di�erentiate not only the category of
amenity, but also the size of amenity, as some destinations are neighborhood scale and
others are regional scale. It is possible that access to cafes is the destination with the
strongest predictive power largely because it is an accurate indicator of neighborhood-
scale urban form. This could be due to the fact that groceries, shopping, and to some
degree restaurants are built with either a regional-scale or neighborhood-scale format, but
there is no regional-scale format for cafes. It is possible that the regional-scale format for
destinations might not increase nearby home values, and this aspect of the data might
confound the results presented here.

3.6.1 The Substitution of Amenity Accessibility for Household
Income Sorting

The final topic of investigation for this chapter is to analyze the degree to which ac-
cessibility to amenities explains home values in a way that substitutes for the explanatory
power of household income sorting as proposed in the introduction and research questions.
Figure 3.4 varies the radius of analysis (for the amenity variables only) from 0 meters (i.e.
no amenity variables) to 20 kilometers. The y-axis contains both the r-squared outcome at
each radius as well as the coe�cient on average income at each radius. It is hypothesized
that the r-squared metric should increase to a certain point and then lose explanatory
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power in a non-monocentric city (in a purely monocentric city the r-squared would in-
crease indefinitely as the radius expands). Additionally, if access to amenities is a valid
substitute for household income sorting in the prediction of increased home values, the
coe�cient on income should go down as the explanatory power of amenity access increases.

First, it is clear that access to amenities adds explanatory power to Model 1 in Table
3.3 which has an r-squared of .42; the highest r-squared with amenity accessibility variables
added is .614, which is a significant improvement and is very high for an hedonic model
where price per square foot is the dependent variable. Second, the r-squared goes up
significantly and consistently as the radius is expanded up to 9 kilometers, at which point
it does not change significantly out to a range of 20 kilometers. Third, over the same
range, the coe�cient on average income in the neighborhood around each house drops
from 1.02 to a low of .64 at a radius of 17km.

Together these results paint a clear picture that access to amenities does explain
some proportion of residential prices that in Model 1 is attributed to household income
sorting, but with a large remainder that is not explained by the addition of amenity
accessibility variables. Additionally, the radius of analysis which provides the largest
explanatory power to the model is larger than is typically considered in the literature on
the relationship of walkable amenities to home values. For this dataset, a radius of 9km
to nearby amenities provides the highest explanatory power of residential prices, using
similar destinations to those that are often used to justify a preference for walkability.
Although walkability is not ruled out as a factor by these results, it is not clear that access
at larger than walkable distances is controlled for accurately in previous studies.

3.7 Conclusion
The results presented in this chapter show that access to specific amenities can be

capitalized into home values with both positive and negative impacts. This conclusion
supports the hypothesis that WalkScore is correlated with higher home values, but shows
that not all destinations in a composite measure like WalkScore are equally predictive of
home values. Some amenities tested here, like cafes, florists, and entertainments venues
are correlated with large increases in home value, while access to land uses like fast food,
tattoo parlors, and pawn shops has a negative correlation with home values consistent
with the concept of locally undesirable land uses.

More generally, the analysis in Figure 3.4 which relates an increasing radius of accessi-
bility measures to increasing explanatory power of the hedonic model casts serious doubt
on the idea that homebuyers are capitalizing walkability directly into home values. It is
true that access to amenities at the local scale is correlated with increased home values,
but it is also true that access to amenities at a distance larger than typical walking dis-
tances has even greater explanatory power of increased home values, thus the evidence
that there is a specific contribution to home values from a preference for walkable neigh-
borhoods is incomplete. Nonetheless, the optimal radius of 9km with a linear decay (with
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Figure 3.4: The increasing r-squared and decreasing coe�cient on average income with
increasing radius up to 9 km
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destinations 4.5 km away already discounted 50%), shows a clear preference for dense
living, and homes with amenities within a short drive or an easy bike ride are often sold
at a price premium. The question of whether a preference for actual walking behavior is
translated into increased home values is the topic of the next chapter.

It is also likely that di�erent segments of the population of a city value access to
amenities in di�erent ways, for which this research does not account. For instance, it
is possible there is a significant population which values walkable amenities and drives
the demand for the housing market in San Francisco, and another segment of households
which is willing to access regional amenities by transit and short automobile trips but does
not require walkable access to amenities. Identifying the relative size and demographic
makeup of these market segments is the topic of Chapter 5.

Finally, this work makes the assumption that preference for travel is directly related to
distance - clearly the choice of some routes and destinations is a�ected by the safety and
aesthetic quality of a route, and some boundaries are not present in network-based defini-
tions of accessibility at all, like jurisdictional borders, school districts, physical boundaries
like highways and railways, and neighborhood boundaries between adjacent social com-
munities. A more general framework of accessibility is necessary to account for these
factors, and the outline of a proposal for this framework is explored in the next chapter.
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Chapter 4

Creating an Empirically Estimated
Walking Index using a Nested
Mode-Destination Choice Model



52

4.1 Introduction
Much recent interest has been given to walking indexes like the commercial product

WalkScore [WalkScore, 2011], which has been validated as a measure of walking [Wein-
berger and Sweet, 2012, Manaugh and El-Geneidy, 2011] and as a positive correlate of
residential real estate values [Cortright, 2009, Rauterkus and Miller, 2011]. Although the
theory behind a walking index of this sort is established in Frank et al. [2008] and Moudon
et al. [2006], the empirical basis for the destinations chosen, the weights assigned to desti-
nation categories, and the distance decay function should be tested more thoroughly. Of
additional importance is the inclusion of aspects of the decision maker (e.g. household
income) in the framework used here, an aspect completely missing from the WalkScore
algorithm, and which has been shown to have a large impact on the decision to walk
[Manaugh and El-Geneidy, 2011].

This chapter leverages the accessibility framework from Chapter 2 in representing
walking-scale accessibility and creates a 2-level nested mode-destination model where
choice of destination is conditional on the choice of mode, so that the logsum of the lower
level creates a general measure of accessibility by mode which can be used in other models
[Dong et al., 2006]. The travel modes used here are walking, automobile, and transit, and
future work will include estimation and application of bike accessibility. Additionally,
this study is one of the first to use the new California Household Travel Survey (CHTS),
conducted in 2012, to estimate current trends in travel preferences, which the literature
shows are changing rapidly [Dutzik and Baxandall, 2013].

This research also measures preferences at a more precise geographic scale than previ-
ous travel demand models. The local street network is utilized fully to measure walking
accessibility, with nearly 226,000 street intersections representing possible destinations of
trips. The specific trip purposes from the travel survey are not aggregated to more general
trip purposes so that precise locations from a point-of-interest dataset can be used as the
attractors of trips. For instance, ‘eat out’ trips are estimated to ‘restaurant’ destinations,
‘indoor exercise’ trips to ‘recreation’ destinations, and so forth. The resulting logsums
by specific trip purpose for home-based non-work trip purposes are then combined into
a composite index using the number of trips from a trip generation model as weights.
Thus a single index with value from 1 to 100 for each mode is produced, which should
address the shortcomings described above by taking the destinations, trip generation, and
distance decay directly from observed behavior in a regional travel survey.

In addition, the currently established relationship of WalkScore to residential property
values is largely correlational rather than causal; accessibility measures that comprise
WalkScore use the distance to the nearest destinations in nine di�erent categories, and
assume that bringing destinations closer to the home causes more frequent walking trips,
and that a preference for walking is being translated into increased home values. However
it is just as plausible, using much the same reasoning as Crane [1996], that the reductions
in travel distances are enabling shorter automobile trips and that this convenience is being
capitalized into increased home values. Although the relationship of local accessibility
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and home values has been established, this is not the same as providing evidence that a
preference for the behavior of walking is being translated into increased home values.

The indexes created in this work are ideal to measure the impact of walking behavior
on home values, using the composite utilities for travel by mode that result from the
methodology described above in an hedonic regression of home values to test whether the
utility for walking, when controlling for the utility for travel by automobile and transit, is
positively correlated with home values. Hence this chapter includes the indexes described
above in the hedonic model of residential home prices which was created and explored in
Chapter 3 to test this hypothesis.

4.2 Additional Literature
4.2.1 Nested mode-destination models

When alternatives in a discrete choice model have unobserved correlation among al-
ternatives the IIA (Independence of Irrelevant Attributes) assumption of standard multi-
nomial logit models is violated. The nested logit formulation is used to address this
limitation by placing alternatives which have unobserved correlation into di�erent nests
and assuming that IIA only applies within each nest. The nested logit technique was first
presented in McFadden [1978] and is derived mathematically in the methodology section
of this chapter. The technique has been applied to mode choice [Sobel, 1979], in which
certain travel modes are nested - e.g. public transit modes or non-motorized modes share
a nest, and has also been applied to create hierarchies that capture spatial correlation in
location choice or destination choice models [Kitamura et al., 1979].

Although sequential models of mode and destination are standard in 4-step travel
modeling practice [de Dios Ortúzar et al., 2001] and are frequently used in activity-based
models [Jonnalagadda et al., 2001], the choices of destination and mode are generally
interrelated and thus the choice of destination conditional on mode (or vice versa) requires
a nested model to capture this correlation. Some recent attempts have been made to
estimate joint mode-destination models [Yagi and Mohammadian, 2008, Richards and
Ben-Akiva, 1974], and at least one nested mode-destination model has been created that
nests destination below mode - as this study does - with good results [Newman and
Bernardin Jr, 2010].

4.2.2 Activity-based travel models
Mode and destination models have long been a central component of activity based

travel modeling [Ishaq et al., 2013]. Bowman [1998] and Ben-Akiva et al. [1998] introduced
the concept of the activity-based travel model (ABM), a completely disaggregate model
in which all activities for all people are synthesized by representing each person mov-
ing through his/her simulated day. The Portland implementation of the Ben-Akiva and
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Bowman framework has five levels of hierarchical choices: activity-patterns, time-of-day,
mode-destination, sub-tours and intermediate stops. The San Francisco ABM [Jonnala-
gadda et al., 2001] and Florida ABM [Pendyala, 2004, Pendyala et al., 2005] both keep
the same basic structure and hierarchy of models [Ishaq et al., 2013].

More recent models, like the Sacramento ABM (SACSIM), keep the same basic form
but increase spatial and temporal resolution [Bradley et al., 2009, 2010]. SACSIM begins
to model destinations at the parcel level, but does so by sampling first the TAZ and then
a parcel within the TAZ during both estimation and simulation. In the work presented in
this chapter, destinations are not required to be sampled during simulation, and the full
population of 226 thousand alternatives is assigned a probability during simulation. This
is not only computationally e�cient but corrects sampling bias present when sampling
during simulation.

The nested model used in this chapter focuses on the third step in the Bowman and
Ben-Akiva choice hierarchy and does not attempt to model people as they move through
their day. Instead, logsums are computed without accounting for time-of-day substitution
by using travel times during the morning commute for automobile and transit in order
to represent an accessibility measure that might have the largest impact on a long term
choice like residential location choice. Future work should include logsums at multiple
times of day in order to test the hypothesis that accessibility at di�erent times of day can
a�ect residential location choice.

4.3 Research Objectives
This work seeks to answer the following research questions:

• Does creating a nested mode-destination model representing purpose-specific des-
tinations at the appropriate scale by mode yield significant coe�cients with theo-
retically expected signs? To what degree do demographics of the choice maker, in
particular income, a�ect these coe�cients?

• Are logsums by mode significant in trip generation when measured at the pedestrian
scale, or does the result from Ewing and Cervero [2001] that demographics are more
predictive of trip generation than accessibility hold with this methodology?

• Are logsums by purpose weighted by the number of trips per purpose significant
in an hedonic model of residential home prices? In other words, do people value
walking accessibility, as measured using the mode-specific logsums created in this
chapter, in their home purchase when controlling for transit and auto accessibility
measured analogously?
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4.4 Data and Methodology
4.4.1 Data

There are a number of datasets that are used in this research, including mode-specific
travel networks, point-of-interest datasets to describe possible destinations, and the Cali-
fornia Household Travel Survey (CHTS) 2012 travel survey. A dataset of residential home
prices in the Bay Area is also used to apply this methodology in an hedonic model of home
prices. Most of these datasets are described in more detail in Chapters 2 and 3, but is
described briefly here with appropriate citations. The region of study is the San Francisco
Bay Area, which is comprised of 6.78 million people, 9 counties, and is one of the most
economically rich and scenically beautiful metropolitan areas in the United States. The
regional government in the Bay Area is the Metropolitan Transportation Commission
(MTC).

Mode-specific travel networks describe the travel time to di�erent areas in the city by
mode (for more information, see Chapter 2). Walking networks use the entire set of local
streets provided by OpenStreetMap, the automobile network and simulated travel times
per time period are included in the output of the MTC travel model, and the transit
network combines the walking network with transit schedules provided by the Bay Area
511 GTFS (General Transit Feed Specification) service. All data was collected during
2011-2012 in order to coincide with the behavior observed in CHTS 2012.

The most recent travel survey available in the Bay Area region is the CHTS from 2012,
which provides a long awaited update to the 2000 Bay Area Travel Survey (BATS) which
has been used in numerous studies in the intervening years [Bhat and Guo, 2007, Guo
et al., 2007, Eluru et al., 2010, Pinjari et al., 2007, Cervero and Duncan, 2003]. This is one
of the first studies to use CHTS 2012 to update estimates of travel behavior, and some
direct comparisons of travel behavior in the two surveys are available in Clelow et al.
[2014]. CHTS 2012 is a travel diary for a single day for 9,719 households with 24,031
people in those households and contains a total 108,184 activities and 84,259 trips in the
Bay Area portion for the Bay Area portion of the survey. Locations are address-matched
and provided as precise latitude and longitude coordinates. Trip purposes and modes are
recorded with detailed categories. This study combines specific modes into more general
modes as shown in Table 4.1, but does not combine specific purposes into general purposes
as much previous research does.

Specific purposes are linked with specific destinations in the point-of-interest dataset
which provides exact geographic coordinates of destinations by category in the city. In
simplest terms, the point-of-interest data can be thought of as an online yellow pages
which might represent the consumer facing aspect of a business that a person would see if
conducting an online search looking for nearby destinations. As such the dataset is ideal
for representing the attractors of trips, although no quality information is present in the
data and all destinations of the same type must be assumed to be identically attractive.
Future work can utilize quality as an additional characteristic of attraction using this
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General Mode Specific Mode Count of Trips
Walk Walk 9,896
Auto Driver or Carpool, Rental

Car
68,028

Transit All buses, trains,
paratransit, public shuttle,

and ferry

3,991

Table 4.1: Mapping of specific modes provided in the CHTS survey to general modes for
which a separate logsum is computed

methodology.
Purposes and associated destinations are provided in Table 4.2; purposes are drawn

from those available in the travel survey and nested mode-destination models for all non-
work home-based purposes are estimated in this study. The available trip purposes overlap
significantly with those used in creating the WalkScore index, and an additional column
is provided in the table to indicate whether a destination is available in the WalkScore
index.

Finally, a dataset of home prices was collected by saving publicly-available home list-
ings for a three month time period in 2012 for homes throughout the Bay Area. The
particular estimation dataset used contains 209,075 listings with a mean value of 306 dol-
lars per square foot and a median of 266 dollars per square foot. During the time period
this data was collected - spring of 2012 - the median home price in the United States
was roughly 160,000 while the median in the Bay Area was fully 66% higher than the
national average at 275,000. More detail on this dataset is provided in Chapter 3, as well
as a description of the hedonic methodology and hedonic model results that are directly
comparable to those provided in this chapter.

4.4.2 Nested mode-destination model
Multinomial logit (MNL) models are a method used to regress outcome variables on

independent predictors where the outcome variable is discrete rather than continuous.
The methodology was originally developed in McFadden [1980] and has been frequently
applied to travel modeling [Ben-Akiva and Lerman, 1985]. Travel modeling is a natural
application of the discrete choice methodology as the choice of, for example, mode of
transportation is categorical rather than continuous and can be attributed to traits of the
destination, attributes of the trip, and characteristics of the decision maker. The basic
form of the MNL model is shown below which takes this form when the error term is
Gumbel distributed.

P (i) = e

Vi

q
i e

Vi
(4.1)
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MNL models make the assumption that alternatives have the trait of IIA (Indepen-
dence of Irrelevant Alternatives), which states that adding or removing an alternative
should a�ect all other alternatives proportionately to their initial probabilities. In the
case of mode-destination it’s likely that some alternatives substitute for others at greater
rates; for instance, a person with a preference for walking might prefer to substitute a dif-
ferent destination while maintaining the choice of walking, or alternatively, if a person has
a preference for a given destination, she might substitute a di�erent mode at greater rates
rather than switching to a new destination. In short, the choice of mode and destination
is highly interrelated and nested logit should be used to relax the IIA assumption.

The “nests” involved are often described as a sequential choice. In the case of the choice
of mode and destination, the process of decision making can be described as “mode then
destination” or “destination then mode.” Thus either could be assigned to the upper level
of the nest while the other is assigned to the lower level [Newman and Bernardin Jr, 2010].
In truth, the nested logit formulation makes no presumption as to the sequential nature
of the choices, rather it is an econometric structure which relaxes the IIA assumption and
allows correlation of some alternatives to others due to unobserved factors.

This chapter always uses a nested structure with mode in the upper nest and desti-
nation in the lower nest (see Figure 4.1) so as to create a logsum factor which describes
accessibility to all available destinations for a specific mode. As described in Dong et al.
[2006], this creates a measure of accessibility which is empirically estimated - in this case
using CHTS 2012 and the point-of-interest dataset to describe land use - the result of
which is a numeric value which describes the accessibility at each location in the city.

Nested logit (following Lee and Waddell, 2010) computes the probability of choosing
a destination d in the city as

P (d) = P (d|m) · P (m) (4.2)
where P (d|m) is the conditional probability of choosing destination d given the selec-

tion of mode m and P (m) is the probability of choosing mode m. The lower level choice
of destination conditional on mode takes the standard MNL form

P (d|m) = e

Vd µm

q
dÕ ‘ Dm

e

VdÕ µm
(4.3)

where Vd is the utility for the destination in question and µm is the nest parameter for
the nest associated with that alternative. As with MNL, the probability is the exponenti-
ated utility of the alternative divided by the sum of exponentiated utilities of alternatives
in the nest; unlike MNL the NL version also contains µm which is the nesting parameter
associated with each nest. The marginal probability of choosing mode m is

P (m) = e

V Õ
m µ

q
mÕÕ ‘ M e

V ÕÕ
m µ

(4.4)
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Figure 4.1: Two-tier nested structure mode mode choice and then destination choice

where V

Õ
m is the logsum associated with nest m and µ is the top level nesting parameter

(which is usually set to 1.0). The logsum represents the expected value of utilities for all
alternatives in the nest. The logsums computed here use all available alternatives and
do not sample during simulation, even if there are several thousand alternatives. This
simplifies the computation of the logsum (as it does not need a correction for sampling)
and the resulting formula for the logsum is

V

Õ
m = 1

µm
ln(

ÿ

dÕ ‘ Dm

e

Vd µm) (4.5)

During estimation, 100 alternatives are sampled per nest (99 alternatives are sampled
and the 1 chosen alternative is always included). Although McFadden showed that esti-
mation is consistent when sampling, in NL a correction factor is necessary. This research
follows the work of Guevara and Ben-Akiva [2013] and uses the correction the authors
describe as “1_0” in which logsums are scaled proportional to the number of alternatives
in the nest divided by the number of alternatives that are sampled. The authors show
that, with non-emperical data, the 1_0 method performs as well as the other methods
and requires a substantially simpler implementation.
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4.4.3 Trip Generation model
This chapter uses a Poission model for trip generation which is described in detail

in Chapter 2. Explanatory variables include demographic variables that exist in both
the estimation dataset (Bay Area portion of the CHTS 2012) as well as the simulation
dataset (the synthesized population provided by MTC), which includes gender, income,
employment status, student status, and household. Measures of the built environment
are logsums by mode for the appropriate income and household location of the decision
maker. Additional variables are used to capture the age of the decision maker, where
“younger” is defined as age less than 18, “older” is age greater than 70, and dummies for
age in the “20s” and “30s” are also used. Trip generation models are estimated for each
specific purpose provided in the travel survey.

4.4.4 Methodology for simulation
The purpose of this research is to create a set of logsums which are appropriate for

use in other estimated models, such as a residential price hedonic model. The process is
most easily described as a series of steps that must be executed in sequence:

1. Nested mode-destination choice models are estimated for each specific purpose which
yield estimated parameters on travel times by mode, alternative specific coe�cients
by mode, and household income interacted with mode. All non-work home-based
purposes are included and travel is assumed to start at the home location (only
home-based trips are included). This creates a logsum by purpose and by mode
that is appropriate for using in an hedonic model or location choice model.

2. Logsums are simulated for each purpose and for each income class. This implemen-
tation uses ten income classes that are the same as the ten income classes present
in the survey (shown in Table 4.3). The model is not segmented when estimat-
ing, but for the purposes of creating a probability distribution function (PDF) with
all 491,025 alternatives (summed across modes, from Chapter 2), choosers are dis-
cretized into ten representative people, one per income class in the survey. After
this step in the process, logsums exist for each of 10 income classes, for each of 10
purposes, for each of 3 modes, for each of up to 226,060 alternatives per mode, for
a total of roughly 68 million logsums.

3. Logsums by mode and demographics are used to estimate trip generation for each
of the 10 trip purposes using a Poisson regression.

4. The number of trips is simulated for each person in the simulated population of
the Bay Area. The population is synthesized from aggregate census geographies for
use in the MTC travel model and contains 5.27 million people above the age of 18
and below the age of 75. As a result of this step, the number of simulated trips by
specific purpose is predicted for each person in the synthesized population.



61

Income Class 1 2 3 4 5
Household Income

(in thousands)
0-10 10-25 25-35 35-50 50-75

Income Class 6 7 8 9 10
Household Income

(in thousands)
75-100 100-150 150-200 200-250 250+

d

Table 4.3: The ten income classes used for simulation (income classes are those specified
in the CHTS 2012 survey)

5. A purpose-weighted and person-weighted logsum is computed as shown in Equation
4.6, where i is the index of each person that is located in the city, and j is the index
of each of the ten trip purposes. In words, each person has an associated logsum
which is weighted by the number of trips he is predicted to make, so that trips he
makes more frequently are weighted higher. These purpose-weighted logsums are
then averaged for all the people at a given location in the city. Locations used in
this research are the street intersections of the local street network.
Thus a relative accessibility is now assigned to every location in the city which is
weighted by the people that live there and the number of trips that each person is
predicted to take. This is called the PPW (purpose and person weighted) logsum
when referred to here. Each PPW logsum is then divided by its maximum value
and multiplied by 100 so as to create an index comparable to WalkScore, although
the indexing step is primarily for visualization and ease of interpretation and is
entirely optional. Note that every step in the process is based on an empirical
model of how people substitute destinations and modes, the number of trips they
make by purpose, and demographics are included so that travel behavior which
varies strongly by traits of the person is accounted for.

PPWn =
q

i
q

j logsumi,j ú tripsj

size(I) ’ n‘N (4.6)

4.5 Results
4.5.1 Estimation of nested mode-destination model

Nested mode-destination models for each purpose are estimated as described in the
methodology section and the results are shown in Table 4.4. All ten purposes take the
same simple form to aid in interpretability, with all coe�cients being highly significant
in all models. Travel time is negative in all models, with coe�cients between .04 and .08.
Travel time interacted with walking destinations is also negative, showing that walking
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trips are typically shorter than the other modes, while travel time interacted with transit
is positive, as transit trips are longer on average than the other modes.

The attracting element (from Table 4.2) is always positive, and is allowed to vary
by mode as the magnitude of the attraction variable varies by mode (the travel model
network is sparse so there are typically more destinations per location). Household income
is interacted with each mode and is negative when interacted with walking and even more
negative when interacted with transit, indicating that households are increasingly likely
to drive as their income rises. Note that outdoor exercise is dropped from these results as
hypothetical attractors of outdoor exercise (like parks) are not significant in the model -
the generators of outdoor exercise is an active research topic but won’t be explored further
here.

The nesting scale factors - µ’s - are expected to be greater than one by the construction
of nested logit. This is the case in each model for the auto and transit nests, but is not
always the case for the walk nest. These values are thus constrained to be at least 1.0
during estimation to match the construction of the model, with a 1.0 nesting parameter
being equivalent to having no nest at all. Model fit is reported as log-likelihoods, and
likelihood ratios are high for all purposes.

Note that household income is the only interaction term used here. Although other
interaction terms could be used, the small number of interactions keeps the model parsi-
monious and allows for the generation of maps for each income level which are intuitive
and easy to understand (as shown in the next section). In the next chapter, latent classes
are used to identify correlated sets of demographics which identify di�erent lifestyle clus-
ters.

4.5.2 Simulation of nested mode-destination model
Once models are estimated they can be simulated and mapped for a discrete set of

purposes and decision makers. Here logsums are estimated by purpose and by income
class for each mode and for each alternative, resulting in about 68 million logsums. Note
that these logsums can be normalized to create mode choice probabilities, or mode splits,
by dividing by the sum across modes for each purpose, income class, and destination. For
the purpose of this research, a logsum is more accurate than mode split as a measure of
absolute accessibility, but for other applications mode split might be more applicable.

In travel modeling, it is typical to simulate actual destination choices, which is an
additional step beyond what is done here, but for the purpose of computing an aggregate
measure of accessibility, logsums are su�cient. An informative byproduct of simulating
a logsum for every possible location in the city is that these logsums can be mapped
with no missing data. In this case there are 300 maps (one for each purpose, income, and
mode). Two of these maps are shown in Figure 4.2, which show the accessibility of walking
for routine shopping for a person of the lowest income classification and for the highest
income classification; logsums for the lowest income households are higher indicating a
greater utility for walking (which can be due to preferences or constraints), although the
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Routine
Shopping

Major
Purchases

Household
Errands

Personal
Business

Null Loglik -13536 -1021 -4913 -3664
Converged Loglik -6503 -603 -2187 -2234
Loglik Ratio 0.52 0.41 0.55 0.39

Variables Coe� T-score Coe� T-score Coe� T-score Coe� T-score
mu (walk) 1 104.74 1 17.15 1 69.1 1 46.86
mu (auto) 5 61.13 2.29 20.32 5 35.74 2.77 39.42
mu (transit) 1.19 61.74 1.22 16.73 1.39 28.96 1.16 42.97
travel_time*walk -0.08 -22.53 0 -0.05 -0.07 -13.58 -0.1 -10.76
travel_time*transit 0.07 22.44 0.09 8.56 0.09 15.03 0.11 25
travel_time -0.06 -62.89 -0.08 -18.52 -0.07 -37.44 -0.07 -35.05
attractor*walk 0.38 11.38 0.62 3.11 0.18 3.2 0.36 5.28
attractor*auto 0.08 15.49 0.14 4.78 0.03 3.28 0.08 6.26
attractor*transit 0.64 13.3 1.02 8.25 0.36 3.71 0.9 17.45
hhincome*walk -0.42 -79.38 -0.51 -14.69 -0.4 -49.99 -0.35 -30.61
hhincome*transit -0.94 -84.44 -0.82 -22.81 -0.87 -42.23 -0.98 -61.95

Social Entertain-
ment

Indoor
Exercise

Eat Out

Null Loglik -9051 -3782 -4860 -7963
Converged Loglik -6164 -2745 -2250 -4772
Loglik Ratio 0.32 0.27 0.54 0.40

Variables Coe� T-score Coe� T-score Coe� T-score Coe� T-score
mu (walk) 2.4 33.76 1 51.02 1 57.77 1 77.85
mu (auto) 3.03 59.82 2.82 39.98 3.73 38.61 4.95 50.55
mu (transit) 1.51 46.24 2.33 26.74 1.43 25.34 1.9 40.29
travel_time*walk -0.05 -11.31 -0.07 -10.2 -0.05 -7.95 -0.09 -18.93
travel_time*transit 0.12 39.52 0.16 53.52 0.08 11.29 0.11 39.53
travel_time -0.05 -49.37 -0.05 -30.88 -0.08 -38.32 -0.04 -49.42
attractor*walk 0.12 2.69 0.75 5.63 0.96 5.67 0.27 4.56
attractor*auto -0.01 -2.48 0.12 10.02 0.11 7.61 0.08 13.01
attractor*transit 0.52 11.49 0.66 10.23 1.06 4.05 0.54 13.83
hhincome*walk -0.13 -19.81 -0.38 -34.2 -0.43 -44.99 -0.43 -59.93
hhincome*transit -0.89 -78.83 -0.73 -62.5 -0.73 -33.91 -0.76 -77.14

Table 4.4: Listing of all nested mode-destination models by specific trip purpose in the
CHTS 2012 survey. Attractors vary by purpose and are listed in Table 4.2.
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relatively high accessibility locations in the city are higher regardless of income.

4.5.3 Estimation of trip generation
The next step in creating logsums weighted by purpose is to estimate a trip generation

model to use as weights for each purpose-specific logsum, making the assumption that the
value of accessibility to the destinations of a trip would be in proportion to the frequency
of the trip. A poisson count model is estimated for each purpose in CHTS 2012, using the
total count of home-based trips for each household for the day recorded in the travel diary
as the dependent variable, and using demographics from the travel survey and logsum
accessibilities for the correct income and the correct geographic location computed in
the step above as independent variables. Although there are more specific demographic
traits present in the travel survey than are used in the estimation, the variables must be
limited to those that are also present in the simulated population for use in the next step.
The definition of the variables used here is described in the methodology section of this
chapter.

The significant coe�cients are presented in Table 4.5. All variables are dropped that
have a z-score less than 1.64 (p-value greater than .1). R-squared values for all models are
very low, but the coe�cients for demographics and accessibility variables match theoretical
expectations and previous results in the literature, therefore low r-squared’s are likely due
to the fact that CHTS 2012 records a single day of travel and prediction of trips on a
single day is an event that is highly subject to random fluctuation.

Demographics have many significant impacts on trip generation. Employed people
make fewer trips of every purpose, students make fewer shopping trips but more exercise
trips, females make more social, exercise, civic, health, and routine shopping trips, but
fewer eat out trips. Age has numerous impacts, with people in their 20s and 30s making
more social trips, but fewer shopping tips. Household size has a negative impact on most
trip purposes but with a positive impact on civic/religious trip purposes. Higher education
levels have a positive impact on most trip generation purposes, except for social, health
care, and major shopping purchases.

Accessibility logsums are also significant for several trip purposes. Greater walk ac-
cessibility is correlated with more exercise, entertainment, eat out, and routine shopping
trips, but fewer home-based personal business trips. Increased transit accessibility has a
positive impact on errands, personal business, eat out, and entertainment trips, but with
a negative association with major purchases. Auto accessibility is positively related to
major purchases but negatively with household errands, possibly indicating a substitution
of these two trip purposes in suburban built environments.

These results seem to indicate that demographics and accessibility measures both
have moderate impacts on trip generation, although the results are highly dependent on
the specific trip purpose - for instance accessibility has no significant impact on health,
civic/religious, and social trip purposes. This result seems consistent withEwing and
Cervero [2001] which finds that both demographics and accessibility impact trip genera-
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Figure 4.2: The logsums are higher for low income (above) then high income (below) for
the purpose of routine shopping indicating an increased likelihood for walking
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tion, although perhaps this research provides some evidence as to the increased importance
of accessibility for trip generation. For the purpose of this work, these trip generation
models are su�cient to create a rough estimate of the number of trips per person in order
to weight the highly correlated set of logsums computed above.

4.5.4 Simulated number of trips
In this step, the trip generation models from the previous step, which were estimated

using the CHTS 2012 survey, are simulated on the synthesized population from the nine
county Bay Area. The synthesized population used here is provided by MTC and is the
same one the regional agency uses for travel modeling, and contains 5.27 million people
with age greater than 18 and less than 75. The mean and standard deviation of the
simulated number of trips by purpose for the entire synthesized population is presented
in Table 4.6. The number of trips per person and purpose are used in the next step.

4.5.5 Purpose and person weighted logsums
Logsums have now been generated for each person, purpose, and mode, and the number

of trips has been simulated for the synthesized population. The next step is to average
over purpose and person in order to create a single weighted logsum by mode for each
location in the city. This is described in detail in the methodology section of this chapter;
logsums are weighted by the number of simulated trips and summed for each person and
these weighted logsums are averaged among people for each location in the city. The
result is a logsum measure that is weighted by the frequency of travel by each purpose
and adjusted for the demographics of the people that live in that location.

This creates purpose and purpose weighted (PPW) logsums that are ideal for use in
a model which does not contain the same disaggregate information by person. In this
research, these logsums are used as independent variables in a residential price hedonic
model for which the demographics of the person that actually purchased the house are
not observed. The best estimate of a person-based accessibility measure for each home
purchase is the weighted logsum computed here per mode and per location in the city
(although no logsum can be computed for a location where there are no residents). These
logsums are mapped in Figures 4.3, 4.4, and 4.5, which show the PPW logsum for each
of the walking, automobile, and transit modes. Note that locations without any residents
have no index value as the index is necessarily based on the demographics of the people
that live in a location; parcels without an associated index value are colored white in the
maps.

4.5.6 Using mode-specific indexes in residential hedonic models
This section provides a sample application of the purpose and person weighted logsums

in an empirical model, in this case a residential price hedonic model. Although much
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Routine
Shopping

Major
Purchases

Household
Errands

Personal
Business

R-squared 0.02 .02 .04 .01
Variables Coe� Z-score Coe� Z-score Coe� Z-score Coe� Z-score
Female .13 3.36
Younger -1.43 -5.27 -.95 -6.2
Older -.14 -1.9
20s -.44 -4.1 -.57 -3.1
30s -.62 -1.9 -.47 -3.2 -.46 -3.0
Employed -.38 -8.6 -.45 -3.1 -.60 -8.5 -.47 -6.2
Student -.30 -3.9 -.25 -1.7 -.28 -2.7
HH Size -.05 -3.0 -.10 -3.5
Income .07 3.0
Education .06 4.3 .13 5.2 .10 4.30
Auto Lsum .22 2.6 -.11 -2.3
Transit Lsum -.10 -2.3 .14 4.0 .08 2.9
Walk Lsum .09 4.2 -.17 -2.7
Constant -6.0 -8.8 -1.7 -4.6 -2.9 -22.0

Social Entertainment Indoor
Exercise

Eat Out

R-squared 0.01 0.01 0.03 .03
Variables Coe� Z-score Coe� Z-score Coe� Z-score Coe� Z-score
Female .15 3.7 .17 2.7 -.15 -3.0
Younger
Older -.18 -2.1
20s .31 3.7
30s .17 2.2 -.38 -2.5
Empl Ratio -.33 -7.0 -.33 -4.3 -.47 -6.5 -.34 -6.3
Stud Ratio .15 2.8 .18 1.8
HH Siz -.09 -5.5 -.1 -3.6 -.14 -6.3
Income .12 4.5 .16 9.2 .16 11.0
Education .10 4.9 .16 7.1 .13 8.0
Auto Lsum -.10 -2.3
Trans Lsum .06 1.8 .08 3.1
Walk Lsum .11 1.6 .12 3.0 .13 2.5
Constant -1.9 -28.4 -2.9 -7.6 -4.2 -26.6 -3.0 -21.6

Table 4.5: Listing of Poisson models of trip generation described here
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Routine
Shopping

Major
Purchases

Household
Errands

Personal
Business

Eat Out

Mean .289 .024 .087 .059 .151
Std Dev .087 .005 .032 .015 .027

Health
Care

Civic /
Religious

Indoor
Exercise

Entertain-
ment

Social

Mean .053 .045 .047 .050 .177
Std Dev .017 .029 .019 .010 .038

Table 4.6: The mean and standard deviation of the number of simulated trips for the
synthesized population

Figure 4.3: Equal interval map of the walking index for the entirety of San Francisco
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Figure 4.4: Equal interval map of the auto index for the entirety of San Francisco
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Figure 4.5: Equal interval map of the transit index for the entirety of San Francisco
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computation must take place to create the weighted logsums, the output is intuitive.
Logsums are an empirically estimated measure of how people in the Bay Area travel, which
are weighted by the frequency of trips people make, and then averaged over the people
that live in a specific location to account, for example, for how di�erent income classes
sort into neighborhoods and travel in di�erent ways due to constraints and preferences.
As a final step to aid in interpretability, the logsums are normalized and multiplied by 100
to create an index for each mode. This walking index is roughly comparable to WalkScore,
but based on empirical data.

The empirically estimated walk, transit, and auto indexes are included in the resi-
dential price hedonic model used in Chapter 3. As in the previous chapter, the available
characteristics of the unit are included as control variables, and instead of the cumula-
tive opportunity accessibility measures to individual amenities used before, this model
includes the PPW indexes by mode generated as part of this research. The coe�cients
from the estimated model are shown in Table 4.7. As before, neighborhood income is a
positive correlate of home value, increased square footage reduces price per square foot,
and lot size, historic units, and new units are all positive correlates of home price.

Interestingly, all three accessibility indexes are positive when accounting for the others.
This makes intuitive sense; accessibility for each mode should be a positive trait for some
home purchasers, although this was di�cult to disentangle with the highly correlated
accessibility metrics used in the previous chapter. Correlation matrices of the indexes are
shown in Table 4.8, with the most correlated indexes being auto and transit with a value
of .46. Future work could use factor analysis to remove the correlation of accessibility by
mode, but factor analysis makes interpretability of coe�cients more di�cult so logsums
are used directly here.

With the entire population of mode-specific indexes and relevant coe�cients from the
residential price hedonic model, the dollar value of a one standard deviation change in
the mode-specific index can be computed, which is shown in Table 4.9. Not surprisingly,
the highest dollar value is attributable to a one standard deviation change in automobile
accessibility, with a dollar value of $41.99 per square foot on a mean value in the dataset
of $306 dollar per sqft (14% of the mean square foot price). A one standard deviation
change in walking accessibility is also worth $36.62, or 12% of the sales price per square
foot, which indicates a significant and large price premium paid for the ability to walk to
nearby destinations. This is perhaps not surprising given the incredible price premiums
people pay for excellent walking accessibility in the city of San Francisco. A one standard
deviation change in transit access is valued at $34.69 per square foot. These findings are
discussed further in the next section.

4.6 Discussion
The methodology presented in this chapter first computes logsum accessibility mea-

sures for each specific purpose and income level, demonstrating that disaggregate point-
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R-squared .484
Coe�cient T-score

Ave Neighborhood Income 1.34 379
Square Footage -.375 -146.1

Lot Size .0047 9.9
Historic Unit .2403 79.12

New Unit .0901 17.55
Constant -8.98 -188.6

Walk Index .0174 84.44
Auto Index .0239 143.17

Transit Index .0228 96.49

Table 4.7: Residential price hedonic model which include accessibility indexes by mode

walk auto transit
walk 1.0
auto .21 1.0

transit .19 .46 1.0

Table 4.8: Correlation matrix for mode-specific indexes

Std Dev Coe� Price Impact per Square Foot
Walk Index 6.49 .0174 $36.62
Auto Index 5.38 .0239 $41.99

Transit Index 4.71 .0228 $34.69

Table 4.9: The standard deviation of the accessibility index and coe�cient from Table 4.7
combine to estimate the dollar value of a one standard deviation change in accessibility
by each mode
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of-interest datasets can be used as attractors in destination models, rather than the more
typical use of jobs by employment sector. Next, the logsums by purpose are weighted
by the simulated number of trips by purpose for each person and then averaged over the
people that live in a given location. The result is then normalized and multiplied by 100
to provide an index of accessibility by mode in all locations of the city which takes into
account the travel preferences and constraints of the people that live there.

These mode-specific metrics provide ideal measures of accessibility to use in other
models, such as a residential price hedonic model in which we do not observe the person
who purchases each house. As presented in the last section, these mode-specific indexes
are all strongly predictive of real estate home values when controlling for traits of the
unit. Theory would suggest that all absolute measures of accessibility should be weighted
positively when purchasing a home - the result presented here, but this has not always
been a given in America’s suburban-oriented history of development.

Perhaps not surprising is that the dollar equivalent of a change in automobile index
of one standard deviation is larger than the dollar equivalent of a one standard deviation
change in walking index, although both of the walking and transit indexes are positive
in the hedonic price model. A number of qualifications should be made here: first, these
results are specific to the Bay Area. The methodology should be tested in other locations,
as the Bay Area is a unique region with very high home values in the amenity-rich and
very dense city of San Francisco. However these results are clearly supported by the
enormous price premiums paid to live in the city of San Francisco, even if San Francisco
might still be a special case.

Second, it should be noted that the variance in the walking index is the highest while
the variance of the transit index is the lowest. Comparing a one standard deviation change
between modes might thus bias the results toward increased value of walking accessibility,
but at the same time is indicative of the limited supply of walkable neighborhoods. Al-
though there is greater supply of high accessibility auto neighborhoods, this does indicate
that, where present, high walking and high transit accessibility neighborhoods are valued.

Third, it should be noted that the way the models are constructed does not penalize
the ability to drive for short trips in dense areas like urban San Francisco. Because only
travel_time is used as an impedance, and not, for instance, the ability to park easily, this
means that by construction any area that is high in walkability index will also be high
in auto index. This is almost certainly a flawed assumption and should be corrected to
take into account the di�culty of parking, and thus of driving for short trips, in dense
urban areas. Once this correction is made, it’s likely that impact of walking and auto
accessibility is more separable in the model. However, the small correlation between the
walking index and auto index indicates that this might not have a huge impact on the
results presented here.

Finally, it is tempting to conclude that more high walking and transit accessibility
neighborhoods should be created, which could possibly accrue environmental and social
benefits, in addition to providing profit to real estate developers and homeowners. In-
deed, the recent spate of development in the city of San Francisco - with more than 4,220
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units currently being developed in the year 2012 SPUR [2012] - seems to support this.
Nonetheless, caution is advised due to the issue of self-selection. Although it’s proba-
bly true that walkable neighborhoods are highly valued in the Bay Area, and that more
walkable neighborhoods can be provided without subsidy to real estate developers, it is
certainly not true that everyone prefers walkable neighborhoods. Future research must
investigate this research more precisely, with one possible method being to allow coef-
ficients to vary among people using the latent class modeling technique Walker and Li
[2007], and to measure the relative size of di�erent segments. This is precisely the topic
of the next chapter.

4.7 Conclusion
This chapter adds to previous research by first regressing disaggregate amenities on

peoples’ observed travel behavior using a nested mode-destination model estimated using
the Bay Area portion of the CHTS 2012, computing a weighted logsum measure which
accounts both for the frequencies of trips by purpose as well as the preferences and con-
straints of the people that are traveling, and averaging this measure for each location in
the city. The resulting accessibility indexes by mode are shown to be highly correlated
with residential real estate prices.

In the analysis performed here, the dollar value of a single standard deviation increase
in the walking index is only slightly lower than the dollar value attributable to a single
standard deviation of the auto index. Although there are some qualifications to the results
presented in this chapter, this is strong evidence that people do in fact highly value
the ability to walk to nearby amenities, even when accounting for income constraints
and accessibility by other modes. This is a major contribution to the literature as it
moves from the previous correlational relationship of WalkScore and home values toward
a more robust behavioral explanation that people are valuing the ability to walk to nearby
destinations in their home purchasing decision.
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Chapter 5

Using Latent Class Models to
Explore the Heterogeneous Impact
of Accessibility by Mode on
Residential Location Choices
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5.1 Introduction
Residential location choice is one of the key determinants in how cities are shaped.

The preferences of households making location decisions and how they change over time is
one of the most important areas of research for city planning, as these decisions can have
enormous impacts on tra�c congestion, social equity considerations, and environmental
consequences. Although many characteristics of neighborhoods and dwelling units a�ect
the residential location choice including crime, school quality, and size and quality of the
dwelling unit and lot [McFadden, 1978, Lerman, 1976, Quigley, 1985], a common research
topic in transportation planning is the impact of accessibility to nearby destinations on
the choice of residence [Lee et al., 2010a, Chatman, 2009, Ben-Akiva and Bowman, 1998].

This impact is particularly important to the planning literature, as many planning
interventions hope to create more dense residential neighborhoods in order to reduce
greenhouse gas emissions (GHGs) from driving, improve transit accessibility for house-
holds which can’t a�ord automobiles, and increase the prevalence of active transportation
to positively impact public health outcomes. In fact, many recent policies like Senate
Bill 375 in California have legislated that land use impacts on GHG emissions must be
accounted for in long-term regional plans [Barbour and Deakin, 2012], although many re-
searchers have questioned the e�cacy of such policies on the basis that many households
are unwilling to live in dense neighborhoods or travel using transit and nonmotorized
modes [Boarnet, 2011, Boarnet and Sarmiento, 1998, Boarnet et al., 2011, Crane, 1996].

Although previous research establishes a moderate but significant impact of accessi-
bility on the residential location decision, very little research has tested for heterogeneous
impacts of accessibility by mode on the residential location choice and that is the topic
explored in this chapter. This topic is of vital importance as research which investigates
average behavior in a cross-sectional dataset almost certainly loses the heterogeneity of
preferences which must be accounted for in understanding the impact of the choice of
residence on the willingness to travel by the transit and walking modes. This chapter
thus uses latent class choice models to cluster preferences for mode-specific accessibility
on residential choice to answer the following questions.

Are there significant clusters of households exhibiting di�erent location choice pref-
erences among locational attributes such as accessibility by walking, transit and drive
modes? What number of latent classes most e�ectively represents clustering of prefer-
ences? Are some clusters positively influenced by walking and transit accessibility, and if
so, how large are they and what demographics predict membership into the clusters?

5.2 Background
Residential location choice is the process by which a household makes tradeo�s between

characteristics of di�erent dwelling units and neighborhoods. Numerous studies have
analyzed this decision making process from both a qualitative and quantitative perspective



77

[Chatman, 2009, Giuliano and Small, 1991, Tiebout, 1956, Bhat and Guo, 2007, Cao et al.,
2008, Cervero and Duncan, 2002, Lee et al., 2010b, Muth, 1969].

Most previous residential location choice models use Lerman’s grouped alternatives
choice (GOC) approach (Lerman, 1976 in Guo and Bhat, 2007) where alternatives are
collections of residential units and represent large contiguous geographic shapes in the
city, for instance census tracts or transportation analysis zones [Lerman, 1976, Waddell,
1996, 2000, Deng et al., 2003]. This makes analysis of the impacts of accessibility by
walking di�cult, as the built environment can change significantly within these large
geographies. Recent studies have begun to model residential choice where alternatives
are specific buildings or parcels [Waddell et al., 2010, Lee et al., 2010a, Lee and Waddell,
2010], but none of these studies model the impact of local accessibility at the parcel scale.

This chapter adds to previous research by testing the impact of statistically estimated
measures of accessibility by the walk, transit, and automobile modes derived in the previ-
ous chapter on the residential location choice. In that chapter, a nested mode-destination
model is estimated using the observed behavior in the regional travel survey in the San
Francisco Bay Area to predict the indirect utility of each destination for each mode and
for each income class of the decision maker (as income is a highly significant factor in
walking behavior Manaugh and El-Geneidy, 2011, Pucher and Renne, 2003). The des-
tinations are summed in a statistically principled way to create a logsum, which is a
measure of accessibility for each mode and income class. These logsums are then matched
to the income class of each household in the travel survey and a residential choice model
is estimated in which the appropriate logsums by walk, transit, and automobile modes
are used as independent variables.

Additionally, and perhaps more importantly, standard discrete choice techniques find
one set of coe�cients for the entire estimation dataset, which results in the average be-
havior for the set of choices that are observed. It is certain that all people do not exhibit
this average behavior, rather people have a distribution of preferences which is di�cult
to estimate econometrically. For instance, in the location choice decision the relevant
question is not “does the average person value walking?” but rather, “what is the relative
size of the population that values walking highly enough for it to a�ect the home buying
decision?” There are a small number of advanced discrete choice techniques which allow
investigation of the heterogeneity of preferences in choice making, including manual seg-
mentation, mixed logit, and latent class models. This last is the methodology used here
as it is ideal for discovering clusters of preferences and was originally developed for the
purpose of consumer market segmentation.

This chapter adds to previous research by applying the latent class choice methodology
developed in Walker and Li [2007] and Vij et al. [2011] to a residential location choice
model where alternatives are small geographies. This methodology allows for multiple sets
of coe�cients for the residential location choice, based on an endogenously estimated set of
“classes” where membership in classes is regressed on available demographic variables. In
other words, based on income, presence of children, and other demographic predictors, the
coe�cients on the value of walking, transit, and driving accessibility and other variables
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are allowed to change. Although there are a small number of studies which apply latent
class models to residential location choice (described below), this is the first to incorporate
walking-scale accessibility, the intent of which is to understand the relative size of segments
that value waking and transit and what demographics predict membership into these
clusters.

5.3 Data and Methodology
5.3.1 Discrete Choice and Latent Class Models

Discrete choice modeling [McFadden, 1980] allows the estimation of indirect utility
among a discrete number of alternatives subject to a linear in parameters utility function
and a given distribution for a random error term. See Ben-Akiva and Lerman [1985]
or Train [Train, 2009] for a thorough treatment of the methods and their application to
travel behavior. Williams [1977] developed the theory for using logsum measures from
such models to measure consumer surplus. In that sense, the use of logsum measures to
represent accessibility is also a measure of consumer surplus.

A major shortcoming of the straightforward implementation of discrete choice models
is that it does not allow for heterogeneity of preferences when estimating coe�cients on the
explanatory variables, although interaction variables and segmentation are techniques can
begin to address this limitation. Traditional discrete choice models estimate coe�cients
which are the average value of a coe�cient from the estimation dataset. To allow for
heterogeneity in preferences, Latent Class Choice Modes (LCCMs) were first developed
in the marketing sciences to identify relatively homogenous clusters of consumers that
di�er significantly from each other in their consumer behaviors (Kamakura and Russell,
1989 in Vij, 2013).

LCCMs have a class membership model and a manually-specified number of class-
specific choice models conditional on the choice of a class in the class membership model.
Heterogeneity is captured by allowing coe�cients in each class-specific model to be inde-
pendent. The class membership model typically incorporates traits of the decision maker
- in this case demographics of the household making the residential location choice - while
the class specific models typically include traits of the alternatives, in this case accessi-
bility measures by mode, price, and attributes of the neighborhoods around each possible
residential location.

Early applications of discrete choice models tended to focus on transportation behavior
like mode choice, but also included work on residential location choice [Lerman, 1976,
Quigley, 1976, McFadden, 1978] and on residential mobility [Clark and Van Lierop, 1987].
LCCMs have become increasingly common in the field of travel demand and have been
applied to travel mode choice [Atasoy et al., 2011, Vij et al., 2011], vehicle ownership
[Train, 2008, Hidrue, 2011], and residential location [Walker and Li, 2007, Olaru et al.,
2011].
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This last is particularly important as these are the only two previous studies which
combine LCCMs with residential choice. Walker and Li find three segments in the resi-
dential location choice which they name suburban dwellers, urban dwellers, and transit
riders, although they find a prima facia contradiction that suburban dwellers have pref-
erences to travel by transit while the urban dwellers often prefer to travel by auto. This
chapter adds to this research by using a logsum measure of the accessibility of destina-
tions by mode in order to investigate closely the question of how people make tradeo�s
in mode-specific accessibility when choosing the residential location.

5.3.2 Data and Methodology for the Residential LCCM
As described in the literature review, LCCMs have a class membership model and class-

specific models which are conditional on selection into a class by the class membership
model. The number of classes is a user-specified parameter to the estimation process and
is chosen based on goodness of fit and interpretability of coe�cients. In the residential
choice model specified here, location choice alternatives are the 226,000 street intersections
in the San Francisco Bay Area. Since the number of alternatives is large, sampling must
be used for estimation, and the sample size which produces robust results, defined as
producing consistent results for any random sample, is 50 (the chosen alternative plus 49
randomly sampled alternatives). When simulating the entire population of alternatives is
used, so the probability density function is created for all 226,000 alternatives for use in
mapping high probability areas in the city.

5.3.2.1 Class-membership Model

The class-membership model is used to predict the probability of membership into
a specific latent class. The form of the class-membership model is the same as that of
the standard MNL, shown below which takes this form when the error term is Gumbel
distributed. Here j is the index of the latent class, while i is used to index specific
alternatives.

p(j) = e

Vj

q
j e

Vj
(5.1)

There is a rich set of demographic predictors available in the new CHTS household sur-
vey which can be used as explanatory variables in the class membership model, including
age of the head of household, household size, household income (in ten categories), pres-
ence of children, number of employed workers, number of students, related/non-related
status, residential building type (e.g. single family detached), rent/own, and number
of years in the current residence. Each of these variables can be tested in the class-
membership model for statistical significance and theoretical sign.
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5.3.2.2 Class-specific Models

The class-specific model is also a straightforward MNL model when conditioned on
selection into a specific class. Here the probability of choosing alternative i conditional
on class j is given by:

p(i|j) = e

Vi,j

q
i e

Vi,j
(5.2)

The probability of alternative i and class j is the standard formula for joint probabil-
ities using the equations above.

pi,j = pi|j ú pjq
j pi|j ú pj

(5.3)

Log-likelihood is maximized using the Expectation Maximization (EM) method now
common in machine learning. The intuition for this process is that log-likelihood increases
as the probability of the chosen alternative increases for the higher probability classes for
each household. Thus log-likelihood increases when either the probability of the alterna-
tive conditional on the class increases or the probability of selection into the class increases
consistent with the concepts of joint and conditional probabilities. Although the defini-
tion of the latent class model is fairly easy to understand, the selection into a class is an
abstract concept and is thus never actually observed, which makes the analytical gradients
used for estimating the coe�cients of the LCCM somewhat more involved and the reader
is referred to Vij [2013] pps. 17-22 for the derivation.

The class-specific models have a specification which includes variables for logsums for
travel by walking, transit, and auto, as well as price, income interacted with price, average
income in the neighborhood, and residential units to act as a supply variable. The prices
are taken from MLS residential listings from 2012 so are coeval with the travel survey -
the median price within 1000 meters on the street network is computed so as to fill in
areas for which there are no observations and to smooth over outliers. These are the same
prices used as the dependent variable in the hedonic model in Chapter 3.

5.3.2.3 Estimation of the LCCM

Estimation of the LCCM is performed in Python using custom Numpy code devel-
oped by the author, and is incorporated into a new implementation of UrbanSim [Waddell,
2002b] as open source software available at https://github.com/synthicity/urbansim. Es-
timation is performed using the Expectation Maximization algorithm until the di�erence
in the log-likelihood for successive iterations is smaller than a certain threshold (here 1e-6
is used as the threshold for convergence). The estimation process is thus an expectation
step in which the NC+1 models are simulated and the resulting probabilities are used to
compute a log-likelihood for the overall model followed by a maximization step in which
NC+1 models are independently estimated to local convergence where NC is the number
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of classes specified by the modeler. A loop is then executed around each EM step until
the model reaches global convergence. The reader is referred to the code in the UrbanSim
project for a reference implementation, and to the methodology in Vij [2013] which is
followed precisely in this work.

5.3.3 Data and Methodology for Estimating Logsums
This chapter builds on Chapter 4 of this dissertation which computes logsums of

accessibility to destinations. Although interested readers are referred to the previous
chapter for detailed information, the methodology is summarized briefly here.

The population of all possible destinations is known by using a clean and thorough
point-of-interest dataset provided by Factual, and the regional travel survey (CHTS, de-
scribed above) provides an estimation dataset that describes how people tradeo� modes
and destinations. The specific model used is a nested mode-destination choice model
where destinations are street intersections which have attractors (the number of destina-
tions at the intersection) and impedances (the travel times by mode) which are used as
explanatory variables.

Specific trip purposes in the survey are linked to specific destinations so that micro-
scale land use can be linked to its associated travel behavior. In some cases, the corre-
spondence is perfect - e.g. eat out trips with restaurant destinations - in other cases, like
“social” trip purposes, the set of destinations is less well defined (see Chapter 4 for the
complete list). The logsums are then weighted by a trip generation model so that the
result is an indexed logsum that is a weighted average of purpose-specific logsums where
the weights are the number of trips that are made by that purpose. The assumption
implicit in this methodology is that accessibility matters more for trips that are made
more frequently, in direct proportion to the frequency of trips made for each purpose.

The result of the previous phase of the analysis is a complete set of logsums by mode
for each income category (see Chapter 4 for the income category definitions, which are the
same as those from CHTS) and for each possible home location, where street intersections
are also used to represent the population of home locations as consistent with “street node
geography” described in Chapter 2.

5.4 Results
For comparison purposes, Table 5.1 shows coe�cients for a non-segmented MNL

model. Although in a typical choice situation attributes of the user would be used as
interaction terms in this model, here the specification is used that is exactly the same as
the class-specific models described below for comparison purposes. The coe�cients for
the unsegmented model are positive on walk (although very small and with a p-value of
.1) and negative on transit and auto logsums, with the coe�cient on the auto logsum
being larger and more significant. Price is negative and interacting income with price is
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Mode Beta Stderr T-score Significance
Unsegmented MNL Walk Logsum 0.01 0.01 1.20 .

Transit Logsum -0.02 0.01 -1.73 *
Auto Logsum -0.14 0.01 -9.92 ***
Average Income -0.05 0.02 -2.22 *
Residential Units 1.11 0.02 50.65 ***
Price -0.99 0.03 -34.69 ***
Income x Price 0.24 0.01 275.72 ***
Null Loglik -34261
Final loglik -32206
Loglik Ratio 0.06

Table 5.1: Unsegmented MNL Estimation Results

positive and both are highly statistically significant. Residential units associated with the
street intersection is positive and acts as a supply variable. Finally, average income in the
neighborhood is a small negative value which is counter to expectations and this varies
significantly among the di�erent classes in the class-specific model.

The number of latent classes is determined by the modeler, and the preferred model
in this case uses three classes. The determination of the number of classes is discussed in
more detail later, but there appear to only be three large classes in the dataset and the
introduction of more classes is not informative behaviorally nor does it improve the fit of
the model much.

5.4.1 Class-specific Models
Coe�cients for the class-specific models are shown in Table 5.2. Class 1 has positive

and significant coe�cients on walking and transit logsums but negative on the auto log-
sums, with a small negative coe�cient on price and a small negative coe�cient on average
income. For Class 1, the coe�cient on the walk logsum is much larger than the coe�cient
on the transit logsum. The magnitude of the coe�cient for residential units is much larger
than for the other classes, which indicates this class’s proclivity for density which is seen
in Figure 1. For Class 1, all coe�cients are highly statistically significant.

In Class 2, the coe�cient on transit is positive but auto is negative and walk is
insignificant. Although there are few places in the Bay Area where transit access is
high and walk access is not, this group is clearly most driven by transit access. Price is
negative and income interacted with price is positive as in the other classes, and residential
units is positive but not as large as in Class 1. Average income in the neighborhood is still
negative for this class. All coe�cients but walk logsums are highly statistically significant
for this class.

In Class 3, the coe�cients on all accessibility logsums are negative indicating that this
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Mode Beta Stderr T-score Significance
Class 1 Walk Logsum 0.79 0.07 12.08 ***
Urbanites Transit Logsum 0.31 0.05 6.42 ***

Auto Logsum -0.37 0.06 -5.87 ***
Average Income -0.54 0.08 -7.16 ***
Residential Units 2.17 0.08 25.87 ***
Price -0.74 0.11 -6.58 ***
Income x Price 0.31 0.01 113.86 ***

Class 2 Walk Logsum 0.01 0.03 0.03
Transit-oriented Transit Logsum 0.08 0.02 3.80 ***

Auto Logsum -0.18 0.03 -7.20 ***
Average Income -0.29 0.03 -9.35 ***
Residential Units 1.34 0.04 33.98 ***
Price -1.32 0.05 -15.12 ***
Income x Price 0.35 0.01 -27.69 ***

Class 3 Walk Logsum -0.05 0.03 -1.97 *
Suburbanites Transit Logsum -0.04 0.02 -2.40 **

Auto Logsum -0.17 0.02 -8.14 ***
Average Income 1.09 0.03 31.28 ***
Residential Units 0.92 0.03 28.90 ***
Price -2.99 0.05 -61.31 ***
Income x Price 0.43 0.01 242.09 ***

Table 5.2: Class Specific Estimation Results

class is not drawn to high-accessibility areas. Price is still quite negative with a large
interaction term, although it should be noted that the income level of this class is higher
on average than the other two. For this class the average income of the neighborhood
is large, positive, and statistically significant. The coe�cient on residential units is the
smallest of the three classes. Together this creates a suburban orientation which is clearly
seen in Figure 3.

5.4.2 Mapping the PDF
As residential location choice is inherently a spatial process, the preferences of each

latent class can be mapped for a far more intuitive understanding of the tradeo�s each
class is making. To do this, each class-specific model is configured to simulate the entire
probability density function (PDF) so that a probability is computed for each of the
226,000 street intersections that are used as alternatives. These probabilities are then
mapped to the nearby parcels shapes which are colored using equal interval coloring and
projected on top of aerial imagery for context.
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The result is shown in Figures 1, 2, and 3, which map the PDF for each of Class 1,
2, and 3 respectively. In the maps, darker colors indicate higher probability areas for
the location preferences of each class. Legends are not provided as the numbers are very
small probabilities (due to the large number of alternatives), and don’t provide additional
understanding. The probabilities are mapped with an equal interval color scheme so that
the colors themselves should provide an intuitive understanding of the relative probability
of a class choosing the darker, more colorful, areas.

The behavior of the classes is explained in more detail in the discussion section below,
but from the maps it is immediately apparent that Class 1 is the set of households that
select into the dense and expensive urban core of San Francisco, as well as the urban areas
in Downtown Oakland and Downtown Berkeley (thus dubbed the Urbanites), Class 2 is
the second largest class and tends to move into the poorer neighborhoods in East Oakland,
Richmond, and far out on the Pittsburgh/Bay Point and Dublin/Pleasanton BART lines
(thus titled the Transit-oriented), and Class 3 is by far the largest and selects into the
expensive suburbs around San Francisco including Orinda and Lafayette, Oakland Hills,
Marin County, and the auto-oriented sections of San Francisco (thus named the Suburban
Commuters).

5.4.3 Class-membership Model
The class-membership model is given in Table 5.3. As in all discrete choice models,

the alternatives (in this case the 3 classes) can only be measured relative to a reference
alternative, which in this case is Class 1. Compared to Class 1, Class 2 (the Transit-
oriented) has a negative coe�cient on income and non-related, and significant positive
coe�cients are estimated for household size, unit ownership, employment ratio, detached
housing, older age of head of household, and presence of children and young children.
Compared to Class 1, Class 3 has a negative and significant coe�cient on non-related
households and positive and significant coe�cients on household income, household size,
owner occupied, age of head of household, and children and young children.

5.4.4 A Note on the Number of Classes
The number of classes is a configuration parameter, and the choice of preferred model

must be based on the log-likelihood measures, the relative class sizes, and the ease of
interpretation of the coe�cients in both the class specific and class membership models.
For this dataset, the three class model is intuitive to understand, the log-likelihood doesn’t
improve much with additional classes, and any additional classes beyond three are very
small. Although there is some variation from run to run due to the random starting
coe�cients, typical statistics for the three, four, and five class models are shown in Table
5.4. In fact, in many cases a four or five class model tends to converge to the three class
model presented here, depending on the initial sample of alternatives and random starting
coe�cients.
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Figure 5.1: A map of the probability density function (PDF) for the residential choice of
households in Class 1 (no legend is used because the probabilities are very small; darker
colors indicate relatively higher probability areas)
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Figure 5.2: A map of the PDF for residential choice of households in Class 2
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Figure 5.3: A map of the PDF for residential choice of households in Class 3
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Variables Coe�cient Stderr T-score Significance
Class 2 Household Income -0.79 0.12 -6.60 ***
Transit-oriented Household Size 8.36 0.24 34.96 ***

Owner Occupied 37.05 0.55 67.04 ***
Employed Ratio 1.75 0.46 3.81 ***
Detached Unit 33.56 0.50 66.26 ***
Non-related Hhld -11.44 0.78 -14.67 ***
Age of head 1.47 0.20 7.22 ***
Young Children 36.23 1.33 27.16 ***
Children 16.86 0.70 24.17 ***
Constant -18.50 1.20 -15.38 ***

Class 3 Household Income 0.52 0.20 2.62 ***
Suburbanites Household Size 9.37 0.27 34.24 ***

Owner Occupied 40.01 0.73 55.06 ***
Employed Ratio - - -
Detached Unit - - -
Non-related Hhld -14.44 1.05 -13.78 ***
Age of head 1.40 0.24 5.76 ***
Young Children 38.55 1.39 27.70 ***
Children 16.20 0.73 22.08 ***
Constant - - -
Null Loglik -34261
Final loglik -31103
Loglik Ratio 0.09

Table 5.3: Class Membership Estimation Results

3 class 4 class 5 class
Null Loglik -34261 -34261 -34261
Final Loglik -31103 -31080 -31060
Loglik Ratio .09 .09 .09
Class 1 Size 1.24M 1.23M 1.23M
Class 2 Size .67M .67M .71M
Class 3 Size .45M .45M .37M
Class 4 Size 4K 7K
Class 5 Size 6K

Table 5.4: Comparison of 3, 4, and 5 class latent class models (class sizes are sorted from
largest to smallest)
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5.5 Discussion
The demographic makeup of the classes can be easily understood by simulating the

class membership model on the households in the survey and making a monte carlo
choice based on the probabilities that are derived from the model. Each household also
has a weight which is a statistical measure of the number of households that household
represents in the entire population (in order to reach demographic marginals known to
be true for the population). In this way, simulating for the surveyed population and
multiplying by the expansion weights results in a demographic distribution for each class
in the entire population. Table 5.5 presents the descriptive statistics of such a sample
enumeration, giving estimates of the various statistics in the entire population of the Bay
Area. The three classes are described in words below based on these descriptive statistics.

• Class 1 - the Urbanites - live in the highly urban areas of San Francisco, as well as
Downtown Oakland and Downtown Berkeley. Since these households live near the
urban core, they have a positive coe�cient on accessibility by walking and transit,
with the largest coe�cient on walk accessibility of the three classes. They are the
second highest segment in terms of average household income (to Class 3). The class
membership model tells us that Urbanites tend to have the smallest household sizes,
the largest rate of one person households, the highest ratio of employed household
members to total household members, the smallest ratio of vehicles to household
members, the smallest percentage of young children and school-age children, with
the lowest rate of home ownership and the lowest rate of single family household
occupancy. Class 1 accounts for 13% of households but because of their small
average household size, members of these households account for only 7% of the
population. To describe them in one sentence, they are young professional single
person households (56% live alone) or roommates who rent in highly walkable and
relatively expensive urban areas.

• Class 2 - the Transit-oriented - are the second largest group of Bay Area house-
holds, which are largely defined by the lowest income of the three classes and their
associated high sensitivity to price. These households have low rates of car own-
ership (though the Urbanites are lower still) and so tend to locate near transit
stations in East Oakland, Fremont, Richmond, and along the distant stops of the
Pittsburgh/Bay Point and Dublin/Pleasanton BART lines. They have the second
highest rate of single family housing, the second highest rate of home ownership,
the second highest rate of employment, the second highest rate of one person house-
holds, and the second highest rate of both young children and school-age children
present in these households. They contain 36% of households and 34% of the total
population. To describe them in one sentence, they are the lower income households
which tend to live near the subset of BART stations which are surrounded by low
cost housing; many of the neighborhoods are high crime, but many of these house-
holds are raising families and own houses as these are the areas where housing is
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relatively a�ordable in the exorbitantly expensive Bay Area.

• Class 3 - the Suburban Commuters - are by far the largest group of Bay Area
households, and are the highest income households, with a median income twice
that of the other two classes. They tend to locate in the desirable suburbs of the
Bay Area, including Marin County, the Oakland Hills, Orinda and Lafayette, Pacific
Heights and Twin Peaks in San Francisco, and Silicon Valley. They live in almost
exclusively owner occupied single family housing, with a median of almost 14 years
in their current residence. These are largely families, with a median household size
of three, while 36% contain school-age children and 12% contain young children
(only 4% are one person households). Only 11% of these households have an age
of head of household which is less than 40 years old. The median household has as
many vehicles as people and half as many employees as people (though given the
large household size these can still be two earner households). This group comprises
50% of all households and 59% of the Bay Area population. To describe them in
one sentence, these are middle class and high-income households raising children in
the idyllic suburbs of the Bay Area.

There are a number of interesting conclusions that can be drawn from analyzing the
makeup of the three latent classes and their location preferences. In general, Class 1 is
the young professionals selecting into high rent areas in the urban core, and appear to
have traded o� home ownership and single family housing for walkable neighborhoods and
a greater ability to foster nascent careers and social connections. Class 3 is the middle
class and high income families that have chosen to live in the idyllic suburbs around San
Francisco; this class appears to have traded o� accessibility for bigger houses, larger lots,
and safer neighborhoods. Class 2 is the lowest income of the three, and is predominately
located in the lower-cost neighborhoods near BART stations. This class appears to have
traded o� walk accessibility (which has an insignificant coe�cient) for lower cost housing,
while maintaining access to the larger region through the public transit network.

The three classes do appear to have heterogeneous impacts of accessibility. For the
first, smallest class walking accessibility is a driving force in the residential location deci-
sion, for the second class transit accessibility has the largest and most significant coe�-
cient, and the third class tends to have a generally negative relationship with accessibility.
The class which values walking accessibility the most - Class 1 - is composed of young,
moderately high income professionals with a large proportion of single member house-
holds, a demographic class which research indicates has been growing considerably in
recent years Nelson [2009].

Although Walker and Li [2007] also found three classes when applying similar method-
ology to the residential location choice, the previous study found an urban class with auto
tendencies and a suburban class with transit tendencies. Both of these behaviors might be
present in Class 3 of this study, with auto-oriented neighborhoods in San Francisco being
as likely as BART-accessible neighborhoods in the suburbs for this class, the unifying fac-
tor being the high-value housing, high-income neighborhoods, and access to high-paying
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Class 1 2 3
Size (number of households) 324,189 859,656 1,164,581

Percent of households 13% 37% 50%
Total Population 428,282 1,998,452 3,532,020

Percent of population 7% 34% 59%
Percent Single Family Housing 2% 74% 99%

Percent Owner Occupied 31% 78% 96%
Years Lived in Residence (median) 9 12 14
Income Class Category (median) 50K-75K 50K-75K 150K-200K

Ratio of Employed to Total People (median) 1.0 .75 .50
Ratio of Vehicles to Total People (median) .50 .75 1.0

Household Size (median) 1 2 3
Percent One Person Households 56% 14% 4%

Age of Head of Household (median) 53 55 58
Percent Young HH (age of head < 40) 23% 16% 11%

Percent Young Children 1% 9% 12%
Percent School-age Children 2% 23% 36%

Table 5.5: Descriptive statistics for the 3 latent classes

jobs. It seems possible that the previous study, which was performed on a 1994 dataset
from Portland, OR, did not have a truly walking-oriented class like Class 1 in the present
study.

5.6 Conclusions
This chapter has described a methodology for using latent class choice models to

allow for heterogeneous preferences in the residential location choice decision as estimated
using the Bay Area portion of the 2012 California Household Travel Survey. LCCMs
are comprised of a class membership model which uses the diverse set of demographic
descriptors present in CHTS to assign classes of behavior to households, and a number of
class-specific models which with independent coe�cients to allow for di�ering preferences
among classes. This chapter uses a specification for location choice with accessibility by
auto, walk, and transit, supply of residential units, average income in the neighborhood,
and average price as independent variables. Alternatives are the roughly 220 thousand
street intersections in the Bay Area.

The preferred model reveals that there are three large classes of behavior in the travel
survey, and that additional classes are relatively small. Of the three classes, one is com-
prised of young professionals which locate primarily in the urban core and have positive
coe�cients on transit and walk accessibility with the largest and most significant co-
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e�cient for walking, the second is the lowest income and tends to locate in low-cost
neighborhoods around BART stations (with a negative coe�cient on auto access and
walking accessibility is not statistically significant) and the third is the highest income
and least price sensitive which locates in the idyllic suburbs around San Francisco, with
a negative relationship to all accessibility measures when controlling for price, residential
supply, and average neighborhood income.

It should be noted that schools and crime are not included as covariates in this study,
as all data in this study is available regionally except for these two datasets. Future
work should perform the methodology presented in this chapter on a subset of the Bay
Area where crime and school data are available so as to properly control for these vari-
ables. Nonetheless it is likely that the neighborhood income and price variables are highly
correlated with crime and school quality, and since the coe�cients on income and price
are used as controls, it is possible that the impact of crime and schools is controlled for
adequately through these proxy variables.

It should also be noted that in the Bay Area the set of variables used here to explain
residential location choice is quite correlated. High income neighborhoods, price, resi-
dential density, and accessibility by all three modes essentially are di�erent measures of
development density. In particular, residential units and the walking logsums are highly
correlated, with a Pearson correlation of .65. In light of the large previous literature
discussing the relationship of residential density and pedestrian accessibility, it is worth
noting that in this dataset and using this methodology, these two variables are significantly
correlated, so much so that it’s clear that a trivial-to-compute summation of residential
units captures almost all of the impact of the extensive methodology presented here which
attempts to account for available destinations, trip generation, mode substitution, and
income e�ects.

This has two implications. First, previous studies which use residential density as an
explanatory variable in travel behavior are likely capturing walking behavior by proxy,
at least for Bay Area studies, which is usually the stated purpose of using residential
density in these studies. Second, the residential units measure which in this paper is
used to control for availability of residential units (i.e. the supply variable), is also highly
correlated with walkability so that some of the explanatory power currently attributed
to supply is probably due to the positive correlates of density such as nearby walkable
destinations.

To answer the research questions posed in this study, it appears that nearly half the
households in the Bay Area are not driven by accessibility considerations at all, and that
only 13% of households are truly preferring of walkable neighborhoods. Nonetheless, there
is a large segment of households - 37% - which are lower-income and transit-oriented and
which are often overlooked by Bay Area planning processes. For planning interventions
which seek to increase travel by active modes, members of this segment might have the
most latent potential to change their behavior. As Class 1 is probably well served by
pedestrian neighborhoods already (and is relatively small) and Class 3 has no appar-
ent proclivity to high-accessibility areas, it should be noted that Class 2 is a large and
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seemingly underserved population living in neighborhoods around BART stations whose
pedestrian environments could be easily upgraded.

A ripe area for future research is to perform a gap analysis which compares neigh-
borhoods that are high probability areas for each of the three classes presented here to
test for the impact of increases in transit service and pedestrian infrastructure on both
the residential location choice and travel behavior. Taking into account the heterogeneity
of preferences explored here, the result of such a study would target the locations which
could have the highest impact on sustainable behavior for the smallest amount of public
investment.
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Chapter 6

Conclusions
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6.1 Summary of key findings
In Chapter 2, an accessibility framework is created to allow the computation of the

distance to all destinations from all locations in the city. This allows the measurement
of accessibility to destinations by mode for each of walking, transit, and auto, as well as
WalkScore-like disaggregate indexes, and “3Ds” density, diversity and design variables. A
case study application for trip generation for home-based walking trips in the Bay Area
portion of the 2012 California Household Travel Survey finds that WalkScore is descriptive
of walking trips, but that residential density and 4-way intersections have an additional
but small impact, and that regional access by the transit network has a synergistic e�ect
on walking, while regional access by auto has no impact.

In Chapter 3, the relationship between accessibility to local amenities and home values
is tested. Although early research has found that the composite index WalkScore is
positively related to home values, this research unpacks the impact of each category
of destination in WalkScore (as well as several other categories) on home values. The
hedonic model presented in Chapter 3 shows that accessibility to certain amenities is
far more predictive of home values than others in the datasets used in this analysis; in
particular, cafes and co�ee shops tend to be the indicator of neighborhood-scale urban
fabric that has by far the largest positive impact on home values, where a one standard
deviation increase in access to cafes is associated with almost a 15% increase in home
values.

Chapter 4 expands on the findings from Chapter 3 by providing evidence that the
willingness to walk to these destinations (as opposed to making short driving trips) is val-
ued when purchasing the home. In this chapter, logsums from a nested mode-destination
model (using the networks from Chapter 2) are generated that are an accurate measure of
the actual choice to walk to the complete set of destinations around each home location.
Logsums by purpose are weighted by the number of trips made for each purpose, and the
models are segmented by income and then income-specific logsums are averaged over all
people that live in each location in the city. The result is an empirically estimated index
of walking, transit, and auto accessibility for each location in the city.

These indexes are then used as right-hand side variables in the hedonic model from
Chapter 3. Not surprisingly, travel by all 3 modes has a positive relationship to home
values, and a one standard deviation change in the weighted logsum for automobile has
the greatest impact on home values, although the impact of walking accessibility on home
values is positive, statistically significant, and almost as large. Interestingly, the variance
in availability of neighborhoods that enable walking is much larger than the variance in
neighborhoods that enable driving probably due to the relatively higher supply of drivable
neighborhoods, but the results from this chapter show that where walkable neighborhoods
are available there is unequivocal evidence that increased walking is related to increased
home values for the datasets analyzed here.

Chapter 5 then investigates the residential location choice using latent class choice
models (LCCMs) so that coe�cients on the three mode-specific indexes, as well as price,
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residential supply, and average income in the neighborhood, are allowed to change based
on selection into unobserved classes. This is a type of consumer preference segmenta-
tion aimed at elucidating the impact of mode-specific accessibility to destinations on the
residential location decision.

The model shows that there are three large segments present in the Bay Area. The
first likely captures the young, moderately high-income professionals that select into the
walkable neighborhoods of urban San Francisco, Oakland, and Berkeley, though this
segment is only 13% of Bay Area households. The second is transit-oriented and selects
into the subset of relatively less expensive neighborhoods near BART stations but outside
the urban core, and comprises 37% of all households, and the third which is composed
of middle class families that prefer the idyllic suburbs outside San Francisco. This last
segment seems to have a generally negative relationship with accessibility for all modes
and comprises 50% of all Bay Area households. The main research topic explored in
Chapter 5 is the question of the size of the segment of the population that is positively
a�ected by walking accessibility for the residential location choice and the results show
that this segment exists but is of modest size.

However, a major finding of this research is that for planning interventions that seek
to increase travel by active modes, members of the transit-oriented segment might have
the most latent potential to change their behavior. Perhaps creating denser and more
walkable environments around the less expensive neighborhoods near BART stations in
the region could relieve pressure on the San Francisco housing market as well as create
walkable environments for the lower middle class that appear to be a major component
of residential demand in the region.

A ripe area for future research is to perform a gap analysis that compares neighbor-
hoods that are high probability areas for each of the three classes presented here to test
for the impact of increases in transit service and pedestrian infrastructure on both the
residential location choice and travel behavior. Taking into account the heterogeneity of
preferences explored here, the result of such a study would target the locations which
could have the highest impact on sustainable behavior for the smallest amount of public
investment.

6.2 Contributions to the literature
One contribution of this dissertation to the literature has been to address the question

of the impact of WalkScore as a predictor of both walking and of increased home values.
This dissertation uses an empirical dataset (CHTS 2012) to estimate a nested destination
choice model which increases accuracy of WalkScore in five ways: 1) the distance decay
function can be estimated based on how far people are observed to travel for each mode,
2) the set of destinations can be matched against the specific trip purposes from CHTS
2012 as well as the set of destinations from the point-of-interest dataset, 3) the relative
contribution of each destination can be weighted by the trip generation observed in CHTS
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2012, 4) the model can be segmented by income so that di�erent travel preferences for each
income class are taken into account, 5) perhaps most importantly, the actual willingness
to walk to destinations can be related to the set of destinations that are available by other
modes, particularly auto.

The contribution of this work is thus a more rigorous, empirically based index that
measures walking rather than walkability. This index (and the index for auto and transit)
can then be used in models of home values to determine the impact of accessibility by
walking on home values. Accessibility logsums for all three modes are positive, and
although the impact of a one standard deviation change in the index for auto is the
largest, the index for walking is statistically significant and almost as large as the auto
index. This is strong evidence that the ability to walk to destinations is being translated
into high property values in the Bay Area.

The final contribution of this work is to create one of the first residential location
choice latent class models, which allows the impact of the indexes described above to vary
based on selection into unobserved classes. Interestingly, there are only 3 large segments:
one that is young and urban, a second that is transit oriented and lives in less expensive
areas near BART stations, and a third which has the highest average income and lives in
the idyllic suburbs surrounding San Francisco.

The somewhat unexpected finding from this research is that although the first class
does appear to have a large and significant coe�cient on walking, at 13% of households
this class is not large enough to drive the regional housing market. Instead there appears
to be a large - 37% of households - segment of the population which is most influenced
by access to transit, apparently due to the regional job access provided by the BART rail
system. The impact of BART as a unifying factor in the spatial structure of the region for
a significant number of households, perhaps even a plurality of households, seems clear.

6.3 Policy implications
This research has clear and broad planning implications for the San Francisco Bay

Area, and possibly for other regions although this research will have be carefully executed
elsewhere. The broad conclusion that walkability has a strong relationship to home values,
and thus to rents and prices, implies that more of these walkable neighborhoods should be
built in locations where the market supports development without subsidy. The additional
fact that prices have risen so steeply in San Francisco, combined with the historical record
of only 1,500 units per year for over a decade suggests that the market has been constrained
by zoning policy in the areas of highest demand.

Indeed, the fact that 4,000 units are currently being built while 32,000 more units
are being permitted suggests that developers are willing to build in San Francisco, but
most development can only take place where there are few residents now - in Mission
Bay, Treasure Island, and the Hunter’s Point Shipyard. Densification is currently taking
place along Market St. as well, but the opportunities for infill in the city as it is currently
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zoned are few. As most parcels are already nearly built to capacity (within zoning), little
redevelopment can occur.

And perhaps it should not, as an argument can be made that development interests,
social equity concerns, transit supporters, and historic preservationists all align on this
issue. Even given the strong political will against yet more densification in SF, the strong
and growing labor market requires that residential development must occur somewhere.
In fact prime locations for this development exist, with those in proximity to the many
BART stations in Oakland as prime candidates.

Creating walkable communities around the Oakland BART stations would preserve
the historic neighborhoods of San Francisco, while providing a strong new tax base for
Oakland and built-in ridership for BART, as well as possibly generating more resources for
public safety, schools, and beautification in a city that desperately needs it. In addition,
this research has found that at least 37% of the Bay Area residential housing market would
prefer much cheaper housing that is BART-accessible, and possibly walkable. To date,
the surfeit of development in San Francisco hasn’t carried across the Bay to Oakland.
Perhaps a unification of interests of the sort described here can solve many of the issues
in the housing market on both sides of the Bay. In fact, laws such as SB375 mandate the
consideration of alternatives like this in order to address the future emissions of GHGs -
this research shows that these policy interventions might create neighborhoods that are
also preferred by a large number of households in the Bay Area.

6.4 Future research
Much future research will need to occur related to these topics, as many of these issues

need more nuanced understanding and empirical evidence from additional datasets. Of
primary concern is to identify the locations where residential development is feasible at
current rents and prices in the Bay Area; is development profitable only in San Francisco or
would it also be profitable in Oakland? If further development is not profitable in Oakland,
what would be the subsidy required to incent building there? Given that development
clearly is profitable without subsidy in San Francisco (although this is not a given city-
wide), how much additional capacity is there in the city of San Francisco within zoning
restrictions and without subsidy? In places where more dense development than current
height and bulk limits is feasible, what is an estimate of the amount of development (and
tax revenue) foregone in San Francisco as a result of the zoning restrictions?

Additionally, the question of which transit lines are associated with residential pref-
erences should be investigated further. Is BART the only transit service that encourages
development or is there evidence that CalTrain and MUNI also have an impact on home
prices and location choices? Does reliability and level-of-service of transit have an impact?
Do investments in bicycle infrastructure have any resultant economic benefits like those
found here for transit and walking?

Finally, there is an ever-expanding set of urban data from which to draw for addi-



99

tional research. New data sources like cell phones and mobile apps that automate travel
diaries would help to record travel behavior more precisely. Additional quality informa-
tion associated with the set of destinations (e.g. services like Yelp) would increase detail
in understanding variation in land use. The quality of the pedestrian environment or a
record of the transit or auto experience would be extremely helpful in understanding the
specific quality of a transportation route. Finally, private companies now have access to
a great deal of information on consumer segmentation, lifestyle preferences, and attitudes
of much of the American population - clearly this data could contribute to the knowledge
of how people travel and why they value the neighborhoods they do.
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Variable Listing



112

The table below lists variables that can hypothetically be used in this framework.
Many variables are not available due to data limitations, and additional variables may be
added as the data becomes available; an X marks each variable that was computed and
tested in this model. Thanks to Nicola Szibbo for help with this table.

Built Environment Variables

Avail Explanation Measured
Sidewalk completeness % street frontage with sidewalks

X Pedestrian route directness route ft./direct ft. ratio
X Ped/Bike Factor Street network density + sidewalk

completeness + bike land completeness/3
X Street network extent Miles/1000 residents
X Street network density Street centerline miles/square mile or

intersection (sum of valences) per square
mile/1300

X Street connectivity Ratio of intersections to total
intersections plus cul-de-sacs

Pedestrian infrastructure % of streets with sidewalks
Street Type % of streets that are collectors, highways,

freeways, major roads, arterials and local
roads

Street Width # of lanes
Pedestrian Network
Coverage

% of total centerline distance

Pedestrian Crossing
Distance

curb to curb ft

Bike route completeness % of street routes (arterial + collector)
with a bike lanes on one side or if possible
parallel lanes

Sidewalk completeness % of streets with sidewalks on both sides
+ .5% streets with sidewalks on one side

Bicycle Network Coverage % of total centerline distance
Street lighting % of street network with street lights
Sidewalk width pavement width of sidewalk

X Building Age # of years old
X Population density Persons/square mile
X Residential Density DU/acre
X FAR ratio of a parcel’s commercial floor area

to the parcel’s land area dedicated to
commercial uses

X Mix of uses # of homes within 1/2 mile of site
X Height # of stories
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X Residential Type Attached or detached
X Single family parcel size sq ft.
X Single-family housing share # of single-family units/total dwellings

(%)
Unit type # of Studio, 1, 2 or 3+ bedrooms

X Single-family Dwelling
Density

DU/acre

X Multi-family Dwelling
Density

Du/acre

X Multi-family housing share # of multi-family units/total dwellings
(%)

Housing a�ordability % of below market rate units
X Growth compactness Persons/square mile
X Setback requirements lot line distance

Parking ratios cars/unit
X Amenities Proximity walking ft. to closest grocery
X Transit Proximity walking ft. to closest stop
X Amount of development

within walking distance of
transit

sq. ft

X Housing proximity to
recreation

% of dwellings within 1/4 mile of park

X Property value Land and building value in dollars per
acre

X High residential density Residential acres with a density higher
than 12 dwelling units/acre

X Low residential density Residential acres with a density lower
than 3 dwelling units/acre

X Medium residential density Residential acres with a density between
3 and 12 units/acre

X Service and retail % of land for Big Box retail, vs. strip
retail, vs.neighborhood retail

X Highway retail Acres of highway retail (gas stations,
mini-marts, fast food) land uses and
regional high-density shopping mall

X Retail counts Number of retail stores
X O�ce Acres of o�ce land uses
X Connected ratio Percentage of intersections that are not

dead ends
X Bus stop counts Number of bus stops



114

Sidewalk coverage Miles of sidewalks
Park space available Park acres/1000 people

X Open space Percent of total sketch area in open space
land-use classes

X Park proximity % of walk ft. to closest park
Open Space Connectivity 0-1 Index
Shade Tree Density # of shade trees/block length (shade

trees/m)
Imperviousness Acres/capita
Environmental resources acres per capita vernal pools, wetlands

etc.
Orientation of buildings % of south facing orientation of buildings

or street grid
X Transit Proximity to BART # of ft.
X Transit Proximity to

Caltrain
# of ft.

X Third places # of co�ee shops and/or bars
Average Slope Gradient Average slope gradient within the area

X Block Size Length (ft), width (ft)
X Employee density Number of employees/area of industrial

and commercial land, in the residence
area

Neighborhood Unsafety Neighborhood monthly criminal cases
within area

Sociodemographic Variables

Avail Explanation
X Residential population Total number of people living in the area
X Rent own ratio Renters to total residents
X Median age household Median age of residents
X Female-headed Number of female-headed households
X Median income Median income of households in the area
X Black ratio Ratio of African-American population to

total population
X Latino ratio Ratio of Latino-American population to

total population
Daytime population density Population density during daytime hours

X Children ratio Ratio of children to total population -
proxy for percent of families

X Old ratio Ratio of population over 70 to total
population

X College ratio Ratio of college students to total
population
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X Low-income ratio Ratio of low-income households to total
households

X High-income ratio Ratio of high-income households to total
households

X Average Household Size Average number of members per
household

X Families with own children Ratio of households with children present
to total households

X Average Family Size Average number of members per
household for households with children
present

Vacant Housing Units Housing units without occupants
Median Gross Rent Median rent per unit

X Percent Employed Ratio of employed population to total
population

X Percent Unemployed Ratio of unemployed population to total
poulation

X Area in square miles Total area in miles
X Total population Total population in area
X Total housing units Total number of residential units in area
X Total male population Ratio of male population to total

population
X Total female population Ratio of female population to total

population
X Population under school

age, under 5 years
Ratio of children under 5 years to total
population

X School age population, 5-17
years

Ratio of children between 5 and 17 years
to total population

English spoken at home Ratio of households that speak English at
home

Spanish spoken at home Ratio of households that speak Spanish at
home

Chinese spoken at home Ratio of households that speak Chinese at
home

Percent native born Percent born in the United States
Occupied housing units Ratio of household units that are

occupied by the owner
Renter occupied housing
units

Ratio of household units that are
occupied by renters

Median year householder
moved into housing unit

Median year the household moved into
the structure
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Median gross rent as
percent of household
income in dollars

Median ratio of rent to household income

One person households Percent of one person households
Two or more person
non-family households

Percent of two or more non-family
member households

Percent below poverty level Percent of households below poverty level
Percent of workers driving
to work

Percent of workers driving to work

Percent of occupied housing
units with vehicle available

Percent of households with vehicle

Percent enrolled in public
school (grades Pre-K to 12)

Percent of children age 5-18 enrolled in
public school

Percent high school
graduates, 25 years and
over

Precent high school graduates among
non-children
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