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Abstract

Minimal-positive-depth Representations of Groups of Relative Rank One over Nonarchimedean

Local Fields

by

Philip Barron

Reeder, Yu, and Gross have studied a class of representations of p-adic groups which

they call epipelagic – those which are just slightly deeper than the surface (depth zero). In

this thesis, we systematically study the representations of minimal positive depth for groups of

relative rank one over nonarchimedean local fields. These are the groups for which the (reduced)

Bruhat-Tits building is a tree. For such groups, we give a simplified proof that all irreducible

minimal-positive-depth supercuspidal representations arise via compact induction. Furthermore,

for certain classes of these groups we explicitly describe the orbits that provide such induction

data.
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Introduction

Let K be a nonarchimedean local field with ring of integers OK , with maximal ideal

pK = ($K). Let Fq be the residue field of OK . Let G be a connected semisimple group over

K, and let G = G(K). Every smooth irreducible representation of G occurs in a representation

parabolically induced from a supercuspidal irreducible representation of a Levi subgroup M of

G. Thus representation theory is reduced to supercuspidal representations of Levi subgroups,

which are groups of lesser relative rank. One can then view supercuspidal representations as the

building blocks for the representation theory of p-adic groups.

Most well-known constructions of supercuspidal representations use compact induction,

which led to the folklore conjecture that “every supercuspidal representation of a reductive p-adic

group arises by induction from a compact-mod-center open subgroup.”

For any G, Bruhat and Tits [2,3] define a cell complex called the reduced Bruhat-Tits

building B(G) = X. For each point x ∈ X, they construct a compact subgroup Gx of G, called

a parahoric subgroup. X is the union of subcomplexes, called apartments, which G acts on

transitively. To each maximal K-split torus S of G, there is an associated apartment A(S,K).

Apartments in the building are metrically isomorphic to Rn, where n is the relative rank of G.

Moy and Prasad [12,13] define a filtration of parahoric subgroups

Gx := Gx,0 �Gx,r1 �Gx,r2 . . .

where the jumps 0 < r1 < r2 < . . . are real numbers depending on x. When G is a quasisplit

over K, these filtration subgroups are defined in terms of filtrations of root subgroups and

maximal tori. When G is not quasisplit over K, the Moy-Prasad filtration is defined by passing
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to an unramified extension, where G becomes quasisplit.

Let (π, V ) be a smooth irreducible representation of G. Moy and Prasad define the

depth %(π) of a (π, V ) to be the smallest non-negative real number r such that V Gx,r+ is nonzero

for some point x ∈ X. In fact, the depth r = %(π) is a rational number. The possible depths

of supercuspidal irreducible representations of G form a discrete subset of R. Thus, there is

a well-defined lowest positive depth that can occur. Gross, Reeder and Yu [9, 18] construct

many such irreducible representations of G. These are the simple supercuspidals and, the more

general, epipelagic representations.

Supercuspidal irreducible representations of higher depth almost all arise by compact

induction from an intricate construction of Yu [27]. In fact, after work of Kim [10], we know

that this is true for large enough residue characteristic. After a recent breakthrough of Fintzen,

we know that all supercuspidal irreducible representations arise from Yu’s construction, as long

as the residue characteristic p does not divide the order of the Weyl group of G [8, Thm. 8.1].

This leaves the “wild” cases of the folklore conjecture still open.

To this end, Weissman [26] gives a less explicit proof of the folklore conjecture for

groups of relative rank one, which holds in all residue characteristics. Motivated by this, this

thesis is focused on these groups and their representations of minimal positive depth.

In aiming to make this thesis rather self-contained, Chapter 1 reviews many prelim-

inary topics, such as reductive groups, the Bruhat-Tits building, Moy-Prasad filtration, and

representation theory of groups defined over non-archimedean local fields. We also provide in-

formation on the groups of relative rank one whose representation theory we will study later in

the thesis. These groups have been classified and tabulated by Tits [23] and Carbone [4].

Weissman [26], using technical theory from Schneider-Stuhler [20], proves that for all

reductive groups of relative rank one irreducible supercuspidal representations arise via compact

induction from the stabilizer of a vertex or edge in the Bruhat-Tits building. Let X denote the

Bruhat-Tits building of G. In Chapter 2, motivated from Weissman’s work, we use theory of

Bestivina-Savin [1] to reprove Weissman’s result in the setting where (π, V ) is a representation

of critical depth 35. By critical depth r, we mean a depth in which there exists a z ∈ X such

that Gz,r 6= Gz,r+, and for all y 6= z in an open neighborhood around z, Gy,r+ = Gy,r and

Gz,r+ ⊆ Gy,r ⊆ Gz,r. These critical depths in the rank one setting include the minimal positive
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depths studied by Gross, Reeder, and Yu [9,18].

In Chapter 3, we provide data about the Bruhat-Tits buildings for SL2(K), SL2(D),

SU
L/K
3 (h), and SU

E/K
3 (h), describing the minimal positive depths, and the structure of the

relevant Moy-Prasad filtration subgroups. We briefly mention that for the non-quasisplit groups,

one can use unramified descent from G(Knr) to describe the buildings and find the minimal

positive depths. We do not provide the explicit data for these remaining groups, but one finds

that the minimal positive depths for these groups are also critical depths. Using this data and

the results of Chapter 2, one finds that all irreducible minimal-positive-depth supercuspidal

representations of groups of relative rank one arise via compact induction.

In Chapter 4, we cover the theory of Gross, Reeder, and Yu [9,18] on simple supercus-

pidals and epipelagic representations. We show that all minimal-positive-depth representations

are contained in the construction of these representations.

In Chapter 5, we construct the irreducible minimal-positive-depth supercuspidal rep-

resentations for SL2(K), SL2(D), SUL/K3 (h), and SUE/K3 (h) using information from Chapters

2 and 3. One can carry forward similar constructions for the remaining groups by means of

unramified descent.

In the Appendix A, we describe the remaining groups of relative rank one. Here, we

cover SUL/K4 (h) and the quaternionic unitary groups, following Prasad-Raghunathan [16].
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Chapter 1

Groups of relative rank one

Let K be a nonarchimedean local field, with OK its ring of integers and $K a uni-

formizing element of K. Let Fq = OK/$KOK be the residue field of K, where q = pf for some

prime p and f ∈ N. Let val : K× → Z be a valuation with val(K×) = Z. Let K̄ denote a sepa-

rable closure of K. Let G be a connected semisimple group defined over K, and let G = G(K)

be the group of K-rational points of G. Throughout this text, when saying “semisimple,” we

will mean “connected semisimple.”

1.1 Reductive groups

1.1.1 Absolute and Relative rank

Let Gm = Gm/K be the multiplicative group over K; then Gm(K) = K×. A subgroup

T ⊆ G is called a torus if TK̄
∼= G`

m/K̄
. G is a finite dimensional group; hence, there exists

a torus of maximal dimension, called a maximal torus. All maximal tori are conjugate over K̄,

thus they all have the same dimension, called the absolute rank of G.

A K-split torus is a subgroup S ⊂ G, defined over K, with S ∼= Gr
m/K for some r ∈ N.

There exists a torus maximal amongst K-split tori. Call such a torus a maximal K-split torus.

All maximal K-split tori are G(K)-conjugate and hence have the same dimension. We call this

dimension the relative rank of G.

We say that G is split over K if G contains a split maximal torus; otherwise, we call
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G non-split. If G is split over K, then the absolute rank and the relative rank of G are equal.

1.1.2 K-Forms

Let G and G′ be linear algebraic groups defined over K. G′ is called a K-form of G

if G ∼= G′ over K̄ or a finite extension of K.

An isogeny of algebraic groups is a surjective homomorphism with finite kernel. We

say that an isogeny is central if the kernel is central. We say that two groups G and G′ are

strictly isogenous if there is a group H and two central isogenies H→ G and H→ G′.

Definition 1. We say that G is almost simple over K if G contains no infinite normal algebraic

K-subgroup, and we say G is absolutely almost simple if G is almost simple over K̄.

1.1.3 Relative and absolute roots of reductive groups

Let X•(S) = Hom(S,Gm) and let X•(S) = Hom(Gm,S) be the lattices of the charac-

ters and cocharacters of the split torus S. We view X•(S) as a lattice in the real vector space

V = X•(S)⊗Z R, whose dimension is the relative rank of G.

Let Φ = Φ(G,S) ⊂ X•(S) be the set of roots for the adjoint action of S on the Lie

algebra g of G. These are called the relative roots of G with respect to S.

If a is a root then there are three possibilities for its multiples.

• Ra ∩ Φ = {±a}

• Ra ∩ Φ = {±a,± 1
2a}, and we say that a is divisible.

• Ra ∩ Φ = {±a,±2a}, and we say that a is multipliable.

For any a ∈ Φ, we call Ua the root subgroup of G corresponding to a. Ua is the

connected closed subgroup of G normalized by S whose Lie algebra is the sum of the root spaces

corresponding to the roots that are positive integral multiples of a. Thus if a is multipliable,

U2a ⊂ Ua. Similarly, if a is divisible, U 1
2a
⊃ Ua.

Now let T be maximal torus of G defined over K. G becomes split over K̄. Let

X•(T) = Hom(T,Gm) and let X•(T) = Hom(Gm,T) be the lattices of the characters and
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cocharacters of T. Let ΦK̄ = Φ(G,S) ⊂ X•(T) be the set of roots for the adjoint action of S

on the Lie algebra g on G. These are called the absolute roots of G with respect to T.

Let a ∈ ΦK̄ be a root. Then Ra ∩ Φ = {±a}, meaning the absolute root system is

reduced. Furthermore for any root a ∈ ΦK̄ , Ua
∼= Ga/K̄ , the additive group over K̄.

A Borel subgroup B ⊂ G is a maximal connected solvable algebraic subgroup. Borel

subgroups have the form B = TnU for a maximal torus T and a maximal unipotent subgroup

of G. The maximal unipotent subgroup U, and is generated by Ua for some a ∈ Φ. If Ua ⊂ U,

then U−a 6⊂ U. In this way, choosing a Borel subgroup fixes a set of positive roots Φ+
K̄
⊂ ΦK̄ .

Similarly, in choosing a Borel subgroup, we choose and fix a set of positive roots Φ+ ⊂ Φ.

Let ∆ (resp. ∆K̄) denote the set of relative (resp. absolute) simple roots. Every

element of Φ (resp. ΦK̄) can be expressed uniquely as a Z-linear combination of relative (resp.

absolute) simple roots.

For more details on theory of relative and absolute roots of reductive groups, refer to

Springer [22].

1.1.4 Quasisplit groups

Definition 2. Let ZG(S)′ := [ZG(S),ZG(S)] be the derived subgroup of ZG(S), called the

anisotropic kernel of G. If ZG(S)′ is trivial over K, G is called quasisplit over K. An equivalent

condition to G being quasisplit is the existence of a Borel subgroup defined over K.

Remark 3. ZG(S) always contains a maximal split torus; when G is split or quasisplit, ZG(S)

is a maximal split torus.

Proposition 4. [21, II.3.3, III.3.2] Every algebraic group G defined over K becomes quasisplit

over some finite unramified extension L of K. Furthermore, there exists some finite extension

E/L, possibly ramified, such that G splits over E.
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1.2 Groups of relative rank one over nonarchimedean local

fields

In [23] and [25], Tits classifies groups of relative rank one over nonarchimedean local

fields. For this section, we will closely follow Carbone’s notes [4], where she tabulates these

groups.

1.2.1 Tits Index

Assume that G is absolutely almost simple. Denote by Γ the Galois group Gal(K̄/K).

Let S be a maximal K-split torus of G, and let T be a maximal torus containing S, defined

over K. Let N be the normalizer of T, and let W = N/T be the Weyl group. Let ∆K̄ be the

simple roots of G relative to T, and let δK̄ be the corresponding Dynkin diagram. Let ∆0 ⊆ ∆K

denote the set of simple roots that vanish on S. The Galois group Γ = Gal(K̄/K) acts on ∆K̄

and on the Dynkin diagram δK̄ .

A Tits index consists of:

(1) The simple roots ∆K̄ and its corresponding Dynkin diagram δK̄ .

(2) The action of Γ on ∆K̄ and corresponding action on δK̄ . This action is called the ∗-action.

We a call a vertex of the Dynkin diagram δK̄ distinguished if the corresponding simple

root does not belong to ∆0. These vertices will be circled. Vertices of the Dynkin diagram in

the same orbit of Γ are drawn close together; if they are both distinguished, a common circle is

drawn around them.

1.2.2 Classification

Theorem 5. We have the following.

• [23, Thm. 1]. Over K̄, G is characterized up to strict isogeny by its Dynkin diagram.

• [23, Thm. 2.7.2(b)]. G is determined up to strict isogeny by its strict K̄-isogeny class, its

Tits index, and the K-isogeny class of its semisimple anisotropic kernel.
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• [23]. If G is quasisplit, G is determined up to strict isogeny by its Tits index.

Using his theorems, Tits classifies all groups of relative rank 1 using the Tits index.

Tits [23] uses the notation for a Tits index:

gXt
n,r,

where

• n = absolute rank = dim T,

• r = relative rank = dim S,

• g = the order of the quotient of Γ which acts faithfully on δK̄ ,

• t = degree(=
√
dim) of a division algebra which occurs in the definition of the considered form.

• X = type of group over K̄.

Remark 6. t = 1 if and only if the group is quasisplit. Thus t is often omitted from the Tits

index of quasisplit groups.

Now that we have discussed the notation for the Tits index, here is a diagram, provided

by Carbone [4], tabulating the possible groups up to strict isogeny, their Tits indices, relative

Dynkin diagrams, and their forms over K̄.

The relative local Dynkin diagram holds vital information about the reduced Bruhat-

Tits tree B(G) of G. Vertices in the diagram labeled by the letters s or hs are special or

hyperspecial points (vertices) in the tree. The number written above each vertex indicates the

number of edges coming out of the vertex in B(G). If the letter d is written above at vertex v,

this indicates that there are qd + 1 edges coming out v. Here, q is the cardinality of the residue

field of K. If the root system of G is non-reduced, vertices marked by x are vanishing loci for

affine roots of gradients both ±a and ±2a. We will refer back to Bruhat-Tits building, relative

Dynkin diagram, and affine roots in coming sections of this chapter.
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Index Group Over K̄ Relative Local Tits Index
Dynkin Diagram

1A1
1,1 SL2(K) SL2

1 1

hs hs

1Ad
2d−1,1 SL2(D) SL2d

d d

s s

. . .

d − 1

. . .

d − 1

2A1
2,1 SU

L/K
3 (h) SL3

3 1

hs s
x

2A1
2,1 SU

E/K
3 (h) SL3

1 1

s s

2A1
3,1 SU

L/K
4 (h) SL4

3 3

s s
x x

C2
2,1 SU

D/K
2 (h′) Sp4

1 2

s s

C2
3,1 SU

D/K
3 (h′) Sp6

3 2

s s
x

2D2
3,1 SU

D/K
3 (h) SO6

1 2

s s

2D2
4,1 SU

D/K
4 (h) SO8

1 4

s s
(a)

3 2

s s
x(b)

1D2
5,1 SU

D/K
5 (h) SO10

3 4

s s
x

Figure 1.1: Table of groups of relative rank one [4]

Remark 7. [4, 25] The Tits indices for 2D2
3,1 and 2A1

3,1 are the same, but Tits remarks that

if a cyclic group of order 2 acts on the Dynkin diagram, then there is a quadratic extension

of K fixed by the Galois group. In the case that this fixed field is ramified, the group is more

naturally described as type D3. For 2A1
3,1, the fixed field of the Galois action in unramified. This

is reflected in us only considering the SUL/K4 that splits over an unramified extension and the

SU
D/K
3 (h) that splits over a ramified extension for the 2A1

3,1 and 2D2
3,1 groups, respectively.

In the Bruhat-Tits tree, the edges protruding from x correspond to Borel subgroups of

M̄x(Fq) = Gx,0/Gx,0+ (see 14). When working over an algebraically closed field or a finite field

F , if B is a F -rational points of some fixed Borel subgroup, then G = G(F ) acts transitively on
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the set of Borel subgroups by conjugation, and NG(B) = B. This identifies G/B with the set

of Borel subgroups of G. Thus, finding the cardinality of M̄x and dividing by the cardinality of

a Borel subgroup Bx of M̄x will yield the number of edges protruding from x.

1.2.3 Descriptions of the occurring G

For unitary groups of relative rank one over K, we split into two situations: G =

SU
L/K
m (h) for a quadratic field extension L/K, and G = SU

D/K
n (h) for a quaternion algebra

D/K for some m,n ∈ N.

Let L/K be a quadratic field extension, let σ be a generator of Gal(L/K). Let h be a

Hermitian form on Lm with respect to σ of Witt index 1. Then SUL/Km (h) is a group of relative

rank one. It will follow that m = 3 or 4 are the only possibilities.

Let D be a quaternion algebra over K. Let σ be an involution of D trivial on K, with

dimK(Dσ) = 3. We will call this an involution of first kind and first type. We refer the reader

to the Appendix A for details on these quaternionic unitary groups.

We are now ready to describe the possible Tits indices for groups of relative rank one

over K, with their corresponding semisimple groups, tabulated by Carbone [4], and seen in

Figure 1.1. By Theorem 5, the corresponding group G is up to strict isogeny.

(1) Tits index 1A1
1,1, corresponding group G = SL2(K). The group G is a split form of SL2,

and is simply connected.

(2) Tits index 1Ad2d−1,1, d ≥ 2, corresponding group G = SL2(D), whereD is a central division

algebra of degree d ≥ 2 over K. We have

G(K̄) = SL2(D ⊗K K̄) ∼= SL2(Md(K̄)) ∼= SL2d(K̄).

G is a non-split form of SL2d, and is simply connected.

(3a) Tits index 2A1
2,1, corresponding group G = SU

L/K
3 (h), L/K is an unramified quadratic

extension, 〈σ〉 = Gal(L/K), h is a non-degenerate Hermitian form relative to σ. Over K̄,

SU
K/F
3

∼= SL3. The group G is a non-split form of SL3, and is simply connected.
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(3b) Tits index 2A1
2,1, corresponding group G = SU

E/K
3 (h), E/K is a ramified quadratic ex-

tension, 〈σ〉 = Gal(E/K), h is a non-degenerate Hermitian form relative to σ. Over K̄,

SU
E/K
3

∼= SL3. The group G is a non-split form of SL3, and is simply connected.

(4) Tits index 2A1
3,1, corresponding group G = SU

L/K
4 (h), L/K is an unramified quadratic

extension, 〈σ〉 = Gal(L/K), h is a non-degenerate Hermitian form relative to σ. Over K̄,

SU
L/K
4

∼= SL4. The group G is a non-split form of SL4, and is simply connected.

(5) Tits index C2
2,1, corresponding group G = SU

D/K
2 (h′), D is a quaternion division algebra

of degree d = 2 over K, with an involution σ of the first kind, first type, h′ is a non-

degenerate skew-Hermitian form relative to σ. The group G is a non-split form of Sp4,

and is simply connected.

(6) Tits index C2
3,1, corresponding group G = SU

D/K
3 (h′), D is a quaternion division algebra

of degree d = 2 over K, with an involution σ of the first kind, first type, h′ is a non-

degenerate skew-Hermitian form relative to σ. The group G is a non-split form of Sp6,

and is simply connected.

(7) Tits index 2D2
3,1, corresponding group G = SU

D/K
3 (h), D is a quaternion division algebra

of degree d = 2 over K, with an involution σ of the first kind, first type, h is a non-

degenerate Hermitian form relative to σ. The group G is a non-split form of SO6, and is

not simply connected.

(8) Tits index 2D2
4,1, corresponding group G = SU

D/K
4 (h), D is a quaternion division algebra

of degree d = 2 over K, with an involution σ of the first kind, first type, h is a non-

degenerate Hermitian form relative to σ. The group G is a non-split form of SO8, and is

not simply connected.

(9) Tits index 2D2
5,1, corresponding group G = SU

D/K
5 (h), D is a quaternion division algebra

of degree d = 2 over K, with an involution σ of the first kind, first type, h is a non-

degenerate Hermitian form relative to σ. The group G is a non-split form of SO10, and

is not simply connected.
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1.3 Representation theory and the Bruhat-Tits building

A representation of G will mean a pair (π, V ) where V is a complex vector space and

π : G→ GL(V ) is a group homomorphism.

Definition 8. A vector v ∈ V is called smooth if

stabG(v) := {g ∈ G : π(g)v = v}

is open. If all vectors v ∈ V are smooth, we call (π, V ) a smooth representation.

If H ≤ G is an open compact subgroup, we denote the H-invariants by

V H := {v ∈ V : π(h)v = v for all h ∈ H}.

Definition 9. A smooth representation (π, V ) of G is called admissible if dimC(V H) < ∞ for

any compact open subgroup H of G.

1.3.1 Supercuspidal representations

Let (π, V ) be a smooth representation of G and P = MU be a Levi decomposition

of a parabolic subgroup P < G. Let (σ,W ) be a smooth representation of L. We define the

parabolic induction functor from P to G by

IndGP (σ) :=
{
f ∈ C∞(G,W ) : f(umg) = δ

1
2

P (m)σ(m)f(g) for all m ∈M, u ∈ U, g ∈ G
}
.

Here δP is the modular character of P .

Let V (U) = spanC{π(u)v − v : u ∈ U, v ∈ V }. Let VU := V/V (U) be the space of

U -coinvariants, and consider the quotient action of M on VU given by

πU (m)(v + V (U)) = π(m)v + V (U).

The M -representation (πU , VU ) is called the Jacquet module of (π, V ) with respect to P = MU .
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Let (π, V ) be an admissible representation of G. We say that (π, V ) is supercuspidal if

for any proper parabolic subgroup P = MU the Jacquet module VU = 0.

Remark 10. If (π, V ) is irreducible, (π, V ) is supercuspidal if and only if π is not equivalent to

a subrepresentation of IndGP (σ) for any proper parabolic subgroup P = MU , and for any smooth

representation (σ,W ) of M .

Thus, we can think of irreducible supercuspidal representations of G as those native

to G; all other irreducible admissible representations come from representations of some proper

Levi factor M . In fact, if (π, V ) is a smooth irreducible representation of G, the π appears

as a subrepresentation of IndGP (σ) for some, not necessarily proper, parabolic P = MU and

supercuspidal M -representation σ.

Definition 11. [18, see 2.1] Let G = G(K) with center Z. Let H be an open subgroup of G such

that Z ⊆ H and H/Z is compact, and let (σ,W ) be a smooth finite-dimensional representation of

H on a complex vector space W . The compactly induced representation c-IndGH(σ,W ) is realized

on the complex vector space of function f : G→W satisfying the following two conditions:

• f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G;

• f is supprted on only finitely many cosets of H in G.

The group G acts on c-IndGH(σ,W ) by right translations: [g · f ](x) = f(xg).

1.3.2 The Bruhat-Tits building

For any G = G(K), Bruhat and Tits [2, 3] define a polysimplicial complex called the

reduced building B(G) = X. Let S be a maximal split torus of G. Let dim(S) = n be the

relative rank. Then X is an n-dimensional polysimplicial complex, endowed with an action of

G. Every maximal facet will be n-dimensional. For instance, if S has rank 1, then X is a tree.

To each point x ∈ X corresponds to a compact subgroup Gx ⊂ G contained in the

stabilzer of x in G. The group Gx is referred to as the parahoric subgroup at x. If x ∈ Xn –

meaning x belongs to an n-dimensional facet – then Gx will be minimal amongst other parahoric

subgroups; this class of parahoric subgroups is known as Iwahori subgroups of G. If x ∈ X0,

then Gx will be a maximal parahoric subgroup.
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X is the union of subcomplexes, called apartments, on which G acts transitively. To

each maximal K-split torus S of G there is an associated apartment. The apartment A(S,K)

associated with the torus S is an affine space under X•(S) ⊗Z R ∼= Rn, where n is the relative

rank of G.

1.3.3 Valuations of root groups

Assume that G is quasisplit over K. And let E/K be a finite extension such that GE

is split. Let e denote the ramification index of E/K.

For this section and the next, we follow Fintzen’s thesis [7, Section 2.2-2.4]. However,

we skip over many details. Please refer to this text for more details and to Bruhat-Tits [3] for

the non-quasisplit case.

Let a ∈ ΦK , and let Ua be the corresponding root subgroup of G. Let G±a be the

subgroup of G generated by Ua and U−a. Let π : G±a → G±a be a simply connected cover. π

induces an isomorphism between a root subgroup U+ of G±a and Ua; we call U+ the positive

root group of G±a. In order to describe the root group Ua, one splits into two cases

1) a ∈ ΦK is neither divisible nor multipliable.

2) a ∈ ΦK is divisible or multipliable; i.e., a2 or 2a ∈ Φ

Let a′ ∈ ΦE be root that equals a when restricted to S. Note that Gal(E/K) acts on

Φ. We denote by Ea′ the fixed subfield of E of the stabilizer stabGal(E/K)(a
′). Let ea′ denote

the ramification index of Ea′/K.

1) If a ∈ ΦK is neither divisible nor multipliable, let a′ ∈ ΦE be a root that equals a

when restricted to S. Then Ga ∼= ResEa′/K(SL2), and Ua
∼= ResEa/K(UE

a′), where UE
a′ is the

root subgroup of GE corresponding to a′. For e ∈ ResEa′/KGa(K) = Ea′ , one can define the

valuation ϕa : Ua(K)→ 1
ea′

Z ∪∞ of Ua(K) by

ϕa(xa(c)) = val(c).

2) If a ∈ ΦK is divisible or multipliable, let’s assume that a is multipliable and describe

Ua and U2a. Let a′, ã′ ∈ ΦE be roots that equal a when restricted to S such that a′ + ã′ ∈ ΦE .
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a′ + ã′ will then equal 2a when restricted to S. G±a is then isomorphic to ResEa′+ã′/K (SU3),

where SU3 is the special unitary group over Ea′+ã′ defined by the Hermitian form h : (x, y, z) 7→

σ(x)z + σ(y)y + σ(z)x on E3
a′ with σ the nontrivial element in Gal(Ea′/Ea′+ã′). To simplify

notation, write L = Ea′ = Eã′ , L2 = Ea′+ã′ . Following [3], define the subset H0(L,L2) of L×L

by

H0(L,L2) = {(c, d) ∈ L× L : d+ σ(d) = σ(c)c} .

Viewing L × L as a four dimension vector space over L2, and considering the corre-

sponding scheme over L2, we can view H0(L,L2) as a closed subscheme of L×L over L2, which

we will again denote by H0(L,L2). Then there exists an L2-isomorphism µ : H0(L,L2) → U+

given by

(c, d) 7→


1 −σ(u) −v

0 1 u

0 0 1

 .

Using this isomorphism, we can transfer the group structure of U+ to H0(L,L2) and thus

turn the latter into a group scheme over L2. Let H(L,L2) denote the restriction of scalars

ResL2/KH0(L,L2). Then, identifying G±a with ResEa′+ã′SU3, we obtain an isomorphism

xa : π ◦ ResEa′+ã′/Kµ : H(L,L2) Ua
∼= ,

which we call the parametrization of Ua.

The root subgroup U2a corresponding to 2a is the subgroup of Ua given by the image

of xa(0, d). Hence Ua(K) is identified with the group of elements in Ea′ of trace zero with

respect to the quadratic extension E′a/Ea′+ã′ , which we denote by E0
a′ .

Using the parametrization xa, we define the valuation ϕa of Ua(K) and ϕ2a of U2a(K)

by

ϕa(xa(c, d)) =
1

2
val(d),

ϕ2a(xa(0, d)) = val(d).
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1.3.4 Affine Roots

Again, for simplicity, assume that G is quasisplit. Let A = A(S,K) be the apartment

corresponding to the maximal split torus S of G is an affine subspace ofX•(S)⊗ZR by the coroots

of G. The apartment A can be defined as correponding to all valuations of (T(K),Ua(K)a∈Φ)

in the sense of [2, Section 6.2] that are equipolent to the ones constructed in the previous section

1.3.3. In particular, the valuation defined in 1.3.3 corresponds to a special point in A that we

denote by x0. Then the set of affine roots Φaf on A consists of the affine functions on A given

by

Φaf = {y 7→ a(y − x0) + γ′ : a ∈ Φ, γ′ ∈ Γ′a} ,

where

Γ′a = {ϕa(u) : u ∈ Ua − {1}, ϕa(u) = sup(ϕa(uU2a))}.

For a more explicit definition of Γ′a, we do the following. Let a be a multipliable root

with a′ ∈ ΦE a root that equals a when restricted to S. Define

(Ea′)
0 =

{
u ∈ Ea′ : TrEa′/Ea′+ã′ (u) = 0

}
,

(Ea′)
1 =

{
u ∈ Ea′ : TrEa′/Ea′+ã′ (u) = 1

}
,

(Ea′)
1
max =

{
u ∈ Ea′ : val(u) = sup{val(v) : v ∈ (Ea′)

1}
}
.

By Bruhat-Tits [3, 4.2.20, 4.2.21], the set (Ea′) is nonempty, and, with λ any element

of (Ea′)
1
max and a taken to be multipliable, we have

Γ′a =
1

2
val(λ) + val(Ea′ − {0}),

Γ′2a = val((Ea′)0 = {0}) = val(Ea′ − {0})− 2 · Γ′a.

For being neither multipliable nor divisible and a′ ∈ ΦE a root that equals a when

restricted to S, we have

Γ′a = val(Ea′ − {0}).
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1.3.5 Moy-Prasad filtration

As before, let G be a connected seimisimple, quasisplit group defined over K. Let

OK be its ring of integers, and $K a uniformizer. Let S be a K-split maximal torus. Let

T := ZG(S) be a maximal torus defined over K. Let Knr be the maximal unramified extension

of K, and let E be the splitting field of T.

Bruhat and Tits [2, 3] associated to each point x in the Bruhat-Tits building B(G) =

B(G(K)) a parahoric group scheme over OK , which we denote by Gx, whose generic fiber is

isomorphic to G. We recall the filtration of Gx := Gx(OK) introduced by Moy and Prasad in

[12,13].

Define T0 = T(K) ∩Gx(OK). Then T0 is a subgroup of finite order in the maximal

bounded subgroup

{t ∈ T(K) : val(χ(t)) = 0 for all χ ∈ X•(T)}

of T(K). For every positive r ∈ R, define

Tr = {t ∈ T0 : val(χ(t)− 1) ≥ r for all χ ∈ X•(T)}.

For every affine root ψ ∈ Φaf, we denote by ψ̇ its gradient and define the subgroup Uψ

of Uψ̇(K) by

Uψ =
{
u ∈ Uψ̇(K) : u = 1 or ϕψ̇(u) ≥ ψ(x0)

}
.

Then the Moy-Prasad filtration subgroups of Gx := Gx,0 are given by

Gx,r = 〈Tr, Uψ : ψ ∈ Φaf, ψ(x) ≥ r〉 for r ≥ 0,

Gx,r+ =
⋃
s>r

Gx,s.

Remark 12. If G isn’t quasisplit over K, one can extend to the Knr-points of the group, yielding

a quasisplit group, and define the filtration from there. Then, if Γ = Gal(Knr/K), we have the

identification

B(G(Knr))Γ = B(G(K)).
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One then defines

(G(Knr)x,r)
Γ = G(K)x,r.

We will now state some important properties of Moy-Prasad filtration.

Proposition 13. For every x ∈ B(G), and every non-negative r ∈ R, Gx,r is a normal subgroup

of Gx. This forms an exhaustive filtration of Gx by normal subgroups.

Proposition 14. Let G = G(K) be an n-dimensional group over K. Define the special fiber

Ḡx = Gx/Fq . Then Ḡx has dimension n by ftatness of parahoric group schemes. One has

Ḡx(Fq) = Gx(Fq) = Gx,0/Gx,1.

Define M̄ as the Levi quotient of Ḡx. One has

M̄x(Fq) = Gx,0/Gx,0+.

Similarly, let Ūx be the unipotent radical of Gx. Then

Ūx(Fq) = Gx,0+/Gx,1.

Proposition 15. The system of filtration is G-equivariant, i.e., if g ∈ G, then for all x, r as

above, gGx,rg−1 = Ggx,r.

Definition 16. An open compact subgroup H of G is nice if, for any smooth representation

(π, V ) of G generated by its H-fixed vectors, any subquotient of V is generated by its H-fixed

vectors.

Proposition 17. [1, Prop. 5.2] For every x ∈ B(G) and r > 0 the Moy-Prasad group Gx,r is

nice.

Proposition 18. [1, Prop. 3.1] Let x, y ∈ B(G) and z be a point on the geodesic connecting x

and y. If r > 0 then

Gz,r ⊆ Gx,rGy,r.

We finish with a warning about Moy-Prasad filtrations.
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Remark 19. It is not so clear that the Moy-Prasad filtrations are the most natural – and the

best – filtrations to use in general. There exist many other filtration on parahoric subgroups.

Notably, Yu [28] points out some problem when G is a group that does not split over a tamely

extension.

1.3.6 Depths of representations

Let (π, V ) be an admissible irreducible representation of G. Moy and Prasad [12] define

the depth of (π, V ), labeled %(π) as the smallest depth r such that for some point x ∈ B(G),

V Gx,r+ 6= {0}.

Moy and Prasad [13, Prop. 6.6] show the method of constructing all depth-zero su-

percuspidal representations of a reductive group G. We briefly review this method. Let x be

a vertex in X = B(G). Consider the group M̄x = M̄x(Fq) := Gx,0/Gx,0+. This group is the

Fq-points of some reductive group. Take an irreducible cuspidal representation (χ,W ) of M̄x,

and inflate this representation to Gx = Gx,0. Then compactly inducing this representation to

G yields an irreducible supercuspidal representation (π, V ).

V ∼= c-IndGGx(InfGx
M̄x

(W )).

In this paper, we classify minimal-positive-depth representations for groups of relative

rank one. That is, we consider representations (π, V ) of G whose depth r = %(π) is the smallest

possible positive number. This depth r will always be a rational number. This class of repre-

sentations was studied by Gross, Reeder, and Yu [9,18], and are known as simple supercuspidals

[9], and more generally, epipelagic representations [18].
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Chapter 2

Sheaves on trees

Let G be a group acting on a tree X, and let S be a G-equivariant sheaf of vector

spaces on X. Its compactly supported cohomology is a representation of G. Assume X is now

locally finite. Weissman [26, Thm. 2.4] proves that if H0
c (X,S) is an irreducible representation

of G, then H0
c (X,S) is isomorphic to an irreducible representation induced from the stabilizer

of vertex or edge of X.

Furthermore, if G is a reductive group over a local fieldK, and (π, V ) is a supercuspidal

representation of G = G(K), then Schneider and Stuhler [20, IV.4.17] construct an isomorphism

V ∼= H0
c (X,S(e)) for a particular G-equivariant sheaf S(e) depending on the depth of (π, V ). As

an immediate consequence to [26, Thm. 2.4] and [20, IV.4.17], Weissman arrives at a Corollary

[26, Cor. 2.5] that when G has relative rank 1, every irreducible supercuspidal representation

arises by induction from a compact-mod-center subgroup.

In this chapter, we will touch on the theory of sheaves on trees used by Weissman. We

will then turn to Bestvina-Savin [1] to construct an equivariant contraction of tree, and then

will prove a similar statement to [20, IV.4.17] in the case where X = B(G) is a tree and (π, V )

is a supercuspidal irreducible representation of G of minimal positive depth. This proof will use

cosheaves rather than sheaves, but one can easily translate between the two languages to arrive

at the necessary results needed for [26, Cor. 2.5]. These results are essential for this thesis,

where we provide a construction for, and prove that all minimal-positive-depth supercuspidal

representations arise via compact induction from an Iwahori subgroup.
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2.1 Notation and conventions

In this section, we closely follow Weissman [26]. Let X be a tree with vertex set X0

and edge set X1. If v ∈ X0 and e ∈ X1, then we write v < e to mean that v is an endpoint of e.

Definition 20. Fixing a field k, a sheaf on X will mean a cellular sheaf of k-vector spaces on

X. Such a sheaf consists of k-vector spaces Sv and Se for every vertex v ∈ X0 and edge e ∈ X1,

respectively. Such sheaves are equipped with linear maps

Resv,e : Sv → Se

for all v < e. Resv,e are called restriction maps, and the vector spaces Sv and Se are called the

stalks of S.

Definition 21. A cosheaf on X will mean a cellular cosheaf of k-vector spaces on X. Such

a cosheaf consists of k-vector spaces Ŝv and Ŝe for every vertex v ∈ X0 and edge e ∈ X1,

respectively. Cosheaves are equipped with linear maps

Core,v : Ŝe → Ŝv

for all v < e. Core,v are called corestriction maps, and the vector spaces Ŝv and Ŝe are called

the stalks of Ŝ

Definition 22. Let G be a group acting on X. A G-equivariant structure on a sheaf (S,Res)

consists of linear maps

ηg,v : Sv → Sgv, ηg,e : Se → Sge

for all g ∈ G, v ∈ X0, e ∈ X1, satisfying the axioms:

• For all v ∈ X0, e ∈ X1, the linear maps η1,v and η1,e are the identity.

• For all g, h ∈ G v ∈ X0, and e ∈ X1, ηg,hv ◦ ηh,v = ηgh,v and ηg,he ◦ ηh,e = ηgh,e.

• For all g ∈ G, and v < e, we have Resgv,ge ◦ηg,v = ηg,e ◦ Resv,e.

A G-equivariant sheaf on X will mean a sheaf (S,Res) endowed with a G-equivariant

structure.
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Definition 23. Let G be a group acting on X. A G-equivariant structure on a cosheaf (Ŝ,Cor)

consists of linear maps

ηg,v : Ŝv → Ŝgv, ηg,e : Ŝe → Ŝge

for all g ∈ G, v ∈ X0, e ∈ X1, satisfying the axioms:

• For all v ∈ X0, e ∈ X1, the linear maps η1,v and η1,e are the identity.

• For all g, h ∈ G v ∈ X0, and e ∈ X1, ηg,hv ◦ ηh,v = ηgh,v and ηg,he ◦ ηh,e = ηgh,e.

• For all g ∈ G, and v < e, we have Corge,gv ◦ηg,e = ηg,v ◦ Core,v.

A G-equivariant cosheaf on X will mean a cosheaf (Ŝ,Cor) endowed with a G-equivariant

structure.

Fix a vertex v0 ∈ X0 as a base point. We use v0 to fix an orientation on the tree

as follows. Let xe, ye < e be the vertices of an edge e ∈ X1. Label xe and ye such that

dist(xe, v0) < dist(ye, v0), where dist(x, y) is the unique distance number of edges in the unique

simple path from x to y. We fix the orientation or(xe, e) = 1, or(ye, e) = −1. We say with this

orientation that every edge of X is oriented towards v0.

Fix a sheaf (S,Res). If v ∈ X0, s ∈ Sv, then we define

ds =
∑
e>v

or(v, e) · Resv,e(s) ∈
⊕
e>v

Se.

The compactly-supported cohomology of S is then computed by complex

0→
⊕
v∈X0

Sv
d−→
⊕
e∈X1

Se → 0.

Thus, H0
c (X,S) = Ker d, H1

c (X,S) = Coker d. When (S,Res) is G-equivariant, the complex

above and its cohomology inherit actions of G. In particular Hi
c(X,S) is a representation of G

on a k-vector space for i = 0, 1.

Similarly, fixing a cosheaf (Ŝ,Cor), for e ∈ X1, s ∈ Ŝe, we define

d̂s =
∑
v<e

or(v, e) · Corv,e(e) ∈
⊕
v<e

Ŝv.
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The homology of Ŝ is computed by the complex

0→
⊕
e∈X1

Ŝe
d̂−→

⊕
v∈X(0)

Ŝv → 0.

Thus, H0(X, Ŝ) = Coker d̂, H1(X, Ŝ) = Ker d̂. When (Ŝ,Cor) is G-equivariant, the complex

above and its homology inherit actions of G. In particular Hi(X, Ŝ) is a representation of G on

a k-vector space for i = 0, 1.

For more details on theory of cellular sheaves and cosheaves, refer to Justin Curry’s

thesis [5].

2.2 Weissman’s induction theorem

Suppose that S is a G-equivariant sheaf on X. We define its 0-rank to be the cardinal

number

Rank0(S) =
∑

G·v∈G\X(0)

dim(Sv).

One sees that if G\X0 is finite, and Sv has finite-dimensional stalks, then Rank0(S)

will be finite.

Theorem 24. [26, Thm. 2.4] Assume that Rank0(S) is finite. If H0
c (X,S) = 0 or H0

c (X,S)

is an irreducible representation of G, then H0
c (X,S) is isomorphic to a representation induced

from the stabilizer of a vertex or edge of X.

Let G be a reductive group over a nonarchimedean local field K. Let G = G(K).

(π, V ) be an irreducible supercuspidal representation of G. Recall that the reduced Bruhat-

Tits building B(G) is a polysimplicial complex on which G acts [2, 3]. Schneider and Stuhler

[20, IV.1] construct a G-equivariant sheaf S on B(G), with finite-dimensional stalks, such that

V ∼= H0
c (X,S) [20, IV.4.17].

Combining [20, IV.4.17] and Theorem 24, Weissman arrives at the corollary:

Corollary 25. [26, Cor. 2.5] Let G be a reductive group over a nonarchimedean local field

K, whose derived subgroup has relative rank one. Let G = G(K). Then every irreducible
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supercuspidal representation of G is isomorphic to c-IndGH(σ) for some compact-mod-center open

subgroup H ⊂ G and some irreducible representation (σ,W ) of H.

In his proof, Weissman uses results of Schneider-Stuhler as a black box; as a result he

is not able to say very much about the inducing data (σ,W ) for supercuspidals. In what follows,

we reprove a foundational result of Schneider-Stuhler in some simple cases, which allows us to

reprove the compact induction theorem and explicitly describe the resulting supercuspidals.

2.3 Schneider-Stuhler: Filtrations and cosheaves

Let G be the K-rational points of a reductive group G defined over K. Schneider and

Stuhler [20, I.2] develop their own filtration of parahorics U (e)
σ attached to the reduced Bruhat-

Tits building X := B(G) for all facets σ ⊆ X. Unlike the Moy-Prasad filtration [12, 13], this

filtration is constant on all facets of the building. To each smooth representation (π, V ) of G,

Schneider and Stuhler [20, II.2] construct a G-equivariant cosheaf Ŝ(e) with stalks Ŝ(e)
σ
∼= V U

(e)
σ .

For the remainder of the section, assume that G is a group of relative rank one, so X

is a tree. For convenience, we would like to use Moy-Prasad filtrations in place of Schneider-

Stuhler filtrations. One can do so by working with a refined building. For every r ≥ 0, Moy and

Prasad attach a subgroup Gx,r such that Gx := Gx,0 is the parahoric subgroup of G attached to

x. Let Gx,r+ =
⋃
s>r

Gx,s. For all rational numbers r > 0, we can refine X by adding vertices at

certain points along edges such that the function x 7→ Gx,r+ is constant on refined facets. For

example, when G = SL2(K), and we fix r to be any half-integer, then by adding a vertex at

the midpoint of each edge in X, then the function x 7→ Gx,r+ is constant on edges. A general

construction exists for any Bruhat-Tits building X of rank n.

For rank one groups, let c/d be the minimal-positive depth that can occur for a smooth

representation of G. Then dividing each edge into d components will be sufficient. To help

visualize this phenomenon, here is the Moy-Prasad-DeBacker diagram for SUL/K3 (h), where

L/K is an unramified quadratic extension. Here, x, y are vertices and z1, z2 lie on edges in

the building, but z1 and z2 are vertices in the refined building. In this diagram, the horizontal

axis corresponds to points in an apartment of B(SU
L/K
3 ), and the vertical axis corresponds to

depths. Take a point z in the apartment, and move vertically upward; whenever we pass a line,
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x yz2z1

·

r = 1

r = 2

Figure 2.1: The Moy-Prasad-DeBacker diagram of SUL/K3 (h) unramified

this represents a jump in the Moy-Prasad filtration for the Gz parahoric subgroup. Note that

this trisection of edges makes the function z 7→ Gz,r constant for any z on an edge. We will

revisit these diagrams in more detail for other relative rank 1 groups in Chapter 3.

We will now define an adaptation of the Schneider-Stuhler cosheaf Ŝ(r) := Ŝ, where

r ≥ 0, is fixed, using the Moy-Prasad filtration and our subdivision of X.

Definition 26. Let (π, V ) be a smooth irreducible representation of G. Define the cellular

cosheaf Ŝ by the stalks

Ŝx = V Gx,r+ and Ŝe = V Ge,r+

for vertices x and edges e. As e 7→ Ge,r+ is constant on the refined tree, Ŝe is well-defined.

Furthermore, Gx,r+ ⊆ Ge,r+ whenever x < e. Thus we define corestriction maps by inclusion

Core,x : Ŝe → Ŝx.

Definition 27. One similarly defines the cellular sheaf S(r) := S, with stalks

Sx = V Gx,r+ and Se = V Ge,r+

for vertices x and edges e. As e 7→ Ge,r+ is constant on our refined tree, Se is well-defined.

Furthermore, Gx,r+ ⊆ Ge,r+ whenever x < e. Thus we define restriction maps by projecting
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onto invariants

Resx,e : Sx → Se.

Remark 28. Let (π, V ) be a smooth irreducible representation of G, we see that in this setup

that the stalks of S and Ŝ agree. However, Schneider and Stuhler prove that the cosheaf provides

a homological resolution of V , for all irreducible representations V . That is, V is recovered in

H0(X, Ŝ) and the higher homologies vanish. But, they prove that the cohomology of the sheaf

Hj
c (X,S) is nonzero in degree 0 or 1, where it recovers V . The degree of the cohomology depends

on whether the irreducible is supercuspidal or not.

2.4 Contractions of Bruhat-Tits trees

Let G be a reductive group over a nonarchimedean local field K, whose derived sub-

group has relative rank one. Let G = G(K). Then X := B(G) is a tree.

Fix a rational number r ≥ 0, and refine X so that the function x 7→ Gx,r+ is constant

on refined facets. Let Ci(X) be the free abelian group with basis consisting of the i-dimensional

facets of X. Let C−1(X) = Z. Fix an orientation on X. Then C•(X) is realized as the complex

0 C1(X) C0(X) Z 0∂ Σ ,

where for an edge e ∈ X1, ∂e =
∑
v<e

or(v, e)v. Σ is the sum of the coefficients map. This sequence

exact because H0(X) = Z and H1(X) = 0 when X is a tree.

Let (π, V ) be a smooth irreducible representation of G of depth r. We tensor the above

exact complex with the vector space V , yielding the exact sequence

0 C1(X)⊗Z V C0(X)⊗Z V V 0∂ Σ .

Let Ŝ be the associated cosheaf of (π, V ). The above complex has a subcomplex,

0 C1(X, Ŝ) C0(X, Ŝ) V 0Σ ,
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or equivalently,

0
⊕
e∈X1

Ŝe
⊕
x∈X0

Ŝx V 0.Σ

The goal of this section is to prove

Theorem 29. [20, II.3.1],[1, Cor. 5.3] Let (π, V ) be a smooth irreducible representation of G of

depth r, and let Ŝ be the associated cosheaf. Then the resolution

0 C1(X, Ŝ) C0(X, Ŝ) V 0

is exact. In other words, H0(X, Ŝ) = V, H1(X, Ŝ) = 0.

Bestvina and Savin [1, Cor. 5.3] prove this result, by showing how it follows from the

existence of a family of equivariant contractions of the Bruhat-Tits building. These contractions

are a bit mysterious in general, but for trees we give a direct construction.

Definition 30. A contraction c of C•(X) based at x is a sequence of homomorphisms

ci : Ci(X)→ Ci+1(X), for i = −1, 0, 1, . . .

such that c−1(1) = x and ci−1∂ + ∂ci = Id.

Since we take X to be a tree, we have Ci(X) = 0 for i 6∈ {−1, 0, 1}. Thus, a contraction

of X based at x is defined by a single map

c : C0(X)→ C1(X)

with conditions

c∂e = e and x+ ∂cy = y,

for all edges e and vertices y.

Proposition 31. Let X be any tree, and let x be any vertex of X. Assume that every edge of

X is oriented towards x. For any vertex y ∈ X, let P (x, y) denote the set of edges on the unique

path from x to y. Define a Z-linear map c : C0(X)→ C1(X) by
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c(y) = −
∑

e∈P (x,y)

e.

Then c defines a contraction of X based at x.

Proof. First we prove that c∂e = e for all edges e. Let v and v′ be the vertices adjoined by the

edge e, with v closer to x. Then ∂e = v − v′ We have

c∂e = c(v − v′) = c(v)− c(v′) = −
∑

e′∈P (x,v)

e′ +
∑

e′∈P (x,v′)

e′ = e.

Second, we prove that x+ ∂cy = y for all vertices y. Let v0, v1, . . . , vk be the vertices

along the path from x to y, with x = v0 and y = vk. Let ei be the edge joining vi−1 to vi, for

1 ≤ i ≤ k. Thus

c(y) = −
k∑
i=1

ei.

For each ei, ∂ei = vi − vi+1. Thus,

x+ ∂c(y) = v0 + ∂c(vk) = x− (v0 − v1 + v1 − v2 + · · · − vk−1 + vk−1 − vk)

= v0 − (v0 − vk) = vk = y.

Thus we have established that the map c(y) = −
∑

e∈P (x,y)

e defines a contraction on X

based at x.

Proposition 32. Keep the notation from the previous theorem, and now suppose that a group

G acts on the tree X, and let Gx be the stabilizer of the vertex x. Then the contraction c based

at x is Gx-equivariant, i.e.,

c−1(g · n) = g · c−1(n) for all n ∈ Z, where Z has the trivial Gx-action

c(g · y) = g · c(y) for all vertices y.
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Proof. We see that as Gx fixes x,

c−1(g · 1) = c−1(1) = x = g · x.

Thus the first equation is satisfied.

Let P (x, y) be the set of edges along the path from a vertex x to y. Then

c(g · y) = −
∑

e∈P (g·x,g·y)

e = −
∑

e∈P (x,g·y)

e = −
∑

e∈P (v,vk)

g · e = g · c(y).

Thus, we have established that c is Gx-equivariant.

Remark 33. Let c be the contraction we constructed above based at x with σ a vertex in X.

Using Bestiva-Savin’s notions, we write c(σ) =
∑
τ∈X1

c(σ, τ)τ for constants c(σ, τ) ∈ Z. In our

contraction, we found that c(σ, τ) = −1 when τ is an edge in the path from x to σ, and c(σ, τ) = 0

otherwise.

Using our contraction c(y) = −
∑

e∈P (x,y)

e, we have reproven [1, Prop. 2.5] in an explicit

manner for trees.

Proposition 34. [1, Prop. 2.5] For every vertex x in the refined building X, there exists a

Gx-invariant contraction c such that

(1) c is Gx-equivariant.

(2) if c(σ, τ) 6= 0 then τ lies on the path connecting the vertex x to σ.

Fix a non-negative rational number r, and refine X in such a way that x 7→ Gx,r+ is

constant for all points x along an edge. Let (π, V ) be a smooth representation of G. For any

facet σ ⊂ X with interior point x, let Vσ = V Gx,r+ . The complex C•(X)⊗Z V admits a natural

representation of G defined by g(σ ⊗ v) = g(σ) ⊗ g(v), for all g ∈ G. Let C•(X, Ŝ) be the

subcomplex spanned by τ ⊗ v, where v ∈ V Gτ,r+ . The boundary ∂ preserves C•(X, Ŝ) because

V Gσ,r+ ⊆ V Gρ,r+ whenever ρ is in the boundary of σ. The action of G on C•(X)⊗Z V preserves

the subcomplex C•(X, Ŝ).

We are now ready to prove
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Theorem 29. [20, II.3.1],[1, Cor. 5.3] Let (π, V ) be a smooth irreducible representation of G of

depth r, and let Ŝ be the associated cosheaf. Then the resolution

0 C1(X, Ŝ) C0(X, Ŝ) V 0

is exact. In other words, H0(X, Ŝ) = V, H1(X, Ŝ) = 0.

Proof. We use the proof of Bestvina-Savin. It suffices to prove that the complex is exact in

every Bernstein component. The complex C•(X, Ŝ) is a direct sum of G-modules isomorphic to

c-IndGGτ (V Gτ,r+), where τ is a facet in the refined building – an edge or a vertex. This module

is generated by V Gτ,r+ .

We now recall Definition 16 that an open compact subgroup H ⊂ G is called nice if for

any smooth representation V of G by generated by its H-fixed vectors, any subquotient of V is

generated by its H-fixed vectors. Recall further that for any x ∈ X and r > 0 the Moy-Prasad

subgroup Gx,r is nice 17.

Let x ∈ τ̄ . Since Gx,r+ is nice, and Gx,r+ ⊆ Gτ,r+, it follows that c-IndGGτ (V Gτ,r+)

is generated by Gx,r+-fixed vectors. Thus any Bernstein summand of C•(X, Ŝ) is generated by

Gx,r+-fixed vectors, for some vertex x and exactness can be checked by passing to Gx,r+-fixed

vectors.

Bestvina and Savin [1, Thm 4.1] show that whenever x ∈ X is a vertex and c is an

x-based contraction of C•(X) satisfying (1) and (2) in Proposition 34, then C•(X, Ŝ)Gx,r+ , given

by

0 C1(X, Ŝ)Gx,r+ C0(X, Ŝ)Gx,r+ V Gx,r+ 0

is exact. Thus we have established the exactness of

0 C1(X, Ŝ) C0(X, Ŝ) V 0, ,

giving H0(X, Ŝ) = V, H1(X, Ŝ) = 0.
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2.5 Critical depths

Definition 35. A positive real number r is called a critical depth if the following condition is

satisfied. Let z be a point in X such that Gz,r 6= Gz,r+. Then there exists an open neighborhood

U of z in X such that if y 6= z and y ∈ U , then Gy,r = Gy,r+.

In other words, all jump points at depth r are isolated. Consequently, if z ∈ X such

that Gz,r 6= Gz,r+ for a critical depth r, then z is a vertex in the refined tree.

Proposition 36. Suppose that (π, V ) is an irreducible representation of G of critical depth r.

Then there exists a vertex z of the refined tree such that V ∼= c-IndGGz (V
Gz,r+).

Proof. The homological resolution

0 C1(X, Ŝ) C0(X, Ŝ) V 0

can be rewritten as

0
⊕
e∈X1

Ŝe
⊕
x∈X0

Ŝx V 0.Σ

Or equivalently,

0
⊕
e∈X1

V Ge,r+
⊕
x∈X0

V Gx,r+ V 0.Σ

As r is a critical depth, V Ge,r+ = 0 for all edges e in the refined tree X. Thus exactness

yields an isomorphism of G-representations

⊕
x∈X0

V Gx,r → V.

Recall that G acts on X0 with a finite number of orbits, say G · ν1, . . . G · νk for some k ∈ N.

Then ⊕
x∈X0

V Gx,r+ ∼=
⊕

x∈G·ν1

V Gν1,r+ ⊕ · · · ⊕
⊕

x∈G·νk

V Gνk,r+ .
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As V is irreducible, without loss of generality, and setting z = ν1, we have

V ∼=
⊕
x∈G·z

V Gz,r+ ∼=
⊕

ḡ∈G/Gz

V Gg·z,r+ ∼= c-IndGGz (V
Gz,r+),

thus completing the proof.

Remark 37. When z is not a vertex of the original Bruhat-Tits tree, the group Gz is an Iwahori

subgroup.
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Chapter 3

Moy-Prasad-DeBacker Facets

In this chapter, we will use what we call Moy-Prasad-DeBacker Facets, a diagram

attributed to Stephen DeBacker [6] to visualize the depths of jumps in rank 1 buildings. Using

Moy-Prasad-DeBacker facets, we will see the unique point z along an edge whose first positive

jump in the Moy-Prasad filtration occurs at depth r – which will turn out to be the lowest

positive depth a G-representation can be to be supercuspidal. Furthermore, these diagrams we

will help provide us explicit descriptions for the group M̄z = Gz,0/Gz,0+ and vector space Vz =

Gz,r/Gz,r+. These computations will allow us to construct depth-r irreducible supercuspidal

representations; we reserve these constructions for Chapter 5.

As before, let K denote a nonarchimedean local local field. Let OK be its ring of

integers and pK = $KOK the maximal ideal of OK . In Chapter 1, we tabulated and provided

descriptions for all semisimple groups over K of relative rank one.

In this chapter, we provide explicit constructions for SL2(K), SL2(D), SU
L/K
3 (h) and

SU
E/K
3 (h) where D is a central simple algebra over K, and L/K (resp. E/K) is an unramified

(resp. ramified) quadratic field extension. We will briefly touch upon the theory used to apply

similar constructions for the remaining groups of relative rank one.
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3.1 SL2(K) Moy-Prasad filtration and quotients

Let G = G(K) = SL2(K). G is split over K and has a maximal torus S such that

S := S(K) =

{
h(t) =

t
t−1

 : t ∈ K×
}
.

With respect to this torus, G has root system Φ = {±a}, with root subgroups

Ua(K) =

u+(x) =

1 x

1

 : x ∈ K

 ,

U−a(K) =

u−(x) =

1

x 1

 : x ∈ K

 .

3.1.1 Affine roots and Root subgroup filtration

Define Ua+γ = {u+(x) : val(x) ≥ γ}, and similarly U−a+γ = {u−(x) : val(x) ≥ γ}.

We say that ±a + γ is an affine root if U±a+γ+ ( U±a+γ . Since U±a+γ+ 6= U±a+γ precisely

when γ ∈ val(K), one finds that ±a+ γ is an affine root if and only if γ is an integer.

Thus, we have affine root system Φaf = {±a+ γ : γ ∈ Z}.

Let γ ∈ Z. One finds that Ua+γ/Ua+γ+
∼=

0 Fq

0 0

 and U−a+γ/U−a+γ
∼=

 0 0

Fq 0

.

Both of these quotients are one-dimensional vector space over the residue field Fq of K.

3.1.2 Filtration of the torus

Define

T0 :=

h(t) =

t
t−1

 : t ∈ O×K

 ,

the maximal compact subgroup of S. We define a filtration on the T0 by

Tr :=

h(t) =

t
t−1

 ∈ T0 : val(t− 1) ≥ r

 .
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Tr 6= Tr+ if and only if r ∈ val(K). One finds that

T0/T1
∼=


t

t−1

 : t ∈ F×q

 ,

Tr/Tr+1
∼=


t

−t

 : t ∈ (Fq,+)

 .

T0/T1 is the Fq-points of a reductive group, isomorphic to GL1(Fq), and Tr/Tr+1 for r > 0 is a

1-dimensional Fq-vector space.

3.1.3 Special points and their filtration subgroups

Let x ∈ B(G) be a vertex in the standard apartment. One can make x a base point in

the apartment A(S,K) so that a(x) = 0. One can then choose y ∈ A(S,K), an adjacent vertex

to x, so that a(y) = val($K) = 1.

Now

Gx := Gx,0 = 〈T0, Ua+0, U−a+0〉 ∩G,

Gx,0+ = Gx,1 = 〈T1, Ua+1, U−a+1〉 ∩G.

Similarly,

Gy := Gy,0 = 〈T0, Ua−1, U−a+1〉 ∩G,

Gy,0+ = Gy,1 = 〈T1, Ua+0, U−a+2〉 ∩G.

Taking z to be the midpoint of the edge adjoining x and y, one finds,

Gz := Gz,0 = Gx ∩Gy = 〈T0, Ua+0, U−a+1〉 ∩G,

Gz,0+ = Gz, 12 = 〈T1, Ua+0, U−a+1〉 ∩G,

Gz, 12 + = Gz,1 = 〈T1, Ua+1, U−a+2〉 ∩G.
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3.1.4 Moy-Prasad-DeBacker Facets

Before explaining the figure in the next section, which is a Moy-Prasad-DeBacker facet

for the group SL2(K), we describe general Moy-Prasad-DeBacker facets for groups of relative

rank one. For shorthand notation, we will write MPD facet in place of Moy-Prasad-DeBacker

facet.

In MPD facet diagrams, the horizontal axis represents points along an apartment.

White circles and squares represent vertices in the Bruhat-Tits building. Depending on the

group G, under the action of the building on G, there are one or two orbits of vertices. Circles

and squares distinguish these orbits, when applicable. Each vertex is a zero of an affine root;

ones draws black lines emitting from each vertex of slope equal to the gradient of such affine

roots. In the case of relative rank one groups, the possible slopes are ±1 and ±2 as a group of

relative rank one has roots Φ = {±a,±2a} or Φ = {±a}.

Moving up and down vertically represents a change of depth. Thus, Gx,r is visualized

as the point in the diagram with horizontal coordinate x and vertical coordinate r. If (x1, r1)

and (x2, r2) belong to the same facet – gray polyhedron – then this tells us that Gx1,r1 and Gx2,r2

are the same group. As briefly mentioned above, the sloped black lines represent affine roots;

the slope of these lines is the gradient of the corresponding affine root which it represents. The

horizontal black lines represent jumps in the filtration of the torus. If Gx,r1 and Gx,r2 belong

to different facets, then one can find the generators of the group Gx,r2 given the generators of

Gx,r1 by counting the number of lines of each slope which separate the two facets containing

the points (x, r1) and (x, r2). One can do the same for points (x1, r1) and (x2, r2) to compare

Gx1,r1 and Gx2,r2 .

3.1.5 SL2(K) Moy-Prasad-DeBacker facets

Below is the Moy-Prasad-DeBacker diagram for SL2(K). I have labeled points x, y,

and z corresponding to the points in B(G) described earlier in this section.

I have labeled by a green circle, the first positive depth jump of Gz. We see this jump
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r = 1

r = 2

r = 3

x y

r = 1
2

z

×

Figure 3.1: The Moy-Prasad-DeBacker diagram of SL2(K)

occurs at depth 1
2 , and it is a jump in valuation of Ua(K) and U−a(K). Thus,

Ḡz = Gz,0/Gz,0+
∼= GL1(K), Vz = Gz, 12 /Gz,

1
2 +
∼=

 Fq

Fq

 .

3.2 SL2(D) Moy-Prasad Filtration and Quotients

3.2.1 Central simple algebras over K

Let D be central simple algebra of degree d over K. Let OD be its ring of integers,

and let $D be a uniformizing element of D. Let L be a maximal commutative K-subfield of D

which is an unramified Galois extension of K. Then [L : K] = d.

One can write

D = L⊕ L$D ⊕ · · · ⊕ L$d−1
D ,

where $d
D = $K , a uniformizing element of K. For all λ ∈ L, we also have $Lλ$

−1
L = φ(λ) for

some generator φ of Γ = Gal(L/K). Using the L basis of D, write x ∈ D as x =
d−1∑
i=0

xi$
i
d for

xi ∈ L. This L-basis gives an embedding D ↪−→Md(L) of K-algebras, which sends x ∈ D to the
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matrix 

x0 x1 . . . xd−1

φ(xd−1)$K φ(x0) . . . φ(xd−2)

...
...

. . .
...

φd−1(x1)$F φd−1(x2)$D . . . φd−1(x0)


.

Let Nrd : D → K be the determinant map on D with elements of D viewed as matrices

over L. Nrd is known as the reduced norm of D over K.

Let valK be a valuation on K with val($K) = 1. For x ∈ D, let

val(x) :=
1

d
valF (Nrd(x)).

val : D× → 1
dZ is the unique valuation on D extending valK .

3.2.2 SL2(D) tori and root subgroups

Let G be the algebraic group over K whose group of C-rational points (for C a com-

mutative K-algebra) is SL2(D⊗K C). Then G = G(K) = SL2(D⊗KK) = SL2(D). Note G is

non-quasisplit over K, but splits (and quasisplits) over L, as G(L) = SL2(D⊗K L) ∼= SL2d(L).

Let S be the K-split torus of G such that

S = S(K) =

h(s) =

s
s−1

 : s ∈ K×

 .

Let ZG(S) be the centralizer of S in G. Then,

M := ZG(S)(K) =

m(t1, t2) =

t1
t2

 : t1, t2 ∈ D×, Nrd(t1t2) = 1

 .

There exists a maximal torus T defined over K, with T ⊂ ZG(S), such that

T := T(K) =


t1

t2

 : t1, t2 ∈ L×, NL/K(t1t2) = 1

 .
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By extension of scalars

T(L) ∼=


~t1

~t2

 : ~t1,~t2 ∈ (L×)d and
d∏
i=1

~t1~t2 = 1

 .

The embedding T(K) ↪−→ T(L) sends a pair (t1, t2) to a pair of vectors (~t1, ~t2) via

t1 7→ (t1, φ(t1), . . . , φd−1(t1)), t2 7→ (t2, φ(t2), . . . , φd−1(t2)).

Here φ denotes Frobenius, i.e., a generator of Gal(L/K).

With respect to S, G has the root system Φ = {±a}, with root subgroups

Ua(K) =

u+(x) =

1 x

1

 : x ∈ D

 ,

U−a(K) =

u−(x) =

1

x 1

 : x ∈ D

 .

3.2.3 Affine roots and root subgroup filtrations

Recall that we extend the valuation valK from K to D, so that val(K) = Z yields

val(D) = 1
dZ. That is, val($D) = 1

d .

Just as in the SL2(K) case, we define

Ua+γ = {u+(x) : val(x) ≥ γ}, U−a+γ = {u−(x) : val(x) ≥ γ}.

One finds that ±a + γ is an affine root if U±a+γ+ ( U±a+γ . As U±a+γ+ 6= U±a+γ precisely

when γ ∈ 1
dZ, one finds that Φaf = {±a+ 1

dZ}.

3.2.4 Filtrations of the centralizer of the split torus

G isn’t quasisplit over K, but it becomes split (and quasisplit) over L. Recall that one

can define the Moy-Prasad filtration subgroups for G(L) = SL2(D ⊗K L) ∼= SL2d(L), and one
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has

(G(L)x,r+)Γ = G(K)x,r+

for all x ∈ B(G(L)). These filtration subgroups are provided by Lanksy-Raghuram [11, Section

4]. Note that the filtration will be applied to M = ZG(K), rather than on T = T(K). Let

M0 =
{
m(t1, t2) ∈M : u, v ∈ O×D, Nrd(t1t2) = 1

}
.

We define a filtration on M0 by

Mr := {m(t1, t2) ∈M0 : val(ti − 1) ≥ r} .

One sees Mr 6= Mr+ if and only if r ∈ 1
d . We have a filtration

M0 �M 1
d
�M 2

d
�M 3

d
. . .

with

M0/M 1
d

∼=


t1

t2

 : t1, t2 ∈ F×
qd
, NF

qd
/Fq (t1t2) = 1

 .

3.2.5 Special points and their filtration subgroups

Let x ∈ B(G) be a vertex in the apartment A(S,K) = X•(S) ⊗ R so that a(x) = 0.

One can then choose y ∈ A(S,K), an adjacent vertex to x, so that a(y) = val($D) = 1
d . Now

Gx := Gx,0 = 〈M0, Ua+0, U−a+0〉 ∩G,

Gx,0+ = Gx, 1d = 〈M 1
d
, Ua+ 1

d
, U−a+ 1

d
〉 ∩G,

Gx, 1d+ = Gx, 2d = 〈M 2
d
, Ua+ 2

d
, U−a+ 2

d
〉 ∩G, . . .

Gx, d−1
d + = Gx,1 = 〈M1, Ua+1, U−a+1〉 ∩G.

Similarly,

Gy := Gy,0 = 〈M0, Ua− 1
d
, U−a+ 1

d
〉 ∩G
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Gy,0+ = Gy, 1d = 〈M 1
d
, Ua+0, U−a+ 2

d
〉 ∩G,

Gy, 1d+ = Gy, 2d = 〈M 2
d
, Ua+ 1

d
, U−a+ 3

d
〉 ∩G, . . .

Gy,1 = Gy, d−1
d + = 〈M1, Ua+ d−1

d
, U−a+ d+1

d
〉 ∩G.

One finds that

Gx,0/Gx,0+
∼= Gy,0/Gy,0+

∼=

{
g =

a b

c d

 ∈ GL2(Fqd) : NF
qd
/Fq (det(g)) = 1

}
.

Taking z to be the midpoint of the edge adjoining x and y, one finds,

Gz := Gz,0 = Gx ∩Gy = 〈M0, Ua+0, U−a+ 1
d
〉 ∩G,

Gz,0+ = Gz, 1
2d

= 〈M 1
d
, Ua+0, U−a+ 1

d
〉 ∩G,

Gz, 1
2d+ = Gz, 1d = 〈M 1

d
, Ua+ 1

d
, U−a+ 2

d
〉 ∩G.

This gives us

M̄z = Gz,0/Gz,0+ = M0/M 1
d

=


t1

t2

 : t1, t2 ∈ F×
qd
, NF

qd
/Fq (t1t2) = 1

 =


tn

t−1

 : t, n ∈ F×
qd
, NF

qd
/Fq (n) = 1

 ,

a 2d− 1-dimensional group over Fq.

Vz = Gz, 1
2d
/Gz, 2d+

∼=

 Fqd

Fqd

 ,

a 2d-dimensional vector space over Fq.
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3.2.6 SL2(D) Moy-Prasad-DeBacker facets

r = 1
d

r = 2
d

r = 3
d

x y

r = 1
2d

z

×

Figure 3.2: The Moy-Prasad-DeBacker diagram of SL2(D)

Here is the Moy-Prasad-DeBacker facets diagram for SL2(D). I have labeled points

x, y, and z corresponding to the points in B(G) described earlier in this section. The small

green dot represents Gz, 1
2d
. We will find in Chapter 5 that SL2(D) has depth- 1

2d supercuspidal

representations.

3.3 Unramified SU
L/K
3 (h) – Moy-Prasad filtrations and quo-

tients

Let L/K be an unramified quadratic extension. Denote by OL the ring of integers of

L, and denote by $L a uniformizing element. Let σ be generator of Gal(L/K). If ` ∈ L, let ¯̀

denote the image of ` under σ. Let h : L3 × L3 → K be a Hermitian form with Witt Index 1.

Without loss of generality, we take

h((x1, x2, x3), (y1, y2, y3)) = x̄1y3 + x̄2y2 + x̄3y1.
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Then h corresponds to the Hermitian matrix

H =


1

1

1

 .

Let G = SU
L/K
3 (h). G is then realized as

G =
{
g ∈ GLn(L) : tḡHg = H, and det(g) = 1

}
.

We fix a maximal K-split torus S of G, such that

S := S(K) =

m(s) =


s

1

s−1

 : s ∈ K×

 .

Since G is quasisplit over K, T = ZG(S) is maximal torus of G. Let

T := T(K) =

m(t) =


t

t̄/t

t̄−1

 : t ∈ L×

 .

With respect to S, G has the root system Φ = {±a,±2a}, with root subgroups

Ua(K) =

u+(c, d) =


1 −c̄ d

1 c

1

 : c, d ∈ L, N(c) + Tr(d) = 0

 ,

U2a(K) = {u+(0, d) : Tr(d) = 0} ,

U−a(K) =

u−(c, d) =


1

c 1

d −c̄ 1

 : c, d ∈ L, N(c) + Tr(d) = 0

 ,
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U−2a(K) = {u−(0, d) : Tr(d) = 0} .

3.3.1 Affine roots and root subgroups filtrations

Following [25, Sections 1.16, 3.11], we define δ = sup{val(γ) : Tr(γ) = −1 λ ∈ L}.

Choose a λ ∈ L such that val(λ) = δ and choose a uniformizing element $L of L such that

Tr(λ$L) = 0. Let L◦ = {d ∈ L : d+ d̄ = 0} denote the traceless elements of L.

For general SUL/K3 (h), the set of affine roots is realized as

Φaf =

{
±a+ val(L) +

δ

2

}
∪ {±2a+ val(L◦)} .

We are working in the case where L/K is unramified. It follows that val(L◦) = val(L) =

Z and δ = 0. Thus, the affine roots of G are

Φaf = {±a+ Z} ∪ {±2a+ Z} .

Let γ be an integer. We have affine root subgroups

U±a+γ := {u±(c, d) : val(d) ≥ 2γ} ,

U±2a+γ := {u±(0, d) : val(d) ≥ γ} .

In the unramified setting, val(d) ≥ 2γ implies val(c) ≥ γ.

3.3.2 Filtration of the torus

We define a filtration on the maximal bounded subgroup T0 of T . We set

T0 =
{
m(t) : t ∈ O×L

}
.

For any r ∈ R, let

Tr = {m(t) : val(t− 1) ≥ r} .
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One finds that

T0/T1
∼=




t

t̄/t

t̄−1

 : t ∈ F×q2


∼= F×q2 ,

and for all r > 0,

Tr/Tr+1
∼=




a

ā− a

−ā

 : a ∈ (Fq2 ,+)


∼= (Fq2 ,+).

3.3.3 Special points and their filtration subgroups

Identifying A(S,K) with X•(S) ⊗ R, the root a can be evaluated at the points along

the apartment. One can choose adjacent special points x and y such that

a(x) =
δ

2
= 0, a(y) =

1

2
(val($L + δ)) =

1

2
.

In this setting, x is a hyperspecial point and y is a special point of B(G).

Set z be the barycenter of the alcove adjoining x and y. That is, we take z the unique

satisfying a(z) = [−2a+ 1](z) = 1
3 . One finds,

Gx := Gx,0 = 〈T0, Ua+0, U2a+0, U−a+0, U−2a+0〉 ∩G,

Gx,0+ = Gx,1 = 〈T1, Ua+1, U2a+1, U−a+1, U−2a+1〉 ∩G.

Gy := Gy,0 = 〈T0, Ua+0, U2a−1, U−a+1, U−2a+1〉 ∩G,

Gy,0+ = Gy, 12 = 〈T1, Ua+0, U−2a+0, U−a+1, U−2a+2〉 ∩G,

Gy, 12 + = Gy,1 = 〈T1, Ua+1, U−2a+0, U−a+2, U−2a+2〉 ∩G.

Gz := Gz,0 = Gx ∩Gy = 〈T0 Ua+0, U2a+0, U−a+1, U−2a+1〉 ∩G,

Gz,0+ = Gz, 13 = 〈T1 Ua+0, U2a+0, U−a+1, U−2a+1〉 ∩G,
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Gz, 13 + = Gz, 23 = 〈T1 Ua+1, U2a+0, U−a+1, U−2a+2〉 ∩G.

Gz, 23 + = Gz,1 = 〈T1 Ua+1, U−2a+1, U−a+2, U−2a+2〉 ∩G.

As for some quotients, one finds that

Gx,0/Gx,0+
∼= SU

Fq2/Fq
3 (h),

Gy,0/Gy,0+
∼= U(1, 1)Fq2/Fq (h),

M̄z = Gz,0/Gz,0+
∼= T0/T1

∼=




t

t̄/t

t̄−1

 : t ∈ F×q2


∼= F×q2 ,

Vz = Gz, 13 /Gz,
1
3 +
∼=




−ū

u

v

 : u ∈ Fq2 , v ∈ F◦q2


∼= Fq2 ⊕ Fq,

where F◦q2 =
{
d ∈ Fq2 : d+ d̄ = 0

}
. Here d̄ = dq denotes a Frobenius generator of Gal(Fq2/Fq).

3.3.4 Unramified SU
L/K
3 (h) – Moy-Prasad-DeBacker facets

r = 1

r = 3
2

x yz

×

r = 1
3

Figure 3.3: MPD facet diagram of unramified G = SU
L/K
3 (h)
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One sees that the first non-trivial jump of Gz occurs at depth r = 1
3 , from a jump

in valuation of the Ua(K) and U−2a(K) root subgroups. In Chapter 5, we will study M̄z =

Gz,0/Gz, 13 acting on Vz = Gz, 13 /Gz,
1
3 + to construct depth- 1

3 representations of G.

3.4 Ramified SU
E/K
3 (h) – Moy-Prasad filtrations and quo-

tients

Let E/K be a ramified quadratic extension. Denote by OE the ring of integers of E,

and denote by $E a uniformizing element. Let σ be generator of Gal(E/K). If e ∈ E, let ē

denote the image of k under σ. Let h : E3 × E3 → K be a Hermitian form with Witt Index 1.

Without loss of generality, we take

h((x1, x2, x3), (y1, y2, y3)) = x̄1y3 + x̄2y2 + x̄3y1.

Then h corresponds to the Hermitian matrix

H =


1

1

1

 .

Let G = G(K) = SU
E/K
3 (h). G is then realized as

G =
{
g ∈ GLn(E) : tḡHg = H, and det(g) = 1

}
.

We fix a maximal K-split torus S of G such that

S := S(K) =




s

1

s−1

 : s ∈ K×

 .

G is quasisplit over K, thus T = ZG(S) a maximal torus of G. Let
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T := T(K) =

m(t) =


t

t̄/t

t̄−1

 : t ∈ E×

 .

With respect to S, G has root system Φ = {±a,±2a}, with root subgroups

Ua(K) =

u+(c, d) =


1 −c̄ d

1 c

1

 : c, d ∈ E, N(c) + Tr(d) = 0

 ,

U2a(K) = {u+(0, d) : Tr(d) = 0} ,

U−a(K) =

u−(c, d) =


1

c 1

d −c̄ 1

 : c, d ∈ E, N(c) + Tr(d) = 0

 ,

U−2a(K) = {u−(0, d) : Tr(d) = 0} .

3.4.1 Affine roots and root subgroups filtrations

Following [25, Sections 1.16, 3.11], we define δ = sup {val(γ) : Tr(γ) = −1, λ ∈ E}.

Choose a λ ∈ E such that val(λ) = δ and choose a uniformizing element $E of E such that

Tr(λ$E) = 0. Let E◦ =
{
d ∈ E : d+ d̄ = 0

}
denote the traceless elements of E.

For general SUE/K3 (h), the set of affine roots is realized as

Φaf =

{
±a+ val(E) +

δ

2

}
∪ {±2a+ val(E◦)} .

In the ramified setting, when the residue characteristic p 6= 2, we have δ = 0. When

p = 2, δ < 0. Furthermore, when E/K is ramified, δ /∈ val(E◦) [25, 1.15 (6)].

Thus, when p 6= 2, δ = 0, making 0 /∈ val(E◦). It then follows that val(E◦) = 1
2 + Z.

This gives the set of affine roots when p 6= 2,

Φaf =

{
±a+

1

2
Z
}
∪
{
±2a+

1

2
+ Z

}
.
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Let γ ∈ Z. One has

U±a+ 1
2γ

= {u±(c, d) : val(d) ≥ γ} ,

U±2a+ 1
2 +γ =

{
u±(0, d) : val(d) ≥ 1

2
+ γ

}
.

In this setting, val(d) ≥ γ implies val(c) ≥ 1
2γ.

We now cover the case when p = 2, where δ < 0. As δ /∈ val(E◦), we can write

val(E◦) = 1
2 + δ + Z. Thus,

Φaf =

{
±+

δ

2
+

1

2
Z
}
∪
{
±2a+

1

2
+ δ + Z

}
.

Let γ ∈ Z. Then

U±a+ 1
2 (δ+γ) = {u±(c, d) : val(d) ≥ δ + γ} .

But what does this say about the valuation of c?

Consider U±a− δ2 :=
{
u±(c, d) : c̄c+ d+ d̄ = 0, val(d) ≥ −δ

}
. Let d be taken such

that val(d) = −γ. Such a d has the form

d = $−4δ
E d0,

for some uniformizer $E of E and some d0 satisfying val(d0) = δ, Tr(d0) = −1. We now see

that the requirement of c̄c+ d+ d̄ = 0, using the d from above, gives us

c̄c+$−4δ
E (−1) = 0.

Equivalently,

c̄c = $−4δ
E ,

showing that val(c) ≥ −δ. Similarly, one sees that U±a+ δ
2
gives that requirement that val(d) ≥ δ,

val(c) ≥ 0. One then arrives at,

U±a+ 1
2 (δ+γ) = {u±(c, d) : val(d) ≥ δ + γ}
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implies that val(c) ≥ γ
2 .

As for the ±2a subgroups, we have, like before,

U±2a+ 1
2 +δ+γ =

{
u±(0, d) : val(d) ≥ 1

2
+ δ + γ

}
.

3.4.2 Filtration of the torus

We define a filtration on the maximal bounded subgroup T0 of T . We set

T0 =
{
m(t) : t ∈ O×E

}
.

For any nonnegative r ∈ R, let

Tr = {m(t) : val(t− 1) ≥ r} .

One finds that

T0/T 1
2

∼=




t

t̄/t

t̄−1

 : t ∈ F×q

 =




t

1

t−1

 : t ∈ F×q


∼= F×q ,

and for all r > 0,

Tr/Tr+ 1
2

∼=




a

−2a

a

 : a ∈ (Fq,+)


∼= (Fq,+).

3.4.3 Special points and their filtration subgroups

Identifying A(S,K) with X•(S) ⊗ R, the root a can be evaluated at the points along

the apartment. One can choose adjacent special points x and y such that

a(x) =
δ

2
, a(y) =

1

2
(val($E + δ)) =

1

4
+
δ

2
.

50



In this setting, x and and y are special points of B(G), and neither are hyperspecial.

Set z to be the point on the edge adjoining x and y such that a(z) = 1
6 + δ

2 .

When p 6= 2, we simply have a(x) = 0, a(y) = 1
4 , a(z) = 1

6 . Let’s list some Moy-Prasad

filtration subgroups for the case p 6= 2. Then we will follow with the general case.

Gx := Gx,0 = 〈T0, Ua+0, U2a+ 1
2
, U−a+0, U−2a+ 1

2
〉,

Gx,0+ = Gx, 12 = 〈T 1
2
, Ua+ 1

2
, U2a+ 1

2
, U−a+ 1

2
, U−2a+ 1

2
〉,

Gx, 12 + = Gx,1 = 〈T1, Ua+1, U2a+ 3
2
, U−a+1, U−2a+ 3

2
〉.

Gy := Gy,0 = 〈T0, Ua− 1
2
, U2a− 1

2
, U−a+ 1

2
〉,

Gy,0+ = Gy, 14 = 〈T 1
2
, Ua− 1

2
, U2a+ 1

2
, U−a+ 1

2
, U−2a+ 3

2
〉,

Gy, 14 + = Gy, 12 = 〈T 1
2
, Ua+0, U2a+ 1

2
, U−a+1, U−2a+ 3

2
〉,

Gy, 12 + = Gy, 34 = 〈T1, Ua+0, U2a+ 1
2
, U−a+1, U−2a+ 3

2
〉,

Gy, 34 + = Gy,1 = 〈T1, Ua+ 1
2
, U2a+ 1

2
, U−a+ 3

2
, U−2a+ 3

2
〉.

Gz := Gz,0 = Gx ∩Gy = 〈T0, Ua+0, U2a+ 1
2
, U−a+ 1

2
, U−2a+ 1

2
〉,

Gz,0+ = Gz, 16 = 〈T 1
2
, Ua+0, U2a+ 1

2
, U−a+ 1

2
, U−2a+ 1

2
〉,

Gz, 16 + = Gz, 13 = 〈T 1
2
, Ua+ 1

2
, U2a+ 1

2
, U−a+ 1

2
, U−2a+ 3

2
〉, etc.

Let’s write out a few of the filtration subgroups in the general case, and then write

some quotients. Note that the quotients in the p = 2 and p 6= 2 cases are compatible.

Some Moy-Prasad filtration subgroups for p = 2 case:

Gx := Gx,0 = 〈T0, Ua− δ2
, U2a−δ+ 1

2
, U−a+ δ

2
, U−2a+δ+ 1

2
〉,

Gx,0+ = Gx, 12 = 〈T 1
2
, Ua− δ2 + 1

2
, U2a+ 1

2−δ
, U−a+ δ

2 + 1
2
, U−2a+ 1

2 +δ〉.

Gy := Gy,0 = 〈T0, Ua− δ2
, U2a− δ2−

1
2
, U−a+ δ

2 + 1
2
, U−2a+δ+ 1

2
〉,
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Gy,0+ = Gy, 14 = 〈T 1
2
, Ua− δ2

, U2a− δ2 + 1
2
, U−a+ δ

2 + 1
2
, U−2a+δ+ 3

2
〉.

Gz := Gz,0 = 〈T0, Ua− δ2
, U2a−δ+ 1

2
, U−a+ δ

2 + 1
2
, U−2a+δ+ 1

2
〉,

Gz,0+ = Gz, 16 = 〈T 1
2
, Ua− δ2

, U2a+ 1
2−δ

, U−a+ δ
2 + 1

2
, U−2a+δ+ 1

2
〉,

Gz, 16 + = Gz, 13 = 〈T 1
2
, Ua− δ2 + 1

2
, U2a+ 1

2−δ
, U−a+ δ

2 + 1
2
, U−2a+δ+ 3

2
〉, etc.

One finds Gx,0/Gx,0+
∼= SO3(Fq), Gy,0/Gy,0+

∼= Sp2(Fq). Additionally,

M̄z := Gz,0/Gz,0+
∼= T0/T1

∼= GL1(Fq),

Vz = Gz, 16 /Gz,
1
6 +
∼=




−u

u

v

 : u, v ∈ Fq


∼= Fq ⊕ Fq.
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3.4.4 Ramified SU
E/K
3 (h), Moy-Prasad-DeBacker facets

r = 1
2

r = 1

r = 3
2

x yz

×

r = 1
6

Figure 3.4: MPD facet diagram of ramified G = SU
E/K
3 (h)

One sees that that the jumps are compatible with our data from the previous section.

Indeed, in the following chapters, we’ll see that G has depth- 1
6 supercuspidal representations.

3.5 Notes on other groups

All of the remaining groups become quasisplit over an unramified quadratic extension.

For general reductive groups G = G(K), G(Knr) is quasisplit, where Knr is the maximal

unramified extension of K. For example, G = G(K) = SU
D/K
2 (h′) has G(L) ∼= Sp4(L) a split

group, SUD/K3 (h′) ∼= SOµ6 , a quasisplit group. Refer to Oi’s work [14] for details on the simple

supercuspidal representations of these quasisplit groups. See Chapter 1 for details on the split

forms of these groups.

Bruhat-Tits [2,3] (and Rousseau [19]) prove that when L/K is unramified (resp. tamely

ramified), B(G(L))Γ = B(G(K)). Furthermore, it follows from later work that the Moy-Prasad

filtration groups match up as well, giving (G(L)x,r)
Γ = (G(K)x,r) for x ∈ B(G(K)). One can

then obtain the depths of jumps of root subgroups and the centralizer of torus components.
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Chapter 4

The Induction Theorem at the

Lowest Positive Depth

Let K be a nonarchimedean local field, let G be a reductive group defined over K, and

let G = G(K) a group of relative rank 1. Let z ∈ A(S,K) be the unique point along an edge in

the standard apartment of B(G) = X such that z is not a vertex, and the first positive-depth

jump of Gz is a jump in valuation of two distinct affine root subgroups. Define r to be the depth

of this jump.

The goal of this chapter is to prove the following theorem:

Theorem 38. Let (π, V ) be an irreducible representation of G of depth r. Then (π, V ) is su-

percuspidal, and it is compactly induced from an irreducible representation (σ,W ) of the Iwahori

subgroup Gz = Gz,0, such that σ factors through Gz,0/Gz,r+. (σ,W ) is obtained by restricting

(domain and range) of π: Namely, W := V Gx,r+ and σ(g)w = π(g)w for all g ∈ Gz and w ∈W .

Moreover, restricting σ to Vz = Gz,r/Gz,r+, one finds only affine-generic characters.

In particular, when G satisfies the assumptions of Reeder-Yu [18], these are precisely

the epipelagic representations constructed there.

In Chapter 2, we have established that all irreducible representations of critical depth

of the K-rational points G of a group G of relative rank 1 arise via compact induction from the

stabilizer of a vertex or edge of B(G) = X. Furthermore, we will use the assumption that the
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minimal-positive depths r we are considering are critical depths.

Remark 39. This assumption can be verified using unramified descent.

We will now provide details on how to verify this assumption. Note that G is quasisplit

over L, a finite unramified extension of K. Let z be the barycenter of an alcove C ⊂ B(G(Knr))

invariant under Γ = Gal(L/K). Let r be the depth of the first nontrivial jump of z – this depth

is a critical jump. For each of these remaining cases where G non-quasisplit over K, one uses

unramified descent identifying

B(G(L))Γ = B(G),

and the filtration subgroups

(G(L)x,s)
Γ = Gx,s,

for all s > 0 and x ∈ B(G).

One will find that in each case the critical jump r of z ∈ B(G(L) is a critical jump

of z ∈ B(G). That is, (G(L)z,r+)Γ = Gz,r+, with Gz,r 6= Gz,r+, and there exists an open

neighborhood U of z such that when y ∈ U − {z}, Gy,r+ = Gy,r. Unramified descent is a

laborious task, but going through this process with these remaining groups will show that the

first positive jump at the barycenter of an alcove in B(G) = X occurs before the first positive

jump in the centralizer of the torus component. Refer to Oi [14] for details on the filtration

subgroups and depths of jumps at the barycenter of an alcove for the various G(L).

This assumption gives us that all irreducible minimal-positive-depth representations

of groups of relative rank one arise via compact induction by the stabilizer of edge of X by

Remark 37. We are concerned with supercuspidal representations of minimal positive depth.

Such representations have been classified by Gross, Reeder, and Yu [9, 18], under the names

of simple supercuspidals and epipelagic representations. To establish Theorem 38, we shall

describe the construction of these representations, and show that no other depth-r supercuspidal

representations exist outside of their construction.

In Chapter 5, we will include specific data on the construction of such representations

for some of the groups of relative rank 1.
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4.1 Simple supercuspidals and epipelagic representations

Let G be the K-rational points of a reductive group G. Let x ∈ B(G). Denote the

filtration subgroups of Gx by

Gx := Gx,0 �Gx,r1 �Gx,r2 �Gx,r3 . . .

Let M̄x = Gx,0/Gx,r1 , Vx = Gx,r1/Gx,r2 . Vx is naturally an Fq vector space. Conjuga-

tion gives an action of M̄x on Vx; this is an algebraic representation.

Remark 40. [28, Section 9.1] For non-tame groups, quotients Gx,r/Gx,r+ may not always be

Fq vector spaces. However, in our case, for z the barycenter alcove, Vz = Gz,r/Gz,r+ will be.

Here’s an argument based on Yu [27]. Take r to be positive. By étale descent [27,

9.1], there’s a unique smooth group scheme G over O such that G(O′) = G(K ′)x,r for every

unramified extensionK ′/K (with ring of integersO′/O). The special fiber of G is a group scheme

Ḡ over the residue field k of K, and Ḡ(k) can be identified with Gx,r/Gx,r+1 (similarly for finite

extensions of k, using finite unramified extensions of K). This group scheme Ḡ decomposes as

a direct product of schemes over k: multiplication gives an isomorphism from T̄× Ū+ × Ū− to

Ḡ, as in [27, 8.3 (iii)].

There exists an algebraic group Vz over k such that Vz(k) = Gz,r/Gz,r+, and similarly

for finite extensions of k. This Vz is naturally a quotient of the special fiber Ḡ. In particular, if

T does not jump at depth r, then Vz is a quotient of Ū+× Ū−, as groups over k. As a quotient

of a connected unipotent group, Vz is a connected unipotent group; it’s abelian too, and our

residue fields are finite – hence perfect – so V is isomorphic to a product of additive groups. In

other words Vz is a vector group, and Vz = Vz(k) = Gz,r/Gz,r+ is a vector space over k.

Let V̌x := HomFq (Vx,Fq). A linear functional λ ∈ V̌x is called stable if its orbit is

Zariski closed and its stabilizer in M̄x is finite. Fix a nontrivial character χ : (Fq,+)→ C×.

Let λ ∈ V̌x be a stable functional. The composition

χλ := χ ◦ λ : Vx → C×
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is a character of Gx,r1 which is trivial on Gx,r2 . Reeder and Yu prove [18, Prop 2.4] that

πx(λ) := c-IndGGx,r1 (χλ)

is a finite direct sum of irreducible supercuspidal representations. These representations are

supercuspidal of depth-r1. That is, these representations are of minimal positive depth, and

thus, are aptly named epipelagic supercuspidal representations.

4.1.1 Simple supercuspidals

An alcove is a facet of maximal dimension in the Bruhat-Tits building X. Thus in a

rank one building, an alcove will be an edge. For every affine function ψ ∈ Φaf denote by Aψ

the set ψ−1([0,∞)), with boundary ∂Aψ given by α−1(0). Let C be an alcove in X and let

L0, . . . , L` be the walls bounding C. For i ∈ {0, . . . , `}, let ψi be the unique affine root such that

Li = ∂Aψi , and
1
2ψi /∈ Φaf. The set ΠC = {ψi : i = 0, . . . , `} is called the basis of Φaf associated

to C. There exists a unique point z ∈ C with value m ∈ R+ such that for all αi in the basis Φaf

associated to C, ψi(z) = m. This unique point z ∈ C is called the barycenter of C. By definition

of the Moy-Prasad filtration subgroups Gz,r, we have m = r1.

When G is semisimple and split and z ∈ B(G) is taken to be the barycenter of an

alcove, the constructed representations from the previous section yield the simple supercuspidal

representations of G. Gross and Reeder [9] use affine-generic characters in their construction.

A complex character χ of Gz,r1 is called affine-generic if it is trivial on Gz,r2 and the restriction

of χ to each eigenspace for M̄z in Gz,r1/Gz,r2 is non-trivial. Affine-generic characters are always

stable – they are of the form χλ := χ ◦ λ : Vx → C× for λ a stable functional, χ : (Fq,+)→ C×

a nontrivial character.

4.1.2 Generalized simple supercuspidals

We follow Reeder-Yu [18, Section 2.6]. Please refer to this text, as we leave out details.

Let G be a reductive group, and let G = G(K). G is quasisplit over Knr. Let

G′ = G(Knr). Assume that G splits over a tamely ramified extension E0/K
nr of degree e; let

Γ0 = Gal(E0/K
nr). Let S be a maximal K-split torus, and let T be a maximal Knr-split torus

57



containing S. Since G is quasisplit over Knr, a generator γ of Γ0 acts on the based root datum

(X,∆, Ř, ∆̌) of G via an automorphism ϑ ∈ Aut(R,∆) of order e.

Let A(T,Knr) be the apartment in B(G′) associated to T. Let F be a generator of

Gal(Knr/K). Let C be an alcove of A(T,Knr); we can choose C such that F (C) = C. Recall

that in an alcove of G′, no affine Knr-root vanishes. Each hyperplane bounding C is the zero

locus of a unique affine Knr-root which is positive on C. Let ΠC = {ψ0, ψ1, . . . , ψ`ϑ} be the set

of these affine Knr-roots, where `ϑ = dim(A(T,Knr)).

The barycenter of C is the unique point z ∈ C for which all ψi ∈ ΠC take the same

value; this common value is 1/hϑ, where hϑ the twisted Coxeter number of (R,ϑ) [17]. By the

uniqueness of the barycenter of an alcove, it follows that F (z) = z, so in fact z ∈ A(S,K). It

then follows that the minimal positive depth for Gz is is 1/hϑ.

Let z be the barycenter of an alcove in B(G). Then there exists a stable linear functional

λ ∈ V̌z. Fix a nontrivial character χ : (Fq,+)→ C×. The composition

χλ := χ ◦ λ : Vz → C×

is a character of Gz,r/Gz,r+.

Theorem 41. [18, Prop. 2.4]

πz(λ) := c-IndGGz,r (χλ)

is a finite direct sum of irreducible supercuspidal representations. These representations are

supercuspidal of depth-r.

There is no tameness condition required in Theorem 41.

Remark 42. [18, Lemma 2.1] Let H be an open subgroup of G containing the center Z of G, with

H/Z compact, and let τ be an irreducible smooth representation of H. Then the representation

c-IndGH(τ) is irreducible for G if and only if I(G,H, τ) = H. Here,

I(G,H, τ) := {g ∈ G : τ ∼= gτ on H ∩ gH} .

Let Z denote the center of G. Note that Z ⊆ Gz,0. Let H := Z · Gz,r. Let m =
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[Z ·Gz,r : Gz,r]. As before, let χλ be an affine generic representation of Gz,r/Gz,r+. By Clifford

theory, IndHGz,r (χλ) splits into a sum of m non-isomorphic irreducible representations, each

distinguished by their central characters. Let χλ,i for i ∈ {1, 2, . . . ,m} denote these irreducible

H-representations. Let τ = χλi for some i ∈ {1, 2, . . . ,m}. Then Reeder and Yu [18, Lemma 2.2,

Prop. 2.4] show that I(G,H, τ) = H, thus showing that c-IndGH(τ) is irreducible. Furthermore,

for each i,

πz(λi) := c-IndGH(χλ,i)

is an irreducible supercuspidal representation of depth r.

4.1.3 Missing cases

Recall that in this thesis, we are only concerned about the representations of groups of

relative rank one. In this rank one setting, the only point at which stable functionals can occur

is at the barycenter of an alcove z ∈ C in B(G). However, for buildings of higher rank, stable

functionals can exist outside of the barycenter of an alcove (see [18]), such as along codimension

one facets of the building. Therefore, the epipelagic representations we will construct are these

generalized simple supercupsidal representations from [18, Section 2.6].

Reeder and Yu’s construction covers the construction of epipelagic representations at

the barycenter of the alcove z ∈ C when G is a group that splits over a tamely ramified extension.

As relative rank one groups have Weyl groups of order 2, non-tame epipelagic representations in

this setting only occur when working with groups over K of residue characteristic p = 2, which

are not split over Knr.

This leaves the following groups outside of the construction of Reeder and Yu.

1) G = G(K) = SU
E/K
3 (h), where E/K is a ramified quadratic extension and p = 2,

2) G = G(K) = SU
D/K
3 (h), where p = 2,

3) G = G(K) = SU
D/K
4 (h), where p = 2,

4) G = G(K) = SU
D/K
5 (h), where p = 2.

For these G, the Moy-Prasad filtration and structure of G(Knr) is well-understood.
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Thus we can employ the method of unramified descent [3, Section 4; 15], giving us stable vectors

at the barycenter of an alcove. Then we can construct epipelagic representations of G = G(K).

In 5 we describe the the stable vectors for the missing case, 1) G = SU
E/K
3 (h), p = 2.

As this group is quasisplit over K, we don’t require the treatment of unramified descent to

construct its epipelagic representations.

4.2 Exhaustion of depth-r representations

Let H ⊆ G be a compact open subgroup. Let π be a smooth admissible representation

of G. Recall the set of H-invariants of π is defined by

V H := {v ∈ V : π(h)v = v for all h ∈ H} .

Further, recall that the depth of an irreducible supercuspidal representation π of G = G(K),

labeled %(π) is defined to be the smallest depth r such that for some point x ∈ B(G),

V Gx,r+ 6= {0}.

We will now prove the theorem stated in beginning of this chapter. Let G = G(K) be

a group of relative rank one.

Theorem 38. Let (π, V ) be an irreducible representation of G of depth r. Then (π, V ) is su-

percuspidal, and it is compactly induced from an irreducible representation (σ,W ) of the Iwahori

subgroup Gz = Gz,0, such that σ factors through Gz,0/Gz,r+. (σ,W ) is obtained by restricting

(domain and range) of π: Namely, W := V Gx,r+ and σ(g)w = π(g)w for all g ∈ Gz and w ∈W .

Moreover, restricting σ to Vz = Gz,r/Gz,r+, one finds only affine-generic characters.

Proof. Let (π, V ) be an irreducible representation of G of depth r. Here r is the minimal positive

depth, by our assumption, this is a critical depth. By 36,

(π, V ) ∼= c-IndGJ (σ,W ),

where W := V Gz,r+ and σ is the action of the Iwahori J = Gz via π. An equivalent condition
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to being supercuspidal is having matrix coefficients that are compactly supported modulo the

center Z of G. It follows that if an irreducible representation occurs via compact induction from

a compact-open subgroup, then it is supercuspidal.

By construction, (σ,W ) factors through the quotient Gz/Gz,r+. Recall that the jump

Gz,r to Gz,r+ is a jump in valuation of two affine root subgroups of different gradients. Say

these jumps are Uα and Uβ to Uα+ and Uβ+ for affine roots α and β. Let x and y be adjacent

vertices in the boundary of the edge containing z. We recall that Gx,0∩Gy,0 = Gz,0. And recall

Gx,0+ ⊂ Gz,0+ and Gy,0+ ⊂ Gz,0+, and these containments differ in the valuation of one root

subgroup. Recall also that

Gx,0+ = Gx,r = Gx,r+,

Gy,0+ = Gy,r = Gy,r+,

Gz,0+ = Gz,r.

For π a depth-r irreducible representation, we have V Gz,r+ 6= {0}, but V Gx′,r+ = {0} for all other

points x′ ∈ C − {z}.Thus one finds that π must be nontrivial on both Uα and Uβ . Otherwise, if

π is trivial on one of these affine root subgroups then V Gx,0+ = {0} or V Gy,0+ = {0}, making

π a depth-0 representation. Thus π is a representation that is trivial on Uα+ and Uβ+, but

nontrivial on Uα and Uβ .
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Chapter 5

Description of Minimal Positive

Depth Irreducible Representations

Let K be a nonarchimedean local field, and let G be the K-points of a reductive group,

such that the K-rank of G is one.

Let (π, V ) be an irreducible representation of G of minimal-positive-depth r. We

showed in Theorem 38 that (π, V ) is supercuspidal, and it is compactly induced from an irre-

ducible representation (σ,W ) of the Iwahori subgroup Gz = Gz,0, such that σ factors through

Gz,0/Gz,r+. Furthermore, we showed that when restricting σ to Vz = Gz,r/Gz,r+, one finds only

affine-generic characters.

On the other hand, let (σ,W ) be a representation of Gz/Gz,r+, nontrivial on Gz,r that

compactly induces to a depth-r supercuspidal irreducible representation of G. Let Wχ be the

χ-isotypic subspace of W . That is,

Wχ = {w ∈W : σ(v)w = χ(v) · w for all v ∈ V } .

Then we have

W ∼=
⊕
χ∈V̂z

Wχ,

by decomposing (σ,W ) after restricting to Vz. Mackey theory gives a bijection between the
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• irreducible representations of Gz,0/Gz,r+ that are affine-generic on Gz,r.

• Gz-orbits on Hom((Z ·Gz,r)/Gz,r+,C×) that are affine-generic on Gz,r.

Minimal-positive-depth irreducible supercsupidals (π, V ) arise as c-Ind(σ,W ), for some

irreducible representation (σ,W ) of Gz,0/Gz,r+ that is affine-generic on Gz,r. Any such irre-

ducible representation W arises as c-IndGzZGz,r (χ) for some affine-generic character of Gz,r ex-

tended to ZGz,r. This is because if χ is an affine-generic character of Gz,r, then its stabilizer in

Gz will be ZGz,r – at least for all of the groups in Chapter 5.

So the inducing data consists of:

• A Gz-orbit –the same as a M̄z-orbit – of affine generic characters of Gz,r.

• A character of Z (in the case when Z 6⊆ Gz,r).

In this chapter, using the data from Chapter 3 on the filtrations subgroups of the

relative rank one groups SL2(K), SL2(D), SUL/K3 (h), and SUE/K3 (h), we provide the inducting

data used to construct the depth-r irreducible supercuspidal representations for these groups.

5.1 SL2(K) simple supercuspidals

Take x, y, and z as in Section 3.1.3. Recall that

M̄z = Gz,0/Gz,0+ = T0/T1
∼= F×q ,

Vz = Gz, 12 /Gz,
1
2 + = (Ua+0/Ua+1)⊕ (U−a+1/U−a+2) ∼=

 Fq

Fq

 .

5.1.1 Affine-generic characters

Let ? denote the action of conjugation. We have M̄z ? Vz, witht
t−1

 ?

 u

v

 =

 t2u

t−2v


for t ∈ F×q , u, v ∈ Fq. We use shorthand-notation t ? (u, v) = (t2u, t−2v).
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Let χa,b denote the character of Vz = Gz, 12 /Gz,
1
2 + such that χa,b((u, v)) = e

2πi
p TrFqFp (au+bv)

.

To be affine-generic, we require χa,b|Ua+0/Ua+1
6= 1, and χa,b|U−a+1/U−a+2

6= 1. Thus, we require

a, b ∈ F×q , giving us a total of (q − 1)2 affine-generic characters. Now, define

ψa,b := Inf
G
z, 1

2

Vz
(χa,b).

This is again an irreducible character, but now of J = Gz, 12 .

When the residue characteristic p 6= 2, t2 = 1 has two distinct solutions in Fq, thus

giving (q − 1)/2 affine-generics in each orbit of M̄z which induce to the same G-representation.

In other words, when p 6= 2, there are (q−1)2

(q−1)/2 = 2(q − 1) unique G-representations

obtained by inducing each of the various affine-generic characters.

When p = 2, every element of Fq is a square, thus giving q − 1 affine-generics in each

orbit of M̄z which induce to the same G-representation.

That is, when p = 2, there are (q−1)2

q−1 = q − 1 unique G-representations obtained by

inducing the various affine-generic characters.

5.1.2 Extending to the center

Let Z = ±Id be the center of G. Let H = Z · Gz,r, let J = Gz,r. One finds that

[H : J ] = 2 when the residue characteristic p 6= 2. But when p = 2, −1 ∈ 1 + pK , making

H = J .

For any affine generic character ψ of J , and any h ∈ J\H/J , ψ ∼= ψh. In other words,

EndH(IndHJ (ψ)) ∼=
⊕

h∈J\H/J

HomJ(ψ,ψh) ∼= C[H:J].

Inducing ψ to H yields a representations that splits into [H : J ] total irreducible representations.

When p 6= 2, we have

IndHJ (ψa,b) = ψ+
a,b ⊕ ψ

−
a,b,
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where

ψ±a,b


−1

−1


 = ±1;

these two representations are distinguished by their central characters. When p = 2, Z ≤ Gz,r,

so

IndHJ (ψa,b) = IndJJ(ψa,b) = ψa,b.

5.1.3 Simple supercuspidals

Now, let ψ denote one of the various Z ·Gz,r irreducible representations induced from

an affine-generic. By Reeder-Yu [18, Lemma 2.1, Prop. 2.4],

c-IndGH(ψ) = c-IndGGz (Ind
Gz
H (ψ)) = π

is a depth- 1
2 irreducible simple supercuspidal representation of G compactly induced from a the

stabilizer of an edge Gz in the Bruhat-Tits building X.

Let p 6= 2. Since we have 2(q− 1) orbits of affine-generic characters, and IndHJ (ψa,b) =

ψ+
a,b ⊕ ψ

−
a,b, we find that there are 4(q − 1) irreducible simple supercuspidal representations of

G.

Let p = 2. Since we have q − 1 orbits of affine-generic characters, and J = H, so we

find that there are q − 1 simple supercuspidal representations of G.

5.2 SL2(D) simple supercuspidals

Let D be a central-simple algebra of degree d over K. Take z as in Section 3.2.5. Recall

that

M̄z = T0/T 1
d

∼= F×
qd
,

Vz ∼=

 Fqd

Fqd

 .

65



5.2.1 Affine generic characters

Let ? denote the conjugation action of M̄z on Vz. Then, we have

M̄z ? Vz,

with tn
t−1

 ?

 u

v

 =

 t2nu

t−2nv

 ,

for t, n ∈ F×
qd
, NF

qd
/Fq (n) = 1, and u, v ∈ Fqd . Or, in shorthand notation,

(tn, t−1) ? (u, v) = (t2nu, t−2n−1v).

For a, b ∈ Fqd , let χa,b be the character of Vz such that

χa,b((u, v)) = e
2πi
p Tr

F
qd

Fp (au+bv)
.

χa,b is affine-generic when a, b ∈ F×
qd
. Thus, we have (qd−1)2 affine-generic characters.

Let ψa,b = Inf
G
z, 1

2d

Vz
(χa,b); we will now refer to these Gz, 1

2d
-representations as affine-generic.

In order to calculate the size of the orbits of the affine-generic characters, we need to

find the number of elements of Fqd representable by t2n here t, n ∈ F×
qd
, NF

qd
/Fq (n) = 1.

If the residue characteristic p 6= 2, then we know that there are (qd − 1)/2 squares in

F×
qd
, and we know that there are (qd − 1)/(q − 1) norm-one elements in Fqd .

Claim 43. If N(n) = 1, then n ∈ (F×
qd

)2.

Proof. Let s2 be a square in F×
qd
. Then N(s2) = N(s)2. As the norm map for extensions of

finite fields is surjective, one finds that there are q − 1 possible norms for elements of F×
qd
, and

there are (q− 1)/2 possible norms for the squares in F×
qd
. In other words, the (qd− 1)/2 squares

of F×
qd

map to (q − 1)/2 elements of Fq under the norm map. Since N(1) = 1, and 1 is a square

in F×
qd
, 1 is one of the (q − 1)/2 possible norms for the squares in F×

qd
. Similarly, since there are

(q − 1)/2 possible norms for non-squares, one finds that all norm-one elements of F×
qd

have to

be squares.
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When p 6= 2, norm-one elements of F×
qd

are squares, one finds that there are (q − 1)/2

elements in the orbit of a (u, v) ∈ Vz, with (u, v) 6= 0. Thus, this gives precisely,

(qd − 1)2

(qd − 1)/2
= 2(qd − 1)

orbits of affine generic characters. Now let p = 2. Since every element of F×
qd

is a square, all

norm-one elements of F×
qd

are squares. It follows that (u, v) is in the same orbit as (c · u, c−1 · v)

for all k ∈ F×
qd
.

We have (qd − 1)2 affine-generic characters, and each orbit has size qd − 1, giving us

qd − 1 elements in each orbit.

5.2.2 Extending to the center

Let Z be the center of SL2(D). Since the center of D is K, we know that elements of

the center have the form

Z =


k

k

 : k ∈ K, Nrd(k2) = 1

 =


k

k

 : k ∈ K, k2d = 1

 .

So the center consists of the 2dth-roots of unity of K. Recall, J = Z ·Gz, 1
2d
. By Clifford theory,

IndJG
z, 1

2d

(ψa,b) splits into m := [J : Gz, 1
2d

] irreducible H-representations, distinguished by their

central characters.

Giving a precise value for m is complicated; m depends on the residue characteristic,

the roots of unity in the ground field, and the degree d. However, we can say for certain that

±1 ∈ 1 +$DOD when p = 2.

Remark 44. The roots of unity for Qp are the (p − 1)st roots of unity when p 6= 2; when

p = 2, they are ±1 – the second roots of unity. We can adjoin more roots of unity to unramified

extensions of Qp.
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5.2.3 Simple supercuspidals

Let ψ be one of the ψ±a,b, then c-IndGH(ψ) = π is a depth- 1
2d irreducible supercuspidal

representation – a simple supercuspidal representation.

• When p 6= 2, we have 2(qd − 1) orbits of affine-generic characters, and [J : Gz, 1
2d

] = m,

giving 2m(qd − 1) non-isomorphic simple supercuspidal representations of G.

• When p = 2, we have m(qd − 1) non-isomorphic simple supercuspidal representations of

G.

5.3 SU
L/K
3 (h) unramified, simple supercuspidals

Let L/K be a unramfied quadratic extension. Let $K = $L be a uniformizing element

of K and L, and let Fq (resp. Fq2) be the residue field of K (resp. L). Let σ be a generator of

Gal(L/K). Denote by ¯̀= σ(`) for ` ∈ L.

Let h : L3 × L3 → L be the Hermitian form

h(~x, ~y) = x̄3y1 + x̄2x2 + x̄1y3.

Let G = SU
L/K
3 (h). Take z as in Section 3.3.3. Recall,

M̄z = T0/T1
∼=




t

t̄/t

t̄−1

 : t ∈ F×q2


∼= F×q2 ,

Vz = Gz, 13 /Gz,
1
3 +
∼=




−ū

u

v

 : u ∈ Fq2 , v ∈ F◦q2


∼= Fq2 ⊕ Fq.
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5.3.1 Affine-generic characters

Let ? denote the conjugation action of M̄z on Vz. Then
t

t̄/t

t̄−1

 ?


−ū

u

v

 =


−(t2/t̄)ū

(t̄2/t)u

N(t)−1v

 ;

let’s shorthand this by writing t ? (u, v) = (t̄2/t · u,N(t)−1v).

For a ∈ F2
q, b ∈ Fq, let χa,b denote the character of Vz given by

χa,b((u, v)) = e
2πi
p

(
Tr

F
q2

Fp (au)+TrFqFp (bv)

)
.

χa,b is affine-generic when a, b 6= 0. Thus, there are (q2 − 1)(q − 1) affine-generic characters of

Vz. Let ψa,b = InfGz,rVz
(χa,b); we now refer to the ψa,b as affine-generic characters of Gz,r.

Let’s now consider the orbits of these representations. One finds that ψa,b and ψc,d

induce to the same G-representation if (c, d) = (t̄2/t · a,N(t)−1b) for some t ∈ F×q2 .

If the residue characteristic p 6= 2, one finds that there are q2− 1 unique (t̄2/t,N(t)−1)

for various t ∈ F×q2 , thus giving (q2 − 1)(q − 1)/(q2 − 1) = q − 1 orbits.

If p = 2, we need to split into two cases. q = 2, and q 6= 2.

• When q = 2, t̄ = t2, so IndGGz,r (ψa,b) = IndGGz,r (ψa,N(t)−1b) for varying t ∈ Fq2 . This gives

us (q2 − 1)(q − 1)/(q − 1) = q2 − 1 total orbits.

• When p = 2, q 6= 2, we have t̄2/t representing the various squares in Fq2 . However, every

element of Fq2 is a square. Thus, we have (q2 − 1)(q − 1)/(q2 − 1) = q − 1 total orbits.

5.3.2 Extending to the center

Let Z denote the center of G = SU
L/K
3 (h), for L/K an unramified quadratic extension.

Note that elements of the center have to be diagonal matrices of determinant one. This leaves

us with possibilities, Z = Id or Z = 〈ζ · Id〉, where ζ is a third root of unity. However, for ζ · Id
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to be in the center, we require ζ ∈ L \K, as


σ(ζ)

σ(ζ)

σ(ζ)




1

1

1



ζ

ζ

ζ

 =


σ(ζ)ζ

σ(ζ)ζ

σ(ζ)ζ

 =


1

1

1

 .

Thus, we need σ(ζ) = ζ2 to preserve our Hermitian matrix H =


1

1

1

. So we need

L = K[ζ] in order for G to have a non-trivial center.

Note that ζ ∈ Qp when 3 | (p − 1). So when the residue characteristic of K has

p ≡ 1 mod 3, we can always say that the center of G is trivial. Furthermore, adding third roots

of unity to an extension of Q3, results in a ramified extension. Thus, when p = 3, we are also

guaranteed a trivial center.

Let J = Gz,r, H = Z · Gz,r. Let [H : J ] = m; then m = 1 or 3. Let ψ be an

affine-generic character of J . When m = 1,

IndHJ (ψ) = IndJJ(ψ) = ψ.

While when m = 3,

IndHJ (ψ) = ψ0 + ψ1 + ψ2,

where ψi



ζ

ζ

ζ


 = ζi.

5.3.3 Simple supercuspidals

Let ψi denote one of the summands of IndHJ (ψ). By Reeder-Yu [18, Prop. 2.4],

c-IndGH(ψi) is an irreducible representation – a supercuspidal representation of depth- 1
3 . It

follows that

• when p = 2, q = 2, G has m(q2−1) total simple supercuspidal irreducible representations.
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• when p = 2, q 6= 2, or when p 6= 2, G has m(q − 1) total simple supercuspidal irreducible

representations.

5.4 SU
E/K
3 (h) ramified, simple supercuspidals

Let E be a quadratic ramified extension of K, a non-archimedean local field. Let $E

be a uniformizing element of E, and let the residue field of E and K be Fq, with characteristic

p. Recall from Section 3.4.3 that

M̄z = Gz,0/Gz, 16
∼=




t

1

t−1

 : t ∈ F×q

 ,

Vz = Gz, 16 /Gz,
1
6 +
∼=




−u

u

v

u, v ∈ Fq

 .

5.4.1 Affine-generic characters

Let ? denote the action of conjugation. We have M̄z ? Vz, with
t

1

t−1

 ?


−u

u

v

 =


−tu

tu

t−2v

 .

We use the shorthand-notation t ? (u, v) = (tu, t−2v). Let χa,b denote the character of Vz such

that

χa,b((u, v)) = e
2πi
p TrFqFp (au+bv)

.

To be affine generic, we require a, b 6= 0. Thus, there are (q − 1)2 affine-generic characters

of Vz. Define ψa,b = Inf
G
z, 1

6

Vz
(χa,b); from now, on we’ll refer to these Gz, 16 -representations as

affine-generic. The affine-generic characters ψa,b and ψta,t−2v are in the same G orbit when

t ∈ F×q . Thus, each orbit has q − 1 affine-generics. Therefore, we have (q−1)2

(q−1) = q − 1 orbits of
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affine-generic characters.

5.4.2 Extending to the center

Let Z denote the center of G = SU
E/K
3 (h). Note that elements of the center have to be

diagonal matrices of determinant one. This leaves us with possibilities, Z = Id or Z = 〈ζ · Id〉,

where ζ is a third root of unity.

However, for ζ · Id to be in the center, we require ζ ∈ E \K, since


σ(ζ)

σ(ζ)

σ(ζ)




1

1

1



ζ

ζ

ζ

 =


σ(ζ)ζ

σ(ζ)ζ

σ(ζ)ζ

 =


1

1

1

 .

Thus, we need σ(ζ) = ζ2 to preserve our Hermitian matrix H =


1

1

1

.

To have a nontrivial center, we require E = K[ζ]. The only possible setting where

adding third roots of unity to K can yield a ramified extension is when the residue characteristic

p = 3. So when E = K[ζ] is an extension of the field K of residue characteristic p = 3,

[Z ·Gz, 16 : Gz, 16 ] = 3.

Thus, in this setting, for an affine-generic character ψ of Gz, 16 ,

Ind
Z·G

z, 1
6

G
z, 1

6

(ψ) = ψ0 ⊕ ψ1 ⊕ ψ2,

where

ψi



ζ

ζ

ζ


 = ζi.
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5.4.3 Simple supercuspidals

Let ψi denote a character appearing in Ind
Z·G

z, 1
6

G
z, 1

6

(ψ) for an affine generic character ψ.

By [18, Prop. 2.4],

c-IndGZ·G
z, 1

6

(ψi) = π

is an irreducible supercuspidal representation of depth- 1
6 .

• When L = K[µ3] is a ramified extension, which can only occur when p = 3, each orbit of

affine-generic characters contributes three simple supercuspidal representation of G. Thus,

we have 3(q − 1) simple supercuspidal representations in this setting.

• In all other settings, each orbit of affine-generic characters contributes one simple super-

cuspidal representation of G. Thus, giving q − 1 simple supercuspidal representations.

73



5.5 Table of inducing data

Here, we provide a table summarizing the computations in this chapter for the inducing

data of minimal-positive-depth representations of the groups SL2(K), SL2(D), SUL/K3 (h), and

SU
E/K
3 (h).

Group M̄z Z ∩ M̄z V̌ aff.gen.
z Action # Irreps

SL2(K), p 6= 2 F×q µ2 F×q × F×q t ? (u, v) = (t2u, t−2v) 4(q − 1)

SL2(K), p = 2 F×q Id F×q × F×q t ? (u, v) = (t2u, t−2v) q − 1

SL2(D), p 6= 2 F×
qd

µm F×
qd
× F×

qd
t ? (u, v) = (t2nu, t−2n−1v) 2m(q − 1)

SL2(D), p = 2 F×
qd

µm F×
qd
× F×

qd
t ? (u, v) = (t2nu, t−2n−1v) m(q − 1)

SU
L/K
3 (h), p 6= 2

or p = 2, q 6= 2 F×q2 µ3 F×q2 × (F◦q2)× t ? (u, v) = (t̄2u/t,N(t)−1v) 3(q − 1)

L = K[µ3]

SU
L/K
3 (h), p 6= 2

or p = 2, q 6= 2, F×q2 Id F×q2 × (F◦q2)× t ? (u, v) = (t̄2u/t,N(t)−1v) q − 1

L 6= K[µ3]

SU
L/K
3 (h), p = 2 F×q2 µ3 F×q2 × (F◦q2)× t ? (u, v) = (t̄2u/t,N(t)−1v) 3(q2 − 1)

L = K[µ3] = (u,N(t)−1v)

SU
L/K
3 (h), p = 2 F×q2 Id F×q2 × (F◦q2)× t ? (u, v) = (t̄2u/t,N(t)−1v) q2 − 1

L 6= K[µ3] = (u,N(t)−1v)

SU
E/K
3 (h), p = 3 F×q µ3 F×q × F×q t ? (u, v) = (tu, t−2v) 3(q − 1)
E = K[µ3]

SU
E/K
3 (h), F×q Id F×q × F×q t ? (u, v) = (tu, t−2v) q − 1

E 6= K[µ3]

Figure 5.1: Inducing data for groups in Chapter 5

Remark 45. For SL2(D), m is the number of 2d roots of unity in Gz,0/Gz,0+. This is the

index [Z ·Gz, 1
2d

: Gz, 1
2d

].
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Appendix A

Quaternionic unitary groups

We will briefly describe the quaternionic special unitary groups, which we call SUD/Km (h′)

and SUD/Kn (h) where m = 2 or 3 and n = 3, 4, or 5. We follow Prasad-Raghunathan [16, Sec-

tions 1.3-1.4, 1.7-1.9]. Refer the reader to this text or to Tits [24], where Tits first introduces

these groups, for further details.

A.1 SU
D/K
2 (h′) and SU

D/K
3 (h′)

Let D be a quaternion division algebra over K, and let σ be an involution of D of the

first kind and first type. Let V = e−1 ·D ⊕ e1 ·D be a right vector space over D of dimension

2 and let h′ be a σ-skew-Hermitian form such that h′(w, v) = −h′(v, w)σ for all v, w ∈ V ,

determined by:

h′(e−1, e−1) = 0 = h′(e1, e1),

h′(e−1, e1) = 1 = −h′(e1, e−1).

Let G = G(K) = SU
D/K
2 (h′). Then G is an absolutely almost simple, simply con-

nected K-group of relative rank 1, and it’s of type C2. The relative root system of G is reduced,

having roots {±a}.

Let {e−1, e1} be a basis of V . Let S be the 1-dimensional maximal K-split torus such
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that

S := S(K) =


t 0

0 t−1

 : t ∈ K×

 .

Let L/K be a quadratic unramified extension; L is a splitting field of D. Let T be the two

dimensional residually K-split torus such that

T := T(K) =


t

σ(t)−1

 : t ∈ L×

 .

Let

M = ZG(S)(K) :=


t

σ(t)−1

 : t ∈ D×

 ,

and note that T ⊂M . Let Dσ = {d ∈ D : dσ + d = 0}. Let

u+(d) =

1 d

1

 , u−(d) =

1

d 1

 , where d ∈ Dσ.

Then

Ua(K) = {u+(d) : d ∈ Dσ} , U−a(K) = {u−(d) : d ∈ Dσ} .

The group G splits over the quadratic unramified extension L of K.

We now move onto G = G(K) = SU
D/K
3 (h′). Let D be a quaternion division algebra

over K, and let σ be an involution of D of the first kind and first type. Let V be a right

vector space over D of dimension 3, and let h′ : V × V → D be a non-degenerate σ-skew-

Hermitian form on V of Witt index 1. Assume that h′ is trace-valued. That is, for all v ∈ V ,

h′(v, v) ∈ {d− dσ : d ∈ D}. Then we can find e−1, e0, e1 ∈ V such that

V = e−1 ·D ⊕ e0 ·D ⊕ e1 ·D,

h′(e−1, e−1) = 0 = h′(e1, e1),

h′(e−1, e0) = 0 = h′(e1, e0),
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h′(e−1, e1) = 1 = −h′(e1, e−1),

h′(e0, e0) 6= 0.

For instance, h′ can be realized as the σ-skew-Hermitian matrix

H ′ =


1

b

−1

 ,

where b ∈ D, σ(b) = −b.

G is the special unitary group with respect to h′. So one can realize

G = {g ∈ SL3(D) : tgσH ′g = H ′} .

Let V ′ = e−1 ·D ⊕ e1 ·D, and let f ′ denote the restriction of h′ to V ′. Then SUD/K2 (f ′) is the

group from above, and it embeds into SUD/K3 (h′).

S := S(K) =




t

1

t−1

 : t ∈ K×


is maximal K-split torus. Let L/K be a quadratic unramified extension; L is a splitting field of

D. Let T be the three dimensional residually K-split torus such that

T := T(K) =




t

n

σ(t)−1

 : t, n ∈ L×, NL/K(n) = 1

 ;

we find that this is a maximal torus of G. T is contained in

M := ZG(S) =




t

n

σ(t)−1

 : t, n ∈ D×, Nrdσ(n) = 1

 .
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Let u+(c, d) =


1 σ(c)b d

1 c

1

, where −d + σ(d) + σ(c)bc = 0, and let u−(c, d) =


1

c 1

d −σ(c)b 1

, where −d+ σ(d)− σ(c)bc = 0. Then we have root subgroups,

Ua(K) = {u+(c, d) : c, d ∈ D} , U−a(K) = {u−(c, d) : c, d ∈ D} ,

U2a(K) = {u+(0, d) : d ∈ Dσ} , U−2a(K) = {u−(0, d) : d ∈ Dσ} .

The group G splits over the quadratic unramified extension L of K.

A.2 SU
D/K
n (h) for n = 3, 4, 5

Here we describe the K-rank 1 forms of type A3 which do not split over the maximal

unramified extension of K, and the K-rank 1 forms of type D4 and D5.

Let D be a quaternion algebra over K, with σ an involution of D of first type and

first kind. Let L/K be a splitting field of D (an unramified quadratic extension of F ), where

L = K[u]. Furthermore, let $D be a uniformizing element of D such that u$D = $Dγ(u),

where γ is the generator of Gal(L/K). Let V be a finite dimensional right vector space over D.

Set

Dσ = {d− dσε : d ∈ D}.

Let V be a right vector space over D of dimension n = 3, 4, or 5. Let q : V → D/Dσ be a

σ-quadratic form and let h : V × V → D be the associated σ-Hermitian form. In other words,

h is the σ-Hermitian form such that

q(v + w) = q(v) + q(w) + (h(v, w) +Dσ)

for v, w ∈ V . We choose q to be non-degenerate in the following sense: For v ∈ V , h(v, V ) = {0}

and q(v) = 0 implies that v = 0. Furthermore, we assume that (h, q) is of Witt index 1. This
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gives V a direct sum decomposition

V = e−1 ·D ⊕ V0 ⊕ e1 ·D,

where e−1, e1 ∈ V , and V0 is a subspace of V such that

q(e−1) = 0 = q(e1),

h(e−1, e1) = 1 = h(e1, e−1),

h(ei, V0) = {0} for i = ±1, and

0 6∈ q(V0 = {0}).

When char K 6= 2, h(v, v) 6= 0 for all nonzero v ∈ V0. When char K = 2, we assume further

that q is non-defective, meaning h is non-degenerate. Set

V ′0 = {v ∈ V0 : h(v, v) 6= 0}.

Then when char K 6= 2, V ′0 = V0 − {0}, and if char K = 2, then V ′0 = V0 = {0} if dim(V0) = 1,

and if dim(X0) > 1, V ′0 is a non-empty Zariski-open subset of X0.

Let G = SU
D/K
n (h). Then G is an absolutely almost simple K-group of K-rank 1. It

is an outer form of type D3 = A3 or D4, or an inner form of type D5 according as n = 3, 4, or 5.

Let G′ be the simply connected cover of G defined over K, and let π : G′ → G be the canonical

central K-isogeny. π is central, so it is an isomorphism when restricted to any unipotent K-

subgroup U′ of G′; thus we shall identify U′ with π(U′).

For t ∈ K×, let m(t) be the linear transformation of V defined by

m(t) :


e−1 7→ e−1 · t

v0 7→ v0 (v0 ∈ V0)

e1 7→ e1 · σ(t)−1
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and let S′ be the 1-dimensional maximal K-split torus of G′ such that

S′ := S′(K) = {m(t) : t ∈ K×}.

Let S be the corresponding K-split torus in G, with S := S(K). The K-roots of G with respect

to S are {±a,±2a}. From the Tits index one finds that U2a(K) is 1-dimensional over K.

Let Z = {(z, d) : z ∈ V0, d ∈ D, q(z) = d+Dσ}, and let

Z ′ = {(z, d) : (z, d) ∈ Z, z ∈ V ′0} .

For (z, d) ∈ Z, let u+(z, d) and u−(z, d) be the linear transformations of V defined by

u+(z, d) :


e−1 7→ e−1

v0 7→ v0 − e−1 · h(z, v0) (v0 ∈ V0)

e1 7→ e1 + z − e−1 · d

u−(z, d) :


e−1 7→ e−1 + z − e1 · d

v0 7→ v0 − e1 · h(z, v0) (v0 ∈ V0)

e1 7→ e1

Then

Ua(K) = {u+(z, d) : (z, d) ∈ Z} , U−a(K) = {u−(z, d) : (z, d) ∈ Z} ,

U2a(K) = {u+(0, d) : d ∈ Dσ} , U−2a(K) = {u−(0, d) : d ∈ Dσ} .

Please consult the text for more details.
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