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EPIGRAPH

There is a place where the sidewalk ends,

And before the street begins,

And there the grass grows soft and white,

And there the sun burns crimson bright,

And there the moon-bird rests from his flight

To cool in the peppermint wind.

—Shel Silverstein
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ABSTRACT OF THE DISSERTATION

Methods for studying the genome-wide landscape of tandem repeats

by
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Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and
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University of California San Diego, 2021

Professor Melissa Gymrek, Chair
Professor Siavash Mirarab, Co-Chair

Tandem Repeats (TRs) are a class of genetic variants formed by motifs of 1-20

nucleotides repeating in tandem. Previous studies show that expansion at specific TR loci

is the leading cause of dozens of Mendelian disorders such as Huntington’s disease and

Fragile X syndrome. Furthermore, copy numbers at TR loci are correlated with complex

traits such as gene expression. Tandem repeats are highly mutable and therefore a great

subject to study genetic diversity. However, current bioinformatics pipelines are often

incapable of processing these loci accurately. Challenges in sequencing, alignment, and
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interpretation have led to TR loci being overlooked in many studies. We have created

a method for genome-wide genotyping of TRs and a toolkit for processing, filtering, and

quality control of TR callsets. These methods have allowed us and the community to

study repeat expansions on a genome-wide scale. In addition, we have applied our work

to study de-novo variants contributing to Autism Spectrum Disorder risk and have found

multiple candidate TRs. Another application of our methods is the novel tool for creating

an ensemble callset of TRs across a large population. Our efforts in creating methods and

applying them to various applications have allowed us to gain a better understanding of

TRs and their genetic diversity on a population scale.
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Chapter 1

Introduction

1.1 Introduction to Tandem Repeats

Tandem repeats (TRs) are a class of repetitive genetic variants that consist of motifs

of 1-20 nucleotides repeating in tandem. There are more than a 1.5 million human TR

loci [WZY+17b] which form more than 3% of the human genome [SMS03].

Several coding and non-coding tandem repeats throughout the human genome are

known to cause disorders. Pathogenic TRs mediate pathogenicity through multiple path-

ways such as epigenetic dysregulation (Friedreich ataxia and fragile X syndrome), toxic

RNA gain of function (myotonic dystrophies and spinocerebellar ataxias), and change of

protein function in polyalanine disorders and polyglutamine diseases (such as oculopha-

ryngeal muscular atrophy and Huntington disease) [Han18b]. In addition to pathogenic

TRs, TR variations are associated with complex traits such as gene expression [FMW+19].

TRs have a much higher mutation rate compared to other types of genetic variants

such as single-nucleotide variants and short insertions and deletions [Han18b]. Majority

of TR variation is mediated through polymerase slippage during cell replication [Rya19].

These slippage events can cause the TR region to gain (expansion) or lose (contraction)
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TR motifs. Owing to high variation rate, TRs often have an extended range of possible

alleles (multiallelic regions) [Han18b].

Therefore, TRs are a highly variable class of genetic variations that contribute

to disease and complex traits in humans. However, the complex nature of these regions

renders them a complicated subject to study. I discuss some of these challenges in the

next section.

1.2 Genotyping of Tandem Repeats

The standard of care in genotyping disease causing TR loci is usually experimen-

tal methods such as repeat primed PCR, long-range PCR, or southern blot [CMM+04].

While these methods are highly accurate and provide context in genotyping specific TR

loci, they often have high cost and are not easily scalable. To tackle this problem, several

bioinformatics methods have been proposed to allow high-throughput genotyping of TRs

using sequencing datasets [MSBYG19, DvVS+17, WZY+17a, KEAH19]. These methods

rely on short-read whole genome sequencing (WGS) datasets, which allow accurate char-

acterization of the genome with low error rates (0.24% error rate) [PGB+18]. In addition

to short-read sequencing, long-read approaches have also been used to genotype tandem

repeats [DRDCB+19, LZW+17, GYM+20]. However, long-read technologies have a rela-

tively higher error rate and are not as widely available in clinical and research settings

due to their higher cost [MSBYG19]. As a result, my work has been focused on using

short-read sequencing datasets to create genome-wide genotype profiles of TRs.

1.3 Outline

Chapter 2 describes the statistical method for genome-wide genotyping of tandem

repeats. Chapter 3 describes a toolkit for post processing, filtering, and quality control of

2



tandem repeat callsets. Chapter 4 examines multiple applications of applying the methods

described in chapters 2 and 3 to identify de-novo TR mutations in ASD affected individuals

and to create a merged TR callset by combining information from several different TR

callers.
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Chapter 2

Profiling the genome-wide landscape of

tandem repeat expansions

Most of this chapter was first published as:

Mousavi, N., Shleizer-Burko, S., Yanicky, R., & Gymrek, M. Profiling the genome-

wide landscape of tandem repeat expansions. Nucleic acids research. (2019).

Abstract: Tandem Repeat (TR) expansions have been implicated in dozens of ge-

netic diseases, including Huntington’s Disease, Fragile X Syndrome, and hereditary ataxias.

Furthermore, TRs have recently been implicated in a range of complex traits, including

gene expression and cancer risk. While the human genome harbors hundreds of thou-

sands of TRs, analysis of TR expansions has been mainly limited to known pathogenic

loci. A major challenge is that expanded repeats are beyond the read length of most

next-generation sequencing (NGS) datasets and are not profiled by existing genome-wide

tools. We present GangSTR, a novel algorithm for genome-wide genotyping of both short

and expanded TRs. GangSTR extracts information from paired-end reads into a unified

model to estimate maximum likelihood TR lengths. We validate GangSTR on real and
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simulated data and show that GangSTR outperforms alternative methods in both accu-

racy and speed. We apply GangSTR to a deeply sequenced trio to profile the landscape

of TR expansions in a healthy family and validate novel expansions using orthogonal tech-

nologies. Our analysis reveals that healthy individuals harbor dozens of long TR alleles

not captured by current genome-wide methods. GangSTR will likely enable discovery of

novel disease-associated variants not currently accessible from NGS.

2.1 Introduction

Next-generation sequencing (NGS) has the potential to profile nearly all genetic

variants simultaneously in a single assay. Indeed, whole exome sequencing (WES) and

whole genome sequencing (WGS) have successfully identified single nucleotide polymor-

phisms (SNPs) and small indels contributing to a range of phenotypes, including Mendelian

diseases [YMR+13], cancer [BTPP+18], and complex traits [BOH+16]. Recently, several

studies have demonstrated the power of NGS to genotype more complex structural variants

(SVs) and revealed a contribution to a variety of traits including gene expression [CSD+17],

cancer [WFS+18], and autism spectrum disorder [BAG+18]. Despite this progress, NGS

pipelines struggle with highly repetitive regions of the genome, which are still routinely

filtered from most studies.

Here, we focus on short tandem repeats (STRs) with motif lengths of 1-6bp and

variable number tandem repeats (VNTRs) with motif lengths of up to 20bp, which we

collectively refer to as TRs. TRs have been implicated in dozens of disorders [Mir07],

such as Huntington’s Disease and Fragile X Syndrome, which together affect millions of

individuals worldwide [HRAA+14, PWD+12, RMSC14]. In most cases, the pathogenic

mutation is an expansion of the number of repeats. Importantly, known pathogenic TRs

represent just a small fraction of the more than one million TRs in the human genome
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[WGH+14]. Recently, thousands of TRs have been shown to play a role in gene regulation

[GWG+16, QGG+16] and it is becoming increasingly clear that TRs across the genome

are likely to have widespread contributions to complex polygenic traits [PCQ14, Han10,

Han18b]. In these cases, smaller expansions or contractions may subtly increase or decrease

risk for a trait, similar to effect sizes observed for point mutations, and work together to

modulate an individual’s disease risk [VWZ+17]. These studies apply linear or logistic

regression models at each TR in the genome to test for association between TR copy

number and phenotype across a cohort of samples.

Over the last several years, we and others have developed a series of tools for genome-

wide genotyping of STRs [GGRE12, WZY+17b, HFM+13, KSKH16] from short reads or

targeted genotyping of VNTRs [BSBG+17] from both short and long reads. These tools

primarily rely on identifying reads that completely enclose the repeat of interest. While

most TRs in the human genome can theoretically be spanned by 100bp reads [MLL+16],

in practice repeats longer than around 70bp are difficult or impossible to genotype due

to an insufficient number of enclosing reads. Notably, in our recent genome-wide analy-

sis [SMG18] using HipSTR [WZY+17b], more than 150,000 STRs were filtered because

they showed strong departure from genotype frequencies expected Hardy-Weinberg equi-

librium, in part because of dropout of long alleles. The list of filtered TRs includes most

known pathogenic TR expansions, for which even normal alleles typically exceed the length

of short reads [Han18b]. Thus existing NGS pipelines provide an incomplete picture of

genome-wide variation at TRs.

Recently, several methods have been developed to analyze expanded TRs from

NGS, but all face limitations that do not allow for unbiased genome-wide analysis of TR

lengths. exSTRa [TBD+18] classifies a repeat as “expanded“ vs. “normal“ but requires a
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control cohort and does not estimate repeat length, which is often informative of disease

severity or age of onset [Han18b] and is required for performing genome-wide association

studies. STRetch [DLP+18] can perform genome-wide expansion identification but does

not analyze short TRs, is limited to motifs of up to 6bp, and is computationally expensive.

Tredparse [TKL+17] models multiple aspects of paired end reads but cannot estimate re-

peat lengths longer than the sequencing fragment length. ExpansionHunter [DvVS+17]

produces accurate genotypes across a range of repeat lengths except when both alleles

are close to or longer than the sequencing read length. Finally, Tredparse and Expansion-

Hunter have been primarily designed for targeted analysis of known pathogenic expansions

and do not scale genome-wide.

Long read technologies have recently been applied to genotype long and complex

repeats, such as the CCG repeat implicated in Fragile X Syndrome [LEP+13] and a com-

plex pentamer repeat implicated in myoclonus epilepsy [IDM+18]. While long reads offer

a potential solution to genome-wide TR analysis, NGS remains the gold standard for

diagnostic sequencing and population-wide studies due to its low cost and substantially

higher throughput [PGM+18]. Furthermore, the low per-base accuracy and high indel

rate of long read technologies present major challenges to accurate quantification of repeat

counts, especially for TRs with short motif lengths. Thus, we focus here on the challenge

of comprehensive TR genotyping from short reads.

Here, we present GangSTR, a novel method for genome-wide analysis of TRs from

NGS data. GangSTR relies on a general statistical model incorporating multiple proper-

ties of paired-end reads into a single maximum likelihood framework capable of genotyping

both normal length and expanded repeats. We extensively benchmark GangSTR against

existing methods on both simulated and real datasets harboring a range of allele lengths

and show that GangSTR is both faster and more accurate than existing solutions. Finally,

we apply GangSTR to genotype TRs using high-coverage NGS from a trio family to eval-
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uate Mendelian inheritance and validate novel repeat expansions using orthogonal long

read and capillary electrophoresis data. Altogether, our analyses demonstrate GangSTR’s

ability to robustly genotype a range of TR classes, which will likely enable identification

of novel pathogenic expansions as well as genome-wide association studies of TR variation

in large cohorts.

GangSTR is packaged as an open-source tool at

https://github.com/gymreklab/GangSTR.

2.2 Materials and Methods

2.2.1 Overview of the GangSTR model

GangSTR is an end-to-end method that takes sequence alignments and a reference

set of TRs as input and outputs estimated diploid repeat lengths. Its core component is

a maximum likelihood framework incorporating various sources of information from short

paired-end reads into a single model that is applied separately to each TR in the genome.

Multiple aspects of paired-end short reads can be informative of the length of a

repetitive region. Reads that completely enclose a repeat trivially allow determination

of the repeat number by simply counting the observed number of repeats. While most

of the existing tools have primarily focused on repeat-enclosing reads, other pieces of

information, such as fragment length, coverage, and existence of partially enclosing reads,

are all functions of repeat number. Recent tools for targeted genotyping of expanded STRs

utilize various combinations of these information sources (Table 2.1).

GangSTR incorporates each of these informative aspects of paired-end read align-

ments into a single joint likelihood framework (Figure 2.1). The underlying genotype is

represented as a tuple ⟨A,B⟩, where A and B are the repeat lengths of the two alleles of an

individual. We define four classes of paired-end reads: enclosing read pairs (“E”) consist

8
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Table 2.1: Classes of read pairs and features used by existing tools for genotyping TRs
from short reads.

Method Enclosing FRR Spanning Off-target
FRR

Estimates
# rpts.

Genome-
wide Estimation limit

LobSTR
[GGRE12] X X <Read length

HipSTR
[WZY+17b] X <Read length

STRetch
[DLP+18] X X X X Only reports

expanded TRs
exSTRa

[TDLB17] X X X Does not estimate
TR length

Tredparse
[TKL+17] X X X X <Fragment length

ExpansionHunter
[DvVS+17] X X X X Poor performance

when both alleles long

GangSTR X X X X X X Not limited to fragment
or read length

of at least one read that contains the entire TR plus non-repetitive flanking region on

either end; spanning read pairs (“S”) originate from a fragment that completely spans the

TR, such that each read in the pair maps on either end of the repeat; flanking read pairs

(“F”) contain a read that partially extends into the repetitive sequence of a read; and fully

repetitive read pairs (“FRR”) contain at least one read consisting entirely of the TR motif.

Two types of probabilities are computed for each read pair: the class probability, which is

the probability of observing a read pair of a given class given the true genotype, and the

read probability, which gives the probability of observing a particular characteristic of the

read pair. A different characteristic is modeled for each class (Figure 2.2).

2.2.2 Computation of Log Likelihood

The likelihood model computes the probability of the observed read pairs given a

true underlying diploid genotype:

L(⟨A,B⟩) = logP(R;⟨A,B⟩)

=

LP︷ ︸︸ ︷
log∏

r∈R
P(r;⟨A,B⟩)+

LN︷ ︸︸ ︷
logP(|FRR|;⟨A,B⟩) (2.1)

9



Left Flank Right Flank(Motif) n
Reference

Genome
Class

Characteristic

Enclosing Class

Spanning Class

FRR Class

Flanking Class

Fragment 
Length

Copy Number

Distance to TR,
FRR Count

Copy Number

BAM File

Likelihood 
Model

Optimization &
Bootstrap CI

VCF File

Figure 2.1: Schematic of GangSTR method. Paired end reads from an input set of
alignments are separated into various read classes, each of which provides information
about the length of the TR in the region. This information is used to find the maximum
likelihood diploid genotype and confidence interval on the repeat length. Results are
reported in a VCF file.

Where L(⟨A,B⟩) corresponds to the total log likelihood of genotype ⟨A,B⟩, which consists

of term LP combining the contribution of each read pair r from the set of informative read

pairs R, and term LN which models the total number of FRR reads.

2.2.2.1 Read pair term

The first term in (2.1) is calculated by extracting characteristics from every infor-

mative read pair, where the specific characteristic modeled depends on the class of the

read. Each read pair is assigned to one or more classes. If a read pair belongs to multiple

classes (for example, a read pair can be both spanning and flanking), it appears once in

each class for its contribution to both likelihood classes. The read pair term is computed
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as follows:

LP = log∏
r∈R

P(r;⟨A,B⟩)

= ∑
r∈R

logP(r;⟨A,B⟩)

= ∑
r∈R

log ∑
C j∈C

P(r,C j;⟨A,B⟩) (2.2)

where C = {C j} = {enclosing,spanning,FRR, f lanking} is the set of all informative read

classes. Every informative read pair r belongs to a class of informative reads, we denote

this class by C(r). The value of P(r,C j;⟨A,B⟩) is set to 1 if C(r) = C j and 0 otherwise. We

thus simplify the term for each read pair:

Lp = ∑
r∈R

logP(r,C(r);⟨A,B⟩)

= ∑
r∈R

logP(r|C(ri);⟨A,B⟩)︸ ︷︷ ︸
Read Probability

P(C(r);⟨A,B⟩)︸ ︷︷ ︸
Class Probability

(2.3)

Finally, in a diploid model we assume each read pair is equally likely to originate

from allele A or B:

Lp = ∑
r∈R

log
1
2

{
P(r|C(r);A)P(C(r);A)

+P(r|C(r);B)P(C(r);B)
}

(2.4)
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2.2.2.2 Class probability

The class probability, P(C(r);A), models the relative abundance of different classes

of informative reads for an underlying repeat length A. We use the schematic in Figure

2.2 to describe how class probabilities are modeled. We consider a repeat with A copies

of a motif of size m bp plus F bp of flanking region on either side. Denote the starting

position of each read in a pair relative to the beginning of this region as S1 and S2, where

each read in the pair has length r. Then we can define class probabilities as:

P(C = Enclosing;A) = P(S2 < F,S2 + r > F +Am)

P(C = Spanning;A) = P(S1 < F,S2 > F +Am− r)

P(C = FRR;A) = P(S1 ≤ F,F ≤ S2 ≤ F +Am− r)

P(C = Flanking;A) = P(S1 < F,S1 + r < F +Am,S1 + r > F)

Class probabilities capture changes in the relative abundance of each class as a

function of TR length (Figure ). Closed form solutions to compute class probabilities are

given in the Supplementary Note.

2.2.2.3 Read probability

The read probability, P(r|C(r);A), models a separate informative characteristic for

each class of informative read pairs as a function of repeat length A.

The number of repeats observed in enclosing reads (parameter n in Figure 2.2A) can

trivially estimate repeat size. However, errors introduced during PCR can alter the number

of repeats observed. We model the size of PCR errors using a geometric distribution with

default parameter p = 0.9 as suggested by HipSTR [WZY+17b] (Figure 2.2B).

Spanning read pairs have one mate aligned to either side of the TR. In a sample

12
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Figure 2.2: Four classes of informative read pairs. A. Enclosing class: characteristic
n corresponds to the number of repeat copies enclosed in the read. B. n is modeled
for different repeat length accounting for errors introduced during PCR. C. Spanning
class: characteristic ∆ denotes the observed fragment length for a read pair. D. ∆ is
modeled for different repeat lengths. Longer repeats give shorter observed fragment
lengths. The red vertical dashed line gives the mean actual fragment length. E. Fully
Repetitive Read (FRR) class: characteristic Ω is the distance of the non-repetitive read
from the repeat region. F. Ω is modeled for different repeat lengths. Longer repeats
give shorter observed Ω values. G. Flanking class: characteristic k shows the number
of copies extracted from the flanking read. H. k is modeled for different repeat lengths.
S1 and S2 give the start coordinates of each read in the pair relative to the beginning
of the first flanking region. For A, C, E, and G, F shows the length (bp) of the flanking
region and the repeat is L bp long (A copies of a repeat of length m). For B, D, F,
and H, each color denotes a different repeat length (blue=10 copies, green=20 copies,
red=40 copies, purple=60 copies, gold=80 copies, light blue=200 copies).

with a TR expansion, the spanning read pair’s apparent fragment length based on mapped

read positions (parameter ∆ in Figure 2.2C) will shrink compared to the actual fragment

length by an amount corresponding to the size of the TR expansion. We thus model

observed fragment length as a normal distribution where the mean is a function of repeat

length (Figure 2.2D).

Fully repetitive reads (FRRs) often have an anchor mate that maps in the flanking

region before or after the TR. The distance of the anchor from the TR locus (parameter

Ω in Figure 2.2E) is modeled as a function of TR length, with smaller Ω values indicating

longer TRs (Figure 2.2F).

Flanking reads partially cover the TR. The number of repeats in a flanking read
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(parameter k in Figure 2.2G) indicates that one allele is at least of size k. For a TR with

length A, flanking reads are equally likely to exhibit a number of repeats k ranging from 1

to A (Figure 2.2H).

Closed form solutions to compute each class probability are given in the Supple-

mentary Note.

2.2.2.4 Repetitive Read Count Term

The LN term in (2.1) assigns a likelihood to the total number of observed fully

repetitive reads. We use a Poisson distribution with parameter λ to model the expected

number of observed FRR reads, which is linearly related to the size of alleles A and B.

Assuming uniform average coverage Cv, read length r, and motif length m, we can calculate

λ using (2.5). The unit step function u(.) ensures alleles shorter than the read length have

0 expected FRR reads.

λ = u(A− r
m
) · Cv(A ·m− r)

2r
+u(B− r

m
) · Cv(B ·m− r)

2r
(2.5)

Then we compute the LN term as:

LN = logP(|FRR|;⟨A,B⟩)

= log
e−λλ|FRR|

|FRR|!

=−λ+ |FRR| · logλ− log
(
|FRR|!

)
We use Stirling’s approximation to calculate log(|FRR|!) for large |FRR| values:

log
(
n!
)
≈
(

n+
1
2

)
· log(n)−n+

1
2

log(2π) (2.6)
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2.2.3 Local Realignment

For enclosing, flanking, and FRR reads GangSTR must obtain accurate counts of

the number of repeats contained in each read. For reads fully enclosing the TR plus a

minimum of 20bp on either end, repeat count is extracted from the CIGAR score present

in the BAM files. Reads starting or ending closer to the TR boundaries or that are fully

repetitive are prone to alignment errors and are subject to stringent local realignment.

Similar to Tredparse [TKL+17], we create artificial reference sequences consisting of flank-

ing region (of size of the read length) on either side and different numbers of repeats,

starting from the longest stretch of perfect copies of the repeat and ending with the 2 +

1.1 times the total number of copies of the motif seen in the read. Each read is realigned

to the candidate sequences and the reference with the highest realignment score is used to

determine the number of repeat copies and the class of the read (flanking, enclosing, or

FRR). Realignment is performed using an efficient implementation of the Smith-Waterman

algorithm [ZLGM13].

2.2.4 Retrieving reads mapped to off-target regions

For large expansions some fragments consist entirely of the repeat and may not map

to the correct genomic region (off-target). To rescue these reads, we scan a predefined set

of off-target regions for additional FRR reads. While in some cases these off-target FRRs

cannot be uniquely mapped, our genome-wide analysis below suggests expansions of most

TR motifs are rare, and thus most off-target FRRs of the same motif likely originate from

the same locus.

To identify off-target regions for each pathogenic TR, we simulated reads for ex-

panded alleles and aligned them back to the reference genome (see simulation settings

below). We extracted positions of reads mapped outside of the simulated region (5000bp
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on either side of the TR). We merged off-target regions within 30bp of each other and

expanded the final merged regions by 10bp on either side. The GangSTR implementa-

tion allows users to choose whether or not to include off-target FRRs in the maximum

likelihood calculation.

2.2.5 Optimization

For each TR, GangSTR determines the possible range of repeat lengths from

oberved reads. Minimum and maximum counts are determined by enclosing and flank-

ing reads if present. If FRRs are observed, the maximum count is leniently set to a value

with mean expected FRR count 5 times the observed count.

By default, GangSTR uses an exhaustive grid search over all possible allele pairs

and returns the maximum likelihood diploid genotype. To speed up optimization for

TRs with a large range of possible alleles, GangSTR also implements an efficient multi-

step optimization procedure. To account for the irregularity of the likelihood surface, we

perform a modular optimization procedure with each step searching a different range of

allele lengths. First, any enclosing allele a with support of two or more reads is added to

the list of potential alleles. In the second step, each potential enclosing allele, a, is used to

perform 1-dimensional optimization of the likelihood function to find allele b, were < a,b>

minimizes the likelihood function. Next, multiple rounds of 2-dimensional optimization are

performed to find < c,d > genotypes that minimize the likelihood function. In each round

the optimizer uses a different initial point which helps prevent reporting local optima. Any

potential allele from each step, a,b,c,d, is added to the list of potential alleles. In the final

step we compare the likelihood from any combination of two alleles in this list, to find the

maximum likelihood genotype. All 1 and 2-dimensional optimization is performed using

the COBYLA algorithm [Pow94] implemented in the NLopt library [Joh14].
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2.2.6 Quality metrics

GangSTR reports three separate quality metrics to accommodate a range of down-

stream applications.

2.2.6.1 Bootstrap confidence intervals and standard errors

In each bootstrap round, GangSTR resamples the set of informative reads (with

replacement) to create a bootstrap sample and performs the above optimization procedure

on this set of read pairs. The number of bootstrap samples, Nb, is set by the user. GangSTR

records all bootstrap estimates in separate lists for shorter and longer alleles. These lists

are then sorted and used to find the confidence interval at the desired level of significance

and standard errors on allele lengths.

2.2.6.2 Genotype likelihoods and quality score

Let L equal the sum of likelihoods for each possible genotype and LML be the

likelihood of the maximum likelihood genotype. GangSTR returns a quality score Q = LML
L .

This is equivalent to a posterior probability of the maximum likelihood genotype assuming

a uniform prior. This value is most informative for short allele lengths where repeat unit

resolution can be achieved. For TR expansions with larger standard errors, the posterior

probability of any particular genotype will be low and expansion probabilities are more

informative.

2.2.6.3 Expansion probability

Given a user-specified repeat number expansion threshold X , GangSTR computes

the probabilities of no expansion (P0), a heterozygous expansion above the threshold (P1),
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or a homozygous expansion above the threshold (P2) as:

P0 = Σ⟨A,B⟩∈Gs.t.A<X ,B<X L(⟨A,B⟩)/L

P1 = Σ⟨A,B⟩∈Gs.t.A<X ,B≥X L(⟨A,B⟩)/L

P2 = Σ⟨A,B⟩∈Gs.t.A≥X ,B≥X L(⟨A,B⟩)/L

(2.7)

where G is the set of all possible diploid genotypes, L(⟨A,B⟩) is the likelihood of genotype

⟨A,B⟩, and L is as defined above.

2.2.7 Benchmarking using simulated reads

Reads were simulated using wgsim (https://github.com/lh3/wgsim). Unless other-

wise specified, we used parameters mean fragment length (-d) 500, standard deviation of

fragment length (-s) 100, and read length (-1 and -2) 150. Mutation rate (-r), fraction

of indels (-R) and probability of indel extension (-X) were all set to 0, and base error

rate (-e) was set to 0.005. The number of simulated reads (-N) was calculated using the

following formula N = C(2F+Am)
2r , where C is the average coverage, set to 40x. F is the

length of the simulated flanking region around the TR, set to 10,000bp. A is the number

of copies of the motif of length m present in the simulated sample (simulated allele), and

r is the read length. Simulated genotypes for each pathogenic TR were selected such that

the shorter allele covers the normal or premutation range, while the longer allele could be

either normal, premutation, or pathogenic (Table 2.2).

Reads were aligned to the hg38 reference genome using BWA-MEM [Li13] with

parameter -M. GangSTR v2.3 was run using the disease-specific reference files for each TR

available on the GangSTR website with --coverage set to the simulated coverage level and

with the --targeted option. Tredparse v0.7.8 was run with with --cpus 6, --useclippedreads,

and --tred appropriately set for each disease locus. ExpansionHunter v2.5.5 was used with

and --read-depth preset to the simulated coverage level.
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2.2.8 Quantifying genotyping performance with RMSE

Root mean square error (RMSE) was used to compare estimated vs. expected re-

peat allele lengths. We denote the diploid genotype of sample i with ⟨xi
1,x

i
2⟩. For each

diploid genotype, we ordered the two alleles by length such that xi
1 ≤ xi

2. Then to com-

pare estimated X = {⟨x1
1,x

1
2⟩,⟨x2

1,x
2
2⟩...⟨xn

1,x
n
2⟩} and expected Y = {⟨y1

1,y
1
2⟩,⟨y2

1,y
2
2⟩...⟨yn

1,y
n
2⟩}

genotypes, RMSE is defined as:∑n
i=1 ∑2

j=1
(yi

j−xi
j)

2

2n .

2.2.9 Analysis of genomes and exomes with validated expansions

Whole genome sequencing datasets for samples with previously validated repeat

expansions were obtained from the European Genome-Phenome Archive (dataset ID:

EGAD00001003562). GangSTR v2.3 was run using the disease-specific reference files for

each TR with option --targeted. For Fragile X Syndrome, --ploidy was set to 1 for males

and 2 for females. ExpansionHunter v2.5.5 was run using the set of off-target regions given

in the GangSTR reference files for Huntington’s Disease, and with their published off-target

regions for Fragile X Syndrome. Tredparse v.0.7.8 was run using default parameters and

--tred set to HD or FXS for Huntington’s or Fragile X Syndrome, respectively.

Whole exome sequencing datasets for Huntington’s Disease patients were obtained

from dbGaP accession phs000371.v1.p1. Fastq files were aligned to the hg19 reference

genome using BWA-MEM [Li13]. PCR duplicates were removed using the samtools

[LHW+09] rmdup command. Validated repeat lengths were obtained from data fields

HDCAG1 and HDCAG2 in table pht002988.v1.p1.c1. We inferred fragment length mean

and standard deviation per sample after removing read pairs mapping more than 1kb apart.

GangSTR v2.3 was run with --insert-mean and --insert-sdev set to the values computed

for each sample. We additionally used parameters --nonuniform and --targeted. Expan-

sionHunter v2.5.5 was run with --read-depth set to the mean coverage at the TR plus
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surrounding region. Tredparse v0.7.8 was run with options --useclippedreads and --tred

HD.

2.2.10 Constructing a genome-wide repeat reference panel

Tandem Repeats Finder [Ben99] was used to create a panel of repetitive regions

with motifs up to 20bp in the hg19 and hg38 reference genomes using parameters matching

weight=2, mismatch penalty=5, indel score=17, match probability=80, and indel proba-

bility=10. We required a minimum score threshold of 24 to ensure at least 12bp matching

the motif for each TR and removed TRs with reference lengths greater than 1000bp.

This initial panel was subject to multiple filters to avoid imperfect or complex TR

regions that cannot be accurately genotyped. First, motifs formed by homopolymer runs

(i.e., “AAAA”) or by combining smaller sub-motifs (i.e., “ATAT” is made of 2×“AT”) were

discarded. Based on thresholds used in previous TR references [WGH+14], we required

TRs with motif size 2 or 3 to have at least 5 or 4 copies in tandem, respectively, and larger

motifs to have at least 3 copies. To avoid errors in the local realignment step of GangSTR,

all repeating regions were trimmed until they no longer contained any imperfections in

their first and last three copies of the motif. We removed TRs within 50bp of another

TR as these regions tend to be low complexity and result in low quality calls. Next we

discarded remaining TRs that do not consist of perfect repetitions of the motif. Finally,

we manually added disease associated TRs to ensure notation is consistent with other

methods (e.g. [DvVS+17, TKL+17]).

2.2.11 Run time evaluation

All timing and memory experiments were tested in a Linux environment running

Centos 7.4.1708 on a server with 28 cores (Intel® Xeon® CPU E5-2660 v4 @ 2.00GHz)

and 125 GB RAM and were performed on a single core. Each experiment was run 5
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times and the mean value was reported. Tredparse was evaluated on all available TRs

(“treds”) since it does not allow specifying a subset of TRs for analysis. For all timing

analyses we used the --skip-unaligned option for ExpansionHunter, which improved run

time. For scalability tests, we randomly chose varying sized sets of TRs from the genome-

wide reference. Timing was performed with the UNIX time command and the sum of

the sys and user times was reported. Memory usage was measured using the UNIX top

command. Virtual memory was measured every 0.1 seconds and the maximum value was

reported.

2.2.12 Genome-wide TR analysis in a CEU trio

Whole genome sequencing data (BAM files) for the CEU trio consisting of NA12878,

NA12891, and NA12892 were obtained from the European Nucleotide Archive (ENA ac-

cession: PRJEB3381).

GangSTR v2.3 was run on each family member (NA12878, NA12891, NA12892)

using the hg19_ver13.1 reference available on the GangSTR website with default parame-

ters. We supplied an --str-info-file with the expansion threshold for each TR set to the read

length of 101bp. HipSTR v.0.6.2 was run on NA12878 with non-default parameters: --lib-

from-samp --def-stutter-model --max-str-len 1200 --min-reads 15 --output-filters. STRetch

v0.4.0 was run on NA12878 using the GangSTR reference (limited to motifs up to 6bp) as

input regions and with no control genomes specified.

We used our filtering tool, DumpSTR (see Code Availability), to filter GangSTR

and HipSTR calls. DumpSTR has various recommended filtering settings depending on

the downstream application. For example, for applications where precise estimation of TR

length is important, more stringent quality filters should be applied vs. for applications

targeted at identifying whether a TR is expanded or not. Thus we applied two filter levels

referenced in the results as level 1 and level 2.

21



First, level 1 filters were used to filter out TRs that could not be reliably called.

For HipSTR level 1 filtering, we applied dumpSTR options: --max-call-DP 1000 --min-

supp-reads 1, which removes calls with abnormally high coverage or calls with no sup-

porting reads, respectively. For GangSTR level 1 filtering, we applied dumpSTR options:

--max-call-DP 1000 --min-call-DP 20 --filter-spanbound-only --filter-badCI, which removes

calls with abnormally high coverage, calls where only spanning or bounding reads were

found, or calls for which the maximum likelihood genotype falls outside of the 95% boot-

strap confidence interval. For both filter levels, we additionally filtered regions overlap-

ping annotated segmental duplications in hg19 (UCSC Genome Browser [KSF+02] track

hg19.genomicSuperDups table) and regions that overlapped more than one other TR in

the raw TR set from Tandem Repeats Finder [Ben99] that was used to create the reference

panel.

Second, level 2 filters were used to further restrict to TRs with high confidence

length estimates to compare HipSTR vs. GangSTR concordance. For HipSTR level 2

filtering, we applied additional options: --min-call-DP 10 --min-call-Q 0.9 --max-call-flank-

indel 0.15 --max-call-stutter 0.15 as recommended on the HipSTR website. For GangSTR

level 2 filtering, we applied additional options: –min-call-Q 0.9 –min-total-reads 50.

Mendelian inheritance was determined using two metrics. First, we used maximum

likelihood estimates for each sample at each locus to determine whether the child geno-

type could be explained by parental genotypes. Second, in a less stringent analysis, we

determined whether reported confidence intervals were consistent with Mendelian inheri-

tance. Let child, mother, and father confidence intervals be denoted as (cl
1 − ch

1,c
1
2 − ch

2),

(ml
1−mh

1,m
l
2−mh

2), and ( f l
1− f h

1 , f l
2− f h

2 ), where superscripts 1 and 2 denote the short and

long allele at each diploid genotype and subscripts l and h represent the low and high

end of the confidence interval for each allele. A locus was considered to follow Mendelian

inheritance if cl
1−ch

1 overlapped either maternal confidence interval and c1
2−ch

2 overlapped
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either paternal confidence interval, or vice versa.

2.2.13 Validating GangSTR using long reads

Oxford Nanopore Technologies (ONT) data for NA12878 was obtained from the

Nanopore WGS Consortium (https://github.com/nanopore-wgs-consortium/NA12878). Pa-

cific Biosciences (PacBio) data for NA12878 was obtained from the Genome in a Bottle

website (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

NA12878/NA12878_PacBio_MtSinai).

For each repeat, we used the Pysam (https://github.com/pysam-developers/pysam)

python wrapper around htslib and samtools [LHW+09] to identify overlapping PacBio or

ONT reads and extract the portion of the read overlapping the repeat +/- 50bp. We esti-

mated the repeat length by taking the difference in length between the reference sequence

and the number of bases of each read aligned in that region based on the CIGAR score.

Assembled paternal and maternal haplotypes were extracted from the TrioCanu

[KRW+18] assembly of NA12878 (data availability:

https://obj.umiacs.umd.edu/marbl_publications/triobinning/). Contigs were aligned to

the hg19 reference genome using Minimap2 [Li18] with recommended settings for full

genome assembly alignment (options: -c --cs -ax asm5). The length of each TR was

estimated by counting the difference in length between the reference sequence and aligned

assembled haplotypes in the +/- 50bp window around each TR using Pysam

(https://github.com/pysam-developers/pysam) as described above.

2.2.14 Experimental validation of repeat lengths

Candidate TRs with long alleles identified in NA12878 were PCR amplified using

GoTaq (Promega #PRM7123) with primers shown in Table 2.6. PCR products were puri-

fied using NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel #740609) and analyzed
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with capillary electrophoresis using an Agilent 2100 Bioanalyzer and an Agilent DNA 1000

kit (#5067-1504).

2.2.15 Code availability

GangSTR is freely available at https://github.com/gymreklab/GangSTR. The dump-

STR filtering tool is available at https://github.com/gymreklab/STRTools.

2.3 Results

2.3.1 GangSTR outperforms existing TR expansion genotypers

We first evaluated GangSTR’s performance by benchmarking against Tredparse

[TKL+17] and ExpansionHunter [DvVS+17], two alternative methods for genotyping re-

peat expansions. We focused on these methods since they output estimated repeat number

at both normal and expanded TRs and do not require a control cohort as input (Table 2.1).

We simulated reads for a set of 14 well-characterized repeats involved in repeat expansion

disorders. Since almost all known repeat expansion disorders follow an autosomal domi-

nant inheritance pattern, we simulated individuals heterozygous for one normal range allele

and a second allele that varied along the range of normal and pathogenic repeat counts

(Table 2.2). In each case, paired-end 150bp reads were simulated to a target of 40-fold

coverage, a standard setting for clinical-grade whole genomes. Performance at each locus

was measured as the root mean square error (RMSE) between true vs. observed alleles

(Methods).

GangSTR genotypes showed the most robust performance compared to other tools

across a wide range of repeat lengths, with the smallest RMSE for all TRs tested (Fig-

ure 2.3A, Figure 2.7). At TRs for which the normal range allele is below the read length

(SCA6, SCA2, SCA7, SCA1, HTT, and SCA17), both ExpansionHunter and GangSTR
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accurately predicted the lengths of both alleles (Figure 2.3B). However, GangSTR demon-

strated a distinct advantage over ExpansionHunter in genotyping TRs for which both

the normal and pathogenic allele were close to or longer than the read length, where

ExpansionHunter estimates become unstable (Figure 2.3A, C). Tredparse performed well

at short alleles but consistently underestimated alleles longer than the fragment length

(Figure 2.3B, C) which accounts for its inflated RMSE results.

We performed additional simulations at the Huntington’s Disease locus to test the

effects of sequencing parameters on each tool’s performance. GangSTR and Expansion-

Hunter both improved significantly as a function of coverage and read length, whereas

Tredparse was relatively unaffected (Figures 2.8, 2.9). Performance of all tools was mostly

consistent across mean fragment lengths (Figure 2.10).

We then tested GangSTR’s performance on real NGS data from individuals with

validated pathogenic repeat expansions (Methods). Notably, only a small number of such

samples are available. Thus tests on real data were limited to two TRs implicated in Hunt-

ington’s Disease (HTT) and Fragile X Syndrome (FMR1) with sufficient sample sizes. We

first genotyped the HTT and FMR1 loci in 14 and 25 samples respectively with available

PCR-free WGS data [DvVS+17]. All tools performed well on the HTT TR (Figure 2.3D).

GangSTR showed the smallest overall error (RMSEGANGSTR=7.9; RMSETREDPARSE=8.3;

RMSEEXPANSIONHUNTER=10.1) with a small bias in ExpansionHunter for overestimat-

ing repeat lengths. Performance was markedly worse for all tools at FMR1 (Figure 2.3E;

RMSEGANGSTR=29.3; RMSETREDPARSE=34.8; RMSEEXPANSIONHUNTER=27.3). Notably,

the FMR1 TR has 100% GC content and very few reads mapping directly to the TR could

be identified. This highlights a major challenge in calling GC-rich TRs that are still not

sequenced well even with PCR-free protocols.

We additionally tested each tool on 200 whole exome sequencing datasets from pa-

tients with validated Huntington’s Disease expansions (Methods, Figure 2.11). GangSTR
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again showed the smallest error (RMSEGANGSTR=5.4; RMSETREDPARSE=96.4;

RMSEEXPANSIONHUNTER=9.1). Notably, ExpansionHunter gave biased estimates, pre-

sumably due to uneven coverage profiles in exomes. Tredparse again underestimated calls

for alleles approaching the fragment length (mean=200bp).

Finally, we evaluated computational performance of each tool on various sets of

input TRs. We first used the 14 pathogenic TRs to time each tool. GangSTR performed

the fastest (mean=15.4s), with ExpansionHunter showing similar run time (mean=16.1s).

Tredparse was significantly slower (mean=82.4). We then performed additional evaluation

of the scalability of GangSTR and ExpansionHunter by testing on input TR sets ranging

from 100 to 100,000 TRs (Figure 2.12). GangSTR run time scaled linearly with reference

size as expected, whereas ExpansionHunter run time grew super-linearly. Notably, Ex-

pansionHunter only finished on 3 out of 5 runs with 10,000 TRs and would not run to

completion on larger TR sets, potentially due to stalling at problematic loci. We addition-

ally tested the maximum memory requirement of each method. GangSTR memory usage

stayed relatively constant at under 1GB, whereas ExpansionHunter memory usage grew

linearly with the number of TRs in the reference set (Figure 2.13).

2.3.2 Genome-wide TR profiling

We next evaluated GangSTR’s utility for genome-wide TR genotyping. To this

end, we used Tandem Repeats Finder [Ben99] to construct a set of all STRs (motif length

2-6bp) and short VNTRs (motif length 7-20bp) in the human reference genome (Methods).

In total, we identified 829,231 TRs (780,328 autosomal) in hg19 with a mean length of

15.6bp. Of these, 5,828 are found in coding regions (Figure 2.4A), most of which have

lengths that are multiples of 3bp.

We used our genome-wide panel to genotype autosomal repeats using GangSTR on

WGS with 30x coverage for a trio of European descent consisting of the highly characterized
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NA12878 individual and her parents (NA12891 and NA12892). After filtering low quality

loci (Methods, level 1 filters), an average of 673,252 TRs were genotyped per sample. As

expected, most alleles matched the reference (Figure 2.14) with a bias toward calling alleles

shorter than the reference. Both alleles for the majority of TRs (>99%) had maximum

likelihood lengths less than the read length of 101bp (Figure 2.15). To evaluate GangSTR

calls, we determined whether estimated genotypes followed patterns expected based on the

trio family structure (Methods). Overall, 98.9% of TRs followed Mendelian inheritance

when considering maximum likelihood genotypes. For 99.9% of TRs, 95% confidence

intervals were consistent with Mendelian inheritance (Methods). These values changed to

90.6% and 99.3% respectively after removing TRs that were homozygous reference in all

samples. The quality of calls steadily increased as a function of the minimum number of

observed reads at the locus and was mostly consistent across repeats with different motif

lengths (Figure 2.4B, Figure 2.16).

We evaluated GangSTR’s utility for genome-wide TR profiling by benchmarking

against HipSTR using the same reference TR set. After removing low quality loci from

each dataset, (Methods, level 1 filters) GangSTR produced calls at 43,571 TRs that could

not be reliably genotyped by HipSTR (Figure 2.4C). Of these, 7 are known pathogenic

TRs analyzed in Figure 2.3, demonstrating the limitations of relying on enclosing reads.

Notably, 1,880 TRs were not called by GangSTR but were present in HipSTR output.

These primarily consist of repeats with SNPs or indels in or near the TR sequence which

did not pass GangSTR’s stringent local realignment process. After applying stringent

recommended quality filters for each tool (Methods, level 2 filters), TRs called by both tools

showed extremely high concordance (>99%) (Figure 2.4D) with strong correlation between

allele lengths reported by each (Pearson r=0.99; p < 10−200; n=542,467), demonstrating

that GangSTR can robustly genotype both STRs previously analyzed using HipSTR as

well as long TRs previously excluded from genome-wide analyses.
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2.3.3 Genome-wide detection of novel TR expansions

We next evaluated whether GangSTR could identify novel repeat expansions in a

healthy genome (NA12878). GangSTR identified 56 TRs predicted to have at least one

allele longer than the read length (101bp) with greater than 80% probability (see Expansion

Probabilities defined in Methods) (Table 2.3). Of these, 46 showed evidence of expansions

in one or both parents. Long repeats were highly enriched for repeats with motif AAAGn

(17 TRs, one-sided Fisher’s exact test p = 1.2 ∗ 10−10) and related motifs of the form

AnGm ( Table 2.4). This finding is concordant with previous reports that AAG, AAAG,

and AAGG repeats exhibit strong base-stacking interactions that simultaneously promote

expansions through replication slippage and protect the resulting secondary structure from

DNA repair [BLC+08, ADD+00, XCB+01].

For comparison, we applied STRetch [DLP+18], an alternative tool for detecting

repeat expansions, using the GangSTR reference TR set of TRs restricted to motif lengths

up to 6bp (808,868 total TRs). STRetch leverages a modified reference genome contain-

ing decoy repeat sequences to identify potentially expanded TRs. It only attempts to

genotype TRs with candidate expansions and thus is unsuitable for unbiased genome-wide

TR genotyping. After filtering for segmental duplications (Methods), STRetch returned

results for 45 TRs (Table 2.5)). Notably, STRetch took approximately 157 CPU-hours

(6.5 days) compared to 16.6 CPU-hours for GangSTR on a single genome. TRs genotyped

by both GangSTR and STRetch showed concordant repeat number estimates (Pearson

r=0.68, p = 1.5∗10−5, n=33, Figure 2.5A, Table 2.5). However only 4 of the 56 TRs with

alleles longer than 101bp reported by GangSTR were genotyped by STRetch. Overall

these results show that GangSTR provides a more comprehensive analysis of genome-wide

TR variation.

To validate putative expansions identified by GangSTR, we examined long read

data from WGS for NA12878 generated using Pacific Biosciences (PacBio) [McC10] and
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Oxford Nanopore Technologies (ONT) [JOPA16]. For each of the 56 TRs with at least

one allele longer than the read length, we extracted regions of PacBio and ONT reads

overlapping the TR and determined the repeat length supported by each read (Methods).

In 53/56 cases with supporting reads from PacBio, at least one read showed evidence of

an allele >101bp (46/56 for ONT) (Table 2.3). ONT showed less evidence of expansions,

perhaps due to a deletion bias. Both long read technologies exhibit high error rates at

homopolymer runs [WdCW+17], resulting in messy sequence within repeats themselves

(Figure 2.5B).

In addition to using raw long reads for comparison, we extracted repeat regions

from error-corrected phased haplotype assemblies of NA12878 generated using TrioCanu

[KRW+18]. We used the phased assemblies to estimate diploid repeat lengths at each

candidate expansion (Table 2.3). Overall, repeat lengths reported by GangSTR are similar

to those extracted from haplotype-resolved assemblies (Pearson r=0.84, p=9.0e-13 for

the smaller allele for each genotype, and Pearson r=0.76, p=1.1e-9 for the larger allele).

Notably, several experimentally validated expansions reported by GangSTR (see below)

are not supported by assembled haplotypes (Figure 2.5C, Table 2.3), even when they were

evident in raw reads. These TRs may represent regions that could not be fully phased

by assembly methods, and highlight a current limitation of long read assemblies at highly

variable repeat regions.

Finally, for a subset of 11 candidate expansions, we additionally performed capillary

electrophoresis to measure TR lengths (Methods, Table 2.6). Capillary results showed

evidence of long alleles for the majority (9/11) of TRs (Figure 2.5C,D, Supplementary

Figure 12). Notably, expanded TRs proved difficult to amplify and capillary results in

some cases did not clearly indicate two distinct allele lengths. Further, in some cases

GangSTR, PacBio, and ONT gave discordant results, with either strikingly different repeat

lengths or an ambiguous signal that could not be resolved using capillary electrophoresis
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(Figure 2.17). Still, the majority of long TRs identified by GangSTR were validated by

at least one of these orthogonal technologies. Taken together, these results demonstrate

GangSTR’s ability to identify novel expanded TRs from genome-wide data and highlight

the challenges in precisely validating TR lengths at these loci.

2.4 Discussion

2.4.1 A unified framework for genotyping a wide range of TRs

Our study presents GangSTR, a novel tool for genotyping TRs from NGS data.

GangSTR is a flexible tool that can be used for a variety of applications, including genome-

wide TR genotyping, targeted detection of TR expansions at known pathogenic loci, and

genome-wide discovery of novel TR expansions. We show that GangSTR outperforms

existing tools in both speed and accuracy in a range of settings using simulated and real

NGS datasets. We applied GangSTR genome-wide to genotype hundreds of thousands of

TRs in a deeply sequenced healthy trio. We identified dozens of long repeat alleles which

were confirmed by orthogonal long read and capillary electrophoresis technologies.

GangSTR outperforms state of the art methods for characterizing TR expansions

from NGS (Figure 2.3). Our targeted simulation analyses demonstrate that GangSTR pro-

duced accurate TR length estimates in a range of settings, including unexpanded genotypes

and genotypes that are either heterozygous or homozygous for long alleles. GangSTR’s

advantage becomes more pronounced for TRs with longer normal-length alleles. Expan-

sionHunter [DvVS+17] does not accurately genotype TRs heterozygous for two long alleles

since its model is primarily based on sequencing coverage. Our model overcomes this limi-

tation by incorporating orthogonal information available from spanning read pairs. While

Tredparse [TKL+17] similarly models observed fragment lengths for spanning read pairs,

it does not analyze read pairs where both reads are mapped to off-target regions, and
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cannot genotype TRs longer than the fragment length.

Beyond TR expansions implicated in Mendelian disorders, mounting evidence sug-

gests that thousands of TRs genome-wide contribute to polygenic phenotypes such as gene

expression [GWG+16]. Accurate genome-wide TR genotyping will be critical for perform-

ing association studies to identify these TRs and quantify their contribution to common

disease. GangSTR extends our existing methods for genome-wide TR genotyping to ac-

commodate repeats longer than the read length and identifies tens of thousands of TRs

that were missed by HipSTR [WZY+17b].

Genome-wide analysis additionally allows for identifying novel pathogenic TR ex-

pansions or expansions present in healthy genomes. While existing tools allow for this,

they do not produce genome-wide TR length estimates. STRetch [DLP+17] identifies

novel expansions, but requires a time-consuming and memory intensive step to realign

raw reads to a modified reference sequence containing decoy regions. Due to compute re-

quirements. performing realignment is often not feasible to implement in high-throughput

pipelines. Additionally, STRetch only identifies a subset of TR alleles that are expanded

from the repeat sequence, and thus cannot be used to obtain accurate diploid TR lengths.

exSTRa [TBD+18] can also be used to find novel expansions, but requires a matched

control cohort to identify expansions and reports only expansion status, rather than TR

length estimates. On the other hand, GangSTR generates unbiased TR length estimates

genome-wide, which can be used in diverse downstream applications such as association

testing or discovery of Mendelian disease loci. Further, GangSTR is far more efficient,

taking around 16.5 CPU-hours to run on a single genome compared to days for competing

methods.
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2.4.2 Remaining challenges in TR genotyping

Genome-wide TR genotyping still faces several important limitations. First, all

tools described here, including GangSTR, require a TR panel based on the reference

genome as input. Thus they are not able to genotype TRs that are not properly as-

sembled in the reference genome. Additionally, TRs with complex structures, such as

sequence imperfections, highly repetitive flanking regions, or multiple different adjacent

repeating motifs, are ambiguous to define and their boundaries depend highly on the

choice of parameters used to create the reference. Complex TRs are a source of errors in

GangSTR genotypes. Our realignment step relies on aligning reads to an artificial refer-

ence created for each possible TR allele by stitching together perfect repetitions of the TR

motif. Because of this design choice, repetitive motifs in the flanking regions surrounding

a TR locus can reduce robustness of the realignment step. We attempt to filter most of

these regions from our reference set to avaoid TRs that cannot be reliably called. A more

complex model is required to account for these regions.

Most previous tools focused on STRs with motifs up to 6bp. Here, we have ex-

panded our reference to include VNTRs with motifs up to 20bp. This limit can theo-

retically be expanded. However, longer motifs tend to have more complex imperfections.

Additionally, several aspects of GangSTR’s model rely on identifying several copies of a

repeat unit in a single read (e.g. enclosing and flanking reads). Thus accuracy is likely to

decrease slightly at longer motifs.

Second, due to a lack of large ground truth datasets our validation experiments

relied heavily on simulated data. These simulations assume uniform coverage and do

not capture many error modes present in real data such as PCR, GC biases, or DNA

degradation.

Third, some TRs are still not adequately captured by short reads. For example,

TRs in regions with extremely high GC content are often very poorly covered due to bi-
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ases induced by PCR and other sequencing steps. Furthermore, TRs with highly repetitive

flanking regions are still inaccessible due to poor sequence alignment of anchoring or span-

ning reads. Additionally, while GangSTR can genotype TRs well beyond the fragment

length, it still produces noisy estimates at extremely long TRs (e.g. thousands of bp),

especially when both alleles are long. We suspect this is primarily due to variance in FRR

coverage which grows linearly with total repeat length. While some of these challenges

may be overcome with improved modeling techniques, some TRs are likely to remain out

of reach using NGS.

Finally, for some repeats we could not obtain reliable genotypes using any technol-

ogy, including short reads, long reads, or PCR methods. This may be due to a combination

of difficulty amplifying highly repetitive regions, difficulty sequencing complex repeats, or

high error rates in long read data. Additionally, some unstable repeats may exhibit high

rates of somatic variation [SHG+09, KPL16], rendering the notion of a “correct” genotype

meaningless. Indeed, for several loci we saw evidence of a spectrum of repeat numbers in

all technologies tested. GangSTR could be extended in the future to incorporate somatic

mosaicism into its model.

Some of the limitations mentioned above could be overcome using long read tech-

nologies such as PacBio or ONT. However, we focused on Illumina short reads here as

Illumina is rapidly becoming the clinical standard and remains unmatched in cost and

accuracy. It is likely that hybrid approaches combining both short and long read data will

provide the greatest accuracy.
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2.5 Supplementary Note: GangSTR Model

2.5.1 Class probabilities

Class probability describes the probability of a read pair belonging to a specific class,

considering uniform coverage. For any value of underlying allele length A, this probability

can give an intuition for the relative abundance of different classes of reads (Supplementary

Figure 1).

Derivation of class probabilities for each read pair class are given below. Notation

corresponds to that used in the main text and depicted in Figure 2.

2.5.1.1 Class Probability of Enclosing Reads

Without loss of generality, we assume the first mate in the pair is enclosing. The

calculation is similar for the other mate (Equation (2.8)). Assuming uniformity of coverage,

we use a uniform distribution to find the probability of a TR region being enclosed by a

read.

P(ci = E;A) = P(S1 < F,S1 + r > F +A ·m)

= P(F +A ·m− r < S1 < F)

=
(F)− (F +A ·m− r)

2F +A ·m−2r

=
(r−A ·m)

2F +A ·m−2r
(2.8)
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2.5.1.2 Class Probability of Spanning Reads

2.5.1.3 Fragment Length Distribution

We model the observed fragment length δ with a limited Gaussian random variable

∆ with the following distribution:

f∆(δ) =
1

C
√

2πσ
e−

1
2σ2 (δ−µ)2

;r ≤ δ ≤ ∞ (2.9)

In this equation µ is average fragment length, σ is the standard deviation of the fragment

length distribution, C is a normalization constant to account for limited range of δ, and r

is the read length.

Integration of this probability density function arises several times throughout the

rest of this document. We compute these integrals using a helper Gaussian distribution

X:

fX(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2
;−∞ ≤ x ≤ ∞ (2.10)

and it’s cumulative density function (CDF):

FX(x) =
∫ x

−∞
fX(x)dx (2.11)

1) For r ≤ a,b ≤ ∞:

∫ b

a
f∆(δ)dδ = F∆(b)−F∆(a)

=
1
C
{FX(b)−FX(a)}
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2) For r ≤ a,b ≤ ∞:

∫ b

a
(δ−µ) f∆(δ)dδ =

1
C
√

2πσ

∫ b

a
(δ−µ)e−

1
2σ2 (δ−µ)2

d(δ−µ)

=− σ
C
√

2π
{e−

1
2σ2 (b−µ)2

− e−
1

2σ2 (a−µ)2
}

=−σ2

C
{ fX(b)− fX(a)}

A read pair is classified as spanning if it’s two mates are mapped in the flanking

region before and after the TR locus.

P(ci = S;A) = P(S1 < F,S2 > F +A ·m− r)

=
∫ 2F+A·m

2r
P(S1 < F,S2 > F +A ·m− r|∆ = δ) f∆(δ)dδ

=
∫ 2F+A·m

2r
P(S1 < F,S1 +∆− r > F +A ·m− r|∆ = δ) f∆(δ)dδ

=
∫ 2F+A·m

2r
P(F +A ·m−∆ < S1 < F)|∆ = δ) f∆(δ)dδ (2.12)

=
∫ 2F+A·m

2r

(F)− (F +A ·m−δ)
2F +A ·m−2r

u(δ−A ·m) f∆(δ)dδ (2.13)

=
∫ 2F+A·m

max{2r,A·m}

δ−A ·m
2F +A ·m−2r

f∆(δ)dδ

Step function u(.) is introduced in (2.13) to satisfy the condition in (2.12), x+A ·m−∆ < x,

which simplifies to ∆ > A ·m. This condition is then imposed in the integral limit. We
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continue the calculation using the helper integrals from Section 2.5.1.3.

P(ci = S;A) =
∫ 2F+A·m

max{2r,A·m}

(δ−µ)+µ−A ·m
2F +A ·m−2r

f∆(δ)dδ

=
1

2F +A ·m−2r

{
(µ−A ·m)

∫ 2F+A·m

max{2r,A·m}
f∆(δ)dδ

+
∫ 2F+A·m

max{2r,A·m}
(δ−µ) f∆(δ)dδ

}
=

µ−A ·m
C(2F +A ·m−2r)

[
FX

(
2F +A ·m

)
−FX

(
max{2r,A ·m}

)]
− σ2

C(2F +A ·m−2r)

[
fX
(
2F +A ·m

)
− fX

(
max{2r,A ·m}

)]
=

1
C(2F +A ·m−2r)

{
(µ−A ·m)

[
FX

(
2F +A ·m

)
−FX

(
max{2r,A ·m}

)]
−σ2

[
fX
(
2F +A ·m

)
− fX

(
max{2r,A ·m}

)]}

2.5.1.4 Class Probability of Flanking Reads

Without loss of generality, we assume the first mate in the pair is flanking. The

calculation is similar for the other mate. Assuming uniform coverage, we use a uniform

distribution to find the probability of observing a flanking read.

P(ci = F ;A) = P
(
S1 < F,S1 + r < F +A ·m,S1 + r > F

)
= P

(
F − r < S1 < min{F,F +A ·m− r}

)
=

min{F +A ·m− r,F}− (F − r)
2F +A ·m−2r

=
F +min{A ·m− r,0}−F + r

2F +A ·m−2r

=
min{A ·m,r}

2F +A ·m−2r
(2.14)
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2.5.1.5 Class Probability of FRRs

P(ci = FRR;A) = P(S1 ≤ F,F ≤ S2 ≤ F +A ·m− r)

=
∫ 2F+A·m

2r
P(S1 ≤ F,F ≤ S1 +∆− r ≤ F +A ·m− r|∆ = δ) f∆(δ)dδ

=
∫ 2F+A·m

2r
P(S1 ≤ x,S1 ≤ F +A ·m−δ,S1 ≥ x+ r−δ) f∆(δ)dδ (2.15)

We combine the inequalities describing S1 in (2.15) to derive conditions that need to hold

for this integral to have non-zero value.

•
S1 ≥ F + r−δ

S1 ≤ F +A ·m−δ

⇒ F +A ·m−δ ≥ F + r−δ ⇒ A ·m ≥ r

⇒ This condition is the clear condition underlying presence of FRR reads. Smaller

TR lengths have 0 probability of having an FRR read.

•
S1 ≥ F + r−δ

S1 ≤ F

⇒ F ≥ F + r−δ ⇒ δ ≥ r

⇒ The lower limit of the integral is δ ≥ 2r, hence this condition is satisfied for

the range of possible δ values.

Since there are two upper bounds for S1 in (2.15), we need to consider two different

scenarios:

• x ≤ F +A ·m−δ ⇒ δ ≤ A ·m

Therefore, for 2r ≤ δ ≤ A ·m ; A ·m ≥ 2r, integrand is simplified to:

⇒ P(S1 ≤ F,S1 ≤ F +A ·m−δ,S1 ≥ F + r−δ) = P(F + r−δ ≤ S1 ≤ F)

For A ·m < 2r, this part has no contribution.
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• F > F +A ·m−δ ⇒ δ > A ·m

Similarly, for A ·m ≤ δ ≤ 2F +A ·m, integrand is simplified to:

⇒ P(S1 ≤ F,S1 ≤ F +A ·m−δ,S1 ≥ F + r−δ) = P(F + r−δ ≤ S1 ≤ F +A ·m−δ)

Continuing integration for A ·m ≥ 2r:

P(ci = FRR;A) =
∫ A·m

2r
P(F + r−δ ≤ S1 ≤ F) f∆(δ)dδ

+
∫ 2F+A·m

A·m
P(F + r−δ ≤ S1 ≤ F +A ·m−δ) f∆(δ)dδ

=
∫ A·m

2r

(F)− (F + r−δ)
2F +A ·m−2r

f∆(δ)dδ

+
∫ 2F+A·m

A·m

(F +A ·m−δ)− (F + r−δ)
2F +A ·m−2r

f∆(δ)dδ

=
∫ A·m

2r

(δ−µ)+(µ− r)
2F +A ·m−2r

f∆(δ)dδ

+
∫ 2F+A·m

A·m

A ·m− r
2F +A ·m−2r

f∆(δ)dδ

=
1

C(2F +A ·m−2r)

{
−σ2[ fX(A ·m)− fX(2r)

]
+(µ− r)

[
FX(A ·m)−FX(2r)

]
+(A ·m− r)

[
FX(2F +A ·m)−FX(A ·m)

]}
;A ·m ≥ 2r

The result is similar for A ·m < 2r, except the first two terms are zero in this case:

P(ci = FRR;A) =
A ·m− r

C(2F +A ·m−2r)

{
FX(2F +A ·m)−FX(A ·m)

}
;A ·m < 2r (2.16)

2.5.2 Read probabilities

For each class of informative reads, the read probability describes the distribution

of the informative characteristic of the class, given an underlying allele A (Figure 2). The

details of read probability for each class of informative reads is presented in the following
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sections.

2.5.2.1 Enclosing Reads

Enclosing reads contain the whole repeating region, as well as flanking regions before

and after. Therefore, the number of copies can be directly extracted after performing the

local realignment step..

The HipSTR stutter model [WZY+17a] explains the distribution of the number of

repeat copies in enclosing reads. Equation (2.17) shows the probability of a read with

ri copies having an error of length δ copies compared to the underlying true number of

copies A. In this model, u and d correspond to the probability of stutter adding or removing

copies of the motif, and ρs is the parameter of the geometric distribution that governs the

number of stutter deviations from true number of copies A.

P(ri −A = δ|ci = E;A) =


1−u−d δ = 0

uρs (1−ρs)
δ−1 δ > 0

dρs (1−ρs)
−δ−1 δ < 0

(2.17)

2.5.2.2 Flanking Reads

Flanking reads with n copies of the motif imply that one of the alleles has at least n

copies of the motif. We use a uniform distribution (similar to [?]) to model the distribution

of reads in the flanking class:

P(ri = n|ci = F ;A) =


1
A n ≤ A

0 n > A
(2.18)
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2.5.2.3 Spanning Reads

Fragments that completely span the TR region can create spanning read pairs.

Spanning read pairs consist of two mates that are mapped to the flanking region before

and after the TR. During alignment, spanning reads originating from an expanded TR

allele experience a decrease in the observed fragment length (Figure 2C-D). Therefore,

the distribution of fragment lengths for spanning reads is similar to the fragment length

distribution in section 2.5.1.3, with a decrease in average fragment length by an amount

equal to the size of expansion. If the reference has R copies of an m base pair motif, we can

describe the class probability of spanning reads with the following Gaussian distribution:

P(ri|ci = S)∼ N(µ− (A−R) ·m,σ) (2.19)

2.5.2.4 Fully Repetitive Reads (FRRs)

FRR reads are extracted from both on and off target regions to create the repetitive

read count term in the likelihood model. Here we discuss another informative aspect of

FRR reads, the distance of an anchored mate to the repeat region (Figure 2).

Anchored FRRs are read pairs that contain one read completely consisting of re-

peats, while the other mate pair is mapped to the flanking region before or after the TR.

Using the fragment length distribution (see 2.5.1.3), we model the distance of the anchor

read from the repeat region (shown by Ω) to obtain read probability of this class of reads.

We use the notation from section 2.5.1.3 to derive the read probability of anchored FRR
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reads.

P(ri|ci = FRR;A) = P(Ω+2r < ∆ < Ω+ r+L) (2.20)

= F∆(Ω+ r+L)−F∆(Ω+2r) (2.21)

=
1
C
[FX(Ω+ r+L)−FX(Ω+2r)] (2.22)

On the other hand, fragments that originate from within the repeating region gen-

erate FRR read pairs (both mates repetitive). These read pairs do not have an anchor,

and are most likely aligned to one of the off-target regions associated with the TR. These

read pairs contribute to both FRR count term (adding two FRR reads) and read pair term

(FRR class probability computed for Ω =−r).

Chapter 2, in full, is a reprint of the material as it appears in Nucleic Acids Research

2019. Mousavi, Nima, Sharona Shleizer-Burko, Richard Yanicky, and Melissa Gymrek.

The dissertation author was the primary investigator and author of this paper.
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Figure 2.3: Evaluation of TR genotypers on real and simulated data at pathogenic
repeat expansions. A. RMSE for each simulated locus. HTT=Huntington’s Disease;
SCA=spinocerebellar ataxia; DM=Myotonic Dystrophy; C9ORF72=amyotrophic lat-
eral sclerosis/frontotemporal dementia; FMR1=Fragile X Syndrome. TRs are sorted
from left to right by ascending length of the pathogenic allele. The motif for each locus
is specified in parentheses. B. Comparison of true vs. estimated repeat number for
each simulated genotype for SCA1. Gray dashed line gives the diagonal. C. Compar-
ison of true vs. estimated repeat number for each simulated genotype for SCA8. D.
Comparison of true vs. estimated repeat number for HTT using real WGS data. E.
Comparison of true vs. estimated repeat number for FMR1 using real WGS data. In
all panels, red=GangSTR; blue=ExpansionHunter; black=Tredparse.
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Figure 2.4: Genome-wide TR genotyping. A. Composition of TRs in the hg19 reference
genome. The x-axis gives the motif length and the y-axis (log10 scale) gives the number
of TRs in the genome. Colored bars represent TRs overlapping various genomic annota-
tions (blue=coding, orange=5’ UTR, green=3’ UTR, red=intronic, purple=intergenic).
B. Mendelian inheritance of GangSTR genotypes in a CEU trio as a function of the
number of informative read pairs. Colors denote repeat lengths. Solid lines give mean
Mendelian inheritance rate across all TRs, computed based on 95% confidence intervals
as described in Methods. Dashed lines are computed after excluding loci where all three
samples were homozygous for the reference allele. C. Overlap between TRs genotyped
by HipSTR and GangSTR. D. Comparison of HipSTR and GangSTR genotypes. The
x-axis and y-axis show the sum of the two allele lengths genotyped by HipSTR and
GangSTR in bp relative to the hg19 reference genome (dosage), respectively. The size
of the bubble represents the number of points at that coordinate.

Table 2.2: Target pathogenic repeats used in benchmarking experiments. Simulated
samples have one allele from “Simulation repeat range” column and the other allele
covers the range (5, 1005) with step size 100. Simulation repeat range is given in terms
of repeat copy number.

Abbreviation Disease Gene Motif Repeat location Pathogenic
cutoff

Simulation
repeat
range

SCA6 Spinocerebellar
ataxia 6 CACNA1A CAG chr19:13207859-13207897 (hg38)

chr19:13318673-13318711 (hg19) 20 (60 bps) [4, 7, 10, 13, 16, 19]

SCA2 Spinocerebellar
ataxia 2 ATXN2 CAG chr12:111598951-111599019 (hg38)

chr12:112036755-112036823 (hg19) 33 (99 bps) [2, 8, 14, 20, 26, 32]

SCA7 Spinocerebellar
ataxia 7 ATXN7 CAG chr3:63912686-63912715 (hg38)

chr3:63898362-63898391 (hg19) 34 (102 bps) [3, 9, 15, 21, 27, 33]

SCA1 Spinocerebellar
ataxia 1 ATXN1 CAG chr6:16327636-16327722 (hg38)

chr6:16327867-16327953 (hg19) 39 (117 bps) [3, 10, 17, 24, 31, 38]

HTT Huntington’s
Disease HTT CAG chr4:3074877-3074933 (hg38)

chr4:3076604-3076660 (hg19) 40 (120bps) [4, 11, 18, 25, 32, 39]

SCA17 Spinocerebellar
ataxia 17 TBP CAG chr6:170561908-170562021 (hg38)

chr6:170870996-170871109 (hg19) 43 (123 bps) [2, 10, 18, 26, 34, 42]

DM1 Myotonic
Dystrophy 1 DMPK CTG chr19:45770205-45770264 (hg38)

chr19:46273463-46273522 (hg19) 50 (150 bps) [4, 13, 22, 31, 40, 49]

SCA12 Spinocerebellar
ataxia 12 PPP2R2B CAG chr5:146878729-146878758 (hg38)

chr5:146258292-146258321 (hg19) 51 (153 bps) [5, 14, 23, 32, 41, 50]

SCA3 Spinocerebellar
ataxia 3 ATXN3 CAG chr14:92071011-92071034 (hg38)

chr14:92537355-92537378 (hg19) 60 (120bps) [4, 15, 26, 37, 48, 59]

C9ORF72
Amyotrophic

Lateral
Sclerosis (ALS)

C9ORF72 GGCCCC chr9:27573529-27573546 (hg38)
chr9:27573527-27573544 (hg19) 31 (186 bps) [5, 10, 15, 20, 25, 30]

SCA8 Spinocerebellar
ataxia 8 ATXN8OS CTG chr13:70139384-70139428 (hg38)

chr13:70713516-70713560 (hg19) 80 (240 bps) [4, 19, 34, 49, 64, 79]

FMR1 Fragile X
syndrome FMR1 CGG chrX:147912051-147912110 (hg38)

chrX:146993569-146993628 (hg19) 200 (600 bps) [4, 43, 82, 121, 160, 199]

SCA36 Spinocerebellar
ataxia 36 NOP56 GGCCTG chr20:2652734-2652757 (hg38)

chr20:2633380-2633403 (hg19) 650 (3900 bps) [4, 133, 262, 391, 520, 649]

SCA10 Spinocerebellar
ataxia 10 ATXN10 ATTCT chr22:45795355-45795424 (hg38)

chr22:46191235-46191304 (hg19) 800 (4000 bps) [4, 163, 322, 481, 640, 799]
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Figure 2.5: Discovery and validation of genome-wide TR expansions. A. Comparison
of STRetch and GangSTR estimated repeat lengths. The x-axis shows the estimated
repeat number returned by STRetch. The y-axis shows the estimated repeat number of
the longest of two alleles reported as the maximum likelihood genotype by GangSTR.
Only TRs called by both tools and passing all GangSTR filters are shown. The gray
dashed line shows the diagonal. B. Example sequence at a candidate TR expansion.
The reference sequence and representative reads from PacBio (top) and ONT (bottom)
for NA12878 are shown for a locus where GangSTR predicted a 48bp expansion from
the reference genome. Instances of the repeat motif are shown in red. C, D. For each
of the TRs shown, left plots compare GangSTR genotypes to those predicted by long
reads. Red dots give the maximum likelihood repeat lengths predicted by GangSTR
and red lines give the 95% confidence intervals for each allele. Black histograms give
the distribution of repeat lengths supported by PacBio (top) and ONT (bottom) reads.
The black arrow denotes the length in hg19. The right plots show PCR product sizes for
each TR as estimated using capillary electrophoresis. Left bands show the ladder and
right bands show product sizes in NA12878. Green and purple bands show the lower
and upper limits of the ladder, respectively. Red arrows and numbers give product
sizes expected for the two alleles called by GangSTR.
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Figure 2.7: Comparison of true vs. estimated repeat number on simulated data for
different loci The x-axis shows the simulated allele length in number of repeats. The
y-axis shows the estimated allele length in number of repeats. The accuracy (root mean
square error) for each panel is plotted in Figure 3A. The motif for each locus is speci-
fied in parentheses in plot title. In all panels, red=GangSTR; blue=ExpansionHunter;
black=Tredparse.
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Figure 2.8: Estimation accuracy for simulated samples of HTT vs. read length Root
Mean Square Error (RMSE) for estimation of simulated samples of the HTT locus with
different read lengths. Red=GangSTR; blue=ExpansionHunter; black=Tredparse.
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Figure 2.9: Estimation accuracy for simulated samples of HTT vs. average coverage
Root Mean Square (RMSE) for estimation of simulated samples of the HTT locus with
different coverages. Red=GangSTR; blue=ExpansionHunter; black=Tredparse.
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Figure 2.10: Estimation accuracy for simulated samples of HTT vs. fragment length
Root Mean Square (RMSE) for estimation of simulated samples of HTT locus with
different fragment lengths. Red=GangSTR; blue=ExpansionHunter; black=Tredparse.
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Figure 2.11: Comparison of true vs. estimated repeat number using real HTT exome
data The x-axis shows the experimentally validated allele length in number of repeats.
The y-axis shows the estimated allele length in number of repeats. Gray dashed line
gives the diagonal. red=GangSTR; blue=ExpansionHunter; black=Tredparse.
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Figure 2.12: Running time of GangSTR and ExpansionHunter vs. reference size The
x-axis shows the number of TRs in the reference set used. The y-axis shows running
time (User + Sys) in seconds. Lines give mean value across 5 runs. Points (“x”) give
raw data values for each of 5 runs. For two runs with 105 TRs ExpansionHunter did
not run to completion. Red=GangSTR, blue=ExpansionHunter.
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Figure 2.13: Peak memory usage by GangSTR and ExpansionHunter vs. reference size
The x-axis shows the number of TRs in the reference set used. The y-axis shows maxi-
mum virtual memory usage in gigabytes. Lines give mean value across 5 runs. Points
(“x”) give raw data values for each of 5 runs. Red=GangSTR, blue=ExpansionHunter.

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0
Difference from reference (bp)

100

101

102

103

104

105

106

N
um

be
ro

fT
R

s

Figure 2.14: Distribution of repeat lengths in NA12878 compared to the hg19 reference.
Y-axis is on a log10 scale.
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Figure 2.15: Distribution of total repeat lengths in NA12878. Y-axis is on a log10 scale.
Gray bars to the right of the dashed line indicate alleles longer than the read length of
101bp.
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Figure 2.16: Mendelian inheritance of GangSTR genotypes in a CEU trio as a function
of the number of informative read pairs Mendelian inheritance of GangSTR genotypes in
a CEU trio as a function of the number of informative read pairs. Colors denote repeat
lengths. Solid lines give mean Mendelian inheritance rate across all TRs, computed
using maximum likelihood GangSTR genotypes as described in Methods. Dashed lines
are computed after excluding loci where all three samples were homozygous for the
reference allele.
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Figure 2.17: Discovery and validation of genome-wide TR expansions. For each of
the 9 TRs shown, left plots compare GangSTR genotypes to those predicted by long
reads. Red dots give the maximum likelihood repeat lengths predicted by GangSTR
and red lines give the 95% confidence intervals for each allele. Black histograms give
the distribution of repeat lengths supported by PacBio (top) and ONT (bottom) reads.
The black arrow denotes the length in hg19. The middle plots show PCR product
sizes for each TR as estimated using capillary electrophoresis. Left bands show the
ladder and right bands show product sizes in NA12878. Green and purple bands show
the lower and upper limits of the ladder, respectively. Red arrows and numbers give
product sizes expected for the two alleles called by GangSTR. Right plots give the
capillary electrophoresis traces produced by the Agilent Bioanalyzer.
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Figure 2.17: Discovery and validation of genome-wide TR expansions (continued).
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Table 2.3: Candidate TRs long alleles (>101bp) in NA12878. Description of columns:
Refcopy: Number of copies of the motif in hg19. GangSTR: Maximum likelihood
diploid repeat copy number returned by GangSTR. P(het): Posterior probability that
the genotype is heterozygous for one allele greater than 101bp. P(hom): Posterior
probability that the genotype is homozygous for both alleles greater than 101bp. MI:
Indicates whether confidence intervals in the trio are consistent with Mendelian inheri-
tance. NA indicates one or more parents failed filtering steps so Mendelian inheritance
couldn’t be determined. Parent: Lists which parents show evidence (>80% posterior
probability) of an expansion. PacBio: Maximum allele length supported by PacBio
reads for NA12878. “-” indicates no PacBio reads were found in the region. ONT:
Maximum allele length supported by ONT reads for NA12878. “-” indicates no ONT
reads were found in the region. Assembly: Diploid repeat copy number from maternal
and paternal TrioCanu assembly (in that order).

Coord (hg19) Refcopy Motif GangSTR P(het) P(hom) MI Parent PacBio ONT Assembly
chr1:2897558 4 AACAGGAGGTCTGGT 1,7 1.00 0.00 True NA 147 108 2.9,6.0

chr1:7923054 26 AATAC 18,45 0.93 0.07 True NA12891,
NA12892 154 123 22.4,22.4

chr1:22720748 13 AAAG 16,30 1.00 0.00 True NA12891,
NA12892 163 87 21.5,15.8

chr1:35267829 44 AAACC 20,90 0.28 0.72 True NA12891,
NA12892 377 275 44.8,46.0

chr1:41792695 17 AAAG 17,26 1.00 0.00 True NA12891 225 93 16.5,18.8

chr1:61347419 3 AAAG 3,33 1.00 0.00 True NA12891,
NA12892 64 23 2.8,2.8

chr1:64329379 19 AATAC 17,22 1.00 0.00 True NA12892 231 109 19.8,17.8
chr1:68795990 21 AAAG 19,31 1.00 0.00 True NA12892 363 85 19.0,18.8
chr1:154098099 29 AAGG 26,26 0.74 0.26 NA NA12891 241 217 NA,NA
chr1:208680308 6 AATGTGGTATATATACAT 4,5 0.67 0.29 NA NA 168 141 4.9,5.9

chr10:16445783 5 AAAGTTCATGGT 5,9 1.00 0.00 True NA12891,
NA12892 169 135 6.9,9.8

chr10:99438638 60 AC 46,59 0.73 0.27 True NA12891,
NA12892 147 168 51.5,NA

chr10:125413213 15 AAAGG 14,21 1.00 0.00 True NA 192 134 13.8,21.4
chr11:17574076 3 ACACAGGACAGGTGGGGG 6,6 0.13 0.87 NA NA 557 495 23.9,24.0

chr11:31932832 26 AAAGG 20,49 0.58 0.42 True NA12891,
NA12892 280 199 35.2,26.8

chr11:107461059 53 AG 47,62 0.77 0.23 True NA12891,
NA12892 223 89 NA,46.5

chr12:15314073 22 AAAG 22,28 0.98 0.02 True NA12891,
NA12892 211 127 27.8,22.8

chr12:117836405 20 AAAAT 9,21 1.00 0.00 True NA12891 138 111 9.0,19.6

chr13:29027163 23 AAAGG 16,23 0.88 0.12 True NA12891,
NA12892 205 105 19.6,20.8

chr13:44716269 35 AGCCG 14,22 1.00 0.00 True NA12891 182 133 16.2,21.8

chr13:87882390 3 AAAG 3,33 1.00 0.00 True NA12891,
NA12892 92 60 5.0,2.8

chr13:96047512 16 AAAGG 17,24 1.00 0.00 True NA12891 155 113 NA,21.6

chr14:28417068 26 AAAG 23,27 0.80 0.20 True NA12891,
NA12892 216 143 24.8,24.8

chr14:76698307 3 ACTGCAGCCTC 3,12 1.00 0.00 True NA12891,
NA12892 535 125 9.9,2.9

chr15:54367612 5 AAGCTCCGGCTCACTGC 4,5 0.88 0.11 True NA 189 94 5.1,5.0
chr15:61429219 20 AAAG 21,26 1.00 0.00 True NA12892 143 112 20.8,NA
chr15:90651456 13 AAAAT 8,21 1.00 0.00 NA NA 114 119 7.8,NA

chr16:3899380 55 AC 36,55 0.97 0.03 True NA12891,
NA12892 584 124 46.0,46.0

chr16:50509578 53 AAAG 17,39 1.00 0.00 True NA12891,
NA12892 169 90 20.8,18.2

chr16:58865692 10 AAGGAGGG 7,14 1.00 0.00 True NA12891,
NA12892 140 110 13.8,12.9

chr17:32835083 21 AAAGG 18,27 0.92 0.08 True NA12891,
NA12892 146 146 22.8,16.0

chr19:39720793 15 AAAGG 20,26 0.55 0.45 True NA12891,
NA12892 218 275 NA,NA

chr2:54425083 18 AATAC 17,24 1.00 0.00 True NA12892 156 140 16.8,16.8

chr2:163609414 25 AAAAG 67,89 0.00 1.00 True NA12891,
NA12892 426 287 51.0,51.6

chr21:36720944 18 AATAG 19,37 0.78 0.22 True NA12891,
NA12892 182 156 28.8,23.8

chr22:47769363 3 AAGGGAGGCCAGGAGGAG 3,6 1.00 0.00 True NA12891 117 113 2.9,5.9

chr3:5830605 11 AAATGCACAGGAAT 6,16 0.61 0.39 True NA12891,
NA12892 230 180 11.9,10.9

chr3:73067559 9 AACAT 11,22 1.00 0.00 True NA12892 165 135 23.8,NA
chr3:86384908 19 AAAAT 18,22 0.70 0.30 NA NA 162 120 19.0,19.0
chr3:130834747 21 AAAG 20,33 1.00 0.00 True NA12892 167 135 20.8,20.2

chr4:14206325 28 AAAG 23,27 0.90 0.10 True NA12891,
NA12892 203 115 24.8,24.0

chr4:21716410 61 AAAAT 18,48 0.71 0.29 True NA12891,
NA12892 293 287 42.8,52.8

chr4:87763940 22 AAAG 12,37 1.00 0.00 True NA12892 303 168 12.8,12.2
chr4:90302001 3 AAAG 3,26 1.00 0.00 True NA 129 48 6.5,5.5

chr5:75792512 3 AAAG 3,28 1.00 0.00 True NA12891,
NA12892 67 18 4.8,2.8

chr5:157994659 20 AAAG 17,26 1.00 0.00 True NA12891 143 107 20.8,19.8

chr6:128925487 18 AGAGCGGG 5,17 1.00 0.00 True NA12891,
NA12892 515 161 15.9,17.9

chr7:2852271 12 ACATC 18,39 0.78 0.22 True NA12891,
NA12892 188 181 27.8,25.8

chr7:6460939 18 AGCGCGGGAGGCGCAGGC 4,6 0.99 0.00 True NA12892 652 431 24.7,NA

chr7:13242596 53 AAAG 25,73 0.60 0.40 True NA12891,
NA12892 428 469 NA,35.8

chr7:105084942 6 AACACCTATAGC 3,8 0.88 0.00 True NA 544 318 NA,NA
chr7:127898719 17 AAAG 22,26 0.89 0.11 NA NA12892 184 126 29.0,29.8
chr7:134201476 15 AAAAG 15,22 1.00 0.00 True NA12891 156 115 15.4,15.0

chr8:119927182 13 AGAGAGCG 11,20 0.90 0.10 True NA12891,
NA12892 263 136 13.9,13.9

chr8:130361920 15 AAAAT 16,21 0.88 0.12 NA NA12892 141 116 20.8,19.8
chr8:140126207 5 AAGACGACTCCACCCCACAG 3,6 1.00 0.00 NA NA 133 121 3.0,5.0
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Table 2.4: Enrichment of motifs with long alleles in NA12878. All motifs found at least
twice in long alleles (>101bp) in NA12878 are shown. P-values were computed using a
one-sided Fisher’s exact test.

Motif Num. TRs P-val
AAAG 17 1.23e-10
AAAGG 6 6.15e-08
AATAC 3 1.51e-05
AAAAT 5 9.15e-02
AAAAG 2 4.10e-01
AC 2 9.41e-01

Table 2.5: Comparison of STRetch and GangSTR output. Description of columns:
STRetch copy num: Estimated repeat copy number returned by STRetch. GangSTR gt:
Maximum likelihood genotype (in terms of repeat copy number) returned by GangSTR.
GangSTR filter: Locus-level GangSTR filters. QEXP: Expansion probability returned
by GangSTR, which gives the probability of no expansion, a heterozygous expansion,
or a homozygous expansion based on comparison to a predefined threshold. In this case
the threshold was set to the read length of 101bp.

Chrom STR Pos (hg19) Motif hg19 copy num STRetch copy num GangSTR gt GangSTR filter QEXP
chr20 49282720 AAAAG 7 23.90 . NOCALL .
chr3 121505017 AAAAG 8 24.90 13,13 PASS 1.00,0.00,0.00
chr4 36460354 ACACAT 7 17.70 12,12 PASS 0.98,0.02,0.00
chr7 2852270 ACATC 11 23.80 18,39 PASS 0.00,0.78,0.22
chr6 72287642 AGAGAT 3 12.80 . SpanBoundOnly .
chr3 47788930 AAATAT 6 12.40 10,13 PASS 1.00,0.00,0.00
chr3 123773204 AAAAAT 3 7.80 8,9 PASS 1.00,0.00,0.00
chr4 30718515 AGC 11 20.60 12,28 PASS 1.00,0.00,0.00
chr1 208440810 AGC 8 14.30 9,22 PASS 1.00,0.00,0.00

chr16 57893926 AAAAT 13 16.80 15,15 PASS 1.00,0.00,0.00
chr16 65292358 ACATAT 3 6.10 4,12 PASS 1.00,0.00,0.00
chr2 112925446 AACAT 9 12.80 . SpanBoundOnly .
chr4 10768264 AAAAG 14 17.80 . SpanBoundOnly .

chr10 49500011 AAAG 5 8.50 7,22 PASS 0.87,0.13,0.00
chr16 17564764 CCG 4 8.70 . LowCallDepth, .

SpanBoundOnly
chr17 15378610 AAAAG 9 11.80 13,16 PASS 1.00,0.00,0.00
chr2 17512498 ACACAT 3 5.30 5,10 PASS 1.00,0.00,0.00
chr3 188449305 AAAAC 3 5.80 4,12 PASS 1.00,0.00,0.00
chr5 11846 ACCCCG 3 5.30 . LowCallDepth .
chr5 176523778 AGG 3 7.70 4,4 PASS 1.00,0.00,0.00
chr6 65241442 AAAAT 9 11.80 9,15 PASS 1.00,0.00,0.00
chr7 134201475 AAAAG 14 16.80 15,22 PASS 0.00,1.00,0.00
chr8 87100322 AAAAT 6 8.80 9,14 PASS 1.00,0.00,0.00
chr1 234275697 AAAAT 9 10.80 14,17 PASS 0.89,0.11,0.00
chr1 41410562 AAAGC 10 11.80 . SpanBoundOnly .
chr1 59446780 AAAG 41 43.30 15,17 PASS 1.00,0.00,0.00
chr1 85576133 AAAT 7 9.30 11,13 PASS 1.00,0.00,0.00

chr10 106199462 AAC 8 11.10 14,15 PASS 1.00,0.00,0.00
chr10 99438637 AC 59 63.60 46,59 PASS 0.00,0.73,0.27
chr11 62855843 AACATC 3 4.50 8,8 PASS 1.00,0.00,0.00
chr12 79152282 AATGT 11 12.80 11,12 PASS 1.00,0.00,0.00
chr13 113588869 AGC 7 10.10 9,17 PASS 1.00,0.00,0.00
chr15 75186380 AC 33 37.60 . LowCallDepth, .

SpanBoundOnly
chr18 4057004 AC 27 31.60 24,28 PASS 1.00,0.00,0.00
chr19 53608032 AACAT 4 5.80 5,10 PASS 1.00,0.00,0.00
chr2 163609413 AAAAG 24 25.80 67,89 PASS 0.00,0.00,1.00
chr2 206247807 AGAT 13 15.30 14,22 PASS 0.89,0.11,0.00

chr21 34315567 AAAAG 7 8.80 9,14 PASS 1.00,0.00,0.00
chr22 22928364 AAAG 27 29.30 23,31 PASS 0.00,0.75,0.25
chr3 139970426 AAAGG 10 11.80 13,17 PASS 0.92,0.08,0.00
chr5 168182394 AAAG 13 15.30 13,13 PASS 1.00,0.00,0.00
chr6 43120472 AACAT 11 12.80 11,16 PASS 1.00,0.00,0.00
chr7 105372194 AAAAG 10 11.80 11,17 PASS 0.94,0.06,0.00
chr7 55955293 CCG 12 15.10 9,20 PASS 1.00,0.00,0.00
chr8 136094609 ATCCC 5 6.80 6,12 PASS 1.00,0.00,0.00
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Table 2.6: Primers for capillary electrophoresis validation.

Chrom STR Pos (hg19) Forward Primer Reverse Primer
chr1 7923054 CAATAAGGCCTACCCTGACG GGGCAACAAGAGCAAAACTT
chr1 41792695 AGCTGCTTGAGAAGCTGAGG CCCCATGGCTTTAACTCACT
chr1 68795990 TTCCTCTCCCCAACACTTTTT TGAGCCTCAGGAGATTGTTG
chr3 73067559 GGTTGACAGCGGGATTTAAG GAGCCATGGACACATCACTG
chr3 130834747 TGGCGAGGTATTGTGGTAGA TGACGAGTTAATGGGTGCAG
chr4 14206325 ACAAACTTCTATGGGCTCGAT CCTGGGCAAAGAGAGTGAAA
chr4 87763940 AGCTGTCCTGAGTTGCATCA GACTGAGGCAGGAGAAATGC
chr7 13242596 GCATTTTCCTGATGGCTAAA TTAGCCGGGTGTGGTAGC
chr10 16445783 TGCCCAATAAGTATGAGAAGAACA AAGTTCAAAAGGCCAGACCA
chr14 28417068 CTGGGCGATAGAGCAAGACT CCCTCATACCAAAGTGAACAAA
chr14 76698307 ATAGAGTGCAGTGGGGCAAA GAGCCCAAGAGTTCAACACC
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Chapter 3

TRTools: a toolkit for genome-wide analysis

of tandem repeats

Most of this chapter was first published as:

Mousavi, N., Margoliash, J., Pusarla, N., Saini, S., Yanicky, R., & Gymrek, M.

TRTools: a toolkit for genome-wide analysis of tandem repeats. Bioinformatics.

(2021).

Abstract: A rich set of tools have recently been developed for performing genome-

wide genotyping of tandem repeats (TRs). However, standardized tools for downstream

analysis of these results are lacking. To facilitate TR analysis applications, we present

TRTools, a Python library and suite of command line tools for filtering, merging, and

quality control of TR genotype files. TRTools utilizes an internal harmonization module

making it compatible with outputs from a wide range of TR genotypers.

Availability: TRTools is freely available at https://github.com/gymreklab/TRTools.

Documentation: Detailed documentation is available at https://trtools.readthedocs.io.
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3.1 Introduction

Tandem repeats (TRs) represent one of the largest sources of human genetic vari-

ation and are well-known to affect many human phenotypes [Han18a]. Improvements in

sequencing technology and bioinformatics algorithms have led to the recent development

of a rich set of tools for performing genome-wide analysis of TR variation [WZY+17a,

MSBYG19, KEAH19, ea17, BSBG+18]. These tools take aligned sequencing reads as in-

put and output Variant Call Format (VCF) files containing estimates of TR copy number

at one or more genomic TRs. The resulting VCF files may be used for a wide variety

of downstream applications. However, before doing so it is usually necessary to perform

filtering, quality control (QC), and merging of files across samples. While utilities exist

for performing such manipulations on VCF files containing SNP variants, these tools often

do not handle multi-allelic TRs and are not designed to compute TR-specific statistics.

Further, different TR genotypers use different allele annotations, complicating the use of

downstream tools.

Here, we present TRTools, an open-source toolkit for performing analyses on TR

genotypes. TRTools provides utilities for filtering, merging, comparing, and performing

QC on TR VCF files. It may be used to analyze either short tandem repeats (STRs; repeat

units 1-6bp) or variable number tandem repeats (VNTRs; repeat units >6bp) collectively

referred to here as TRs. It is currently compatible with five genotypers (GangSTR, Hip-

STR, ExpansionHunter, PopSTR2, and adVNTR, summarized in 3.2) and can easily be

extended to handle VCFs from additional tools.

3.2 Features and Methods

TRTools consists of a suite of command-line utilities and a corresponding Python

library for performing common operations on TR genotypes, including filtering, callset

62



a b c

10 15 20 25

TR allele (num. ATTCT rpts)

0.00

0.05

0.10

0.15

0.20

0.25

F
re

q
u

e
n

c
y

YRI

CEU

−4 −2 0 2 4

Allele length sum - file 1

−4

−2

0

2

4

A
lle

le
 l
e

n
g

th
 s

u
m

 -
 f
ile

 2

1

10

1000

10 20 30 40 50 60 70 80

Reference length (bp)

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

m
e

a
n

 d
if
f 
fr

o
m

 r
e

f 
(b

p
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f 
a

lle
le

s

Figure 3.1: TRTools visualizations. (a) Allele frequency distribution at an example
pentanucleotide TR output by statSTR based on GangSTR genotypes for two sam-
ple sets (YRI population consisting of Yorubans from Nigeria and CEU population of
Northwestern European descent). (b) Example TR genotype comparison output by
compareSTR. The plot compares genotypes (in terms of number of repeats difference
from hg19) from HipSTR (x-axis) to those from ExpansionHunter (y-axis) on 5,000
tetranucleotide TRs. Bubble sizes give the number of calls included in each point. (c)
Example reference bias plot output by qcSTR using popSTR2 genotypes. The plot
shows the average deviation of TR alleles called vs. the reference length of the TR (in
bp). The red line shows the cumulative percentage of allele calls below each reference
length threshold.

comparisons, and other workflows. It parses VCF files using the PyVCF [Cas12] library

and implements a “TR harmonizer” module that converts VCF formats from each tool to

a standardized representation Supplementary Material). This harmonization step enables

downstream operations to proceed agnostic of the original tool used to produce the geno-

types. For all utilities described below, the --vcftype argument may be used to specify the

genotyping tool used. If not specified, the type is automatically inferred. In the following

sections, we summarize the current functionality available in TRTools. Utilities are sum-

marized in Table 3.1. Each utility described below is available as a standalone command

line tool within the TRTools package.
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3.2.1 DumpSTR

dumpSTR is a tool for filtering TR VCF files. It performs call-level filtering (e.g.,

minimum call depth, minimum call quality) and locus-level filtering (e.g., minimum call

rate or deviation from Hardy-Weinberg Equilibrium). dumpSTR is specially built to han-

dle VCF FORMAT and INFO fields unique to TR genotypers. Unlike standard VCF filter-

ing tools, it also computes locus-level metrics such as heterozygosity and Hardy-Weinberg

Equilibrium based on TR allele lengths. It takes as input a VCF file and outputs a new

VCF with locus-level filters annotated in the FILTER column and call-level filters anno-

tated in the FORMAT field for each call.

dumpSTR −−vc f VCF −−out OUTPREFIX \

[−−vc f type={eh | gangstr | h i p s t r | popstr | advntr } ] \

[ f i l t e r s ]

3.2.2 MergeSTR

mergeSTR is a method for merging VCF files generated by TR genotyping methods.

While methods for merging VCF files currently exist [Li11], TR VCFs have unique char-

acteristics that call for a specialized merging tool. TRs are often multi-allelic, and VCFs

generated using different sample sets may contain different alternate allele sets. Further,

existing tools may normalize TR alleles to remove redundant sequence when merging,

which can interfere with downstream analysis of TR lengths. (For example, BCFtools

[Li11] normalizes REF=CAG, ALT=CAGCAG to REF=C, ALT=CAGC, which is not de-

sirable in a TR analysis). mergeSTR takes two or more VCFs generated by the same TR

genotyper as input and outputs a merged VCF file containing all of the samples included

in the input VCFs.
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mergeSTR −−vc f s VCF1,VCF2 [ , . . . ] , VCFn \

−−out OUTPREFIX

3.2.3 Statistics and QC utilities

TRTools provides a suite of statistics and QC utilities to allow fast high-level checks

of TR runs.

statSTR allows users to compute locus level statistics on multi-sample TR VCFs,

such as the mean allele length, allele frequency distributions, and call rate. It outputs a

tab-delimited file listing user-specified statistics for each TR. statSTR additionally allows

outputing plots of allele frequency distributions at specific TRs (Fig. 3.1a).

statSTR −−vc f VCF −−out OUTPREFIX [ s t a t i s t i c s ]

compareSTR allows users to compare calls from two VCF files. These can be

generated by the same or different tools. This allows users to compare calls across platforms

or for different runtime options. Fig. 3.1b shows an example plot created by compareSTR

comparing two call sets.

compareSTR −−vc f1 VCF1 −−vc f2 VCF2 \

[−−vc f type1 VCFTYPE] [−−vc f type2 VCFTYPE] \

−−out OUTPREFIX [ opt ions ] \

Table 3.1: Summary of current TRTools utilities

Command Description
dumpSTR Filter a TR genotype dataset
mergeSTR Merge two or more VCFs generated by a TR genotyper
statSTR Generate per-locus statistics from a VCF of TR genotypes
compareSTR Compare two TR genotype call sets
qcSTR Output quality control plots for a TR genotype call set
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qcSTR automatically generates plots for performing quality control of TR genotype

datasets. For example, Fig. 3.1c shows a plot demonstrating an expected deletion bias at

long alleles based on popSTR2 genotypes.

qcSTR −−vc f VCF −−out OUTPREFIX [ opt ions ]

Additional use cases for each utility using output from each supported TR geno-

typing tool are provided in the TRTools documentation.

3.2.4 Python library for data analysis

To enable researchers to leverage TRTools features in their own custom tools, we

have packaged it as a Python library. The underlying functionality for operations such

as harmonizing VCF records across TR genotypers or performing string manipulations on

TR sequences can be accessed by importing the library into a Python script.

import vcf , t r t o o l s . u t i l s . tr_harmonizer as trh

reader = vc f . Reader ( open ( ”my. vc f ” ) )

vc f type = trh . InferVCFType ( reader )

r ec = reader . next ( )

t r r e c o rd = trh . HarmonizeRecord ( vcftype , r e c )

t r r e c o rd . GetA l l e l eFrequenc i e s ( use l ength=True )

# {10 : 0 . 2 , 15 : 0 .8} d i c t o f num. rp t s .−>f r eq

3.3 Discussion

Quality control and filtering are crucial steps for nearly any genome- or population-

scale analysis. TRTools meets a pressing need for standardized tools for performing these

tasks on TR datasets, which are not handled well by mainstream tools. This toolkit

currently supports five major TR genotypers. It can easily be extended to additional TR
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genotyping methods for either short or long reads as long as they are compatible with the

VCF standard and report precise repeat copy numbers. Improved handling of imprecise

repeat copy numbers and more complex repeat sequences reported by error-prone long

reads is a topic of future development of TRTools. Finally, TRTools can incorporate

additional utilities as the community continues to develop standards for TR analysis.

3.4 Supplementary Material

3.4.1 Datasets

BAM files containing reads from high-coverage whole genome sequencing datasets

for the 1000 Genomes Project [FLGPF20] were accessed through the European Nucleotide

Archive accession number PRJEB31736. They were processed using GangSTR [MSBYG19]

v2.4.2.12 with non-default parameter --grid-threshold 250 using the TR reference file

hg38_ver17.bed.gz available on the GangSTR website

(https://github.com/gymreklab/gangstr). Allele frequencies for a pentanucleotide repeat

in the promoter of RUNX1 (hg38 chr21:35348646-35348646) for samples from the YRI

(Yoruba in Ibadan, Nigeria) and CEU (Utah Residents with Northern and Western Euro-

pean Ancestry) populations are shown in Fig. 3.1a in the main text.

Whole genome sequencing (BAM file aligned to hg19) for Platinum Genomes sample

NA12881 was downloaded from dbGaP (accession phs001224.v1.p1). A single chromosome

(chromosome 10) was extracted using samtools [LHW+09]. TRs were genotyped using

ExpansionHunter [ea17] v3.2.0 and HipSTR [WZY+17a] v0.6.2. For both, we used the

GangSTR version 16 reference subsetted to the first 5,000 tetranucleotides as the input set

of TRs. ExpansionHunter was run with parameter -a path-aligner. HipSTR was otherwise

run with default parameters. We used dumpSTR to filter each callset and compareSTR

to generate the bubble plot in Fig. 3.1b using the options shown below
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AVCF file generated by popSTR2 [KEAH19] on Platinum Genomes samples NA12891,

NA12892, and NA12878 (dbGaP phs001224.v1.p1) was obtained from the PopSTR authors.

This file was used to generate the reference bias plot shown in Fig. 3.1c in the main text.

3.4.2 TR Harmonizer implementation details

The TRHarmonizer Python library provides a uniform interface for accessing VCFs

created by different tandem repeat (TR) genotypers. This library is the shared basis

for all the command-line tools in the TRTools package. It is designed to cleanly handle

differences in how different genotypers represent alleles, quality-scores and other metadata

describing TR genotypes. This allows coding against a uniform interface while analyzing

genetic variation at TRs regardless of which genotyper was used. The TRHarmonizer

library also allows third parties to leverage the harmonization functionality outside of the

command-line tools provided in TRTools.

A major challenge in analyzing TR genotypes is that alleles are represented dif-

ferently in VCF outputs of different genotypers. The example below for chr21:47251618

(hg19) genotyped in Platinum Genomes sample NA12878 shows the different ways refer-

ence and alternate alleles are specified in VCFs by the genotypers which TRTools currently

supports.

• adVNTR∗, GangSTR, HipSTR

– REF: AGTTAGTTAGTTAGTT

– ALT: AGTTAGTTAGTTAGTTAGTT

• ExpansionHunter

– REF: A

– ALT: <STR5>
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– INFO: REF=4;RU=AGTT

• PopSTR

– REF: AGTTAGTTAGTTAGTT

– ALT: <5>

– INFO: Motif=AGTT

∗ Note that while this TR was not called by AdVNTR because its motif is too short,

AdVNTR output represents alleles in the same format as HipSTR and GangSTR.

Furthermore, consider the example at chr21:16402147:

• adVNTR, GangSTR, HipSTR

– REF: AAATAAATAAATAAATAAAT

– ALT: AAATAAATAAATAAAT

• ExpansionHunter

– REF: A

– ALT: <STR4>

– INFO: REF=5;RU=AAAT

• PopSTR

– REF: AAATAAATAAATAAATAAATAATAAA

– ALT: <5.5>

– INFO: Motif=AAAT

Here, popSTR’s representation of alleles changes to specify impurities and partial

repeats.
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The key function of the TRHarmonizer module, HarmonizeRecord, takes as input

a PyVCF [Cas12] record (a PyVCF.model._Record object) and a VCF type (one of: “ad-

vntr”, “eh”, “gangstr”, “hipstr” or “popstr”, corresponding to the supported genotypers)

and outputs a TRRecord object (analogous to PyVCF.model._Record) storing alleles and

other metadata in a standardized format. This allows downstream analyses to proceed

agnostic of the genotyper which created the record. The TRRecord stores allele length

genotypes as the number of copies of the motif corresponding to that length. This number

is a float to allow for impurities and partial repeats. For genotypers which infer sequence

alleles, the record additionally stores the sequence of the allele in all uppercase. In addi-

tion to alleles, a TRRecord also provides a uniform method for accessing the TR motif,

per-sample quality scores and other metadata supplied by the underlying genotyper. The

main text and TRTools documentation show examples of how to use the TRHarmonizer

interface from Python.

TRHarmonizer is designed to be lightweight, and as such there are similar yet more

complex use-cases that TRHarmonizer intentionally does not support. It does not have

any insight into sequencing technologies which produce data that is later processed by TR

genotypers into VCFs. As such it relies on the alleles, calls and associated quality scores

output by the genotypers, each of which use their own models to compute quality scores.

TRTools makes no attempt to modify those scores based on sequencing errors or other

sources of error.

TRHarmonizer also does not handle differences in variant coordinates, whether due

to differences in choice of variant reference set or differences between calling algorithms.

Note that this is only relevant to compareSTR, as that is the only one of our tools designed

to process TRs from multiple VCFs produced by different genotypers simultaneously. The

types of differences related to variant coordinates that TRHarmonizer does not handle

includes:
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• Repeat regions which some callers choose to represent as a single variant and other

callers represent as multiple variants

• Overlapping variants of different lengths due to decisions about whether to phase

the repeat variant with other nearby variants

• Overlapping variants of different lengths due to different choices as to which parts

of a locus constitute impure repeats and which constitute flanking regions

Rather, TRHarmonizer restricts itself to comparing variants called by different

callers whose reference alleles start and end at the same base pairs. Handling different

variant representations is a complex problem that has been the subject of significant work

[CBG+15, Kru] and is best handled by haplotype comparison tools which have been tai-

lored to the specific use-case at hand.

Finally, TRHarmonizer can be readily extended to support any TR genotyping tool

built on top of any sequencing or genotyping technology as long as the tool produces a valid

VCF file representing each TR as a distinct record in the VCF. Supporting additional tools

simply requires adding a short function to the TRHarmonizer module converting records

to the standardized format described above.

3.4.3 Commands for generating figures

The following code snippets show the commands used to generate the figures in the

main text.

Listing 3.1: Code to generate Fig. 3.1a

#!/ bin /bash

# YRIVCF and CEUVCF were generated by GangSTR v2 . 4 . 2 . 1 2

REGION=chr21 :35348646−35348646
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tab ix −−pr int−header $YRIVCF $REGION | bgzip −c > yri_runx1 . vc f . gz

tab ix −−pr int−header $CEUVCF $REGION | bgzip −c > ceu_runx1 . vc f . gz

tab ix −p vc f yri_runx1 . vc f . gz

tab ix −p vc f ceu_runx1 . vc f . gz

# Merge

mergeSTR −−vc f s yri_runx1 . vc f . gz , ceu_runx1 . vc f . gz −−out yri_ceu_runx1

bgzip −f yri_ceu_runx1 . vc f

tab ix −p vc f −f yri_ceu_runx1 . vc f . gz

# Get sample l i s t s

b c f t o o l s query − l yri_runx1 . vc f . gz > yri_samples . txt

b c f t o o l s query − l ceu_runx1 . vc f . gz > ceu_samples . txt

# StatSTR

# Compute s t a t s s epa r a t e l y on YRI and CEU samples

statSTR \

−−vc f yri_ceu_runx1 . vc f . gz \

−−samples yri_samples . txt , ceu_samples . txt \

−−sample−p r e f i x e s YRI ,CEU \

−−r eg i on $REGION \

−−out yri_ceu_runx1 \

−−a f r eq −−use−l ength −−plot−a f r eq

# Output f i l e yri_ceu_runx1−chr21 −35348646. pdf shown in Figure
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Listing 3.2: Code to generate Fig. 3.1b

#!/ bin /bash

SAMPLE=NA12881

# $SAMPLE−h i p s t r . vc f . gz and $SAMPLE−eh−path . vc f . gz generated

# by c a l l i n g HipSTR and ExpansionHunter on the same TR r e f e r e n c e

# F i l t e r

dumpSTR \

−−vc f $SAMPLE−h i p s t r . vc f . gz \

−−h ips t r−min−c a l l−Q 0.9 \

−−h ips t r−min−c a l l−DP 10 \

−−h ips t r−max−c a l l−DP 1000 \

−−h ips t r−max−c a l l−f l ank−i n d e l 0 .15 \

−−h ips t r−max−c a l l−s t u t t e r 0 .15 \

−−h ips t r−min−supp−reads 2 \

−−out $SAMPLE−h i p s t r . f i l t e r e d

cat $SAMPLE−h i p s t r . f i l t e r e d . vc f | vcf−s o r t | \

bgzip −c > $SAMPLE−h i p s t r . f i l t e r e d . vc f . gz

tab ix −p vc f $SAMPLE−h i p s t r . f i l t e r e d . vc f . gz

dumpSTR \

−−vc f $SAMPLE−EH−path . vc f \

−−vc f type eh \

−−eh−min−c a l l−LC 50 \

−−out $SAMPLE−eh−path . f i l t e r e d

# Edit sample name to be same
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cat $SAMPLE−eh−path . f i l t e r e d . vc f | sed ’ s /NA12881 . chr10 /NA12881/ ’ | \

vcf−s o r t | bgz ip −c > $SAMPLE−eh−path . f i l t e r e d . vc f . gz

tab ix −p vc f $SAMPLE−eh−path . f i l t e r e d . vc f . gz

# Add con t i g s to EH

zcat $SAMPLE−h i p s t r . f i l t e r e d . vc f . gz | grep cong i > hg19_contigs . txt

b c f t o o l s annotate −h hg19_contigs . txt \

$SAMPLE−eh−path . f i l t e r e d . vc f . gz | \

bgzip −c > $SAMPLE−eh−path−c on t i g s . f i l t e r e d . vc f . gz

tab ix −p vc f −f $SAMPLE−eh−path−c on t i g s . f i l t e r e d . vc f . gz

# Make bubbles p l o t and compare

compareSTR \

−−vc f1 $SAMPLE−eh−path−c on t i g s . f i l t e r e d . vc f . gz \

−−vc f2 $SAMPLE−h i p s t r . f i l t e r e d . vc f . gz \

−−vc f type1 eh \

−−vc f type2 h i p s t r \

−−out eh−path−h i p s t r \

−−bubble−min −5 −−bubble−max 5

# Output f i l e eh−path−h ips t r−bubble−periodALL . pdf shown in Figure
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Listing 3.3: Code to generate Fig. 3.1c

#!/ bin /bash

qcSTR −−vc f $popSTR_vcf −−out popstr_qc

# Output f i l e popstr_qc−d i f f r e f −b ia s . pdf shown in Figure
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Table 3.2: TR calling methods currently supported by TRTools. ∗These tools may be
run on Illumina data that is not PCR-free, but may have reduced accuracy on those
datasets.

Method
(Version tested)

Supported
TR classes

Num. TRs
in reference

Supported
sequencing
technologies

Use case notes

AdVNTR
[BSBG+18]
(v1.3.3)

Repeat unit length
6-100bp.

158,522
(genic hg19)

Illumina
or PacBio

Designed for targeted genotyping
of VNTRs on a single sample at
a time. Only handles repeats
shorter than the read length.
Infers allele lengths by default.
May alternatively identify
putative frameshift mutations
within VNTRs. May be run on
large panels of TRs but is
compute-intenstive.

Exp. Hunter
[ea17]
(v3.2.2)

Designed for STRs
(typically with repeat
unit length ≤6bp).
Can handle complex
repeat structures
specified by regular
expressions
(e.g. (CAG)*(CCG)*).

25 (hg19) PCR-free∗
Illumina

Designed for targeted genotyping
of repeat expansions at known
pathogenic TRs but may be run
genome-wide on both short and
expanded TRs using a custom
TR panel. Can handle repeats with
complex structures such as
interruptions or nearby repeats.

GangSTR
[MSBYG19]
(v2.4.4)

Designed for STRs
or VNTRs with repeat
unit length 1-20bp.

829,233
(hg19_ver_13_1,
excludes
homopolymers)∗

Paired-end
PCR-free∗
Illumina

Designed for genome-wide
genotyping of short or expanded
TRs. Infers allele lengths.
Allows multi-sample calling.

HipSTR
[WZY+17a]
(v0.6.2)

Repeat unit
length 1-9bp. 1,620,030 (hg19) Illumina

Designed for genome-wide
genotyping of STRs shorter than
the read length. Can phase repeats
with SNPs.
Allows multi-sample calling.

PopSTR2
[KEAH19]

Repeat unit
length 1-6bp. 540,1401 (hg38) Illumina

Designed for genome-wide
genotyping of short or expanded
TRs.
Allows multi-sample calling.

3.4.4 Supplementary Tables

Table 3.2 shows TR callings methods currently supported by TRTools. Since each

of these tools take as input a list of TRs to genotype, they can also be used on custom

panels of TR loci. Tool information and reference panel numbers shown above are based

on downloads from the github repository of each tool as of July 2, 2020.

Chapter 3, in full, is a reprint of the material as it appears in Bioinformatics 2020.

Mousavi, Nima, Jonathan Margoliash, Neha Pusarla, Shubham Saini, Richard Yanicky,

and Melissa Gymrek. The dissertation author was one of the primary investigators and
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authors of this paper.
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Chapter 4

Applications of Methods for Genotyping and

Filtering of Tandem Repeats

Chapters 2 and 3 describe the methods that we have developed for creating, fil-

tering, and post-processing of genome-wide tandem repeat (TR) callsets. In this chapter,

I describe our approach to applying these methods to solve biological and population

genetics problems.

Section 4.1 describes my methodological contributions to Mitra et al. ([MHM+21]).

The goal of my work was to lay the foundations for a pipeline for discovery and evaluation

of de-novo variants that contribute to Autism Spectrum Disorder (ASD) risk. To this

end, I have made updates to our method for genome-wide genotyping of TRs, GangSTR

[MSBYG19], to facilitate discovery of de-novo variants. Furthermore, I have created the

simulated data for the simulation platform to validate our calls.

Section 4.2 explains our ongoing work on creating an ensemble TR callset by com-

bining information from multiple different TR variant callers. This callset requires us to

create a new method that utilizes the strength of each caller (as determined through statis-

tical measures and model limitations) to identify the most confident TR call at each locus.
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We apply this method to samples of the 1000 genomes project [FLGPF20] to facilitate

downstream population genetics analyses in the future.

4.1 Methods for Identifying de-novo Tandem Repeat mutations

in individuals affected by Autism Spectrum Disorder

Most of this section was first published as part of:

Mitra, I., Huang, B., Mousavi, N., Ma, N., Lamkin, M., Yanicky, R., Shleizer-Burko,

S., Lohmueller, K., & Gymrek, M. Patterns of de novo tandem repeat mutations and

their role in autism. Nature. (2021)

Autism Spectrum Disorder (ASD) are a group of neurological disorders with early

age of onset. These disorders are characterized by a heterogeneous set of symptoms such

as restricted interest, lack of communication, or impaired socialization [RSVG14]. Family

studies have shown a major contribution of genetic factors to ASD risk. These genetic

factors can be inherited or de-novo [MHM+21]. De-novo variants are variants that are

only present in the offspring, and are absent in both parents. Specifically, contribution of

de-novo variants to ASD risk has been estimated to be around 30% of the simplex cases

(only a single child affected by ASD per family) [IOS+14].

In [MHM+21], Mitra et al. set out to study the contribution of de-novo TR variants.

In this work, I contributed the following methodological work.

4.1.1 Improvements to GangSTR: method for genome-wide genotyping of

tandem repeats

Autism Spectrum Disorder (ASD) has a strong male bias. The ratio of male to

female individuals affected by ASD is between 4:1 and 3:1 [LHM17]. Due to this disparity
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across sexes we have to study sex chromosomes with additional rigor. The original version

of GangSTR, our method for genome-wide genotyping of TRs described in Section 2, did

not support genotyping in sex chromosomes. In order to be able to study contribution de-

novo variant on sex chromosomes to ASD risk, I developed support for sex chromosomes in

GangSTR. In addition, the downstream method for identifying de-novo variants, MonSTR

[MHM+21], requires genotype likelihoods and read support for each call to be reported in

the output. Read support for each calls shows how many specific reads supported each

individual call, which in concert with genotype likelihoods, were used for filtering purposes

in MonSTR. I further improved GangSTR to report these values for each TR call.

4.1.2 Evaluating de-novo variant discovery using simulation

The following paragraphs from Mitra et al. [MHM+21] describe my contribution

to our pipeline for evaluating de-novo TR calls using a simulated dataset.

We created 78 quad families with 100 TR loci randomly selected from TRs passing

all filters described above in the SSC cohort. One simulated quad family consists of

the father, mother, child with known mutation (proband), and child with no mutation

(control). We tested the ability of our entire pipeline to genotype TRs with GangSTR

and call de novo mutations with MonSTR. To test the effect of depth of coverage, we

generated datasets with 1–50× mean coverage with a mutation size of +1 or -1 repeat

unit changes in the proband. To test the effect of TR mutation size, we generated WGS

data with 40× coverage and mutations in probands ranging from -10 to 30 repeat unit

changes. Contraction mutations that would have resulted in negative repeat copy numbers

were excluded. For both tests, we simulated data under three scenarios: (1) both parents

with homozygous reference TR genotypes, (2) one parent heterozygous, (3) both parents

heterozygous (Figure ??).

WGS data were simulated using ART_illumina [HLMM12] v2.5.8 with non-default
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parameters -ss HS25 (HiSeq 2500 simulation profile), -l 150 (150 bp reads), -p (paired-end

reads), -f coverage (coverage was set as described above), -m 500 (mean fragment size) and

-s 100 (standard deviation of fragment size). ART_illumina was applied to fasta files gener-

ated from 10-kb windows surrounding each TR locus, applying any mutations as described

above. The resulting fastq files were aligned to the hg38 reference genome using bwa mem

[Li13] v0.7.12-r1039 with non-default parameter -R ”@RG\tID:sample_id\tSM:sample_id\”,

which sets the read group tag ID and sample name to sample_id for each simulated sample.

TRs were genotyped from aligned reads jointly across all members of the same family with

GangSTR using identical settings to those applied to SSC data.

We tested three mutation-calling settings: a naive mutation-calling method based

on hard genotype calls, MonSTR using default parameters, and MonSTR using an identical

set of filters as applied to SSC data. We found overall all methods perform similarly well

above 30× coverage. At lower coverage, MonSTR’s model-based method achieves reduced

sensitivity but greater specificity compared to a naive mutation-calling pipeline (Figure

??).”

4.2 Method for creating ensemble Tandem Repeats Callset

Tandem Repeat (TR) variant calling methods have created a fast and inexpensive

way of analyzing the genetic makeup of individuals at Tandem Repeat loci using sequencing

data. Several methods for genotyping TRs using short-read sequencing data have been

published in the past few years [MSBYG19, ea17, WZY+17a, BSBG+18]. Each method

focuses on a different approach for calling TRs, and as a result, each method has advantages

and weaknesses. Using our knowledge on pros and cons of each TR variant calling method,

we have created a graph-based method for merging callsets generated by each caller to

create an ensemble callset.
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Creating this merged ensemble callset will produce a dataset that is more accu-

rate than each individual variant caller, as demonstrated by experimental validation and

Mendelian study. After phasing the variants and combining the TR callset with a single

nucleotide variant dataset, we can create a SNV-TR haplotype panel, similar to the work

by Saini et al. [SMG18]. Such haplotype panel can be used to impute TR calls into

abundantly available SNV datasets at a very low computational cost.

Figure 4.2 shows the pipeline for generating ensemble callset and variant phasing.

The first step of generating the merged callset is running each of the variant callers on all

of the samples from the 1000 Genomes dataset. We perform variant calling using HipSTR

[WZY+17a], GangSTR [MSBYG19], ExpansionHunter [ea17], and AdVNTR [BSBG+18].

The variant calling is performed on 2504 unrelated samples from phase three of the 1000

Genomes project [FLGPF20]. For validation purposes, we genotype 698 additional related

samples [BBEZ+21] as well.

The output Variant Call Format (VCF) file from each caller is then used by our

novel method for generating ensemble callsets. The following sections describe the details

of our approach.

4.2.1 Graph-based Ensemble Variant Caller

In this section we discuss the algorithmic details of the graph-based ensemble TR

variant caller (TR-ensemble in Figure 4.2).

The first step in merging TR callsets is to identify overlapping calls that can be

merged using this method. To do so, we process all VCF files that are input to our method

one variant at a time. At any given point during running time, we can identify the next

variant to be processed from each VCF file with a pointer (Figure 4.3). Since we are

starting from sorted VCF files, we can process the variants in the same order. Among

the four next variants, the variant with the smallest genomic position is named minimum
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variant. We evaluate all next variants to find the variants that overlap with minimum

variant and have the same canonical motif. This group of overlapping variants with the

same motif are called a record cluster. We have to merge each record cluster separately

and report a merged TR call (see Section 4.2.1.1). If the record cluster only includes the

minimum variant, there are no overlapping variants to merge and we report the minimum

variant to the output. The pointers in VCF files that contributed variants to the record

cluster are all incremented and the process is repeated with the new set of four next

variants.

4.2.1.1 Locus Merger

Variants that overlap the minimum variant and share canonical repeat motif form

a record cluster. This section describes how we merge the variants in a record cluster. As

a first step, we create a locus graph based on all of the calls in the record cluster. Figures

4.4 and 4.5 show examples of record cluster graph. In these figures, each node corresponds

to an allele. Alleles of equal length are connected by edges. This allows us to identify

which alleles across different callers have the same length. The annotation for each node

shows the origin of the called allele (methods: eh(ExpansionHunter), hipstr(HipSTR),

gangstr(GangSTR)) and the length difference from the reference allele. ∗ denotes the

reference allele.

4.2.1.2 Caller QC

After identifying all of the calls from each caller at each locus, we can compute

statistics such as accordance with Hardy Weinberg Equilibrium, call rate, Mendelian in-

heritance rate, etc. to facilitate scoring how much we trust each caller at a specific locus.

This information will be useful when merging alleles in the next step.
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4.2.1.3 Allele Merger

We are able to find the calls that are compatible with each other (have the same

length) across different methods using the annotation described in the previous section.

Each connected component in record cluster graphs corresponds to a group of compatible

alleles across different methods. If there is no ambiguity in the calls made by different

callers, we have only 1-1 mappings in each connected component (see Figure 4.4). Alterna-

tively, Figure 4.5 shows an example of an ambiguous and non-trivial connected component.

In this example, all alleles have lengths equal to the reference allele. However, there are two

different nodes corresponding to HipSTR calls, only one of which matches the sequence of

the reference allele (showed by *). The other node denotes an allele with the same length

as the reference allele, but with a different sequence. This is a fairly common occurrence

as HipSTR is the only method capable of making sequence level calls (other methods can

only make length calls). This advantage of the HipSTR method means, in this connected

component, we trust the calls from HipSTR more than other methods.

We create a mapping between input alleles in each connected components and a

merged call to facilitate finding the ensemble calls. We use information that we have on

advantages of each method (HipSTR is the only method capable of making sequence level

calls, ExpansionHunter and GangSTR are capable of calling variants longer than read

length, and AdVNTR is the only method genotyping the longer motifs) as well as QC

metrics (Section 4.2.1.2) to create this mapping.

4.2.1.4 Call Merger

Using the mapping between input calls and output merged calls created in the

Allele Merger step (Section 4.2.1.3), we can find the merged TR corresponding to any call.

This process is performed by iterating over the calls for each sample and identifying the

output merged call. Appropriate measures of confidence (which methods agree with the
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final call, etc.) are reported with the merged call.

4.2.2 Validation

We use capillary electrophoresis to experimentally validate a subset of the calls.

Figure 4.2 shows how our validation ties in with generation of the ensemble TR callset.

For each locus we experimentally validate calls made by the ensemble caller. A subset

of samples included in our validation plan are form parent child trios [BBEZ+21]. This

allows us to have an orthogonal method of validating the calls. Figure 4.6 shows an

example validating calls in a trio.

4.2.3 Future Works

This work is an ongoing effort in gaining a better understanding of the genome-

wide landscape of TRs. The merged ensemble callset has been created using calls from

the 1000 genomes dataset [BBEZ+21]. This callset includes a total of 858,565 loci. 74 loci

have undergone experimental validation, and more will be added to our validated dataset.

After generating the merged ensemble callset, we want to study population specific alleles

and selection patterns. Furthermore, by phasing the variants and using a SNV dataset,

we can create a SNV-TR haplotype panel that can be used for imputing TRs into widely

available SNV callsets.

Chapter 4, in part, is a reprint of the material as it appears in Nature 2021. Mitra,

Ileena, Bonnie Huang, Nima Mousavi, Nichole Ma, Michael Lamkin, Richard Yanicky,

Sharona Shleizer-Burko, Kirk E. Lohmueller, and Melissa Gymrek. The dissertation author

was one of the co-authors and investigative collaborators of this paper.

Chapter 4, in part, is unpublished material by Nima Mousavi, Nichole Ma, Helyaneh

Ziaei Jam, Bonnie Huang, Mikhail Maksimov, Jonghun Park, Yunjiang Qiu, Egor Dolzhenko,

Vineet Bafna, and Melissa Gymrek. The dissertation author was the primary investigator
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and author of this paper.
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Figure 4.1: a, Evaluation of a naive TR mutation-calling method. WGS was simulated
for probands with mutations and controls with no mutation under three different scenar-
ios for a range of mean sequencing coverages (Methods of [MHM+21]). Top plots show
the sensitivity (blue line). Bottom plots show the false positive rate (FPR). Shaded bars
show the percent of transmissions called as mutation (blue), no mutation (dark grey),
or no call (light ray). b, Evaluation of MonSTR’s default model-based method. Plots
are the same as in a. but based on MonSTR’s default model (Supplementary Methods
of [MHM+21]). Note FPR lines are not visible because all are at 0%. c, Evaluation
of TR mutation calling using default model-based MonSTR settings as a function of
mutation size. The top plot is the same as in a, b, and shows the sensitivity to detect
mutations as a function of their size. The bottom plot compares the estimated called
mutation size (y-axis) compared to the true simulated mutation size (x-axis). Bubble
sizes show the number of mutation calls represented at each point. d, Evaluation of
TR mutation calling as a function of mutation size after quality filtering. Plots are
same as in c, but using the stringent quality filters in MonSTR applied to analyze the
SSC cohort. Compared to default settings, sensitivity is decreased especially for larger
expansions but inferred mutation sizes are unbiased. All plots are based on simulation
of 100 randomly chosen TR loci (Methods). c, d, show results for scenario #1. Figure
from Mitra et al. [MHM+21].
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Figure 4.2: Pipeline for creating ensemble TR callset using 1000 Genomes dataset.

Figure 4.3: Pointers to the next processed VCF record in each TR VCF file.
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Figure 4.4: Example of a trivial graph showing a 1-1-1 mapping between alleles from
different callers.

Figure 4.5: Example of a non-trivial connected component in allele graph.
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Figure 4.6: Peaks from capillary electrophoresis correspond to TR calls made on a trio
of samples.
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Chapter 5

Conclusion

I have presented a set of tools for processing tandem repeat (TR) variants in the

human genome. Chapter 2 describes our method for genome-wide genotyping of TRs.

Chapter 3 explains our toolkit for post-processing, quality control, and filtering of TR

callsets. Chapter 4 provides two examples of applying these tools to solve biological (con-

tribution of de-novo TR variant to ASD) and statistical problems (creating an ensemble

TR callset across a population-scale dataset).
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