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Verstraëte for serving on my thesis committee. I also want to thank Thang Pham, for

being an outstanding collaborator and friend.

A huge thanks to my dear parents Leila and Reza, and to my sisters Maryam and

Mahgol, for their endless love, consistent encouragement, support, and understanding

throughout all my life. I also like to thank my best friend Fereshteh over the years

that certainly made her marks on my life for being the greatest friend one could ever

hope for and for always being there for me even though life had kept us mostly apart.

Last but not the least, I am beyond words of gratitude for the constant of my life,

Khashayar, for being the better half of me, and for his unbelievable amount of love,

encouragement and support.

Chapter 1 is a version of the material appearing in “On Grids in Point-Line

Arrangements in the Plane,” In 35th International Symposium on Computational Ge-

ometry (SoCG 2019) (Vol. 129, p. 50), co-authored with Andrew Suk. The author

was one of the primary investigators and authors of this paper.

Chapter 2 is a version of the material in “Constructions of Point-Line Arrange-

ments in the Plane with Large Girth”, co-authored with Andrew Suk and Jacques
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ABSTRACT OF THE DISSERTATION

Connections between additive combinatorics, graph theory, and incidence geometry

by

Mozhgan Mirzaei

Doctor of Philosophy in Mathematics

University of California San Diego, 2020

Professor Andrew Suk, Chair

This dissertation studies problems in extremal combinatorics, combinatorial

number theory, and discrete geometry, and the interplay between these three areas.

One of the Erdős-like cornerstones in incidence geometry from which many

other results follow, is the celebrated Szemerédi-Trotter Theorem which states that

any arrangement of n points and n lines in the plane determines O(n4/3) incidences,

and this bound is tight. In this thesis, we study the effect of forbidding grids and short

even cycles on the incidence graphs of point-line arrangements in the plane.

Let A and B be two disjoint finite sets of points in the plane such that their

xi



union contains no three points on a line. We say that A avoids B if no straight line

determined by a pair of points in A intersects the convex hull of B. A and B are called

mutually avoiding if A avoids B and B avoids A. Aronov et al. showed that any set of n

points in general position in the plane contains a pair of mutually avoiding sets, each of

size at least Ω(
√
n). Moreover, they proved that any set of n points in general position

in Rd contains a pair of mutually avoiding sets, each of size at least Ω
(
n

1
d2−d+1

)
. In

this thesis, we give a generalized version of mutually avoiding set theorem in the plane.

Given an algebraic structure R and a subset A ⊂ R, define the sum set and

the product set of A to be A + A = {a + b : a, b ∈ A} and A · A = {a · b : a, b ∈ A}

respectively. Showing under what conditions at least one of |A+ A| or |A · A| is large

has a long history of study that continues to the present day. By employing recent

developments on the energy of polynomials over finite fields, we give the best-known

lower bounds on max{|A + A|, |f(A,A)|}, when A is a small subset of Fp, and f is a

quadratic non-degenerate polynomial in Fp[x, y].
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Chapter 1

On grids in point-line arrangements

in the plane

1.1 Introduction

Given a finite set P of points in the plane and a finite set L of lines in the plane,

let I(P,L) = {(p, `) ∈ P × L : p ∈ `} be the set of incidences between P and L. The

incidence graph of (P,L) is the bipartite graph G = (P ∪ L, I), with vertex parts P

and L, and E(G) = I(P,L). If |P | = m and |L| = n, then the celebrated theorem of

Szemerédi and Trotter [89] states that

|I(P,L)| ≤ O(m2/3n2/3 +m+ n). (1.1)
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Moreover, this bound is tight which can be seen by taking the
√
m×
√
m integer lattice

and bundles of parallel ”rich” lines (see [64]). It is widely believed that the extremal

configurations maximizing the number of incidences between m points and n lines in

the plane exhibit some kind of lattice structure. The main goal of this thesis is to show

that such extremal configurations must contain large natural grids.

Let P and P0 (respectively, L and L0) be two sets of points (respectively, lines)

in the plane. We say that the pairs (P,L) and (P0,L0) are isomorphic if their incidence

graphs are isomorphic. Solymosi made the following conjecture (see page 291 in [11]).

Conjecture 1.1. For any set of points P0 and for any set of lines L0 in the plane, the

maximum number of incidences between n points and n lines in the plane containing

no subconfiguration isomorphic to (P0,L0) is o(n
4
3 ).

In [87], Solymosi proved this conjecture in the special case that P0 is a fixed set

of points in the plane, no three of which are on a line, and L0 consists of all of their

connecting lines. However, it is not known if such configurations satisfy the following

stronger conjecture.

Conjecture 1.2. For any set of points P0 and for any set of lines L0 in the plane,

there is a constant ε = ε(P0,L0), such that the maximum number of incidences between

n points and n lines in the plane containing no subconfiguration isomorphic to (P0,L0)

is O(n4/3−ε).

Our first theorem is the following.
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Figure 1.1: An example with |La| = |Lb| = 3 and |P | = 9.

Theorem 1.3. For fixed t > 1, let La and Lb be two sets of t lines in the plane,

and let P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb} such that |P0| = t2. Then there is a

constant c = c(t) such that any arrangement of m points and n lines in the plane that

does not contain a subconfiguration isomorphic to (P0,La ∪ Lb) determines at most

c(m
2t−2
3t−2n

2t−1
3t−2 +m1+ 1

6t−3 + n) incidences.

See the Figure 1.1. As an immediate corollary, we prove Conjecture 1.2 in the

following special case.

Corollary 1.4. For fixed t > 1, let La and Lb be two sets of t lines in the plane, and

let P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb}. If |P0| = t2, then any arrangement of n points and

n lines in the plane that does not contain a subconfiguration isomorphic to (P0,La∪Lb)

determines at most O(n
4
3
− 1

9t−6 ) incidences.

In the other direction, we prove the following.

Theorem 1.5. Let La and Lb be two sets of 2 lines in the plane, and let P0 = {`a∩`b :

`1 ∈ La, `b ∈ Lb} such that |P0| = 4. For n > 1, there exists an arrangement of n

3



Figure 1.2: An example of a natural 3× 3 grid.

points and n lines in the plane that does not contain a subconfiguration isomorphic to

(P0,La ∪ Lb), and determines at least Ω(n1+ 1
14 ) incidences.

Given two sets La and Lb of t lines in the plane, and the point set P0 = {`a∩`b :

`a ∈ La, `b ∈ Lb}, we say that (P0,La ∪ Lb) forms a natural t× t grid if |P0| = t2, and

the convex hull of P0, conv(P0), does not contain the intersection point of any two lines

in La and does not contain the intersection point of any two lines in Lb. See Figure

1.2.

Theorem 1.6. For fixed t > 1, there is a constant ε = ε(t), such that any arrangement

of n points and n lines in the plane that does not contain a natural t×t grid determines

at most O(n
4
3
−ε) incidences.

Let us remark that ε = Ω(1/t2) in Theorem 1.6, and can be easily generalized

to the off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for

the sake of clarity of our presentation. All logarithms are assumed to be base 2. For

N > 0, we let [N ] = {1, . . . , N}.
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1.2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we

will use. The first lemma is a classic result in graph theory.

Lemma 1.7 (Kövari-Sós-Turán [49]). Let G = (V,E) be a graph that does not contain

a complete bipartite graph Kr,s (1 ≤ r ≤ s) as a subgraph. Then |E| ≤ cs|V |2−
1
r , where

cs > 0 is constant which only depends on s.

The next lemma we will use is a partitioning tool in discrete geometry known

as simplicial partitions. We will use the dual version which requires the following

definition. Let L be a set of lines in the plane. We say that a point p crosses L if it is

incident to at least one member of L, but not incident to all members in L.

Lemma 1.8 (Matousek [58]). Let L be a set of n lines in the plane and let r be a

parameter such that 1 < r < n. Then there is a partition on L = L1 ∪ · · · ∪ Lr into r

parts, where n
2r
≤ |Li| ≤ 2n

r
, such that any point p ∈ R2 crosses at most O(

√
r) parts

Li.

Proof of Theorem 1.3. Set t ≥ 2. Let P be a set of m points in the plane and let L

be a set of n lines in the plane such that (P,L) does not contain a subconfiguration

isomorphic to (P0,La ∪ Lb).

If n ≥ m2/100, then (2.1) implies that |I(P,L)| = O(n) and we are done.

Likewise, if n ≤ m
t

2t−1 , then (2.1) implies that |I(P,L)| = O(m1+ 1
6t−3 ) and we are

done. Therefore, let us assume m
t

2t−1 < n < m2/100. In what follows, we will show
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that |I(P,L)| = O(m
2t−2
3t−2n

2t−1
3t−2 ). For sake of contradiction, suppose that I(P,L) ≥

cm
2t−2
3t−2n

2t−1
3t−2 , where c is a large constant depending on t that will be determined later.

Set r = d10n
4t−2
3t−2/m

2t
3t−2 e. Let us remark that 1 < r < n/10 since we are

assuming m
t

2t−1 < n < m2/100. We apply Lemma 1.8 with parameter r to L, and

obtain the partition L = L1 ∪ · · · ∪ Lr with the properties described above. Note that

|Li| > 1. Let G be the incidence graph of (P,L). For p ∈ P, consider the set of lines

in Li. If p is incident to exactly one line in Li, then delete the corresponding edge in

the incidence graph G. After performing this operation between each point p ∈ P and

each part Li, by Lemma 1.8, we have deleted at most c1m
√
r edges in G, where c1 is

an absolute constant. By setting c sufficiently large, we have

c1m
√
r =
√

10c1m
2t−2
3t−2n

2t−1
3t−2 < (c/2)m

2t−2
3t−2n

2t−1
3t−2 .

Therefore, there are at least (c/2)m
2t−2
3t−2n

2t−1
3t−2 edges remaining in G. By the pigeonhole

principle, there is a part Li such that the number of edges between P and Li in G is

at least

cm
2t−2
3t−2n

2t−1
3t−2

2r
=

cm
4t−2
3t−2

20n
2t−1
3t−2

.

Hence, every point p ∈ P has either 0 or at least 2 neighbors in Li in G. We claim

6



that (P,Li) contains a subconfiguration isomorphic to (P0,La ∪Lb). To see this, let us

construct a graph H = (Li, E) as follows. Set V (H) = Li. Let Q = {q1, . . . , qw} ⊂ P

be the set of points in P that have at least two neighbors in Li in the graph G. For

qj ∈ Q, consider the set of lines {`1, . . . , `s} from Li incident to qj, such that {`1, . . . , `s}

appears in clockwise order. Then we define Ej ⊂
(Li
2

)
to be a matching on {`1, . . . , `s},

where

Ej =


{(`1, `2), (`3, `4), . . . , (`s−1, `s)} if s is even.

{(`1, `2), (`3, `4), . . . , (`s−2, `s−1)} if s is odd.

Set E(H) = E1 ∪E2 ∪ · · · ∪Ew. Note that Ej and Ek are disjoint, since no two points

are contained in two lines. Since |Ej| ≥ 1, we have

|E(H)| ≥ cm
4t−2
3t−2

60n
2t−1
3t−2

.

Since

|V (H)| = |Li| ≤
m

2t
3t−2

5n
t

3t−2

,

7



this implies

|E(H)| ≥ c

60 · 25
(V (H))2−

1
t .

By setting c = c(t) to be sufficiently large, Lemma 1.7 implies that H contains a

copy of Kt,t. Let L′1,L′2 ⊂ Li correspond to the vertices of this Kt,t in H, and let

P ′ = {`1 ∩ `2 ∈ P : `1 ∈ L′1, `2 ∈ L′2}. We claim that (P ′,L′1 ∪ L′2) is isomorphic to

(P0,La ∪ Lb). It suffices to show that |P ′| = t2. For the sake of contradiction, suppose

p ∈ `1 ∩ `2 ∩ `3, where `1, `2 ∈ L′1 and `3 ∈ L′2. This would imply (`1, `3), (`2, `3) ∈ Ej

for some j which contradicts the fact that Ej ⊂
(Li
2

)
is a matching. Same argument

follows if `1 ∈ L′1 and `2, `3 ∈ L′2. This completes the proof of Theorem 1.3.

1.3 Natural Grids

Given a set of n points P and a set of n lines L in the plane, if |I(P,L)| ≥ cn
4
3
− 1

9k−6 ,

where c is a sufficiently large constant depending on k, then Corollary 1.4 implies that

there are two sets of k lines such that each pair of them from different sets intersects at

a unique point in P. Therefore, Theorem 1.6 follows by combining Theorem 1.3 with

the following lemma.

Lemma 1.9. There is a natural number c such that the following holds. Let B be a

set of ct2 blue lines in the plane, and let R be a set of ct2 red lines in the plane such

8



Figure 1.3: Sets R,B1,B2 in the proof of Lemma 1.9.

that for P = {`1 ∩ `2 : `1 ∈ B, `2 ∈ R} we have |P | = c2t4. Then (P,B ∪R) contains a

natural t× t grid.

To prove Lemma 1.9, we will need the following lemma which is an immediate

consequence of Dilworth’s Theorem.

Lemma 1.10. For n > 0, let L be a set of n2 lines in the plane, such that no two

members intersect the same point on the y-axis. Then there is a subset L′ ⊂ L of size

n such that the intersection point of any two members in L′ lies to the left of the y-axis,

or the intersection point of any two members in L′ lies to the right of the y-axis.

Proof. Let us order the elements in L = {`1, . . . , `n2} from bottom to top according

to their y-intercept. By Dilworth’s Theorem [22], L contains a subsequence of n lines

whose slopes are either increasing or decreasing. In the first case, all intersection points

are to the left of the y-axis, and in the latter case, all intersection points are to the

right of the y-axis.

9



Figure 1.4: An example for the line `1.

Proof of Lemma 1.9. Let (P,B ∪ R) be as described above, and let `y be the y-axis.

Without loss of generality, we can assume that all lines in B ∪R are not vertical, and

the intersection point of any two lines in B ∪ R lies to the right of `y. Moreover, we

can assume that no two lines intersect at the same point on `y.

We start by finding a point y1 ∈ `y such that at least |B|/2 blue lines in B

intersect `y on one side of the point y1 (along `y) and at least |R|/2 red lines in R

intersect `y on the other side. This can be done by sweeping the point y1 along `y from

bottom to top until ct2/2 lines of the first color, say red, intersect `y below y1. We then

have at least ct2/2 blue lines intersecting `y above y1. Discard all red lines in R that

intersect `y above y1, and discard all blue lines in B that intersect `y below y1. Hence,

|B| ≥ ct2/2.

Set s = bct2/4c. For the remaining lines in B, let B = {b1, . . . , b2s}, where the

elements of B are ordered in the order they cross `y, from bottom to top. We partition

B = B1 ∪ B2 into two parts, where B1 = {b1, . . . , bs} and B2 = {bs+1, . . . , b2s}. By

10



applying an affine transformation, we can assume all lines in R have positive slope and

all lines in B1 ∪ B2 have negative slope. See Figure 1.3.

Let us define a 3-partite 3-uniform hypergraph H = (R ∪ B1 ∪ B2, E), whose

vertex parts are R,B1,B2, and (r, bi, bj) ∈ R × B1 × B2 is an edge in H if and only if

the intersection point p = bi ∩ bj lies above the line r. Note, if bi and bj are parallel,

then (r, bi, bj) /∈ E. Then a result of Fox et al. on semi-algebraic hypergraphs implies

the following (see also [13] and [30]).

Lemma 1.11 (Fox et al. [29], Theorem 8.1). There exists a positive constant α such

that the following holds. In the hypergraph above, there are subsets R′ ⊆ R,B′1 ⊆

B1,B′2 ⊆ B2, where |R′| ≥ α|R|, |B′1| ≥ α|B1|, |B′2| ≥ α|B2|, such that either R′ × B′1 ×

B′2 ⊆ E, or (R′ × B′1 × B′2) ∩ E = ∅.

We apply Lemma 1.11 to H and obtain subsets R′,B′1,B′2 with the properties

described above. Without loss of generality, we can assume that R′ × B′1 × B′2 ⊂ E,

since a symmetric argument would follow otherwise. Let `1 be a line in the plane such

that the following holds.

1. The slope of `1 is negative.

2. All intersection points between R′ and B′1 lie above `1.

3. All intersection points between R′ and B′2 lie below `1.

See Figure 1.4.

Line `1 defined above exists.
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Proof. Let U be the upper envelope of the arrangement
⋃
`∈R′ `, that is, U is the closure

of all points that lie on exactly one line of R′ and strictly above exactly the |R′| − 1

lines in R′.

Let P1 be the set of intersection points between the lines in B′1 with U. Likewise,

we define P2 to be the set of intersection points between the lines in B′2 with U. Since

U is x-monotone and convex the set P2 lies to the left of the set P1. Then the line `1

that intersects U between P1 and P2 and intersects `y between B′1 and B′2 satisfies the

conditions above.

Now we apply Lemma 1.10 to R′ with respect to the line `1, to obtain
√
αc/2 · t

members in R′ such that every pair of them intersects on one side of `1. Discard all

other members in R′. Without loss of generality, we can assume that all intersection

points between any two members in R′ lie below `1, since a symmetric argument would

follow otherwise. We now discard the set B′2.

Notice that the order in which the lines in R′ cross b ∈ B′1 will be the same for

any line b ∈ B′1. Therefore, we order the elements in R′ = {r1, . . . , rm} with respect to

this ordering, from left to right, where m = d
√
αc/2 · te. We define `2 to be the line

obtained by slightly perturbing the line rbm/2c such that:

1. The slope of `2 is positive.

2. All intersection points between B′1 and {r1, . . . , rbm/2c} lie above `2.

3. All intersection points between B′1 and {rbm/2c+1, . . . , rm} lie below `2.
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See the Figure 1.5.

Figure 1.5: An example for the line `2.

Finally, we apply Lemma 1.10 to B′1 with respect to the line `2, to obtain at

least
√
αc · t/2 members in B′1 with the property that any two of them intersect on one

side of `2. Without loss of generality, we can assume that any two such lines intersect

below `2 since a symmetric argument would follow. Set B∗ ⊂ B′1 to be these set of

lines. Then B∗ ∪ {r1, . . . , rbm/2c} and their intersection points form a natural grid. By

setting c = c(t) to be sufficiently large, we obtain a natural t× t grid.

1.4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, let us recall the definitions of

Sidon and k-fold Sidon sets.

Let A be a finite set of positive integers. Then A is a Sidon set if the sum of all

pairs are distinct, that is, the equation x+y = u+v has no solutions with x, y, u, v ∈ A,

except for trivial solutions given by u = x, y = v and x = v, y = u. We define s(N)

to be the size of the largest Sidon set A ⊂ {1, . . . , N}. Erdős and Turán proved the
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following.

Lemma 1.12 (See [28] and [74]). For N > 1, we have s(N) = Θ(
√
N).

Let us now consider a more general equation. Let u1, . . . , u4 be integers such

that u1 + u2 + u3 + u4 = 0, and consider the equation

u1x1 + u2x2 + u3x3 + u4x4 = 0. (1.2)

We are interested in solutions to (1.2) with x1, x2, x3, x4 ∈ Z.

Suppose (x1, x2, x3, x4) = (a1, a2, a3, a4) is an integer solution to (1.2). Let d ≤ 4

be the number of distinct integers in the set {a1, a2, a3, a4}. Then we have a partition

on the indices

{1, 2, 3, 4} = T1 ∪ · · · ∪ Td,

where i and j lie in the same part Tν if and only if xi = xj. We call (a1, a2, a3, a4) a

trivial solution to (1.2) if

∑
i∈Tν

ui = 0, ν = 1, . . . , d.

Otherwise, we will call (a1, a2, a3, a4) a nontrivial solution to (1.2).

In [53], Lazebnik and Verstraëte introduced k-fold Sidon sets which are defined

as follows. Let k be a positive integer. A set A ⊂ N is a k-fold Sidon set if each

14



equation of the form

u1x1 + u2x2 + u3x3 + u4x4 = 0, (1.3)

where |ui| ≤ k and u1 + · · ·+u4 = 0, has no nontrivial solutions with x1, x2, x3, x4 ∈ A.

Let r(k,N) be the size of the largest k-fold Sidon set A ⊂ {1, . . . , N}.

Lemma 1.13. There is an infinite sequence 1 = a1 < a2 < · · · of integers such that

am ≤ 28k4m3,

and the system of equations (1.3) has no nontrivial solutions in the set A = {a1, a2, . . .}.

In particular, for integers N > k4 ≥ 1, we have r(k,N) ≥ ck−4/3N1/3, where c is a

positive constant.

The proof of Lemma 1.13 is a slight modification of the proof of Theorem 2.1

in [74]. For the sake of completeness, we include the proof here.

Proof. We put a1 = 1 and define am recursively. Given a1, . . . , am−1, let am be the

smallest positive integer satisfying

am 6= −
(∑
i∈S

ui

)−1 ∑
1≤i≤4,i/∈S

uixi, (1.4)

for every choice ui such that |ui| ≤ k, for every set S ⊂ {1, . . . , 4} of subscripts such

that
(∑

i∈S ui

)
6= 0, and for every choice of xi ∈ {a1, . . . , am−1}, where i /∈ S. For
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a fixed S with |S| = j, this excludes (m − 1)4−j numbers. Since |ui| ≤ k, the total

number of excluded integers is at most

(2k + 1)4
3∑
j=1

(
4

j

)
(m− 1)4−j = (2k + 1)4(m4 − (m− 1)4 − 1) < 28k4m3.

Consequently, we can extend our set by an integer am ≤ 28k4m3. This will

automatically be different from from a1, . . . , am−1, since putting xi = aj for all i /∈ S

in (1.4) we get am 6= aj. It will also satisfy am > am−1 by minimal choice of am−1.

We show that the system of equations (1.3) has no nontrivial solutions in the

set {a1, . . . , am}. We use induction on m. The statement is obviously true for m = 1.

We establish it for m assuming for m − 1. Suppose that there is a nontrivial solution

(x1, x2, x3, x4) to (1.3) for some u1, u2, u3, u4 with the properties described above. Let

S denote the set of those subscripts for which xi = am. If
∑

i∈S ui 6= 0, then this

contradicts (1.4). If
∑

i∈S ui = 0, then by replacing each occurrence of am by a1, we

get another nontrivial solution, which contradicts the induction hypothesis.

For more problems and results on Sidon sets and k-fold Sidon sets, we refer the

interested reader to [53, 74, 16].

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by applying Lemma 1.12 to obtain a Sidon set M ⊂

[n1/7], such that |M | = Θ(n1/14). We then apply Lemma 1.13 with k = n1/7 and
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N = 1
4
n11/14, to obtain a k-fold Sidon set A ⊂ [N ] such that

|A| ≥ cn1/14,

where c is defined in Lemma 1.13. Without loss of generality, let us assume |A| = cn1/14.

Let P = {(i, j) ∈ Z2 : i ∈ A, 1 ≤ j ≤ n13/14}, and let L be the family of lines

in the plane of the form y = mx + b, where m ∈ M and b is an integer such that

1 ≤ b ≤ n13/14/2.

Hence, we have

|P | = |A| · n13/14 = Θ(n),

|L| = |M | · n
13/14

2
= Θ(n).

Notice that each line in L has exactly |A| = cn1/14 points from P since 1 ≤ b ≤ n13/14/2.

Therefore,

|I(P,L)| = |L||A| = Θ(n1+1/14).

Claim. There are no four distinct lines `1, `2, `3, `4 ∈ L and four distinct points

p1, p2, p3, p4 ∈ P such that `1 ∩ `2 = p1, `2 ∩ `3 = p2, `3 ∩ `4 = p3, `4 ∩ `1 = p4.

Proof. For the sake of contradiction, suppose there are four lines `1, `2, `3, `4 and four

points p1, p2, p3, p4 with the properties described above. Let `i = mix + bi and let
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pi = (xi, yi). Therefore,

`1 ∩ `2 = p1 = (x1, y1),

`2 ∩ `3 = p2 = (x2, y2),

`3 ∩ `4 = p3 = (x3, y3),

`4 ∩ `1 = p4 = (x4, y4).

Hence,

p1 ∈ `1, `2 =⇒ (m1 −m2)x1 + b1 − b2 = 0,

p2 ∈ `2, `3 =⇒ (m2 −m3)x2 + b2 − b3 = 0,

p3 ∈ `3, `4 =⇒ (m3 −m4)x3 + b3 − b4 = 0,

p4 ∈ `4, `1 =⇒ (m4 −m1)x4 + b4 − b1 = 0.
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By summing up the four equations above, we get

(m1 −m2)x1 + (m2 −m3)x2 + (m3 −m4)x3 + (m4 −m1)x4 = 0.

By setting u1 = m1 −m2, u2 = m2 −m3, u3 = m3 −m4, u4 = m4 −m1, we get

u1x1 + u1x2 + u3x3 + u4x4 = 0, (1.5)

where u1 + u2 + u3 + u4 = 0 and |ui| ≤ n1/7. Since x1, . . . , x4 ∈ A, (x1, x2, x3, x4) must

be a trivial solution to (1.5). The proof now falls into the following cases, and let us

note that no line in L is vertical.

Case 1. Suppose x1 = x2 = x3 = x4. Then `i is vertical and we have a contradiction.

Case 2. Suppose x1 = x2 = x3 6= x4 and u1 + u2 + u3 = 0 and u4 = 0. Then `1

and `4 have the same slope which is a contradiction. The same argument follows if

x1 = x2 = x4 6= x3, x1 = x3 = x4 6= x2, or x2 = x3 = x4 6= x1.

Case 3. Suppose x1 = x2 6= x3 = x4, u1 +u2 = 0, and u3 +u4 = 0. Since p1, p2 ∈ `2 and

x1 = x2, this implies that `2 is vertical which is a contradiction. A similar argument

follows if x1 = x4 6= x2 = x3, u1 + u4 = 0, and u2 + u3 = 0.

Case 4. Suppose x1 = x3 6= x2 = x4, u1 + u3 = 0, and u2 + u4 = 0. Then u1 + u3 = 0

implies that m1 +m3 = m2 +m4. Since M is a Sidon set, we have either m1 = m2 and

m3 = m4 or m1 = m4 and m2 = m3. The first case implies that `1 and `2 are parallel
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which is a contradiction, and the second case implies that `2 and `3 are parallel, which

is again a contradiction.

This completes the proof of Theorem 1.5.

1.5 Concluding Remarks

• An old result of Erdős states that every n-vertex graph that does not contain a

cycle of length 2k, has Ok(n
1+1/k) edges. It is known that this bound is tight

when k = 2, 3, and 5, but it is a long standing open problem in extremal graph

theory to decide whether or not this upper bound can be improved for other

values of k. Hence, Erdős’s upper bound of O(n5/4) when k = 4 implies Theorem

1.3 when t = 2 and m = n. It would be interesting to see if one can improve the

upper bound in Theorem 1.3 when t = 2. For more problems on cycles in graphs,

see [91].

• The proof of Lemma 1.9 is similar to the proof of the main result in [1]. The main

difference is that we use the result of Fox et al. [29] instead of the Ham-Sandwich

Theorem. We also note that a similar result was established by Dujmović and

Langerman (see Theorem 6 in [23]).

Chapter 1 is a version of the material appearing in “On Grids in Point-Line

Arrangements in the Plane,” In 35th International Symposium on Computational Ge-

ometry (SoCG 2019) (Vol. 129, p. 50), co-authored with Andrew Suk. The author
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was one of the primary investigators and authors of this paper.
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Chapter 2

Constructions of point-line

arrangements in the plane with

large girth

2.1 Introduction

Let k ≥ 2 be a fixed integer and let C2k denote a cycle of length 2k. If a graph

contains cycles, then the length of the shortest cycle is called the girth of the graph

and is denoted by g. A graph is C2k-free if it contains no subgraph isomorphic to C2k.

The Turán number (n,C2k) denotes the maximum number of edges in a C2k-free graph

on n vertices. An unpublished result of Erdős, which was also proved by Bondy and
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Simonovits in [6], shows that

(n,C2k) = O
(
n1+1/k

)
.

In the other direction, one can use the probabilistic method to show that

(n,C2k) ≥ (n, {C3, C4, . . . , C2k+1}) ≥ Ω(n1+1/2k).

For k ∈ {2, 3, 5}, it is known that (n,C2k) = Θ
(
n1+1/k

)
(see [12, 24] for k = 2 and

[4, 50, 95] for k ∈ {3, 5}). It is a long standing open problem to determine the order

of magnitude of (n,C2k) for k /∈ {2, 3, 5}. Erdős and Simonovits [25] conjectured that

(n,C2k) = Θ
(
n1+1/k

)
for all k ≥ 2. For k = 4, the current best lower bound is due to

Benson [4] and Singleton [86], who showed (n,C8) ≥ Ω(n6/5). For large k, the densest

known C2k-free graphs on n vertices are the constructions of Ramanujan graphs due

to Margulis [57] Lubotzky, Phillips, and Sarnak [54], Lazebnik, Ustimenko and Woldar

[52], and Dahan and Tillich [21]. The constructions provide n1+δ edges where δ ∼ 6
7k

as k →∞.

In this thesis, we study the analogous problem for the point-line incidences in

the plane. Given a finite set P of points in the plane and a finite set L of lines in the

plane, let I(P,L) = {(p, `) ∈ P ×L : p ∈ `} be the set of incidences between P and L.

The incidence graph of (P,L) is the bipartite graph G = (P ∪ L, I), with vertex parts

P and L, and E(G) = I(P,L). If |P | = m and |L| = n, then the celebrated theorem
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of Szemerédi and Trotter [89] states that

|I(P,L)| = O
(
m2/3n2/3 +m+ n

)
. (2.1)

Moreover, this bound is tight which can be seen by taking the
√
m×
√
m integer lattice

and bundles of parallel ”rich” lines (see [64]). Thus, the number of incidences between

any arrangement of n points and n lines is at most O(n4/3), which is significantly better

than ex(n,C4) = Θ(n3/2). Therefore, we make the following conjecture.

Conjecture 2.1. Let k ≥ 3 be an integer. Let P be a set of n points in the plane, let L

be a set of n lines in the plane, and I = I(P,L). If the incidence graph G = (P ∪L, I)

is C2k-free, then |I(P,L)| = o(n1+1/k).

Solymosi proved Conjecture 2.1 for k = 3, but it is still an open problem for k ≥ 4.

In this thesis, we apply a simple technique of realizing point-line incidence

graphs arising from finite geometries as point-line incidence graphs in the Euclidean

plane. As expected, we obtain some loss on the number of edges. Our first result is

stated below, which is obtained by applying this technique to a well-known construction

of Lazebnik and Ustimenko [51] of a large graph with large girth.

Theorem 2.2. Let k ≥ 3 be an odd integer. For n > 1, there exists an arrangement of

n points P and n lines L in the plane such that their incidence graph G = (P ∪ L, I)

has girth g ≥ k + 5 and determines at least Ω(n
1+ 4

k2+6k−3 ) incidences.

For k = 5, we obtain a slightly better bound by applying this technique to
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Wenger graphs.

Theorem 2.3. There exists an arrangement of n points P and n lines L in the plane

such that their incidence graph G = (P ∪ L, I) is C10-free and determines at least

Ω(n1+1/15) incidences.

We systemically omit floor and ceiling signs whenever they are not crucial for

the sake of clarity of our presentation.

2.2 Proof of Theorem 2.2

In [51], Lazebnik and Ustimenko gave the following construction of a q-regular

bipartite graph D(q, k) = (U ∪ V,E) on 2qk vertices with girth g ≥ k + 5, where q is

a prime power and k ≥ 3 is an odd integer. The vertex set of D(q, k) is U ∪ V, where

U = V = {0, 1, . . . , q− 1}k. In order to define E ⊂ U ×V, we will label the coordinates

of u ∈ U and v ∈ V as follows.

u =
(
u1, u1,1, u1,2, u2,1, u2,2, u

′
2,2, u2,3, u3,2, u3,3 . . . , u

′
i,i, ui,i+1, ui+1,i, ui+1,i+1, . . .

)
.

and

v =
(
v1, v1,1, v1,2, v2,1, v2,2, v

′
2,2, v2,3, v3,2, v3,3, . . . , v

′
i,i, vi,i+1, vi+1,i, vi+1,i+1, . . .

)
,

Note that we only consider the first k such coordinates. For example when k = 5, we
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have u = (u1, u1,1, u1,2, u2,1, u2,2) , v = (v1, v1,1, v1,2, v2,1, v2,2) . Then uv ∈ E if and only

if the following k − 1 equations are satisfied:

v1,1 − u1,1 = v1u1 mod q

v1,2 − u1,2 = v1,1u1 mod q

v2,1 − u2,1 = v1u1,1 mod q

vi,i − ui,i = v1ui−1,i mod q

v′i,i − u′i,i = u1vi,i−1 mod q

vi,i+1 − ui,i+1 = u1vi,i mod q

vi+1,i − ui+1,i = v1u
′
i,i mod q


i ≥ 2.

where u′1,1 = u1,1, v
′
1,1 = v1,1.

For example, if k = 5, uv ∈ E if and only if the following 4 equations are

satisfied.

v1,1 − u1,1 = v1u1 mod q

v1,2 − u1,2 = v1,1u1 mod q

v2,1 − u2,1 = v1u1,1 mod q

v2,2 − u2,2 = v1u1,2 mod q.

In [51], Lazebnik and Ustimenko proved the following.

Theorem 2.4 (Theorem 3.3 in [51]). For an odd integer k ≥ 3, the bipartite graph
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D(k, q) described above has girth g ≥ k + 5.

We will use this construction to prove Theorem 2.2.

Proof of Theorem 2.2. Let k ≥ 3, and n > 1 be sufficiently large such that bn
4

k2+6k−3 c ≥

1. By Bertrand’s postulate theorem, there is a prime number q such that 4n
8
k < q <

8n
8
k . Then let D(q, k) = (U ∪ V,E) be defined as above. Let U ′ ⊂ U and V ′ ⊂ V such

that u ∈ U ′ if

0 ≤ u1 ≤ n
4

k2+6k−3 ,

0 ≤ ui,j ≤ n
4(i+j)

k2+6k−3 i, j ≥ 1,

0 ≤ u′i,j ≤ n
4(i+j)

k2+6k−3 i, j ≥ 1.

and v ∈ V ′ if

0 ≤ v1 ≤ 2n
4

k2+6k−3 ,

0 ≤ vi,i+1 ≤ 4n
4(2i+1)

k2+6k−3 ,

0 ≤ vi+1,i ≤ 3n
4(2i+1)

k2+6k−3 , i ≥ 1,

0 ≤ v′i,i ≤ 4n
4(2i)

k2+6k−3 ,

0 ≤ vi,i ≤ 3n
4(2i)

k2+6k−3 .

Then let E ′ ⊂ U ′ × V ′ such that uv ∈ E ′ if and only if the following k − 1

equations are satisfied
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v1,1 − u1,1 = v1u1

v1,2 − u1,2 = v1,1u1

v2,1 − u2,1 = v1u1,1

vi,i − ui,i = v1ui−1,i

v′i,i − u′i,i = u1vi,i−1

vi,i+1 − ui,i+1 = u1vi,i

vi+1,i − ui+1,i = v1u
′
i,i


i ≥ 2. (2.1)

The bipartite graph G = (U ′ ∪ V ′, E ′) is a subgraph of D(q, k), and therefore,

it has girth g ≥ k+ 5. It suffices to show that |E ′| = Ω(n
1+ 4

k2+6k−3 ) and to realize G as

an incidence graph of points and lines in the plane.

Set P = U ′ ⊂ Zk. Then we have

|P | = n
4

k2+6k−3 · n
4(2)

k2+6k−3 ·

 k−3
2
−1∏

i=3

n
4i

k2+6k−3

 · n 4( k−3
2 )

k2+6k−3

= n
4

k2+6k−3
(1+2+2(3)+...+2( k+3

2
−1)+ k+3

2 )

= n.

We define a set of |V ′| lines L in Rk as follows. For each v ∈ V ′, let `v be the solution

space to the following system of k − 1 equations over k variables.
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v1,1 − x1,1 = v1x1

v1,2 − x1,2 = v1,1x1

v2,1 − x2,1 = v1x1,1

vi,i − xi,i = v1xi−1,i

v′i,i − x′i,i = x1vi,i−1

vi,i+1 − xi,i+1 = x1vi,i

vi+1,i − xi+1,i = v1x
′
i,i


i ≥ 2. (2.2)

Set L = {`v : v ∈ V ′}. It is easy to see that the k− 1 equations above are independent

and therefore, `v is a line in Rk. Moreover, each line is unique by the following claim.

Claim. If v, w ∈ V ′ are distinct, then `v 6= `w.

Proof. Let v and w be two distinct members of V ′, where

v = (v1, v1,1, v1,2, v2,1, v2,2, v
′
2,2, v2,3, v3,2, v3,3, . . . , v

′
i,i, vi,i+1, vi+1,i, vi+1,i+1, . . .),

w = (w1, w1,1, w1,2, w2,1, w2,2, w
′
2,2, w2,3, w3,2, . . . , w

′
i,i, wi,i+1, wi+1,i, wi+1,i+1, . . .).

Without loss of generality, we can assume u1 6= w1, as otherwise, we can show induc-

tively that both vectors u and v have the same coordinates. For any point u ∈ P,

u = (u1, u1,1, u1,2, u2,1, u2,2, u
′
2,2, u2,3, u3,2, u3,3, . . . , u

′
i,i, ui,i+1, ui+1,i, ui+1,i+1, . . .),
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there is a unique solution to the following system of k equations.

w1,1 − u1,1 = w1u1

v1,1 − u1,1 = v1u1

v1,2 − u1,2 = v1,1u1

vi,i − ui,i = v1ui−1,i

v′i,i − u′i,i = u1vi,i−1

vi,i+1 − ui,i+1 = u1vi,i

vi+1,i − ui+1,i = v1u
′
i,i


i ≥ 2.

Hence, both v and w correspond to distinct lines.

Therefore, we have

|L| = Θ

n 4
k2+6k−3 · n

4(2)

k2+6k−3 ·

 k−3
2
−1∏

i=3

n
4i

k2+6k−3

 · n 4( k−3
2 )

k2+6k−3


= Θ

(
n

4
k2+6k−3

(1+2+2(3)+...+2( k+3
2
−1)+ k+3

2 )
)

= Θ(n).

Notice that every point u ∈ P is incident to at least 2n
4

k2+6k−3 lines in L. Indeed,

consider the k− 1 equations (2.2). There are 2n
4

k2+6k−3 choices for v1. For fixed u ∈ U,

by fixing v1 and by equation (2.1), we obtain v1,1 sch that 0 ≤ v1,1 = v1u1 + u1,1 ≤

3n
8

k2+6k−3 . By repeating the same argument the rest of the coordinates of v will be

determined uniquely.
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Hence, we have a set of Θ(n) points P and Θ(n) lines in Rk such that |I(P, k)| =

Ω(n
1+ 4

k2+6k−3 ). Projecting points P and lines L into the plane completes the proof of

Theorem 2.2.

2.3 Proof of Theorem 2.3

Let k ∈ {2, 3, 5}. In [95], Wenger gave the following construction of a C2k-free

and p-regular bipartite graph Hk(p) = (U ∪ V,E) on 2pk vertices, where p is a prime

power. First we briefly discuss the Wenger’s construction. The vertex set of Hk(p) is

U ∪V, where U = V = {0, . . . , p− 1}k. In order to define E ⊂ U ×V, we will label the

coordinates of u ∈ U and v ∈ V as follows.

u = (u0, u1, . . . , uk−1) and v = (v0, v1, . . . , vk−1) .

Then uv ∈ E if and only if the following k − 1 equations are satisfied:

vj = uj + uj+1vk−1 mod p j = 0, . . . , k − 2.

In [95], Wenger proved the following.

Theorem 2.5. For k ∈ {2, 3, 5}, the bipartite graph Hk(p) described above is C2k-free.

We will use this construction to prove Theorem 2.3.

Proof of Theorem 2.3. Let k ≥ {2, 3, 5} and n > 1 be sufficiently large such that

bn
2

k2+2k c ≥ 1. By Bertrand’s postulate theorem, there is a prime number p such that
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22kn
2
k < p < 22k+1n

2
k . Then let Hk(p) = (U ∪ V,E) be defined as above. Let U ′ ⊂ U

and V ′ ⊂ V such that u ∈ U ′ if

0 ≤ ui ≤ 22(k−i−1)n
2(k−i)
k(k+1) 0 ≤ i ≤ k − 2,

0 ≤ ui ≤ n
2

k(k+1) i = k − 1,

and v ∈ V ′ if

22(k−i−1)−1n
2(k−i)
k(k+1) ≤ vi ≤ 22(k−i−1)n

2(k−i)
k(k+1) 0 ≤ i ≤ k − 2,

n
2

k(k+1) ≤ vi ≤ 2n
2

k(k+1) i = k − 1.

Let E ′ ⊂ U ′ × V ′ such that uv ∈ E ′ if and only if the following k− 1 equations

are satisfied:

vj = uj + uj+1vk−1 j = 0, . . . , k − 2. (2.2)

The bipartite graph G = (U ′ ∪ V ′, E ′) is a subgraph of Hk(p), and therefore, it

is C2k-free. It suffices to show that |E ′| ≥ Ω(n
1+ 2

k2+k ) and to realize G as the incidence

graph of points and lines in the plane.
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Let P = U ′ ⊂ Zk. Then we have

|P | =
k−1∏
i=0

22(k−i−1)n
2(k−i)
k(k+1) = 2k(k−1)n = Θk(n).

We define a set of |V ′| lines L in Rk as follows. For each v ∈ V ′, let `v be the

solution space to the following system of k − 1 equations over k variables.

xi + vk−1xi+1 − vi = 0 j = 0, . . . , k − 2. (2.3)

Set L = {`v : v ∈ V ′}. It is easy to see that the k− 1 equations above are independent

and therefore, `v is a line in Rk. Moreover, we have the following claim.

Claim. If v, w ∈ V ′ are distinct, then `v 6= `w.

Proof. Let v and w be two distinct members of V ′, where

v = (v1, . . . , vk−1) and w = (w1, . . . , wk−1).

Without loss of generality, we can assume u1 6= w1, as otherwise, we can show in-

ductively that both vectors u and v have the same coordinates. For any point u =
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(u1, u2, . . . , uk−1) ∈ P, there is a unique solution to the following system of k equations.

x1 + wk−1x2 − w1 = 0

xi + vk−1xi+1 − v1 = 0 0 ≤ i ≤ k − 2.

Hence, both v and w correspond to distinct lines.

Therefore, we have

|L| = 1

2k−1

k−1∏
i=0

22(k−i−1)n
2(k−i)
k(k+1) = 2k

2−1n = Θk(n).

Notice that every line `v ∈ L is incident to at least n
2

k2+k points in P. Indeed,

consider k − 1 equations 2.3. There are n
2

k2+k choices for uk−1. For fixed v ∈ V ′, by

fixing uk−1 and by equation 2.2, we obtain uk−2 = vk−2 − uk−1vk−1, such that

0 ≤ uk−2 ≤ 22n
4

k(k+1) ,

since

2n
4

k(k+1) ≤ vk−2 ≤ 22n
4

k(k+1) and − 2n
4

k(k+1) ≤ −uk−1vk−1 ≤ 0.

By repeating the same argument the other coordinates of u will be determined uniquely.
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Thus we have a set of Θ(n) points P and Θ(n) lines in Rk such that |I(P, k)| =

Ω(n
1+ 2

k2+k ). Projecting points P and lines L into the plane completes the proof of

Theorem.

2.4 Concluding Remarks

As a corollary of Theorem 2.2 for k = 3, we get that there exists an arrangement

of n points and n lines in the plane with no C6 in the incidence graph while determining

Ω(n1+ 1
6 ) incidences. It is worth mentioning that one can follow the construction of

Theorem 1.5 in [60] to get a construction of an arrangement of n points and n lines in

the plane where their incidence graph is C6-free while it determines Ω(n1+ 1
7 ) incidences.

Chapter 2 is a version of the material in “Constructions of Point-Line Arrange-

ments in the Plane with Large Girth”, co-authored with Andrew Suk and Jacques

Verstraëte, which has been submitted for publication. The author was one of the pri-

mary investigators and authors of this paper.

35



Chapter 3

A positive fraction mutually

avoiding sets theorem

3.1 Introduction

Let P be an n-element point set in the plane in general position, that is, no

three members are collinear. For k > 0, we say that P contains a crossing family of size

k if there are k segments whose endpoints are in P that are pairwise crossing. Crossing

families were introduced in 1994 by Aronov, Erdős, Goddard, Kleitman, Kluggerman,

Pach, and Schulman [1], who showed that for any given set of n points in the plane in

general position, there exists a crossing family of size at least
√
n/12. They raised the

following problem (see also Chapter 9 in [11]).

Problem 3.1 ([1]). Does there exist a constant c > 0 such that every set of n points
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in the plane in general position contains a crossing family of size at least cn?

There have been several results on crossing families over the past several decades [32,

66, 76]. Very recently, Pach, Rudin, and Tardos showed that any set of n points

in general position in the plane determines n1−o(1) pairwise crossing segments. More

precisely, they proved the following theorem.

Theorem 3.2 ([65]). Any set P of n points in general position in the plane determines

at least n/2O(
√

logn) pairwise crossing segments.

The result of Aronov et al. on crossing families was actually obtained by finding

point sets that are mutually avoiding. Let A and B be two disjoint point sets in the

plane. We say that A avoids B if no line subtended by a pair of points in A intersects

the convex hull of B. The sets A and B are mutually avoiding if A avoids B and B

avoids A. In other words, A and B are mutually avoiding if and only if each point in A

”sees” every point in B in the same clockwise order, and vice versa. Hence two mutually

avoiding sets A and B, where |A| = |B| = k, would yield a crossing family of size k. In

Figure 1, two mutually avoiding sets A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4} yield

a crossing family of size four.

Theorem 3.3 ([1]). Any set of n points in the plane in general position contains a

pair of mutually avoiding sets, each of size at least
√
n/12.

It was shown by Valtr [90] that this bound is best possible up to a constant

factor. In this note, we give a fractional version of Theorem 3.3.
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Figure 3.1: Two mutually avoiding sets A and B.

Theorem 3.4. For every k > 0 there is a constant εk > 0 such that every suffi-

ciently large point set P in the plane in general position contains 2k disjoint sub-

sets A1, . . . , Ak, B1, . . . , Bk, each of size at least εk|P |, such that every pair of sets

A = {a1, . . . , ak} and B = {b1, . . . , bk}, with ai ∈ Ai and bi ∈ Bi, are mutually avoid-

ing. Moreover, εk = Ω(1/k4).

As an immediate corollary, we establish the following fractional version of the

crossing families theorem.

Theorem 3.5. For every k > 0 there is a constant εk > 0 such that every suffi-

ciently large point set P in the plane in general position contains 2k subsets A1, . . . , Ak

, B1, . . . , Bk, each of size at least εk|P |, such that every segment that joins a point

from Ai and Bk+1−i crosses every segment that joins a point from Ak+1−i and Bi, for

1 ≤ i ≤ k. Moreover, εk = Ω(1/k4).

Let us remark that if we are not interested in optimizing εk in the theorems

above, one can combine the well-known same-type lemma due to Barany and Valtr [2]
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(see section 3.8) with Theorem 3.3 to establish Theorems 3.4 and 3.5 with εk = 2−O(k4).

Hence, the main advantage in the theorems above is that εk decays only polynomially

in k. We will however, use this approach in higher dimensions with a more refined

same-type lemma.

Higher dimensions. Mutually avoiding sets inRd are defined similarly. A point set P

inRd is in general position if no d+1 members of P lie on a common hyperplane. Given

two point sets A and B in Rd, we say that A avoids B if no hyperplane generated by a

d-tuple in A intersects the convex hull of B. The sets A and B are mutually avoiding

if A avoids B and B avoids A. Aronov et al. proved the following.

Theorem 3.6 ([1]). For fixed d ≥ 3, any set of n points in Rd in general position

contains a pair of mutually avoiding subsets each of size Ωd(n
1/(d2−d+1)).

In the other direction, Valtr showed in [90] that by taking a k × · · · × k grid, where

k = bn1/dc, and slightly perturbing the n points so that the resulting set is in general

position, one obtains a point set that does not contain mutually avoiding sets of size

cn1−1/d, where c = c(d).

Our next result is a fractional version of Theorem 3.6.

Theorem 3.7. For d ≥ 3 and k ≥ 2, there is a constant εd,k, such that every sufficiently

large point set P in Rd in general position contains 2k subsets A1, . . . , Ak, B1, . . . , Bk,

each of size at least εk|P |, such that every pair of sets A = {a1, . . . , ak} and B =

{b1, . . . , bk}, with ai ∈ Ai and bi ∈ Bi, are mutually avoiding. Moreover, εd,k = 1/kcd

where cd > 0 depends only on d.
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Similar to Theorem 3.4, εd,k in Theorem 3.7 also decays only polynomially in k for

fixed d ≥ 3. However, cd does have a rather bad dependency on d, cd ≈ 2O(d).

Finally, we establish a result on crossing families in higher dimensions which

was also observed by Aronov et al. in [1].

3.2 Proof of Theorem 3.4

Proof. In this section we give the proof of Theorem 3.4 which closely follows an argu-

ment of Pór and Valtr in [69]. Let k > 2 and let P be a set of n points in the plane

in general position where n > (1500k)4. It follows from Theorem 1.2 that among any

12(40k + 1)2 points P , it is always possible to find two mutually avoiding sets A ⊆ P

and B ⊆ P each of size at least 40k + 1. It follows that P contains at least

(
n

12(40k+1)2

)(
n−(80k+2)

12(40k+1)2−(80k+2)

) =

(
n

80k+2

)(
12(40k+1)2

80k+2

) (3.1)

pairs of mutually avoiding sets, each set of size 40k + 1. Note that (3.1) follows from

the equality (
m
a

)(
m−b
a−b

) =

(
m
b

)(
a
b

) ,
for positive integers m, a, b where 1 ≤ b ≤ a ≤ m.

Let A and B be a pair of mutually avoiding sets each of size 40k+1. For b ∈ B,
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label the points in A with a1, . . . , a40k+1 in radial clockwise order with respect to b.

Likewise, for a ∈ A, label the points in B with b1, . . . , b40k+1 in radial counterclockwise

order with respect to a. We say that the pair (A′, B′) supports the pair (A,B) if A′ =

{ai ∈ A; i ≡ 1 mod 4} and B′ = {bi ∈ B; i ≡ 1 mod 4}. Clearly, |A′| = |B′| = 10k + 1.

Since P has at most
(

n
10k+1

)2
pairs of disjoint subsets with size 10k + 1 each,

there is a pair of subsets (A′, B′) such that A′, B′ ⊂ P, |A′| = |B′| = 10k + 1, and

(A′, B′) supports at least

(
n

80k+2

)(
12(40k+1)2

80k+2

)(
n

10k+1

)2 >
(

n
80k+2

)80k+2(
12(40k+1)2e

80k+2

)80k+2 (
ne

10k+1

)20k+2

>
n60k

e100k+41280k+2(50k)141k

>
n60k

(430k)141k

mutually avoiding pairs (A,B) in P, where |A| = |B| = 40k + 1. Notice that for the

first inequality, we use the inequality
(
m
r

)r
<
(
m
r

)
<
(
me
r

)r
, where 1 < r < m. To see

why the second inequality holds, we claim that

(10k + 1)20k+2

(40k + 1)160k+4
>

1

(50k)141k
as long as k > 2.
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To prove the claim, we need to show that

(50k)141k > (40k + 1)140k+2

(
40k + 1

10k + 1

)20k+2

.

Since k > 2, (40k + 1)140k+2
(
40k+1
10k+1

)20k+2
< (40k + 1)141k(40k+1

10k+1
)21k. Therefore, it is

enough to show

(50k)141(10k + 1)21 > (40k + 1)162.

It is easy to check that 501411021 > (40.5)162 (since k > 2, 40k + 1 < 40.5k) and this

completes the proof of the claim. For the last inequality, it is easy to observe that

e100k+41280k+2(50)141k < (430)141k, for k > 2. Note that

e100k <

(
43

5

)46.5k

and 1280k <

(
43

5

)92.5k

.

Therefore,

e100k1280k122e4 <

(
43

5

)46.5k (
43

5

)92.5k (
43

5

)5

<

(
43

5

)141k

.

Set A′ = {a′1, . . . , a′10k+1} and B′ = {b′1, . . . , b′10k+1}. For any two consecutive

points a′i, a
′
i+1 ∈ A′, 1 ≤ i ≤ 10k, consider the region Ai produced by the inter-

section of regions bounded by the lines b′1a
′
i, b
′
1a
′
i+1 and b′10ka

′
i, b
′
10ka

′
i+1. Similarly, we

define the region Bi produced by the intersection of regions bounded by the lines

a′1b
′
i, a
′
1b
′
i+1 and a′10kb

′
i, a
′
10kb

′
i+1 for 1 ≤ i ≤ 10k. Therefore, we have 20k regions
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Figure 3.2: Regions and their support.

A1, . . . ,A10k,B1, . . . ,B10k. In Figure 3.2, the regions Ai and Bi defined by support

A′ = {a′1, a′2, a′3, a′4} and B′ = {b′1, b′2, b′3, b′4}. Let us remark that 4 6= 10k+ 1 for k ∈ Z.

The purpose of this figure is to give some intuition on how the regions Ai and Bi are

formed.

Let A and B be a pair of mutually avoiding sets each of size 40k + 1. If

(A′, B′) supports (A,B), where A′ = {a′1, . . . , a′10k+1} and B′ = {b′1, . . . , b′10k+1}, then

A = A′ ∪ A1 ∪ · · · ∪ A10k and B = B′ ∪ B1 ∪ · · · ∪ B10k, where |Ai| = |Bi| = 3 for all

1 ≤ i ≤ 10k, and Ai lies in region Ai and Bi lies in region Bi.

For i = 1, . . . , 10k, let αi, respectively βi, denote the number of points of P

lying in the interior of Ai, respectively Bi. It follows from Observation 2.1 that (A′, B′)

supports at most
∏10k

i=1

(
αi
3

)∏10k
i=1

(
βi
3

)
pairs of mutually avoiding sets (A,B), each of

size 40k + 1. Therefore,
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n60k

(430k)141k
≤

10k∏
i=1

(
αi
3

) 10k∏
i=1

(
βi
3

)
≤

10k∏
i=1

(αiβi)
3.

Without loss of generality, let us relabel the regions A1, . . . ,A10k,B1, . . . ,B10k so that

α1 ≤ α2 ≤ · · · ≤ α10k and β1 ≤ β2 ≤ · · · ≤ β10k.

Claim. There exists an i such that 1 ≤ i ≤ 9k, and αi, βi ≥ n
(1320k)4

.

Proof. For the sake of contradiction, suppose for each i, 1 ≤ i ≤ 9k, we have αi <

n
(1320k)4

. Therefore,

n20k

(430k)47k
≤

10k∏
i=1

αiβi =
9k∏
i=1

αi

(
10k∏

i=9k+1

αi

10k∏
i=1

βi)

)

≤
(

n

(1320k)4

)9k (Σ10k
i=9k+1αi + Σ10k

i=1βi

11k

)11k

<

(
n

(1320k)4

)9k ( n

11k

)11k
=

n20k

(1320k)36k(11k)11k
.

Hence, we have

n20k

(430k)47k
<

n20k

(1320k)36k(11k)11k
· (3.2)

44



After simplifying (3.2), we get 1320361111

43047
< 1 which is a contradiction as 1320361111

43047
≈

1.054. Thus, there exists an i, 1 ≤ i ≤ 9k, with αi ≥ n
(1320k)4

. With a similar calculation,

there exists an i, 1 ≤ i ≤ 9k with βi ≥ n
(1320k)4

.

By setting A∗i = P∩A9k+i and B∗i = P∩B9k+i, for 1 ≤ i ≤ k, we have 2k subsets

A∗1, . . . , A
∗
k, B

∗
1 , . . . , B

∗
k, each of size at least n

(1320k)4
, such that every pair of subsets

{a1, . . . , ak} and {b1, . . . , bk}, where ai ∈ A∗i and bi ∈ B∗i , is mutually avoiding.

3.3 Mutually avoiding sets in higher dimensions

In this section we will prove Theorem 3.7. Let P = (p1, . . . , pn) be an n-element

point sequence in Rd in general position. The order type of P is the mapping χ :(
P
d+1

)
→ {+1,−1} (positive orientation, negative orientation), assigning each (d + 1)-

tuple of P its orientation. More precisely, by setting pi = (ai,1, ai,2, . . . , ai,d) ∈ Rd,

χ({pi1 , pi2 , . . . , pid+1
}) = sgn det



1 1 . . . 1

ai1,1 ai2,1 . . . aid+1,1

...
...

. . .
...

ai1,d ai2,d . . . aid+1,d


,

where i1 < i2 < · · · < id+1.

Hence two point sequences P = (p1, . . . , pn) and Q = (q1, . . . , qn) have the same order-

type if and only if they are “combinatorially equivalent.” See [34] and [59] for more

background on order-types.
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Given k disjoint subsets P1, . . . , Pk ⊂ P , a transversal of (P1, . . . , Pk) is any

k-element sequence (p1, . . . , pk) such that pi ∈ Pi for all i. We say that the k-tuple

(P1, . . . , Pk) has same-type transversals if all of its transversals have the same order-

type. In 1998, Bárány and Valtr proved the following same-type lemma.

Lemma 3.8 ([2]). Let P = (p1, . . . , pn) be an n-eLemmaent point sequence in Rd in

general position. Then for k > 0, there is an ε = ε(d, k), such that one can find disjoint

subsets P1, . . . , Pk ⊂ P such that (P1, . . . , Pk) has same-type transversals and |Pi| ≥ εn.

Their proof shows that ε = 2−O(kd−1). This was later improved by Fox, Pach, and

Suk [30] who showed that Lemmama 3.8 holds with ε = 2−O(d3k log k). We will use

the following result, which was communicated to us by Jacob Fox, which shows that

Lemmama 3.8 holds with ε decaying only polynomially in k for fixed d ≥ 3.

Lemma 3.9. Lemma 3.8 holds for ε = k−cd, where cd depends only on d.

The proof of Lemma 3.9 is a simple application of the following regularity lemma

due to Fox, Pach, and Suk. A partition on a finite set P is called equitable if any two

parts differ in size by at most one.

Lemma 3.10 (Theorem 1.3 in [30]). For d > 0, there is a constant c = c(d) such

that the following holds. For any ε > 0 and for any n-element point sequence P =

(p1, . . . , pn) in Rd, there is an equitable partition P = P1 ∪ · · · ∪ PK, with 1/ε < K <

(1/ε)c, such that all but at most ε
(
K
d+1

)
(d + 1)-tuples of parts (Pi1 , . . . , Pid+1

) have

same-type transversals.
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Let us note that K > 1/ε follows by first arbitrarily partitioning P into d1/εe parts,

such that any two parts differ in size by at most one, and then following the proof of

Theorem 1.3 in [30].

The next lemma we will use is Turán’s Theorem for hypergraphs. Given an

r-uniform hypergraph H, let ex(n,H) denote the maximum number of edges in any

H-free r-uniform hypergraph on n vertices.

Lemma 3.11 (de Caen [15]). Let Kr
k denote the complete r-uniform hypergraph on k

vertices. Then

ex (n,Kr
k) ≤

(
1− 1(

k−1
r−1

) + o(1)

)(
n

r

)
.

Proof of Lemma 3.9. Let P = (p1, . . . , pn) be an n-element point sequence in Rd in

general position. Set ε = 1/(2k)d, and apply Lemma 3.10 to P with parameter ε to

obtain the equitable partition P = P1 ∪ · · · ∪ PK with the desired properties. Hence

|Pi| ≥ n/(2k)d·c, where c is defined in Lemma 3.10. Since all but at most ε
(
K
d+1

)
(d+1)-

tuples of parts (Pi1 , . . . , Pid+1
) have same-type transversals, we can apply Lemma 3.11

to obtain k parts P ′1, . . . , P
′
k ∈ {P1, . . . , PK} such that all (d+ 1)-tuples (P ′i1 , . . . , P

′
id+1

)

in {P ′1, . . . , P ′k} have same-type transversals.

Proof of Theorem 3.7. Let k > 0 and let P be an n-element point set in Rd in general

position. We will order the elements of P = {p1, . . . , pn} by increasing first coordinate,

breaking ties arbitrarily. Let c′ = c′(d) be a sufficiently large constant that will be
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determined later. We apply Lemma 3.9 to P with parameter k′ = dkc′e to obtain

subsets P1, . . . , Pk′ ⊂ P such that |Pi| ≥ k−cdc
′
n, where cd is defined in Lemma 3.9,

such that all (d + 1)-tuples (Pi1 , . . . , Pid+1
) have same-type transversals. Let P ′ be a

k′-element subset obtained by selecting one point from each subset Pi. By applying

Theorem 3.6 to P ′, we obtain subsets A,B ⊂ P ′ such that A and B are mutually

avoiding, and |A|, |B| ≥ Ω((k′)1/(d
2−d+1)). By choosing c′ = c′(d) sufficiently large,

we have |A|, |B| ≥ k. Let {a1, . . . , ak} ⊂ A and {b1, . . . , bk} ⊂ B. Then the subsets

A1, . . . , Ak, B1, . . . , Bk ∈ {P1, . . . , Pk′}, where ai ∈ Ai and bi ∈ Bi, are as required in

the theorem.

3.3.1 Crossing Families in Higher Dimensions

Let P be an n-element point set in Rd in general position. A (d − 1)-simplex

in P is a (d− 1)-dimensional simplex generated by taking the convex hull of d points

in P . We say that two (d− 1)-simplices strongly cross in P if their interiors intersect

and they do not share a common vertex. A crossing family of size k in P is a set of k

pairwise strongly crossing (d− 1)-simplices in P .

In [1], Aronov et al. stated that Theorem 3.6 implies that every point set P in

Rd in general position contains a polynomial-sized crossing family, that is, a collection

of (d − 1)-simplices in P such that any two strongly cross. Since they omitted the

details, below we provide the construction of a crossing family using mutually avoiding

sets in Rd.
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Let d ≥ 2 and let P be a set of n points in Rd in general position. Then P

contains a crossing family of size Ω(
√
n) for d = 2, and of size Ωd(n

1

2
∏d
i=3

(i2−i+1) ) for

d ≥ 3.

Proof. We proceed by induction on d. The base case d = 2 follows from Theorem 3.3:

a pair of mutually avoiding sets A and B in the plane, each of size Ω(
√
n), gives rise

to a crossing family of size Ω(
√
n). For the inductive step, assume the statement holds

for all d′ < d.

Let P be a set of n points in Rd in general position. By Theorem 3.6, there

is a pair of mutually avoiding sets A and B such that |A| = |B| = k = Ωd(n
1

d2−d+1 ).

Let A = {a1, . . . , ak} and B = {b1, . . . , bk}. Since conv(A) ∩ conv(B) = ∅, by the

separation theorem (see Theorem 1.2.4 in [59]), there is a hyperplane H such that A

lies in one of the closed half-spaces determined by H, and B lies in the opposite closed

half-space.

For each ai ∈ A, let aib be the line generated by points ai and b ∈ B. Then

set Bi = {aib ∩ H : b ∈ B}. Since P is in general position, Bi is also in general

position in H for each i. Moreover, since A and B are mutually avoiding, Bi has the

same order-type as Bj for every i 6= j. Indeed, for any d-tuple bi1 , bi2 , . . . , bid ∈ B,

every point in A lies on the same side of the hyperplane generated by bi1 , bi2 , . . . , bid .

Hence the orientation of the corresponding d-tuple in Bi ⊂ H will be the same as

the orientation of the corresponding d-tuple in Bj ⊂ H for i 6= j. Therefore, let us

just consider B1 ⊂ H. By the induction hypothesis, there exists a crossing family of

49



(d− 2)-simplices of size

k′ = Ωd

(
k

1

2
∏d−1
i=3

(i2−i+1)

)
= Ωd

(
n

1

2
∏d
i=3

(i2−i+1)

)
,

in B1 ⊂ H. Let S = {S1, . . . ,Sk′} be our set of pairwise crossing (d − 2)-simplices in

B1 ⊂ H and let S ′ = {S ′1, . . . ,S ′k′} be the corresponding (d− 2)-simplices in B (which

may or may not intersect).

Set S∗i = (ai ∪ S ′i). Then S∗1 , . . . ,S∗k′ is a set of k′ pairwise crossing (d − 1)-

simplices in Rd. Indeed, consider S∗i and S∗j . If S ′i ∩ S ′j 6= ∅, then we are done.

Otherwise, we would have S ′j ∩ S∗i 6= ∅ or S ′i ∩ S∗j 6= ∅ since Bi and Bj have the

same order type and Si ∩ Sj 6= ∅. More precisely, let ri be a ray from ai through an

intersection point of Si and Sj. The ray ri intersects both S ′i and S ′j by the definition

of Si and Sj. Without loss of generality assume ri intersects Si first. It follows that

S ′i ∩ S∗j 6= ∅.

Chapter 3 is a version of the material appearing in “A Positive Fraction Mutually

Avoiding Sets Theorem”, Discrete Mathematics, Vol. 343, Issue 3, 2020, co-authored

with Andrew Suk. The author was one of the primary investigators and authors of this

paper.
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Chapter 4

Exponential sum estimates over

prime fields

4.1 Introduction

Let Fp be a prime field, and χ be a non-trivial multiplicative character of F∗p.

Let δ > 0 be a real number. The Paley graph conjecture states that for any two sets

A,B ⊂ Fp with |A|, |B| > pδ, there exists γ = γ(δ) such that the following estimate

holds: ∣∣∣∣∣ ∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣ < p−γ|A||B|, (4.1)

for any sufficiently large prime p and any non-trivial character χ.

If |A| > p
1
2
+δ and |B| > pδ, the conjecture has been confirmed by Karatsuba in

[45, 44, 46]. In other ranges, the conjecture remains widely open, even in the balance
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case |A| = |B| ∼ p1/2.

In [17], it is shown that if we have a restricted condition on the size of the

sumset B +B, then the inequality (4.1) is true. The precise statement is as follows.

Theorem 4.1 ([17]). Let δ and K be positive numbers. Let A,B be sets in F∗p with

p > p(δ,K) large enough and χ a non-trivial multiplicative character of F∗p. Suppose

that

|A| > p
4
9
+δ,

|B| > p
4
9
+δ,

|B +B| < K|B|.

Then there exists γ = γ(δ,K) > 0 such that

∣∣∣∣∣ ∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣ < p−γ|A||B|.

In a recent work, Shkredov and Volostnov [83] improved this theorem in the

case A = B using a Croot-Sisask lemma on almost periodicity of convolutions of

characteristic functions of sets [20]. For the sake of completeness, we will state their

result in a general form as follows.

Theorem 4.2 ([83]). Let δ, K and L be positive numbers. Let A,B be sets in F∗p with

p > p(δ,K, L) large enough and χ a non-trivial multiplicative character of F∗p. Suppose
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that

|A| > p
12
31

+δ,

|B| > p
12
31

+δ,

|A+ A| < K|A|,

|A+B| < L|B|.

Then we have ∣∣∣∣∣ ∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣ <
√
L log 2K

δ log p
|A||B|.

Using recent advances in additive combinatorics, it has been indicated by Shkre-

dov and Shparlinski [82] that if we study the sums with more variables, then the prob-

lem becomes much easier. Namely, given four sets T ,U ,V ,W in F∗p and two sequences

of weights α = (αt)t∈T , β = (βu,v,w)u,v,w∈U×V×W with

max
t∈T
|αt| ≤ 1, max

(u,v,w)∈U×V×W
|βuvw| ≤ 1,

they considered the following sum

Sχ(T ,U ,V ,W , α, β, f) :=
∑

t∈T ,u∈U ,v∈V,w∈W

αtβuvwχ(t+ f(u, v, w)),

where f(x, y, z) is a polynomial in three variables in Fp[x, y, z].
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Throughout this chapter, we denote the cardinality of T ,U ,V ,W ⊂ Fp by

T, U, V,W, respectively. We use X � Y if X ≤ CY for some constant C > 0 indepen-

dent of the parameters related to X and Y, and write X � Y for Y � X. The notation

X ∼ Y means that both X � Y and Y � X hold. In addition, we use X . Y to

indicate that X � (log Y )Y.

For the specific cases f(x, y, z) = x + yz and f(x, y, z) = x(y + z), Shkredov

and Shparlinski [82] deduced the following result.

Theorem 4.3 ([82]). For U ,V ,W , T ⊂ F∗p, let M = max{U, V,W}. If f(x, y, z) =

x+ yz or f(x, y, z) = x(y + z), then for any fixed integer n ≥ 1, we have

|Sχ(T ,U ,V ,W , α, β, f)| �

(
(UVW )1−

1
4n +M

1
2n (UVW )1−

1
2n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

We note that this theorem is an improvement of the work of Hanson [35]. In

order to indicate the strength of Theorem 4.3, the following interesting cases were

considered by Shkredov and Shparlinski [82].

1. If U ∼ V ∼ W ∼ T ∼ N, then by setting n = 1, we have

|Sχ(T ,U ,V ,W , α, β, f)| � N
11
4 p

1
2 ,
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which is non-trivial whenever N ≥ p
2
5
+ε for some ε > 0.

2. Suppose that T ≥ pε for some ε > 0 and U ∼ V ∼ W ∼ N. Taking n = b2
ε
c+ 1,

we have

|Sχ(T ,U ,V ,W , α, β, f)| � N3− 3
4nTp

1
4n ,

which is non-trivial as long as N ≥ p
1
3
+δ for some δ > 0.

One can see [66, 26, 9, 31, 35, 43, 83, 56, 55, 85] and references therein for related

results.

4.1.1 Statement of main results

The main purpose of this thesis is to extend Theorem 4.3 to a general form.

More precisely, we consider any quadratic polynomial f(x, y, z) which is not in the

form of g(h(x) + k(y) + l(z)) for some polynomials g, h, k, l in one variable. We will

also study the case of polynomials f in two variables. Our first result is as follows.

Theorem 4.4. Let f ∈ Fp[x, y, z] be a quadratic polynomial that depends on each

variable and that does not have the form g(h(x) + k(y) + l(z)). For U ,V ,W ⊂ F∗p, let

Ω = max{U−1, V −1,W−1} and let T ⊂ F∗p. Then the following statements hold:

1. If UVW � p2, then we have

|Sχ(T ,U ,V ,W , α, β, f)| �
(

(UVW )1−
1
4n + UVWΩ

1
n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.
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2. If UVW � p2, then we have

|Sχ(T ,U ,V ,W , α, β, f)| �
(
UVW

p1/2n
+ UVWΩ

1
n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

As an immediate consequence of Theorem 4.4, we get the following corollaries.

Let f ∈ Fp[x, y, z] be a quadratic polynomial defined in Theorem 4.4. Let

U ,V ,W , T ⊂ F∗p such that U ∼ V ∼ W ∼ N and T ≥ pε for some ε > 0. Then the

following statements hold:

1. If p
1
3
+δ � N � p

2
3 for some δ > 0 and n > b 1

2ε
c+ 1, then we have

|Sχ(T ,U ,V ,W , α, β, f)| � N3− 3
4nTp

1
4n .

2. If N � p
2
3 and n > b 1

2ε
c+ 1, then we have

|Sχ(T ,U ,V ,W , α, β, f)| � N3T

p1/4n
.

Let f ∈ Fp[x, y, z] be a quadratic polynomial defined in Theorem 4.4. For U ,V ,W , T ⊂

F∗p with U ∼ V ∼ W ∼ T ∼ N, we have the following conclusions:
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1. Suppose that p
2
5
+δ � N � p

2
3 for some δ > 0, then we have

|Sχ(T ,U ,V ,W , α, β, f)| � N11/4p1/2 (n = 1).

2. Suppose that N � p2/3, then we have

|Sχ(T ,U ,V ,W , α, β, f)| � N7/2 (n = 1).

Now we address the results for two variable quadratic polynomial f ∈ Fp[x, y].

Let χ be a non-trivial multiplicative character of F∗p. Given three sets T ,U ,V in F∗p, a

polynomial f ∈ Fp[x, y], and two sequences of weights α = (αt)t∈T , β = (βu,v)u,v∈U×V

with

max
t∈T
|αt| ≤ 1, max

(u,v)∈U×V
|βuv| ≤ 1,

we define

Sχ(T ,U ,V , α, β, f) =
∑

t∈T ,u∈U ,v∈V

αtβuvχ(t+ f(u, v)).

We are interested in finding an upper bound of the sum Sχ(T ,U ,V , α, β, f). In

particular, we deduce strong results on this problems in the case when f ∈ Fp[x, y] is a

quadratic polynomial which is not of the form g(αx+βy) for some polynomial g in one

variable. Relating this problem for two variable polynomials to that of three variable

polynomials, we are able to prove the following result for two variable polynomials.
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Theorem 4.5. Let f ∈ Fp[x, y] be a quadratic polynomial which depends on each

variable and which does not take the form g(ax+by). Given U ,V , T ⊂ F∗p with |U−V| ∼

kU for some parameter k > 0, the following two statements hold:

1. If V 2|U − V| � p2, then we have

|Sχ(T ,U ,V , α, β, f)| .

(
k

3
4n · UV

U1/4nV 1/2n
+ k

1
n · UV

V 1/n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

2. If V 2|U − V| � p2, then we have

|Sχ(T ,U ,V , α, β, f)| .

(
k

1
n · UV

p1/2n
+ k

1
n · UV

V 1/n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

As a consequence of Theorem 4.5 for k = 1, we have the following corollary.

Let f ∈ Fp[x, y] be a quadratic polynomial defined as in Theorem 4.5. Assume that

U ,V , T ⊂ F∗p with |U − V| ∼ U, U ∼ V ∼ N, and T ≥ pε for some ε > 0. Then the

following statements hold:
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1. Suppose that p
1
3
+ε′ � N � p

2
3 for some ε′ > 0 and n > b1/2εc+1. Then we have

|Sχ(T ,U ,V , α, β, f)| . N2− 3
4nTp

1
4n .

2. Suppose that N � p2/3 and n > b1/2εc+ 1. Then we have

|Sχ(T ,U ,V , α, β, f)| . N2T

p1/4n
.

The rest of this chapter is organized as follows: in Section 2 we prove Theorem 4.4,

and in Section 3 we present the proof of Theorem 4.5.

4.2 Proof of Theorem 4.4

The following result is our main step in the proof of Theorem 4.4. This is the

unbalanced energy version of Theorem 1.1 in [68].

Theorem 4.6. Suppose that f ∈ Fp[x, y, z] is a quadratic polynomial which depends on

each variable and which does not take the form g(h(x)+k(y)+ l(z)). For U ,V ,W ⊂ F∗p

with UVW � p2, let E be the number of tuples (u, v, w, u′, v′, w′) ∈ (U ×V ×W)2 such

that f(u, v, w) = f(u′, v′, w′). Then we have

E � (UVW )3/2 + max{V 2W 2, V 2U2, U2W 2}.
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Proof. Let f(x, y, z) be a quadratic polynomial that is not of the form g(h(x) + k(y) +

l(z)). Then f has at least one of the mixed terms xy, yz, xz, because otherwise f would

be in the form of h(x)+k(y)+ l(z). Moreover, we may assume that f does not have any

constant term, because the value E is independent of the constant term in f(x, y, z).

Therefore, we may assume that f(x, y, z) = axy+ bxz+ cyz+ r(x) + s(y) + t(z) where

one of a, b, c ∈ Fp is not zero, and r, s, t are polynomials in one variable with degree

at most two and no constant terms. Furthermore, from the symmetric property of

f(x, y, z) we only need to prove Theorem 5.8 for the following three cases:

Case 1: f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0 and deg(t) = 2.

Case 2: f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0 and deg(t) = 1.

Case 3: f(x, y, z) = axy + bxz + r(x) + s(y) with a, b 6= 0.

Case 4: f(x, y, z) = axy + bxz + cyz + r(x) + s(y) + t(z) with a, b, c 6= 0.

Notice that if one or two of the three mixed terms does not appear in the

polynomial f(x, y, z) (i.e. Case 1, 2 or 3), then the statement of Theorem 5.8 follows

immediately from Lemma 4.7, 4.8 and 4.9 below. On the other hand, if the polynomial

f(x, y, z) has all the three mixed terms (i.e. Case 4), then Theorem 5.8 is a direct

consequence of Lemma 4.10. Hence, the proof of Theorem 5.8 is complete if we have

the following four lemmas whose proofs will be given in the subsection below.

Lemma 4.7. Let f(x, y, z) = axy+ bxz+ r(x) + s(y) + t(z) be a quadratic polynomial

in Fp[x, y, z] that depends on each variable with a 6= 0 and deg(t) = 2. If U ,V ,W ⊂ F∗p
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with UVW � p2, then we have

E � (UVW )3/2 + max{U, V }(UVW ),

where E denotes the number of tuples (x, y, z, x′, y′, z′) ∈ (U × V × W)2 such that

f(x, y, z) = f(x′, y′, z′).

Lemma 4.8. Let f(x, y, z) = axy+ bxz+ r(x) + s(y) + t(z) be a quadratic polynomial

in Fp[x, y, z] that depends on each variable with a 6= 0 and deg(t) = 1. Then for

U ,V ,W ⊂ F∗p with UVW � p2, we have

E � (UVW )3/2 + max{V 2W 2, V 2U2, U2W 2},

where E is the number of tuples (x, y, z, x′, y′, z′) ∈ (U ×V×W)2 such that f(x, y, z) =

f(x′, y′, z′).

Lemma 4.9. Let f(x, y, z) = axy + bxz + r(x) + s(y) be a quadratic polynomial in

Fp[x, y, z] that depends on each variable with a, b 6= 0. Then for U ,V ,W ⊂ F∗p with

UVW � p2, we have

E � (UVW )3/2 + max{U, V }(UVW ),

where E is the number of tuples (x, y, z, x′, y′, z′) ∈ (U ×V×W)2 such that f(x, y, z) =
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f(x′, y′, z′).

Lemma 4.10. Let f(x, y, z) = axy + bxz + cyz + r(x) + s(y) + t(z) be a quadratic

polynomial in Fp[x, y, z] with a, b, c 6= 0 which depends on each variable and which does

not take the form g(h(x) + k(y) + l(z)). If U ,V ,W ⊂ F∗p with UVW � p2, then

E � (UVW )3/2 + max{V 2W 2, V 2U2, U2W 2},

where E denotes the number of tuples (x, y, z, x′, y′, z′) ∈ (U × V × W)2 such that

f(x, y, z) = f(x′, y′, z′).

Proofs of Lemmas 4.7, 4.8, 4.9, and 4.10

In order to estimate the energy E given in four lemmas above, we use the

point-plane incidence bound due to Rudnev [71]. A short proof can be found in [97].

Theorem 4.11 (Rudnev). Let R,S denote a set of points in F3
p and a set of planes in

F3
p, respectively. Suppose that |R| � |S| and |R| � p2. In addition, assume that there

is no line that contains k points of R and is contained in k planes of S. Then we have

I(R,S) := |{(p, π) : p ∈ R, π ∈ S}| � |R|1/2|S|+ k|S|.

We also need the following Lemma.
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Lemma 4.12 (Kővari–Sós–Turán theorem, [5]). Let G = (A∪B,E(G)) be a K2,t-free

bipartite graph. Then the number of edges between A and B is bounded by

|E(G)| � t1/2|A||B|1/2 + |B|.

Proof of Lemma 4.7 Let E be the number of tuples (x, y, z, x′, y′, z′) ∈ (U×V×W)2

such that f(x, y, z) = f(x′, y′, z′), where the quadratic polynomial f takes the form in

Case 1. This implies that

ayx− ax′y′ + (bxz + r(x) + t(z)− s(y′)) = bx′z′ + r(x′) + t(z′)− s(y).

This relation can be viewed as an incidence between the point (x, y′, bxz+r(x)+ t(z)−

s(y′)) in F3
p and the plane defined by ayX − ax′Y + Z = bx′z′ + r(x′) + t(z′) − s(y).

Let R be the following point set:

R := {(x, y′, bxz + r(x) + t(z)− s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F3
p,

and S be the following plane set

S := {ayX − ax′Y + Z = bx′z′ + r(x′) + t(z′)− s(y) : (x′, y, z′) ∈ U × V ×W}.

For each fixed (u, v, w) ∈ R, at most two elements (x, y′, z) in U × V ×W reproduce

the (u, v, w), because deg(t) = 2. In fact, we can take x = u, y′ = v, and z values are
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solutions to

t(z) + buz + r(u)− s(v) = w.

By the same argument, we see that each fixed plane in S can be determined by at most

two elements (x′, y, z′) ∈ U × V × W . Also notice that each element in U × V × W

determines a point in R and a plane in S. Hence, we have that

|R| ∼ |S| ∼ UVW and E ∼ I(R,S).

This shows that our problem is reducing to estimate of I(R,S). To bound this,

we apply Rudnev’s point-plane incidence theorem. Since |R| ∼ UVW, the condition

|R| � p2 in Theorem 4.11 is clearly satisfied from our assumption that UVW � p2.

Now, we count the number of collinear points in R. Let R′ be the projection of R onto

the first two coordinates. It is clear that R′ = U × V . Thus any line contains at most

max{U, V } points unless it is vertical. In the case of vertical lines, we can see that no

plane in S contains such lines, because the z-coordinate of normal vectors of planes in

S is one. Therefore, we can apply Theorem 4.11 with k = max{U, V }. In other words,

we obtain

E � (UVW )3/2 + max{U, V }(UVW ).

This completes the proof of Lemma 4.7. �.
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Proof of Lemma 4.8 Since deg(t) = 1, without loss of generality, we assume that

t(z) = mz for some m ∈ F∗p and so f(x, y, z) = axy+ bxz+ r(x) + s(y) +mz. As in the

proof of Lemma 4.7, we define the set R of points and the set S of planes as follows:

R := {(x, y′, bxz + r(x) +mz − s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F3
p,

S := {ayX − ax′Y + Z = bx′z′ + r(x′) +mz′ − s(y) : (x′, y, z′) ∈ U × V ×W}.

The only reason we need to prove Lemma 4.8 is that if u = −m/b ∈ U , then the triples

(−m/b, v, w) ∈ R can be determined by many triples (x, y′, z) ∈ U × V ×W . For this

case, we need to do some more technical steps. If −m/b 6∈ U , then Lemma 4.8 follows

immediately from the same argument as in the proof of Lemma 4.7. Thus we may

assume that u = −m/b ∈ U . As above, we first need to estimate the sizes of R and S.

For (u, v, w) ∈ R and (x, y′, z) ∈ U ×V ×W , we consider the following system of three

equations:

u = x, v = y′, w = buz + r(u) +mz − s(v).

If u ∈ U satisfies bu = −m, i.e. u = −m/b ∈ U , then we have

u = x, v = y′, w = r(u)− s(v) for all z ∈ W . (4.2)
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Let R1 be the set of points (u, v, w) ∈ R with u = −m/b. Then R1 is a set with V

points, since for any v = y′ ∈ V , w is determined uniquely. By (4.2) and the definition

of R1, notice that each point in R1 is determined by W triples (x, y′, z) ∈ U ×V ×W .

Let R2 = R\R1. Also notice that each point in R2 is determined by exactly one triple

(x, y′, z) ∈ U × V ×W .

By the similar argument, we can partition the set of planes S into two sets

S1 and S2 with S2 = S \ S1 so that |S1| = V, each plane in S1 is determined by W

triples (x′, y, z′) ∈ U ×V ×W , and each plane in S2 is determined by exactly one triple

(x′, y, z′) ∈ U × V ×W .

From the above observations, it follows that each incidence between R1 and

S2, or between R2 and S1 contributes to E by W, each incidence between R1 and S1

contributes to E by W 2, and each incidence between R2 and S2 contributes to E by

one. Namely, we have

E � W 2 · I(R1,S1) +W · I(R1,S2) +W · I(R2,S1) + I(R2,S2).

Since |R1| = |S1| = V, it is clear that

I(R1,S1)� V 2.

To bound I(R2,S2), recall that each element of R2 and S2 is determined by

exactly one element (x, y, z) ∈ U × V × W with x 6= −m/b. Hence, by the same
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argument as in the proof of Lemma 4.7, we see that

I(R2,S2)� (UVW )3/2 + max{U, V }(UVW ).

To bound I(R1,S2), we will use Lemma 4.12. Let G denote the bipartite graph with

vertex sets S2 and R1 such that there is an edge between a point in R1 and a plane in

S2 if the point lies on the plane. Since |R1| = V, each line contains at most V points

in R1, and so any two planes in S2 support at most V points in common. Thus letting

A := R1 and B := S2 and applying Lemma 4.12, we obtain that

I(R1,S2) = |E(G)| � V 1/2V (UVW )1/2 + UVW = U1/2W 1/2V 2 + UVW.

Similarly, we also have

I(R2,S1)� U1/2W 1/2V 2 + UVW.

In other words, we have proved that

E � (UVW )3/2 + max{U, V,W}(UVW ) + V 2W 2 + U1/2V 2W 3/2

� (UVW )3/2 + V 2W 2 + V 2U2 + U2W 2

� (UVW )3/2 + max{V 2W 2, V 2U2, U2W 2}.

This completes the proof of Lemma 4.8. �.
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Proof of Lemma 4.9: Since f(x, y, z) = axy + bxz + r(x) + s(y) with a, b 6= 0, as

in the proof of Lemma 4.7, we can define the set R of points and the set S of planes

as follows:

R := {(x, y′, bxz + r(x)− s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F3
p,

S := {ayX − ax′Y + Z = bx′z′ + r(x′)− s(y) : (x′, y, z′) ∈ U × V ×W}.

Since b 6= 0 and U ⊂ F∗p, we have

|R| = |S| = UVW and E = I(R,S).

By the same argument as in the proof of Lemma 4.7, we conclude that

E � (UVW )3/2 + max{U, V }(UVW ),

as desired. �.

Proof of Lemma 4.10: Now we would like to estimate E which is the number of

tuples (x, y, z, x′, y′, z′) ∈ (U × V ×W)2 satisfying the equation

f(x, y, z) = f(x′, y′, z′), (4.3)
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where f(x, y, z) = axy + bxz + cyz + r(x) + s(y) + t(z) is a quadratic polynomial in

Fp[x, y, z] with a, b, c 6= 0. Without loss of generality, we may assume that

f(x, y, z) = axy + bxz + cyz + dx2 + ey2 + gz2 + hx+ iy + jz,

where a, b, c 6= 0 and d, e, g, h, i, j ∈ Fq. We adapt the argument as in the proof of

Lemma 2.3 in [68]. Since the polynomial f(x, y, z) is not in the form of g(h(x)+k(y)+

l(z)), one of the following equations is not satisfied:

4de = a2, 4dg = b2, 4eg = c2, hc = ja = ib.

Otherwise, we could write

f =

(√
dx+

√
ey +

√
gz +

h

2
√
d

)2

− h2

4d
,

if all of d, e, g are squares in Fq. On the other hand, if all of d, e, g are not squares in

Fq, we could write

f =
1

deg

(
d
√
egx+ e

√
dgy + g

√
dez +

h
√
eg

2

)2

− h2

4d
,

since the equations 4de = a2, 4dg = b2, 4eg = c2 imply that de, dg, eg are squares in Fq,

and e, d, g are nonzeros.

By permuting the variables, we may assume that one of the following equations
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does not hold:

4eg = c2, ib = ja.

The equation (4.3) is rewritten as

(ay + bz)x− x′(ay′ + bz′) + dx2 − e(y′)2 − cy′z′ − g(z′)2 + hx− iy′ − jz′

= d(x′)2 − ey2 − cyz − gz2 + hx′ − iy − jz.

This relation can be viewed as an incidence between the point (x, ay′+bz′, dx2−e(y′)2−

cy′z′ − g(z′)2 + hx− iy′ − jz′) in F3
p and the plane defined by

(ay + bz)X − x′Y + Z = d(x′)2 − ey2 − cyz − gz2 + hx′ − iy − jz.

Let R be the following set of points

R = {(x, ay′+bz′, dx2−e(y′)2−cy′z′−g(z′)2 +hx− iy′−jz′) : (x, y′, z′) ∈ U×V×W},

and S be the following set of planes

S = {(ay+bz)X−x′Y+Z = d(x′)2−ey2−cyz−gz2+hx′−iy−jz : (x′, y, z) ∈ U×V×W}.

It is clear that E is bounded from above by the number of incidences between R

and S. In the next step, we estimate the sizes of R and S. Indeed, for a given point
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(u, v, w) ∈ R, we now count the number of triples (x, y′, z′) ∈ U × V ×W such that

u = x, v = ay′ + bz′, w = dx2 − e(y′)2 − cy′z′ − g(z′)2 + hx− iy′ − jz′.

These equations yield that

w = du2 − e(y′)2 − cy′
(
v − ay′

b

)
− g

(
v − ay′

b

)2

+ hu− iy′ − j
(
v − ay′

b

)
,

or

(
b2e− abc+ a2g

)
(y′)2 +

(
bcv − 2agv + ib2 − jab

)
y′

+
(
b2w − b2du2 + gv2 − b2hu+ bjv

)
= 0.

We consider the following two cases:

Case 1: If either b2e− abc+ a2g or bcv − 2agv + ib2 − jab is non-zero, then at

most two solutions y′ of the above equation exist, and z′ value is determined in terms

of v and y′.

Case 2: If both b2e − abc + a2g and bcv − 2agv + ib2 − jab are zero, then we
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will have the following system:

b2e−abc+a2g = 0, (bc−2ag)v+(ib− ja)b = 0, b2w− b2du2 +gv2− b2hu+ bjv = 0.

(4.4)

In this case, we need to do some more technical steps.

In the case when bc− 2ag = 0, the second equation above tells us that ib = ja.

Therefore, it follows from the first equation that 4eg = c2, which contradicts our

assumptions at the beginning of the proof.

Thus we must have bc− 2ag 6= 0. This gives us v = −(ib2− jab)/(bc− 2ag). For

this value of v and any u ∈ U , w is determined uniquely by the third equation of (4.4).

Therefore, there are at most U points (u, v, w) ∈ R which satisfy three equations

above. We denote the set of these points by R2 ⊂ R. Let R1 = R \ R2. We have

|R2| = U and |R1| ∼ UVW. Note that any point in R1 corresponds to at most two

points in U × V ×W and any point in R2 corresponds to at most max{V,W} points

(x, y′, z′) ∈ U × V ×W .

Likewise, we can also show that the plane set S can be partitioned into two sets

S1 and S2, where each plane in S1 corresponds to at most two points in U × V ×W ,

and each plane in S2 corresponds to at most max{V,W} points in U × V ×W .

Set N := max{V,W}. We observe that an incidence between R2 and S1, or

between R1 and S2, contributes at most N to E, and an incidence betweenR2 and S2
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contributes at most N2 to E. Hence, we obtain

E � I(R1,S1) +N · I(R1,S2) +N · I(R2,S1) +N2 · I(R2,S2). (4.5)

Since |R2|, |S2| � U, we have I(R2,S2) ≤ U2. To bound I(R1,S1), we will apply

Theorem 4.11. Before doing this, we need to give an upper bound on the number of

collinear points in R.

One can cover the set R by U planes defined by the equations x = x0, x0 ∈ U.

By a direct computation, one can check that for each plane x = x0, the points of R on

this plane lie on either a line or a parabola, and for distinct y′ ∈ V, we have distinct

parabolas or lines.

If a line l does not lie on any of those planes, then it intersects R in at most U

points. Suppose that l lies on the plane x = x0. Then there are two possibilities. If l is

the same as a line determined by some y′ ∈ V, then it contains W points. If it is not

that case, then l supports at most 2V points from R, since a line intersects a parabola

or a line in at most two points. In other words, we can say that the maximal number

of collinear points in R is at most U + 2V +W. By Theorem 4.11, we have

I(R1,S1)� (UVW )3/2 + max{U, V,W}(UVW ).

To bound I(R1,S2) and I(R2,S1), we use Lemma 4.12 again. Let G be the

bipartite graph with vertex sets S2 and R1 such that there is an edge between a point
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and a plane if the point lies on the plane. We showed that no max{U, V,W}+ 1 points

of R1 lie on a line. Hence, any two planes of S2 contain at most max{U, V,W} points

of R1 in common. Thus, we get

I(R1,S2) = |E(G)| � (max{U, V,W})1/2 · U · (UVW )1/2 + UVW.

Using a similar argument, we get

I(R2,S1)� (max{U, V,W})1/2 · U · (UVW )1/2 + UVW.

Putting all bounds together, it follows from (4.5) that

E � (UVW )3/2 +M(UVW ) +NM
1
2U

3
2V

1
2W

1
2 +N(UVW ) +N2U2, (4.6)

where N = max{V,W} and M = max{U, V,W}. A direct computation shows that

each of the second, third, fourth, and fifth terms in the RHS of the equation (4.6) is

dominated by

V 2W 2 + V 2U2 + U2W 2.

Hence, we have

E � (UVW )3/2 + V 2W 2 + V 2U2 + U2W 2

� (UVW )3/2 + max{V 2W 2, V 2U2, U2W 2},
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which completes the proof of Lemma 4.10. �

In addition to Theorem 5.8, the following lemma also plays an important role

in providing the complete proof of the first part of Theorem 4.4.

Lemma 4.13 ([82], Lemma 2.3). For T ⊂ F∗p with size T and a sequence of weights

α = (αt)t∈T with maxt∈T |αt| ≤ 1, and for any fixed integer n ≥ 1, we have

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(λ+ t)

∣∣∣∣∣
2n

�


Tp if n = 1

T 2np1/2 + T np if n ≥ 2.

To prove the second part of Theorem 4.4, we use following point-plane incidence

theorem due to Vinh ([92]).

Theorem 4.14 ([92], Theorem 5). Suppose that R is a collection of points in Fdq , and

S is a collection of hyperplanes in Fdq , with d ≥ 2. Then we have

I(R,S) := |{(p, π) : p ∈ R, π ∈ S}| � |R||S|
q

+ q(d−1)/2|R|1/2|S|1/2.

Using Theorem 5.8 and the argument in [82], we are now ready to give a proof

of Theorem 4.4.
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Proof of Theorem 4.4: Since max(u,v,w)∈U×V×W |βuvw| ≤ 1, we have

|Sχ(T ,U ,V ,W , α, β, f)| ≤
∑

u∈U ,v∈V,w∈W

∣∣∣∣∣∑
t∈T

αtχ(t+ f(u, v, w))

∣∣∣∣∣ .
For λ ∈ Fp, let N(U ,V ,W , λ) be the number of solutions of the equation

f(u, v, w) = λ,

with (u, v, w) ∈ U × V ×W . One can check that

∑
λ∈Fp

N(U ,V ,W , λ) = UVW,

and ∑
λ∈Fp

N(U ,V ,W , λ)2 = E,

where E is the number of tuples (u, v, w, u′, v′, w′) ∈ (U×V×W)2 such that f(u, v, w) =

f(u′, v′, w′).

Thus we have

|Sχ(T ,U ,V ,W , α, β, f)| ≤
∑
λ∈Fp

N(U ,V ,W , λ)

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣ .
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Using the Hölder inequality, we have

|Sχ(T ,U ,V ,W , α, β, f)|2n ≤

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n
 ·

∑
λ∈Fp

N(U ,V ,W , λ)
2n

2n−1

2n−1

≤

∑
λ∈Fp

N(U ,V ,W , λ)

2n−2

·

∑
λ∈Fp

N(U ,V ,W , λ)2

 ·
∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n


= (UVW )2n−2 · E ·

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n
 .

It follows from Theorem 5.8 and Lemma 4.13 that if UVW � p2, then

|Sχ(T ,U ,V ,W , α, β, f)| �

(UVW )
2n−2
2n

(
(UVW )

3
2 + max{V 2W 2, V 2U2, U2W 2}

) 1
2n ·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

�
(

(UVW )1−
1
4n + UVWΩ

1
n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2.

This completes the proof of the first part of Theorem 4.4.

Next we prove the second part of Theorem 4.4. Suppose that UVW � p2.

Instead of Rudnev’s point-plane incidence theorem (Theorem 4.11), one can follow the

proof of Theorem 5.8 with Vinh’s point-plane incidence theorem (Theorem 4.14). Then

we see that

E � (UVW )2/p+ max{V 2W 2, V 2U2, U2W 2}.
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With this bound of E, we have

|Sχ(T ,U ,V ,W , α, β, f)| �
(
UVW

p1/2n
+ UVWΩ

1
n

)
·


T

1
2p

1
2 if n = 1

Tp
1
4n + T

1
2p

1
2n if n ≥ 2,

which completes the proof of the second part of Theorem 4.4. Thus the proof of

Theorem 4.4 is complete. �

4.3 Proof of Theorem 4.5

In the proof of Theorem 4.5, we make use of the following result which can be

obtained by applying Theorem 5.8.

Theorem 4.15. Let f ∈ Fp[x, y] be a quadratic polynomial that depends on each vari-

able and that does not have the form g(ax+ by). For U ,V ⊂ F∗p, let E be the number of

tuples (u, v, u′, v′) ∈ (U×V)2 such that f(u, v) = f(u′, v′). Suppose that V 2|U−V| � p2.

Then we have

E . V |U − V|3/2 + |U − V|2.

Proof. For any t ∈ f(U ,V), let mt be the number of pairs (u, v) ∈ U × V such that

f(u, v) = t. It is clear that mt ≤ UV for all t ∈ f(U ,V). It follows that

E =
∑

t∈f(U ,V)

m2
t =

∑
j

∑
t∈f(U ,V),2j≤mt<2j+1

m2
t �

log(UV )∑
j=0

22j+2k2j , (4.7)
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where k2j denotes the cardinality of the set Dj := {t ∈ f(U ,V) : mt ≥ 2j}. We now

bound k2j as follows.

Let h(x, y, z) = f(x − z, y). Since f(x, y) is not of the form g(ax + by), by a

direct computation, we have h(x, y, z) satisfies the conditions of Theorem 5.8. We now

consider the following equation

h(x, y, z) = t, (4.8)

where x ∈ V , z ∈ V −U , y ∈ V , t ∈ Dj ⊂ f(U ,V). Let N(h) be the number of solutions

of this equation. It is easy to see that N(h) ≥ 2jk2jV. By Cauchy-Schwarz inequality,

we have

N(h)� k
1/2

2j

∣∣{(x, y, z, x′, y′, z′) ∈ (V × V × (V − U))2 : h(x, y, z) = h(x′, y′, z′)}
∣∣1/2

� k
1/2

2j

(
V 3/2|U − V|3/4 + |U − V|V

)
,

where the second inequality follows from Theorem 5.8 with the condition V 2|U −V| �

p2. Putting the lower bound and the upper bound of N(h) together we get

2jk2jV � k
1/2

2j

(
V 3/2|U − V|3/4 + |U − V|V

)
.

This gives us

k2j �
V |U − V|3/2 + |U − V|2

22j
.
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Combining this estimate with the inequality (4.7), we see that

E �
(
V |U − V|3/2 + |U − V|2

) log(UV )∑
j=0

1 . V |U − V|3/2 + |U − V|2.

This concludes the proof of Theorem 4.15.

Proof of Theorem 4.5: The proof of Theorem 4.5 is similar to Theorem 4.4 except

that we use Theorem 4.15 instead of Theorem 5.8. For the completeness, we will

include the detailed proof here.

Since max(u,v)∈U×V |βuv| ≤ 1, we have

|Sχ(T ,U ,V , α, β, f)| ≤
∑

u∈U ,v∈V,w∈W

∣∣∣∣∣∑
t∈T

αtχ(t+ f(u, v))

∣∣∣∣∣ .
For λ ∈ Fp, let N(U ,V , λ) be the number of solutions of the equation

f(u, v) = λ,

with (u, v) ∈ U × V . It is easy to see

∑
λ∈Fp

N(U ,V , λ) = UV, and
∑
λ∈Fp

N(U ,V , λ)2 = E,
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where E is defined as in Theorem 4.15. Thus we have

|Sχ(T ,U ,V , α, β, f)| ≤
∑
λ∈Fp

N(U ,V , λ)

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣ .
Using the Hölder inequality, we have

|Sχ(T ,U ,V , α, β, f)|2n ≤∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n
 ·

∑
λ∈Fp

N(U ,V , λ)
2n

2n−1

2n−1

�

∑
λ∈Fp

N(U ,V , λ)

2n−2

·

∑
λ∈Fp

N(U ,V , λ)2

 ·
∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n
 =

(UV )2n−2 · E ·

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t+ λ)

∣∣∣∣∣
2n
 .

By Theorem 4.15 and Lemma 4.13, we see that if V 2|U − V| ∼ kUV 2 � p2, then

|Sχ(T ,U ,V , α, β, f)| .

(
k

3
4n · UV

U1/4nV 1/2n
+ k

1
n · UV

V 1/n

)
·


T 1/2p1/2 if n = 1

Tp1/4n + T 1/2p1/2n if n ≥ 2.

This proves the first part of Theorem 4.5.

To prove the second part of Theorem 4.5, assume that V 2|U −V| � p2. We can

follow the proof of Theorem 4.15 with Vinh’s point-plane incidence theorem (Theorem
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4.14) to obtain E � V 2|U − V|2/p+ |U − V|2. With this bound of E, we have

|Sχ(T ,U ,V , α, β, f)| .
(
k1/n · UVW

p1/2n
+ k1/n · UVW

V 1/n

)
·


T 1/2p1/2 if n = 1

Tp1/4n + T 1/2p1/2n if n ≥ 2,

which completes the proof of the second part of Theorem 4.5. �

Chapter 4 is is a version of the material appearing in “A Note on Conditional

Expanders over Prime Fields,” which will appear in Discrete Mathematics. The author

was the primary investigator and author of this paper.
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Chapter 5

Conditional expanders over prime

fields

5.1 Introduction

Let A be a set of integers. The sum and product sets are defined as follows:

A+ A ={a+ b : a, b ∈ A}

A · A ={ab : a, b ∈ A}.

Throughout this chapter, by X � Y, we mean X ≥ C1Y for some absolute

constant C1, and X ∼ Y means that X � Y and Y � X, by X & Y we mean

X � (log Y )−C2Y for some absolute constant C2.

83



Erdős and Szemerédi [27] proved that for any finite set A ⊂ Z, we have

max{|A+ A|, |A · A|} � |A|1+ε

for some positive constant ε. In the setting of finite fields, a similar result has been

derived by Bourgain, Katz, and Tao [10]. They showed that for any set A ⊂ Fp, where

p is a prime and pδ < |A| < p1−δ for some δ > 0, one has

max{|A+ A|, |A · A|} ≥ Cδ|A|1+ε,

for some ε = ε(δ) > 0. We note here that in the result of Bourgain, Katz, and Tao

[10], it is difficult to determine the relation between ε and δ.

Hart, Iosevich, and Solymosi [41] developed Fourier analysis tools to obtain a

bound over arbitrary finite fields that gives an explicit dependence of ε on δ as follows.

Theorem 5.1 (Hart-Iosevich-Solymosi, [41]). Let Fq be an arbitrary finite field of

order q, and let A ⊂ Fq. Suppose |A+ A| = m and |A · A| = n, then we have

|A|3 ≤ cm2n|A|
q

+ cq1/2mn, (5.1)

for some positive constant c.

By a direct computation, Theorem 5.1 is non-trivial when |A| � q1/2. For
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|A| ∼ q7/10, we have the best growth

max {|A+ A|, |A · A|} � |A|8/7.

Using exponential sums, Garaev [33] obtained the following improvement.

Theorem 5.2 (Garaev, [33]). Let Fp be a prime field of order p and A be a set in Fp.

1. If p1/2 � |A| � p2/3, then

max {|A+ A|, |A · A|} � |A|
2

p1/2
.

2. If |A| � p2/3, then

max {|A+ A|, |A · A|} � (p|A|)1/2.

Hence, if |A| = pα, then we have

max {|A+ A|, |A · A|} � |A|1+α′ ,

where α′ = 1
4
− 1

2
1
α
− 3

2
. If α is very small, say α ≤ 18/35, then Rudnev, Shakan, and

Shkredov [72] proved the following.
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Theorem 5.3 (Rudnev-Shakan-Shkredov, [72]). Let Fp be a prime field of order

p. Let A be a set in Fp. Suppose that |A| � p
18
35 , then we have

max{|A+ A|, |A · A|} � |A|1+
2
9
−o(1).

This theorem improves the earlier exponents 39/32 due to Chen, Kerr, and

Mohammadi [19] and 6/5 due to Roche-Newton, Rudnev, and Shkredov [70]. Let

Fp be a prime field. A polynomial f(x, y) ∈ Fp[x, y] is degenerate if it is of the form

Q(L(x, y)) where Q is a one-variable polynomial and L is a linear form in x and y.

A more general statement of Theorem 5.2 has been established by Vu [94]. In

particular, let f(x, y) be a non-degenerate polynomial of degree d in Fp[x, y], and A a

set in Fp, we have

max {|A+ A|, |f(A,A)|} � min

{
|A|3/2

dp1/4
,
p1/3|A|2/3

d1/3

}
.

This statement tells us that if the size of A + A is small, then the size of f(A,A) is

large. Note that the non-degenerate condition of f is necessary since otherwise we

might have max{|A+ A|, |f(A,A)|} ∼ |A| when A is an arithmetic progression.

In the case f(x, y) = xy, this result is slight weaker than Theorem 5.2. This

result is only non-trivial when |A| ≥ p1/2. When |A| < p1/2, Bukh and Tsimerman [14]
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derived the following estimate for quadratic non-degenerate polynomials

max{|A+ A|, |f(A,A)|} � |A|1+ε, (5.2)

for some ε > 0.

This bound has been quantified and improved over the years. More precisely,

Koh, Mojarrad, Pham, and Valculescu [48] proved the following theorem.

Theorem 5.4 (Koh-Mojarrad-Pham-Valculescu, [48]). Let Fp be a prime field

of order p, and let f(x, y) ∈ Fp[x, y] be a non-degenerate quadratic polynomial. For

A ⊂ Fp with |A| � p5/8, we have

max{|A+ A|, |f(A,A)|} � |A|6/5.

Notice that the case f(x, y) = x2 + y2 was first proved by Pham, Vinh and De

Zeeuw in [68]. We refer the interested reader to [78] for similar results in the setting

of R.

In this thesis, we employ the theory of higher energies developed in [80, 81, 72,

77], namely E4-energy, to give a better exponents as follows.

Theorem 5.5. Let f(x, y) ∈ Fp[x, y] be a non-degenerate quadratic polynomial. For

A ⊂ Fp with |A| � p1/2 we have

max{|A+ A|, |f(A,A)|} & |A|
6
5
+ 4

305 .
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As in the Euclidean setting, it is expected that when A is not too large, then

max{|A+A|, |f(A,A)|} � |A|2−ε for any ε > 0. We will discuss about the limitations

of methods in [72, 77] for our settings in Remarks 5.2 and 5.2. We also refer the

interested reader to [42] for an application of E4-energy in a variant of the distance

problem over prime fields.

5.2 Proof of Theorem 5.5

ForA,B ⊂ Fp, let E+
4 (A,B) be the number of tuples (a1, a2, a3, a4, b1, b2, b3, b4) ∈

A4 ×B4 such that

a1 − b1 = a2 − b2 = a3 − b3 = a4 − b4.

For A ⊂ Fp, we define

d+4 (A) := sup
B 6=∅

E+
4 (A,B)

|A||B|3
.

Note that d+4 (A) ≥ E+
4 (A,A)

|A|4 ≥ |A|4
|A|4 = 1.

It has been observed in [77] that the sup is taken over all sets B with |B| ≤

|A|3/2. Indeed, if |B| ≥ |A|3/2, then

d+4 (A) = sup
B 6=∅

E+
4 (A,B)

|A||B|3
≤ |A|

4|B|
|A||B|3

≤ 1,

a contradiction.
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In [77], Shakan and Shkredov proved that

d+4 (A)� |A · A|
2

|A|2
(5.3)

whenever |A| ≤ p3/5. They also derived the following lemma, which says that small

energy implies large sumset.

Lemma 5.6 ([77]). For A ⊂ Fp, we have

d+4 (A) &
|A|48/13

|A+ A|35/13
.

It has been indicated in [77] that the best one can hope for the lower bound of

d+4 (A) is as follows:

d+4 (A) &
|A|3

|A+ A|2
.

Combining this with the bound (5.3), one gets max{|A + A|, |AA|} � |A|5/4. This

is still far away from the conjecture. In this thesis, we will give an upper bound of

d+4 (A) in terms of |f(A,A)| for any non-degenerate quadratic polynomial f as follows.

Lemma 5.7. Let f(x, y) ∈ Fp[x, y] be a non-degenerate quadratic polynomial. For

A ⊂ Fp with |A| � p1/2, we have

d+4 (A) .
|f(A,A)|2

|A|2
.
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To prove lemma 5.7, we use the following result in [47].

Theorem 5.8 ([47]). Let f ∈ Fp[x, y, z] be a quadratic polynomial that depends on

each variable and that does not have the form g(h(x) + k(y) + l(z)). For A,B,C ⊂ Fp

with |A||B||C| � p2, let E be the number of tuples (a, b, c, a′, b′, c′) ∈ (A × B × C)2

such that f(a, b, c) = f(a′, b′, c′). Then we have

E � (|A||B||C|)3/2 + (|A|+ |B|+ |C|)(|A||B||C|) + |B|2|C|2.

Proof of Lemma 5.7: Let B ⊂ Fp be a set maximizing d+4 (A). By a dyadic de-

composition, there exist a number t > 0 and a set Dt := {x : rA−B(x) ≥ t} such

that

E+
4 (A,B) . |Dt|t4.

Without loss of generality, we assume that f(x, y) = ax2 + by2 + cxy + dx + ey with

a 6= 0. Let f ′(u, v, w) := f(u+ v, w).

Since f(x, y) is a non-degenerate polynomial, by an elementary calculation

(similar to the proof of Lemma 5.1 in [48]), we have f ′(x, y, z) is not of the form

g′(h′(x) + k′(y) + l′(z)) for some polynomials g′, h′, k′, l′.

Consider the following equation

f ′(u, v, w) = t′, (5.4)
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with u ∈ Dt, v ∈ B,w ∈ A, t′ ∈ f(A,A).

It easy to check that the number of solutions of the equation (5.4) is at least

|Dt|t|A|. Now by the Cauchy-Schwarz inequality, we have

|Dt|t|A| � |f(A,A)|1/2E1/2, (5.5)

where E is the number of tuples (u, v, w, u′, v′, w′) ∈ (Dt ×B × A)2 such that

f ′(u, v, w) = f ′(u′, v′, w′).

Suppose |Dt||A||B| � p2. We now consider the following cases:

Case 1: If |Dt| ≤ |B|, then Theorem 5.8 with A := Dt, B := B,C := A gives

E � (|Dt||B||A|)3/2 + (|Dt|+ |B|+ |A|)(|Dt||B||A|) + |B|2|A|2.

Case 2: If |Dt| ≥ |B|, then Theorem 5.8 with A := B,B := Dt, C := A gives

E � (|B||Dt||A|)3/2 + (|B|+ |Dt|+ |A|)(|B||Dt||A|) + |Dt|2|A|2.

These cases can be handled in the same way. Therefore, without loss of gen-

erality, we assume that we are in the first case, i.e. |Dt| ≤ |B| (i. e. |Dt|2|A||B| ≤

|Dt|3/2|A||B|3/2).

We also can assume that |B| ≤ |Dt||A| (i. e. |B|2|Dt||A| ≤ |B|3/2(|Dt||A|)3/2),
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otherwise, using the fact that |Dt|t ≤ |Dt||A| ≤ |B|, we have

|Dt|t4

|A||B|3
≤ |B|t3

|A||B|3
≤ 1 ≤ |f(A,A)|2

|A|2
.

Similarly, we assume that |A| ≤ |Dt||B| (i. e. |A|2|Dt||B| ≤ |A|3/2(|Dt||B|)3/2). Fur-

thermore, |Dt| ≤ |B| and |B| ≤ |A|3/2 implies that |Dt|5 ≤ |B|2|B|3 ≤ |A|3|B|3. With

these assumptions, we obtain

E � (|Dt||A||B|)3/2 + (|B||A|)2.

Without loss of generality, let us assume (|Dt||A||B|)3/2 ≥ (|B||A|)2. (As otherwise,

|Dt|3 ≤ |B||A|. Hence |Dt|t4
|A||B|3 ≤

t4

|Dt|2|B|2 ≤
t4

|Dt|4 ≤ 1 ≤ |f(A,A)|2
|A|2 , and we are done.)

Therefore,

|Dt|t4 �
|f(A,A)|2|B|3

|A|
,

and we are done by the definition of d+4 (A).

Now suppose |Dt||A||B| � p2. We can use the point-plane incidence bound due

to Vinh [92] for large sets in the proofs of Lemmas 2.2 and 2.3 in [68] to obtain an upper

bound of E. More precisely, we are able to obtain the following version of Lemma 5.1

in [48] for large sets.

Lemma 5.9. Let Fp be a prime field. Let f(x, y, z) ∈ Fp[x, y, z] be a quadratic poly-

nomial that depends on each variable and is not of the form g(h(x) + k(y) + l(z)). Let
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A,B,C ⊂ Fp, then we have

∣∣{(x, y, z, x′, y′, z′) ∈ (A×B × C)2 : f(x, y, z) = f (x′, y′, z′)
}∣∣ ≤

(|A||B||C|)2

p
+ p|A||B||C|.

. We consider the following two case Therefore, by Lemma 5.9 assuming

|Dt||A||B| � p2, we have the following upper bound on E

E � |Dt|2|A|2|B|2

p
.

Substituting this inequality to (5.5) we get

pt2 ≤ |f(A,A)||B|2. (5.6)

Since |A| ≤ p1/2 and |B| ≤ |A|3/2, we have

|B|2|f(A,A)| ≤ |A||B|4/3|f(A,A)| � p

|A|
· |B|2/3 · |f(A,A)|4/3

|A|1/3
.

Therefore, it follows from (5.6) that
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pt2 � p
|B|4/3|f(A,A)|4/3

|A|4/3

⇒ t3 � |B|
2|f(A,A)|2

|A|2
.

And, since |Dt|t ≤ |A||B|,

E4(A,B) . |Dt|t4 = (|Dt|t) · t3 � |A||B|.
|B|2|f(A,A)|2

|A|2
=
|B|3|f(A,A)|2

|A|
.

Theorem 5.5 follows by combining Lemma 5.6 and Lemma 5.7.

It is clear that if f(x, y) = xy, then Theorem 5.5 is weaker than Theorem

5.3. In our general setting, the main difficulty arises when we want to give an upper

bound for E+
2 (A,A−A) in terms of |f(A,A)|, where E+

2 (A,B) is the number of tuples

(a1, a2, b1, b2) ∈ A2 ×B2 such that a1 − b1 = a2 − b2. For all non-degenerate quadratic

polynomials, it seems very difficult to give such an upper bound, but for some special

families of polynomials it is possible. For instance, if f(x, y) = g(x)(h(x) + y) is a

function defined on F∗p×F∗p, where g, h : F∗p → F∗p are arbitrary functions, then one can

follow the proof of [61, Theorem 1.6] to derive the following Lemma:

Lemma 5.10. Let f(x, y) = g(x)(h(x) + y) be a function defined on F∗ × F∗, where

g, h : F∗ → F∗ are arbitrary functions. Define m = µ(g). For any subsets A,B,C ⊂ F∗p,
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suppose that |f(A,B)||A||C| � p2, then we have

E+
2 (B,C)� |A|−2

(
|f(A,B)|3/2|A|3/2|C|3/2 + k|f(A,B)|A||C|

)
,

where k ≤ max{|A|, |C|, |f(A,B)|}.

Proof. We have

E+
2 (B,C) = #{(b, c, b′, c′) : b+ c = b′ + c′} � |A|−2N,

where N is the number of tuples (a, b, c, a′, b′, c′) ∈ A×B × C ×A×B × C such that

g(a)−1 · g(a)(h(a) + b) + (c− h(a)) = g(a′)−1 · g(a′)(h(a′) + b′) + (c′ − h(a′)).

Define the point set R as

R =
{(
g(a)−1, c− h(a), g(a′)(h(a′) + b′)

)
: a, a′ ∈ A, b′ ∈ B, c ∈ C

}
,

and the collection of planes S as

S =
{
g(a)(h(a) + b)X + Y − g(a′)−1Z = c′ − h(a′) : a, a′ ∈ A, b ∈ B, c′ ∈ C

}
.

It is clear that |R| = |S| ≤ |f(A,B)||A||C|, and E ≤ I(R,S). To apply Theo-

rem 4.11, we need to find an upper bound on k which is the maximum number of
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collinear points in R. The projection of R into the first two coordinates is the set

T = {(g(a)−1, c− h(a)) : a ∈ A, c ∈ C}. The set T can be covered by at most |A|

lines of the form x = g(a)−1 with a ∈ A, where each line contains |C| points of T .

Therefore, a line in F3 contains at most max{|A|, |C|} points of R, unless it is vertical,

in which case it contains at most |f(A,B)| points. So we get

k ≤ max{|A|, |C|, |f(A,B)|}.

Since |R| � p2, we can apply Theorem 4.11 to obtain

I(R,S) ≤ |f(A,B)|3/2|A|3/2|C|3/2 + k|f(A,B)|A||C|. (5.7)

This concludes the proof of the lemma.

Chapter 5 is a version of the material appearing in “Exponential Sum Estimates

over Prime Fields”, International Journal of Number Theory, Vol. 16, No. 02, pp.

291-308, 2020, co-authored with Doowon Koh, and Thang Pham, and Chun-Yen Shen.

The author was one of the primary investigators and authors of this paper.
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Chapter 6

Moderate Expanders over Rings

6.1 Introduction

Let Fq be an arbitrary finite field of order q, where q is a prime power. We first

recall the following definition from [38].

Let f : Flq → Fq.

• The function f is called a strong expander with the exponent ε if for all A ⊂ Fq

with |A| � q1−ε, we have |f(A, . . . , A)| ≥ q − k, for some fixed positive constant

k.

• The function f is called a moderate expander with the exponent ε if for all A ⊂ Fq

with |A| � q1−ε, we have |f(A, . . . , A)| � q.

• The function f is called a weak expander with parameters 0 < ε < 1 and 0 <

δ < 1 if for all A ⊂ Fq with |A| � q1−ε, we have |f(A, . . . , A)| ≥ |A|δq1−δ.
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Throughout this chapter, we use X � Y if X ≤ CY for some constant C > 0

independent of the parameters related to X and Y, and write X � Y for Y � X.

The notation X ∼ Y means that both X � Y and Y � X hold. In addition, we use

X . Y to indicate that X � (log Y )C
′
Y for some constant C ′ > 0.

Over the past 10 years, there has been an intensive progress on seeking moderate

expanders with biggest exponents. For instance, the followings are moderate expanders

with the exponent 1
3
: x+ yz [84], x+ (y− z)2 and x(y+ z) [93], (x− y)2 + (z− t)2 [18],

xy + zt [36], xy + z + t [75]. We also know that (x− y)(z − t) is a moderate expander

with the exponent 1
3

in [3], which has been slightly improved to 1
3

+ 1
13542

in [62].

Using spectral graph theory techniques, Vinh [93] proved that the polynomial

xy+(z−t)2 is a moderate expander with the exponent 3
8

= 1
3
+ 1

24
. To the best knowledge

of the authors, this is the only known moderate expander with the exponent 3
8

over

arbitrary finite fields in the literature.

In the setting of prime fields, Rudnev, Shkredov, and Stevens [73] also proved

that the function xy−z
x−t is a moderate expander with the exponent 17

42
= 1

3
+ 1

14
over

prime fields.

In this note, we provide a large class of moderate expanders with the exponents

3
8

and 5
13

over arbitrary finite fields and prime fields, respectively. Our main ingredients

are an energy result due to the third, fourth, sixth listed authors and Shen (2019) and a

theorem on two-variable expanding functions given by Hegyvári and Hennecart (2009).

Using the same approach, we derive similar results in the setting of finite local and

principal rings.
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We will see in our first result that there are actually many moderate expanders

with the exponent 3
8

over arbitrary finite fields.

Let m(x) and n(x) be polynomials with integer coefficients. We say that m(x)

and n(x) are affinely independent if there is no (λ, β) ∈ Z × Z such that m(x) =

λ · n(x) + β or n(x) = λ ·m(x) + β. Our first result is as follows.

Theorem 6.1. Let Fq be an arbitrary finite field. Let f ∈ Fq[x, y, z] be a quadratic

polynomial that depends on each variable and that does not have the form g(h(x)+k(y)+

l(z)). Let m(x) and n(x) be affinely independent polynomials with bounded degrees.

Define Q(u, v) := m(u) + ukn(v), and F (u, v, y, z) := f (Q(u, v), y, z), where k is a

fixed positive integer. For A ⊂ Fq with |A| � q
5
8 , we have

|F (A,A,A,A)| � q.

The following 4-variable polynomials are moderate expanders with the exponent

3
8

over arbitrary finite fields:

u(u+ v)y + z, u(u+ v) + yz, u(u+ v)(y + z)

y (u(u+ v) + z) , (u(u+ v)− y)2 + z, (y − z)2 + u(u+ v).

Proof. This follows directly from Theorem 6.1 with the following polynomials:

99



xy + z, x+ yz, x(y + z), y(x+ z), (x− y)2 + z, (y − z)2 + x, respectively.

In the setting of prime fields, using recent new results in incidence geometry,

one can prove that polynomials in Theorem 6.1 are moderate expanders with bigger

exponents.

Theorem 6.2. Let Fp be a prime field. Let f ∈ Fp[x, y, z] be a quadratic polynomial

that depends on each variable and that does not have the form g(h(x) + k(y) + l(z)).

Let m(x) and n(x) be affinely independent polynomials with bounded degrees. Define

Q(u, v) := m(u) + ukn(v), and F (u, v, y, z) := f (Q(u, v), y, z), where k is a fixed

positive integer. For A ⊂ Fp with |A| � p
8
13 , we have

|F (A,A,A,A)| � p.

The following 4-variable polynomials are moderate expanders with the exponent

5
13

over prime fields:

u(u+ v)y + z, u(u+ v) + yz, u(u+ v)(y + z)

y (u(u+ v) + z) , (u(u+ v)− y)2 + z, (y − z)2 + u(u+ v).

Proof. This follows directly from Theorem 6.2 with the following polynomials:

xy + z, x+ yz, x(y + z), y(x+ z), (x− y)2 + z, (y − z)2 + x, respectively.
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An extension to finite local and principal rings: A ring R is local if R has a

unique maximal ideal that contains every proper ideal of R. A finite valuation ring R

is a finite ring that is local and principle.

Let R be a finite valuation ring of order qr, where q = pn is an odd prime

number. Throughout this thesis, we assume R is commutative, and also it has an

identity. Let R× denote the set of units in R. Likewise, let R0 denote the set of non-

units in R. Since R has a unique maximal ideal that contains every proper ideals of R,

we have a non-unit z ∈ R so that the maximal ideal is generated by z. Let (z) denote

the maximal ideal of R. Throughout, q and r will denote the structural parameters

associated to R. For the maximal ideal (z), r is the smallest positive integer such that

zr = 0, and also q is the size of the residue field R/(z). We assume q is an odd prime

number. Hence, 2 is a unit in R. For more details on finite valuation rings, we refer

the reader to [63].

Here are some examples of finite valuation rings.

(1) Finite fields Fq, q = pn for some n > 0.

(2) Finite rings Z/prZ, where p is a prime.

(3) Fq[x]/ (f r) , where f ∈ Fq[x] is an irreducible polynomial.

(4) O/ (pr) where O is the ring of integers in a number field and p ∈ O is a prime.

In general, there are many zero divisors in R, so it seems difficult to extend

Theorem 6.1 to the setting of finite valuation rings. However, we are able to put
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Corollary 6.1 in this setting.

Theorem 6.3. Let R be a finite valuation ring of order qr, and A be a set in R.

Let F1(u, v, y, z) = u(u+v)y+z, F2(u, v, y, z) = u(u+v)+yz, F3(u, v, y, z) =

u(u+ v)(y + z), F4(u, v, y, z) = y (u(u+ v) + z) , F5(u, v, y, z) = (u(u+ v)− y)2 + z,

and

F6(u, v, y, z) = (y − z)2 + u(u + v). Suppose that |A| � q
8r−3

8 , then, for each i ∈

{1, . . . , 6}, we have

|Fi(A,A,A,A)| � qr.

6.2 Moderate expanders over arbitrary finite fields

(proof of Theorem 6.1)

Using a point-plane incidence bound due to Rudnev [71], the third, fourth, sixth

listed authors and Shen [47] proved the following general theorem on the energy of a

polynomial in three variables over prime fields.

Theorem 6.4 ([47]). Suppose that f ∈ Fp[x, y, z] is a quadratic polynomial which

depends on each variable and which does not take the form g(h(x) + k(y) + l(z)). For

U, V,W ⊂ F×p with |U ||V ||W | � p2, let E be the number of tuples (u, v, w, u′, v′, w′) ∈

(U × V ×W )2 such that f(u, v, w) = f(u′, v′, w′). Then we have

E � (|U ||V ||W |)3/2 + max{|V |2|W |2, |V |2|U |2, |U |2|W |2}.
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One can follow the proof of this theorem in [47] identically and use Vinh’s

point-plane incidence bound [92] in the place of Rudnev’s point-plane incidence bound

and the Kövari-Sós-Turán theorem to obtain a version over arbitrary finite fields. For

simplicity, we omit the proof.

Theorem 6.5. Suppose that f ∈ Fq[x, y, z] is a quadratic polynomial which depends on

each variable and which does not take the form g(h(x)+k(y)+ l(z)). For U, V,W ⊂ F×q ,

let E be the number of tuples (u, v, w, u′, v′, w′) ∈ (U × V ×W )2 such that f(u, v, w) =

f(u′, v′, w′). If |U ||V ||W | ≥ q2, then

E � |U |
2|V |2|W |2

q
+ max{|V |2|W |2, |V |2|U |2, |U |2|W |2}.

The next corollary is a direct application of the Cauchy-Schwarz inequality and

Theorem 6.5.

Suppose that f ∈ Fq[x, y, z] is a quadratic polynomial which depends on each

variable and which does not take the form g(h(x) + k(y) + l(z)). If U, V,W ⊂ F×q with

|U ||V ||W | � q2, then

|f(U, V,W )| � min
{
q, |U |2, |V |2, |W |2

}
.
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Proof. By the Cauchy-Schwarz inequality, we have

|f(U, V,W )| ≥ |U |
2|V |2|W |2

E
,

where E denotes the number of tuples (u, v, w, u′, v′, w′) ∈ (U × V ×W )2 such that

f(u, v, w) = f(u′, v′, w′). Hence, the corollary follows by applying Theorem 6.5 to the

above inequality.

Let m(x) and n(x) be affinely independent polynomials. Suppose that the

degrees of m and n are bounded. In [39], Hegyvári and Hennecart proved that the

polynomial Q(u, v) = m(u) + ukn(v) is an expander. More precisely, for A ⊂ Fp with

|A| ≤ p1−ε for some 0 < ε < 1, we have

|Q(A,A)| � |A|1+ε′ ,

where ε′ > 0 depending on ε.

Using the point-line incidence bound for large sets over arbitrary finite fields

due to Vinh [92], and the point-line incidence bound for small Cartesian product sets

over prime fields due to Stevens and De Zeeuw [97], the following is a consequence of

[39, Theorem 4] due to Hegyvári and Hennecart.

Lemma 6.6 ([39]). Let m(x) and n(x) be affinely independent polynomials. Suppose

that the degrees of m and n are bounded. Define Q(u, v) := m(u) + ukn(v).
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1. For A ⊂ Fq, we have

|Q(A,A)| � min

{
q,
|A|2

q1/2

}
.

2. For A ⊂ Fp with |A| ≤ p2/3, we have

|Q(A,A)| � |A|5/4.

We note here that if Q(u, v) = u2 + uv, then Lemma 6.6 (1) was first obtained

by Shkredov in [79].

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Since |A| > 2, without loss of generality, we may assume that

0 /∈ A. We define U := {Q(a, b) : a, b ∈ A}. It follows from Lemma 6.6 that

|U | � min

{
q,
|A|2

q1/2

}
.

Let U∗ = U \ {0}. We also have

|U∗| � min

{
q,
|A|2

q1/2

}
.

When |A| � q5/8, this inequality implies that |A||A||U∗| � q2. Thus we can apply

Corollary 6.2 so that

|F (A,A,A,A)| = |f(U,A,A)| ≥ |f(U∗, A,A)| � min
{
q, |U∗|2, |A|2

}
� q,

105



under the assumption |A| � q5/8. This completes the proof of the theorem.

6.3 Moderate expanders over prime fields (proof of

Theorem 6.2)

As in the previous section, the following corollary is a direct application of

Theorem 6.4 and the Cauchy-Schwarz inequality.

Suppose that f ∈ Fp[x, y, z] is a quadratic polynomial which depends on each

variable and which does not take the form g(h(x) + k(y) + l(z)). For U, V,W ⊂ F×p

with |U ||V ||W | � p2, we have

|f(U, V,W )| � min
{

(|U ||V ||W |)1/2, |U |2, |V |2, |W |2
}
.

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Since |A| > 2, without loss of generality, we may assume that

0 /∈ A.

Set U := {Q(a, b) : a, b ∈ A}. It follows from Lemma 6.6 that

|U | � |A|5/4,

under the condition |A| ≤ p2/3.
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Since 8
13
≤ 2

3
, for our purpose, there is no harm to assume that |A| ≤ p

2
3 in the

rest of the proof.

Let U∗ = U \ {0}. We also have |U∗| � |A|5/4.

Set V = W = A. It is not hard to see that F (A,A,A,A) = f(U, V,W ).

If |U ||A|2 � p2, then it follows from Corollary 6.2 that |F (A,A,A,A)| � p and

we are done.

Therefore, we assume that |U ||A|2 � p2, and apply Corollary 6.3 to get

|F (A,A,A,A)| = |f(U, V,W )| ≥ |f(U∗, V,W )| � min
{

(|U∗||A|2)1/2, |A|2, |U∗|2
}
.

Using the fact that |U∗| � |A|5/4, the theorem follows.

6.4 Moderate expanders over finite valuation rings

(proof of Theorem 6.3)

In order to prove Theorem 6.3, the following results play crucial roles. Recall

that R denotes the finite valuation ring of order qr.

The first result is a point-line incidence bound over finite valuation rings due to

Pham and Vinh [67], where a line over R is defined of the form ax + by + c = 0 with

(a, b, c) 6∈ (R0)3.

Theorem 6.7. Let P be a set of points in R2 and L be a set of lines in R2. The
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number of incidences between P and L, denoted by I(P,L), satisfies

I(P,L) ≤ |P ||L|
qr

+ qr−
1
2

√
|P ||L|.

The second result is due to Yazici in [96].

Lemma 6.8. Let X, Y, Z be sets in R. We have

|XY + Z| � min

{
qr,
|X||Y ||Z|
q2r−1

}
.

Our next two lemmas are consequences of Theorem 6.7.

Lemma 6.9. Let X, Y, Z be sets in R. If |X| ≥ 2qr−1, then

|X(Y + Z)| � min

{
qr,
|X||Y ||Z|
q2r−1

}
.

Proof. Since |X| ≥ 2qr−1 and |R0| = qr−1, without loss of generality we may assume

that X ⊂ R×. Let T = X(Y + Z) and let us consider the following equation

y = a(x+ c)

with a ∈ X, x ∈ Y, c ∈ Z, and y ∈ T. Let N denote the number of solutions of the
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above equation. It is clear that

|X||Y ||Z| ≤ N. (6.1)

We now find an upper bound of N. Let L be a collection of lines of the form y = a(x+c)

with a ∈ X and c ∈ Z. In addition, define P as the set of points (x, y) with x ∈ Y

and y ∈ T. Since a ∈ R×, the lines in L are distinct. It is clear that |L| = |X||Z| and

|P | = |Y ||T |. It is not hard to see that N = I(P,L) which is the number of incidences

between L and P. Hence, using Theorem 6.7, we have

N ≤ |X||Y ||Z||T |
qr

+ qr−
1
2

√
|X||Y ||Z||T |.

Combining the above inequality with (6.1), we have

|T | = |X(Y + Z)| � min

{
qr,
|X||Y ||Z|
q2r−1

}
,

as required.

Lemma 6.10. Let X, Y, Z be sets in R. We have

|(X − Y )2 + Z| � min

{
qr,
|X||Y ||Z|
q2r−1

}
.

Notice that Lemma 6.10 will also be used to give a new distance result in the

p-adic perspective in the next section.
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Proof. We consider the following equation

(x− y)2 + z = t,

where x ∈ X, y ∈ Y, z ∈ Z, t ∈ T := (X − Y )2 + Z.

Let N be the number of solutions of this equation. We can see that N ≥

|X||Y ||Z|.

Define P := X × T and C being the set of curves of the form t = (x− a)2 + c

with a ∈ Y and c ∈ Z. It is clear that N is bounded by the number of incidences

between points in P and curves in C.

Let ϕ be a map from R2 to R2, which maps the point (x, t) to (x, t − x2). It

is clear that ϕ is a bijection. Under this map, the curve t = (x− a)2 + c in C will be

sent to the line t′ = −2xa + c + a2. Furthermore, we also have that the number of

incidences between P and C is equal to the number of incidences between the point

set ϕ(P ) and the line set ϕ(C).

Applying Theorem 6.7, we have

N ≤ |P ||C|
qr

+ q
2r−1

2

√
|P ||C|,

where we have used the fact that |ϕ(P )| = |P |, |ϕ(C)| = |C|.

By using |P | = |X||T |, |C| = |Y ||Z|, and N ≥ |X||Y ||Z|, we obtain the desired

estimate.
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The following result is very important in the proof of Theorem 6.3.

Lemma 6.11. Let A be a set in R. Suppose that |A| ≥ 2qr−1, then we have

|{a(a+ b) : a, b ∈ A}| � min

{
qr,
|A|2

q
2r−1

2

}
.

Proof. Since |A| � qr−1 = |(z)|, we may assume that A ⊂ R×. Let N be the size of

the set {a2 + ab : a, b ∈ A}. By the Cauchy-Schwarz inequality, we have

N ≥ |A|
4

E
,

where E is the number of quadruples (a, b, a′, b′) ∈ A4 such that

a2 + ab = a′2 + a′b′.

Let L be the set of lines of the form ax− a′y = a′2 − a2 with a, a′ ∈ A, and P be the

set of points (b, b′) with b, b′ ∈ A. It is not hard to see that |L| = |P | = |A|2. We have

E = I(P,L).

Let L′ be the subset of L that contains lines ax−a′y = a′2−a2 with a′2−a2 ∈ R0.

Since |R0| = qr−1 and A ⊂ R×, we have the number of pairs (a, a′) ∈ A2 such that

a′2−a2 ∈ R0 is bounded by 2qr−1|A|. On the other hand, for each such pair (a, a′) and

each b ∈ A, the number of b′ ∈ A satisfying a2 + ab = a′2 + a′b′ is at most one. Thus,

I(P,L′) ≤ 2|A|2qr−1.
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It is not hard to check that the lines in L \ L′ are distinct.

Applying Theorem 6.7 we have

I(P,L \ L′) ≤ |P ||L|
qr

+ qr−
1
2

√
|P ||L| = |A|

4

qr
+ qr−

1
2 |A|2.

By an elementary calculation, we have

E = I(P,L \ L′) + I(P,L′)� |A|
4

qr
+ qr−

1
2 |A|2,

which implies that

N � min

{
qr,
|A|2

q
2r−1

2

}
,

and the theorem follows.

We are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. Since |A| � qr−
3
8 > |(z)| = qr−1, without loss of generality, we

assume that A is a subset of R×.

We now start with the case of F1 = u(u+ v)y + z.

Set X = {u(u+ v) : u, v ∈ A}, Y = Z = A. It follows from Lemma 6.11 that

|X| � min

{
qr,
|A|2

q
2r−1

2

}
.
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On the other hand, it is not hard to see that

|F1(A,A,A,A)| = |XA+ A|.

Lemma 6.8 tells us that

|XA+ A| � min

{
qr,
|A|2

qr−1
,
|A|4

q
6r−3

2

}
� qr,

whenever |A| � q
8r−3

8 . This completes the proof in the case of F1.

For any Fi with 2 ≤ i ≤ 6, the proof is almost the same as that for F1 except

that we have to use Lemma 6.9 or Lemma 6.10 instead of Lemma 6.8 with switching

the roles of X, Y , and Z if necessary.

Chapter 6 is a version of the material in “Moderate Expanders over Rings,” co-

authored with Dao Nguyen Van Anh, Le Quang Ham, Doowon Koh, Hossein Mojarrad,

and Thang Pham, which has been submitted for publication. The author was one of

the primary investigators and authors of this paper.

113



Bibliography
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