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Frequency and Wave-Vector-Dependent Dielectric 

* Function for Silicon 

by 

John P. Waltert and Marvin L. Cohen 

Department of Physics, University of California 

and 

Inorganic Materials Research Division, Lawrence Radiation Laboratory 

Berkeley, California 94720 
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Abstract 

The frequency and wave-vector- dependent 

-+ 

complex dielectric function E(q,w) is calculated 

for silicon. The energy eigenvalues and eigenvec-

tors which are used have been obtained from energy-

band calculations based on the empirical pseudo-

potential method. Explicit results are given in the 

[100J direction in the range 0::: q < (2rr/a) and 

o < fi'J,) ::: 24 eV. A comparison is made between the 

present results and the results of a calculation of 

E(q,W) for a free electron gas in the random phase 

approximation. 
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1. Introduction ~ 

We have calculated the frequency and wave-vector-dependent'l~ 

dielectric function E(q,oo) in the [100] directi~n for silicon. This is th~ 

first calculation of E(q,oo) for a semiconductor in which realistic energy 

eigenvalues and eigenvectors are used. Previous calculations of dielectr~c 

functions have concentrated either on the wave-vector-ctependent dielectric 

function 1 for zero frequency E(q,oo = 0) or on the frequency- dependent 

dielectric function
2 

E(q = 0,00). The former case is important in deter-

mining the static screening of electric fields, and the latter case is impor-

tant in analyzing the optical properties of semiconductors because q is 

approximately zero for optical wave-vectors. Tre more general dielectric 

-function E(q,w) describes the screening of a longitudinal· field which varies - , in both space and time. A knowledge of E(q ,w) permits us to obtain the 

following properties of the solid: the response to weak external longitudinal 

fields; the density-fluctuation excitation spectrum (energy-loss of a fast 

charged particle);. and the time-dependent correlations between the density 

fluctuations (plasmon modes). 

In the present calculation the real part of the dielectric function 

E 1 (q,oo) is calculated directly, and the imaginary part' E
2

(q ,w) is calculated 

using the Kramers-K~Bnig transformation. The functions E
1

(q,w) and 
-+. , 

E2(q,oo) are then used to calculate the imaginary part of the inverse dielectric 

function IrriE-
1(q,w), which is' proportional for small q to the energy-loss 

function of a fast charged par tic le passing through the solid. 

I 
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The details of the calculation are given in Sec .. II along with the results 

for silicon. In Sec: III the silicon calculations are compared with a calcula-

-1 . 
tion of E 1 (q,w), E

2
(q,W) and Im E (q,w) for a free electron gas in ~he 

random phase approximation, that is, the Lindhard3 dielectric function. 

A comparison of the various dielectric functions for silicon and the free 

electron gas illustrates the principal difference between the two cases. 

II. Calculations 

First we calculate the longitudinal wave-vector-dependent and frequency-

dependent dielectric function E(q,W) for silicon which describes the 
.... 

response of a crystal to an electric field parallel to q and varying 

sinusoidally in time: 

~-+- .... -.. 

-D ei(q. r - wt) = (.... ) -E i(q. r - wt) 
E q ,we. (2. 1) 

) 
Using the expression for E

1
(q,W) given by Ehrenreich and COhen4, 

we obtain 

.... 

2 
= 1 + 4rre 

.nq2 

where k is summed over the first Brillouin zone, v labels the valence 

(2.2) 

bands, and c labels the conduction bands. For the purposes of calculation 

Eq. (2.2) is written as follow s 
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2 
(-) 1 41Te 

€ 1 q,Ul - = + 2 
q 

2 ~ 1- ,--- 12 3 ~ (k, c k+q, v) (~k) 
~k,c, v (21T) 3 

(2.3) 
-+ ... ~ I 1 -1 

x ([Ec(k)- Ev(k+L1J- ti:J)r + [Ec(k) - Ev(k+q) +~] }, \. 

where the summation is over cubes of volume (~k) 3 'in the first Briilouin 

zone, with suitable truncations at the zone bounda~ies~ The summation

index v spans the top four valence bands and the index- c spans the bottom 

eleven conduction bands. En(k(is the energy eigenvalue of band n at 

state k and -Ik, n) is the corresponding eigenvector. 
-----" --.- .--

The energy eigenvalues and eigenvectors are calculated using the 

empirical pseudo potential method, as d~scribed in Ref. 2. Since spin-orbit 

effects are small for silicon, they have not been included in this calculation. 

The pseudopotential form factors have been adjusted so ,that the reflectivity 

and the prin~~pal optical gaps agree with experimental measurements.5, 6 

Fifteen energy eigenvalues and eigenvectors are computed for each of 3360 

points in the Brillouin zone. - The coordinates of the grid of calculated pOints 

1 are given by 16 (2s+1, 2m+1, 2n+1) in units of 21T/a, where s, m, and n 

are integers~ 
... 

For an arbitrary direction of q, the summation in Eq. (2.3) must 

be performed over the entire Brillouin zone. Fortunately, symmetry proper-

ties can be exploited to reduce the computation time by a factor of 8 in the , 

[100] direction. The computation time for a particular value of q can be 

reduced by an additional factor of 15 if q -is chosen such that (k+q) -also 

lies on the grid Of. calculated points . 
. ---------------~-------

----------~ ------.::-- -- - -- ----

I 
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-. ~ ......... -+ -1 
For certain values of c, v, k, q andUl, [E (k) - E (k+q) - ti:0] c v . -can have singularities and it varies rapidly as k varies over the cube of 

volume (&) 3. For such cases, the cube is divided into 216 equal sub-cube:s • 

The contributions of (E - E - ti:0)-1 are calculated by interpolation and c v . 

'are added together and multiplied by the new volume of (&) 
3
/ 216. The 

values of l(k,clk+q,v>1 2 and [Ec(k) - Ev{k) + wr1 which isnot singular 

very much more slowly and are given the values they assume at the center 

of the larger cubes. 

-After we calculate E 1 (q,Ul)' the imaginary part of the dielectric 

... -function E2(q,Ul) is calculated by a Kramers-Krtsnig transform of E 1 (q,w). 

The ima.ginary part of the inverse dielectric function 1m E -1 (q,Ul) is then 

easily computed.- Figs. 2-'6 display plotsof E 1 ((f,w), E
2

(q,Ul) and 1m E -1 (q,Ul) 

as a function of Ul for q = 0, 1/4, 1/2, 3/4, and 1 in units of 2rr/a in the 

. -. 
[100] direction. In Ref. 1 we have shown that E 1 (q,w=O) is nearly isotropic 

with only minor deviations for q parall.el to the [1, ],1] direction. There-

-fore, we expect that E{q,Ul) does not change significantly in shape for other 
... 

directions of q. 

An indication of the accuracy of the present calculation of E l{q=O,w) 

. is given by a comparison with a much more accurate calculation done in 

conjunction with the work on silicon presented in Ref. 6. In t~is previous 

calculation 356 points in 1/48 of the Brillouin zone were accurately computed 

and then the energy eigenvalues and the dipole matrix elements were both 

determined on a much finer grid of 175, 000 points in 1/48 of the 13rillouin 
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zone by means oflan interpolation scheme. The comparison in Fig. 1 -shows 

that the ,present calculation of E 1 (q =0,(0) is appro,xiIriately correct, and this, 
. \ . -.... 

in turn, indicates the accuracy of our calculations of E(q;W). 

The numerical accuracy of the Kramers-KrBnig transform is excellent; 
... 

however, the reader should notice that Eiq ,w) is nega~ive for q = 0, 1/4, for 

small w whereas it should be zero because of the energy gap. This incorrect 

result is caused by small errors in the calculation of E 1 (q,w). Small errors 

in Eland E 2 can cause larger errors in ImE -1, and for this reason the smaller 

- -1 - ' 
structure in the plots of ImE is not to be re garded as accurate. 

III. Discussion 

In this section we compare the results for the silicon E 1 (q,w) , -
... ~1"', " 

E
2

(q,W) and the Im [E (q,w)] with these functions calculated for a free 

electron gas in the random phase approximation. This RPA or Lindhard 

dielectric function has the form 

and 

--_." -" ,,---'" -------

- - 2 11 + (3 -1' 1 } [1 - ((3-1') ] log 1 _ (3 +;' _ + -W " 

x 

0, when ~ < 1 and 0 < 14(32 - 4(31 

1 ~ ({3 - 1') 
2, when 1.w2 

- 4;~1 < 0 < 14(32 + 4(3 I 
2 -

O! when 0> 1413 + 4131 

0, when\(3 > 1 and 0 < /4132 - 4(3/ 
-- ,,- ---.------------- --'--------------------' , 

--' ~-,- -- -- .. -""---

(3.1) 

(3.2) 

'. 

- it -!.--

• 

-. J -
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. inverse 
where (3 = qJ2kF ' 6 = fiv/E F , 'Y:= 6/4(3, ~ is the/Fermi-Thoma:3 screening 

length, k'F is the free electron Fermi wavevector, and EF is the Fermi 

energy . 
... 

€l(q,w) for silicon is displayed in a perspective plot (Fig. 7) which 
. _ F~. 8weg~ea 

more clearly illustrates how €1 varies in the (q,w) plane. In/similar plot 

of the Lindhard E 1 (q,w) obtained from evaluating Eq. (3.1) for a 'density 

of free electrons that give a plasma frequency (0 identical to the calculated 
. p 

silicon value. (The plasma frequency w is given by the high-frequency 
p 

zero of E 1 (q,w). 

For q = 0 and w small, the silicon Eland the Lindhard € 1 differ 

markedly • In particular , the Lindhard E 1 assumes the familiar form 

€ 1 (q = 0,6.) = 1 - wp 
2

/w2, which has a singularity at w = o. Thi~ is in com

plete eontrast with the"silicon E l' which is ~n increasing positive function for 

small w. The significant difference between the two functions at q= 0 is --------------_. -_ .. __ . 

that the lower zero of the silicon € 1 occurs at about 4~ 5 eV, whereas the 

zero of the Lindh~rd E 1 occurs at zero. The behavior of the lower zero in 

E is discussed later in greater detail. For small w at all non-zero values 
1 

of q, the silicon € 1 increases with w until the function reaches a maximum, 
( 

but for the Lindhard case, € 1 decreases with increasing w, so nat the 

maximum value of the' Lindhard E 1 always occurs at w = o. 

At high w for all q the silicon and Lindhard € 1 functions are similar. 

This is reasonable since at high w (such that lJ:v is much larger than the 

energy gap) ,we expect silicon to resemble a free electron gas because 

the high-energy excited states correspond to loosely bound electrons. 



In Figs. 9 and 10 E2(q,W) is plotted for the silicon and Lindhard 

cases. Because of the gap, the silicon E2 is identically zero at sma.llw 

while in the Lindhard case E2 differs from zero for small w for all q. The Lind-. '! 

hard E 2(,?) first increases linearly and then fallsquadraticaUy with w for each q 

(see Eq. (3.2». The quadratic dependence is not clearly visible in Fig. 10 

because of the perspective nature of ~he graph andthe rapid dependence of 

E2 oncu inlhese regions. As in the case of E1(q,w), the differences in 

E
2

(q,W) between the silicon and Lindhard cases are most prominent at low 

q andw. 

Figs. ] 1 and 12 show Im[ E -l(q,w)]for the silicon and Lindhard cases. 

These cases differ considerably. In the Lindhard case the function approaches 
" ._---- ....... _-----

zero as qand w approach zero except for the characteristic a-function at 

w = wp. It becomes finite and increa.ses in magnitude as q and w bec:ome 
-

larger. The sum rules are satisfied by appropriate contributions at w (q). 
. . . P / 

The function becomes finite for each non-zero q aswincreases from zero, 

whe;eas for silic~n the gap in the E2 spectrum caus.es the Im[ E -1 (q,w)] func

tion to be zero at small w. Comparison with experiment can be made with 
7 .' •. 8 

optical work and electron energy loss measurements. The agreement 

is good with respect to amplitude, width and position of the peak, but vie 

caution the reader against taking the small structure near w seriouslyin 
. . . p . 

Fig. ] 1. In this energy range Eland E2 are close to zero and small errors 

are magnifjed in the Im[E -l(q,w)] function. 

For the Lindhard case (Fig. 12) pair excitation (lower w) contributions 

- --- ~ ~---

.. i 

. \ 
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to Im[€ -1] eventually merges with the plasmon contribution at larger q. This 

occurs for q's where the w(q) tine satisfying €1[q,w(q)] = 0 enters the continuum. 

For the present case this happens when 1. 176 < qa/21T < 1. 1 77. The upper end 

of the spectrum is still sharply peaked resembling a plasmon-like contribution. 

For silicon (Fig. 11) this occurs even at q = 0 and the E2 coming from. pa~ 

excitations damps the plasmon peak. 

It is interesting to examine the q and w dependence of the zeros of 

the €l(q,w) function in the (q,w) plane. The results are given in Fig. 13. 

For the Lindhard case the lower zero Wo of E 1 occurs at frequencies 

which are linear in q. This can be! seen by expanding the Lindhard function 
. 

given in Eq. (3.1) for small q and w~ An easier method is to use the 

precursor to Eq. (3.1): 

2 
= 1 + 41Te 

2 
q 

-+ -+ -+ 

f(k +q) - f(}{) 

For small q, the difference in the Fermi factors becomes . . 

where 

------

-+ af ::; q.~z 
al{ 

J1 = 
k·o 
kq 

Dropping terms ~ q2 in the integrand, the dielectric function becomes 

(3.3) 

• 

(3.4) 
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E~q,W) = 1 + Ks 
2 J 1 

2q2 -1 

K 2 

= 1 + ~ (2 - l' log 
2q . 

1 + y 
1 - l' 

where l' = w/qvF • The lower zero (which looks like a damped transverse

like mode in the continuum) arises when 

2 ~ 'Ylog 
1

1 + y I 
1 - l' 

(3.6) 

ThiS condition requires a fairly linear w(q) curve, i. e. 

(3.7) 

which agrees well with the computer calculations. 

For silicon the lower zero does not result from a linear dispersion 

(3.5J 

curve, but a gap appears in the spectrum. This is the most significant difference 

between the two dielectric functions. At higher q, the two curves tend to 

merge, but it is more difficult to calculate the zeros of E 1 in this region 

of the plane. In other words it is the gap in the spectrum at smaller q which 

distinguishes the silicon case from the free electron gas case as expected. 

• 

• 
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Figure Captions 

1. Comparison of two silicon calculations E l(q=O,oo). The 70-point calculation 

is performed as described in this paper and is the less accurate of the two. ~ 

The 356- point calculation uses five times as many grid points and a much 

finer interpolated grid of 175,000 points on which to perform the integration. 

2. Plots of E
1

, E2 and'Im E -1 for silicon as a function of n:.u for q = (O,Q,O).-

3. Plots of E1, E2 and Im E -1 for silico~ as a function of ti:u for q = (l/4,0,0)2iT/cl. 

4. Plots ofE l' 

5. c Plots of E 1 ' 

6. Plots of E l' 

E2 and Im E -1 for silicon as a function of n:.u for q = (1/2,0, 0)2iT/a. 

-1 .-+' 
E2 and Im E for silicon as a function of ti:u for q = (3/4,0,O)2iT/a. 

E 1 and Im E -1 for silicon as a function of ti:u for q = (1,0, 0)2iT/a. 
... 

7. Perspective plot of E1 (q,oo) for silicon 
. -+ . 

8. Perspective plot of E 1 (q ,(0) for a free electron gas . 
... 

9. Perspective plot for E2(q ,(0) for silicon. 
-+ 

10. Perspective plot of E 2(q,oo) for a free electron gas. 

11. PerspeCtive plot ofIm[ E -1 (q ,w)] for silicon. 
. . -1 

12. Perspective plot of Im IE (q,w)/ for a free electron gas. 

13. Plots of the zer~s of E 1 (q,w) for silicon and a free electron gas in the· 

(q,w) plane. 
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