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ABSTRACT OF THE DISSERTATION

Coastal Hazards: Predicting wave runup through storms and assessing saltwater intrusion
in coastal freshwaters

by

Lauren Nicole Kim

Doctor of Philosophy in Oceanography

University of California San Diego, 2024

Morgan C. Levy, Chair
Sarah N. Giddings, Co-Chair
Mark A. Merrifield, Co-Chair

Extreme events, like drought, large storms, and coastal floods are expected to

increase under climate change. Along the coast, where an estimated 1 billion people are

expected to reside by the end of the century, these hazards threaten infrastructure and

livelihoods. Here, we investigate two coastal hazards that are expected to worsen under

climate change: coastal storms and their impacts on beaches, and saltwater intrusion

(SWI) impacts on coastal freshwater use, which are linked through total water level at the

shoreline. To investigate the first coastal hazard, we use stationary lidar data with high
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spatial and temporal resolution to compare observations of runup with predicted runup

using various runup parameterizations in the Outer Banks, NC, USA. We also investigate

the performance of the parameterizations using a pre-storm versus a time varying beach

slope. The results suggest that a pre-storm beach slope may be sufficient in predicting

runup throughout a storm for a number of parameterizations, but that the presence of

two-dimensional morphologic features (beach cusps) greatly degrade the performance of

the parameterizations. To address the second coastal hazard, we use inland hydrologic and

oceanographic datasets to investigate the drivers of SWI in the surface freshwater sloughs

of the Pajaro Valley, CA, USA. The results of this study suggest that the co-occurrence of

high total water levels (oceanic water level plus wave runup) and low inland flow conditions

create the conditions necessary for SWI. Additionally, the closure of the lagoon mouth,

which is driven by identical processes, is likely a key component in SWI occurrence. Finally,

we expand the SWI study to incorporate future climate scenarios using modelled sea level

and precipitation and simulations of wave time series. Under the CMIP5 RCP 8.5, 99th

percentile, SWI risk frequency is expected to increase by nearly 20% by the end of the

century. This increase is dominated by sea level rise, with some variability contributed by

the timing of large wave and low precipitation events. The investigation of these hazards

advances the science-informed development of coastal and freshwater mitigation strategies

under a changing climate.
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Chapter 1

Introduction

Under climate change projections, extreme events, like drought, large storms, and

coastal floods, are expected to increase in both frequency and intensity (Elko et al., 2014,

2019; Langridge, 2018). These events threaten infrastructure and livelihoods along coasts

around the world where an estimated 800 million people are living within 10 m of sea

level (Elko et al., 2014). Nearly 40% of the U.S. population resides along the U.S. east

and west coasts (NOAA, 2021). The IPCC 5th assessment reports that sea level rise is

already impacting livelihoods, economic activities, and infrastructure, and that much of

North American infrastructure is currently vulnerable to extreme weather events (IPCC,

2014). In this proposal, I observe two different processes affected by different aspects of

climate change: storm-driven wave runup and beach impacts, and saltwater intrusion (SWI)

impacts on coastal freshwater use. The purpose of the studies herein are to investigate

coastal hazards that threaten infrastructure in the context of a changing climate.

Observations of coastal processes during high energy wind and wave events, like

storms, are uncommon due to the difficulty of obtaining data in these harsh conditions. A

lack of observations during these high impact events, in turn, makes their effect on surfzone

bathymetry, beach morphology, and wave runup difficult to predict. As noted by Elko et al.

(2019), novel observations of dune impacts and oceanographic forcings throughout storms

are necessary to advance our understanding of storm impacts and recovery processes.
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Currently wave runup forecasts to assess storm impacts rely on beach slope estimates

that are collected some time prior to the storm of interest and are presumed constant

throughout the event (Phillips et al., 2017; Harley et al., 2016, 2017; Beuzen et al., 2019;

Burvingt et al., 2017; Pye, Blott, 2016). However, the transient nature of beaches and

their morphologic features throughout high energy events necessitate further investigation

into the validity of this assumption for predicting wave runup and storm impacts. Given

that the coastal zone is a critical resource to many communities and that it is particularly

vulnerable to increasing sea levels and storm intensity and frequency (Elko et al., 2014,

2019), it is imperative to improve observations in order to make strides in predicting storm

and high energy wave impacts on beaches.

For coastal regions dependent on coastal freshwater, including coastal agricultural

sectors, salinity intrusion in both surface waters and groundwater can greatly affect

water availability. On a global scale, agriculture uses approximately 70% of available

freshwater resources (Cosgrove, Loucks, 2015). Agricultural sectors that primarily use

coastal freshwater are susceptible to over-drawing freshwater from both groundwater and

surface water systems and thus inducing seawater intrusion (SWI). This, coupled with

drought, sea level rise, and inundation from storms and tides, can severely limit the amount

of usable freshwater (Tully et al., 2019). Currently, SWI is one of the leading causes of

groundwater contamination (Michael et al., 2017). The impact of marine salt input to

to groundwater, for example, is far reaching and can induce coastal forest loss, increase

the presence of invasive species, and cause marsh migration, in addition to reducing

agricultural productivity (Tully et al., 2019). Importantly, research focused on surface

water SWI, in particular, is lacking. Thus, further research in the interest of preserving

coastal freshwater resources is necessary to support climate change adaptation.

In this study, oceanic total water level (TWL) plays an important role in the

investigation of these coastal hazards. TWL is comprised of a sea level component, which

may be influenced by astronomical tides, regional dynamics, and sea level anomalies (Pugh,
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1987), and a wave driven component, for which we use R2%, or the 2% exceedence level of

the vertical uprush of waves (Stockdon et al., 2006). Although R2% may be calculated

directly from observations, parameterizations are often relied upon due to the difficulty

of obtaining the necessary nearshore measurements, especially in high energy conditions.

These parameterizations often utilize deep water or nearshore wave measurements, which

can be obtained with wave buoys or pressure sensors, and estimates of beach slope, which

can be obtained through beach surveys or satellite data.

1.1 Research Outline

The goal of this thesis is to investigate current coastal hazards, including large

storm events and salinity intrusion events, that threaten infrastructure in the context of a

changing climate. This is done in the following chapters.

In Chapter 2, Estimating runup through storms and subsequent recovery periods,

we investigate the questions of how well do runup parameterizations predict runup during

large storms events? And how well do they perform when beach cusps form during beach

recovery periods post-storm? We utilize stationary lidar data of sea surface, wave runup,

and beach morphology to assess several widely used runup parameterizations during and

after storm periods in Duck, NC, USA.

In Chapter 3, Drivers of saltwater intrusion in surface sloughs, we address the

questions of what are the oceanographic and hydrologic drivers of salinity intrusion in

a human-altered freshwater slough system? And how are lagoon mouth closures linked

to these intrusions? We use a wide range of data, including data from slough water

monitoring stations, offshore buoys, tide gauges, rain gauges, river discharge gauges, and

visual lagoon monitoring, to assess the drivers of salinity intrusions in the Pajaro Valley’s

Harkins-Watsonville slough and to establish thresholds of total water level and river

discharge in which salinity intrusion may be expected.
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And finally in Chapter 4, Assessing future SWI risk using projections of TWL

and precipitation, we investigate the questions of how do the magnitude and frequency

of drivers of salinity intrusion change under future climate projections? And what tools

can be used by coastal managers to predict saltwater intrusion under different climate

scenarios? We use CMIP5 modeled sea level and precipitation and simulated waves using

TESLA, a wave emulator, to explore the changes in magnitude and frequency of salinity

intrusions in the Pajaro Valley’s Harkins-Watsonville slough under the RCP 8.5, 99th

percentile scenario.
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Chapter 2

Estimating runup through storms
and subsequent recovery periods

2.1 Abstract

Timeseries observations of beach elevation change and wave runup from a tower-

mounted stationary lidar are used to assess the skill (skill = 1−NMSE, where NMSE is

the normalized mean square error) of 2% runup exceedence (R2%) estimates (Stockdon et al.,

2006) during four storm events at Duck, NC, USA. The runup parameterization requires

specification of the foreshore beach slope, however beach slope is generally unknown during

high energy events, and pre-storm estimates of beach slope are often used as a proxy. R2%

hindcasts are computed using the observed time-varying beach slope and a static pre-storm

beach profile. The time-varying beach slope yields R2% skill of 0.57 compared to the

observed R2%. Similar skill scores are obtained using a tidally variable beach slope, derived

from the static pre-storm beach profile, due in part to limited beach volume (-10.4 to 7.7

m3/m) and foreshore slope (0.04 - 0.09 m/m) changes during the four events. The skill

drops to -1.0 using seasonal mean beach slopes. Even using the observed beach profiles,

the skill reduces (-0.86) just after the peak of two of the storms due to the appearance

of beach cusps (∼ 40 m wavelength) in the swash zone morphology. For one storm (a

Nor’Easter), runup is underpredicted by up to 1.0 m at high tides following the storm peak

when cusps are present, which coincides with high tides of near equal magnitude to those
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near the storm peak. Additional pre- and post-storm mobile lidar surveys for one of the

storms confirm ubiquitous small-scale beach cusps along 8 km of the local shoreline. The

results suggest that skillful runup estimates during storms are often attainable given the

availability of beach information just before a storm. The parameterization errors increase

when beach cusps develop, highlighting the need to extend standard one-dimensional

runup parameterizations to account for two-dimensional effects.

2.2 Introduction

Beaches and sand dunes provide critical protection to coastal infrastructure from

the impacts of energetic storm events. Wave runup, which is the the time-varying vertical

excursion of swash on a beach, is a particularly important quantity for assessing site-

specific coastal hazards (e.g., Stockdon et al. (2007a)). Due to recognized topographic and

bathymetric feedbacks on wave setup and swash, most empirical models of wave runup

commonly used for these analyses utilize a foreshore slope definition to represent the shape

of the coastal profile (Atkinson et al., 2017; Holman, 1986; Stockdon et al., 2006). Storm

runup forecasts and storm impact studies generally rely on foreshore slope estimates from

pre-storm or historical beach profiles; quantities that are typically assumed to remain

constant throughout storm events for estimating wave runup (Phillips et al., 2017; Harley

et al., 2016, 2017; Beuzen et al., 2019; Burvingt et al., 2017; Pye, Blott, 2016). Net beach

changes, including volume losses to the beach and dune, are usually assessed from pre- and

post-storm surveys. Given that there are often considerable beach volume changes and

complex evolution of beach morphology (e.g., cusp generation) during storms (O’Dea et al.,

2019), which influences the foreshore slope, then stationary beach properties (e.g., slope)

may be a poor assumption at the intra-storm timescale. Due to the feedback effects on

foreshore slope on extreme runup, this time-evolving morphology has direct implications on

the prediction of wave runup and the corresponding hazard. Unfortunately data of beach
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morphology change is rarely available at this intra-storm scale to improve over current

approaches. This deficiency highlights questions such as (1) what aspects of intra-storm

variability need to be accounted for to obtain skillful runup estimates? and (2) to what

extent does an evolving beach profile and the appearance of cusp formations diminish the

skill of one-dimensional (single cross-shore transect) runup estimates?

Contemporaneous observations of runup and beach change are needed throughout

individual storm events to assess the specific timing of morphologic changes which subse-

quently affect wave runup. Swash zone field measurements generally have been lacking

due to the challenges of collecting in-situ and remotely sensed data in the midst of storm

wave conditions, which frequently are accompanied by extreme winds and rain. Global

Navigation Satellite System (GNSS) surveys that rely on cart, jetski, all-terrain vehicles

(ATVs), (Ludka et al., 2019; Turner et al., 2016), or amphibious vehicles (Smith et al.,

2017) are labor intensive, difficult to stage during storm conditions, and limited in spatial

and temporal resolution. Stationary cameras, such as Argus, have provided long-term

observations of nearshore variability; however, accurate vertical measurements from these

cameras require further assumptions or direct measurements of reference points. Addition-

ally, quantitative estimates of beach change and runup may be compromised during high

wind and heavy rain conditions (Holman, Haller, 2013). The advent of continuous lidar

scanning (Spore et al., 2019; Phillips et al., 2019; Almeida et al., 2013; Brodie, 2010; Pye,

Blott, 2016; O’Dea et al., 2019; Splinter et al., 2018; Matsumoto et al., 2020; Burvingt et al.,

2017; Beuzen et al., 2019; Vousdoukas et al., 2014; Brodie et al., 2015; Blenkinsopp et al.,

2010; Martins et al., 2017; Almar et al., 2017), has opened opportunities to measure wave

runup on an evolving beach morphology during storms. Lidar systems can be configured to

record the swash zone surface elevation, the beach face, and runup elevation simultaneously

at sub-centimeter resolutions (Blenkinsopp et al., 2010). Henderson et al. (2022) used

lidar to capture an energetic runup event at Imperial Beach, CA as the beach eroded by

nearly 80-cm in elevation, with measurable impacts on runup estimates. However in a
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previous study, a temporary tower-fixed lidar captured onshore net deposition on a gravel

beach during a storm event in Loe Bar, SW England (Almeida et al., 2013).

Most operational runup models and lidar scanning systems are applied at cross-

shore transects (i.e., one-dimensional), yet recent studies highlight that the response

of nearshore-beach-dune systems to storm forcing is a complex, coupled morphological

evolution at various temporal and spatial scales. Typically, beaches tend to erode at the

storm timescale, with considerable alongshore variability in the response. For example, at

Narrabeen-Collaroy Beach in Australia, an extratropical cyclone induced a reduction in

beach volume that ranged from near zero to 124 m3/m over a 2500 m alongshore extent

of coastline (Harley et al., 2016). Beach recovery may happen quickly following a storm,

even during moderate wave conditions (∼ 2 m significant wave height), as observed in

Faro Beach (Vousdoukas et al., 2012a). Recognized controls on alongshore variability in

both beach erosion and responses to the beach-adjacent dune or bluff systems include

the role of crescentic bars or bathymetric anomalies (Holman, Sallenger Asbury H., 1993;

Senechal et al., 2018; Cohn et al., 2021), pre-storm beach slope or volume (Lee et al.,

1998; Vousdoukas et al., 2012a; Dissanayake et al., 2015; Splinter et al., 2014), and local

vegetation properties (Feagin et al., 2019; Charbonneau, Dohner, 2021).

Runup models, including non-hydrostatic models, like XBeach (Smit et al., 2010)

and SWASH (Zijlema et al., 2011), and empirical parameterizations (Stockdon et al., 2006;

Holman, 1986; Nielsen, 2009; Ruggiero et al., 2001; Vousdoukas et al., 2012b; Atkinson

et al., 2017; Senechal et al., 2011) require measurements of beach morphology. In part

due to fewer input data requirements and reduced computational needs related to wave-

resolving numerical models, empirical equations are most commonly used for hazard

assessments. For empirical parameterizations, such as the widely used Stockdon et al.

(2006) equation, a single value representative of the foreshore beach slope β is often used.

The parameterization requires measurements of deep water wave length (H0) and period

(T0) in addition to β. Despite the widespread use of this equation, there are a range of
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different approaches to defining the foreshore beach slope. Limited guidance currently

exists for the optimum way to specify β during storm conditions to best predict wave

runup.

As noted by Stockdon et al. (2006), the one-dimensional parameterization (i.e., β

is specified across a single cross-shore transect) may be compromised by the presence of

megacusps, which are ∼ 200 m rhythmic features in the alongshore (Thornton et al., 2007).

Mega-cusps are common features that have been observed on sandy beaches throughout

the world, including along the Outer Banks, NC (Stockdon et al., 2006). Moreover, smaller

beach cusps with wavelengths reported between 12 and 40 m are commonly observed on

the lower beach at sites around the world (Holland, Holman, 1996; Miller et al., 1989;

Holland, 1998; Agredano et al., 2019; Matsumoto et al., 2020). These small-scale cusps are

cited as both erosional and depositional features that are often destroyed by passing storms

and reformed within days (Miller et al., 1989) or even at the sub-tidal timescale (O’Dea,

Brodie, 2019). These morphologic processes may also couple with hydrologic processes,

as Ciriano et al. (2005) indicate that low frequency swash oscillations are affected by the

development of beach cusps, and vice versa.

Here, we examine stationary lidar observations of sub-aerial beach and swash

zone surface elevations during 4 distinct storm periods and mobile lidar observations of

beach/dune morphology from pre- and post-conditions during 2 storms collected at the

US Army Engineer Research and Development Center’s (ERDC) Field Research Facility

(FRF) in Duck, NC, USA. The stationary lidar system conducts linescans along a ∼ 65

m cross-shore range and also completes 2D framescans that cover a ∼ 500 m alongshore

stretch of beach every hour. 10 cm and 1 m horizontal resolutions are achieved with

the linescanning and framescanning modes, respectively. The system has been sampling

near-continuously since September 2015 at the FRF (O’Dea et al., 2019; Cohn et al.,

2021) and was fully operational during the 4 storms considered here. The mobile lidar

system, covering 8 km of the Outer Banks coast, provided detailed pre- and post- storm
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beach/dune morphology (Spore et al., 2019) for two of the four storms sampled by the

stationary lidar.

With a detailed dataset of time-evolving beach morphology and swash variability

at the intra-storm time scale, we primarily aim to address: Is a pre-storm beach slope

sufficient for characterizing morphologic controls on wave runup throughout storms? Along

this line of investigation, the data provide insight into both cross-shore and alongshore

variability of beach morphology changes and the accuracy of empirical runup models

throughout tropical and extratropical storms. Section 2.3 describes the field site, wave and

water level conditions during the four storms, the methods for utilizing the stationary and

mobile lidar data, and the methods for calculating foreshore beach slope. Study results,

including descriptions of the evolving beach throughout each storm, observations and

parameterization/predictions of runup, and the effects of beach cusps on runup prediction

skill are discussed in section 2.4. In section 2.5, we investigate the performance of other

commonly used runup parameterizations, use the mobile lidar system to establish how

localized the observed beach cusp field is, and assess the scales of beach slope variability

at this site. Finally, we summarize our key findings in section 2.6.

2.3 Methodology

Observations of dune and beach morphology, wave runup, and offshore oceano-

graphic conditions were collected at the ERDC FRF. Our dataset includes concurrent

observations during four storms: Hurricane Joaquin (Sept 30, - Oct 8, 2015), a Nor’Easter

(Feb 7 - 11, 2016), Hurricane Jose (Sept 18 - 21, 2017), and Hurricane Maria (Sept 25 - 28,

2017) and span conditions 5.4s < Tp < 16.7s and 0.8m < Hs < 4.2m in 8 m depth. The

following subsections describe these field datasets.
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Figure 2.1. (A) Location of the Field Research Facility (FRF) in the eastern region of
the United States, (B) the area of Duck, NC that was mapped by CLARIS (shaded orange
region), and (C) the locations of the lidar tower and the 8 m pressure array on the FRF
property.

2.3.1 Study Site

The FRF is located in Duck, NC, USA, a heavily studied, dune-backed, intermediate

beach (foreshore slope ∼ 0.08 (O’Dea, Brodie, 2019; Holland, Holman, 1996; Holland,

1998)) in the Outer Banks (Birkemeier et al., 1996; Holman, 1986; Holman, Sallenger

Asbury H., 1993), located between the Atlantic Ocean to the east and Currituck Sound to

the west (figure 2.1). The sandy beach is comprised of a bimodal mixture of coarse and

fine sand, 1 mm and 0.3 mm, respectively (Birkemeier, Holland, 2000). Semi-diurnal

tides in this area have a ∼ 1 m range (Lee et al., 1998). The Outer Banks are subject to

Nor’Easters, extra-tropical storms that develop in the mid-latitudes and typically occur in

the fall, winter, and early spring, and tropical storms and hurricanes that pass over the

Outer Banks in summer and early fall (Brodie, 2010). Both types of storms generate high

wind conditions that drive large waves.
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2.3.2 Morphology Data

Stationary Lidar Measurements

A Riegl terrestrial lidar scanner (VZ-1000, 1550 nm laser with a 0.3 mrad beamwidth)

mounted on a 4 m boom over the dune recorded elevation data along a cross-shore line at

approximately 7.1 Hz for the first 30 minutes of every hour. These scans were oriented

offshore and span about 65 m, which encompassed the dune crest, beach face, swash zone,

and inner surfzone (Brodie et al., 2015; O’Dea et al., 2019). During the subsequent 30

minutes, the lidar conducted a 237 o framescan to obtain alongshore elevation measurements

over a 500 m range. The location of this scanner is shown in figure 2.1C. An hourly

co-registration was completed as part of the data analysis to account for small movements

of the lidar platform and to therefore reduce offsets in the x-, y-, and z- planes caused by

thermal or wind effects on the lidar mounting system. The raw data were transformed

from the scanner’s own coordinate system into a rectified Cartesian coordinate system

with NAVD88 as the vertical datum and a local geo-referenced horizontal coordinate

system (xFRF, yFRF). The data also were filtered to remove noise, such as sea spray and

vegetation, and linearly interpolated onto a 10 cm grid as described in O’Dea et al. (2019).

The gridded lidar data were used to define hourly bed elevation change patterns across

the beach for each of the target storms.

CLARIS Surveys

To supplement the detailed measurements from a single location, larger scale spatial

measurements of beach morphology over an 8 km coastal stretch in the same vicinity of

the dune lidar are used here (figure 2.1B). A Riegl VZ-2000 terrestrial lidar system and

Inertial Motion Unit (IMU) attached to the top of a van were driven along the Outer

Banks coast to collect measurements in framescan mode of the beach/dune face. This

system, referred to as the Coastal Lidar and Radar Imaging System (CLARIS), provided

detailed spatial measurements of beach and dune morphology with vertical errors less
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than 0.05 m (Cohn et al., 2022). Ground points from the lidar, determined through

filtering of the raw data using standard Riegl terrain filters, were then interpolated on a

25 cm by 25 cm grid as outlined by Spore et al. (2019). Surveys conducted on 9/18/2017

(before Hurricane Jose), 9/22/2017 (after Hurricane Jose and before Hurricane Maria), and

9/29/2017 (after Hurricane Maria), which covered about 8 km (4.1 km north and 3.9 km

south of the stationary lidar platform) of the coast, were used in this analysis. The dataset

encompassed both nourished (from a June 2017 project) and un-nourished sections of the

beach. The mean interpolated contour used for wavelet analysis was extracted from the

dataset by first establishing the 2.0 m and 1.8 m elevation contours, due to widespread data

availability at these elevations on the dry beach as opposed to more intermittent returns

closer to the water line. The average difference between the two contours was calculated

for all alongshore positions in which both contours were present. A mean contour was

calculated, and the average difference was used to estimate the mean in areas in which

only one of the 2.0 or 1.8 m contours was present. We linearly interpolated through the

remaining alongshore locations in which no contour was present. A 10 m moving mean

was applied to the interpolated mean contour, and finally the larger shoreline trend was

removed by subtracting the contour with an applied Savitzky-Golay filter with a 505 m

window. This approach was used to isolate the wavelengths of beach cusps and to ignore

the effects of a larger shoreline wavelength trend. To analyze the spatial behavior of the

beach cusp field over these 8 km, continuous Morse wavelets were used on the resulting

mean contours from each CLARIS dataset, similar to the analysis in Matsumoto et al.

(2020).

Beach Slope Definitions

Beach slope is a primary factor for controlling wave runup. For the purposes of

this work we calculated three different beach slopes as follows:

• Observed beach slope (βobs) is calculated on an hourly basis from the lidar-measured
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beach profiles in the foreshore region, which is defined as the mean horizontal swash

position +/- 2 standard deviations of the observed swash timeseries for each 30

minute window. βobs is defined here as the slope of the best fit line using linear

regression within this foreshore region. We consider this the ’ground truth’ beach

slope timeseries.

• Pre-storm beach slope (β0) uses the lidar-measured pre-storm beach profile as shown

in figure 2.4. The hour that each pre-storm profile was observed is denoted by the

stars in figure 2.6. These hours were specifically chosen because they were at low

tide, exposing the most beach, and because the beach changed little in the hours

prior. The mean swash position was predicted using offshore conditions and the

parameterization for setup as given by Stockdon et al. (2006). A detailed explanation

of this process is described later in this section.

• Time-varying beach slope (β(t)) uses hourly lidar-measured beach profiles with

predicted setup generated by the same process as that used for β0. This differs from

βobs in that the foreshore slope is defined over a region that is empirically predicted

(as opposed to measured) in β(t).

The differences between these definitions of beach slope are further illustrated by

an example in the Appendix.

To calculate β0 and β(t), we assume that we cannot directly measure the runup

during the storm to obtain the mean swash position. Thus, we use the expression for

predicting setup from Stockdon et al. (2006):

η = 0.35β
√

(H0L0) (2.1)

In Stockdon et al. (2006), a portion of the data used to tune the parameterization

was collected at the FRF study site, including during energetic wave conditions, thus

14



we expect it to outperform other existing parameterizations. To predict hourly β, and

therefore runup, we begin with a pre-storm beach profile as our starting estimate using

βobs. For the next hour, we take the beach profile (the pre-storm profile again if estimating

β0 or the lidar-measured profile for that hour if estimating β(t)), calculate setup using

equation 2.1, add the estimated setup to the water level measured at the tide gauge for

that hour, and find where this water level intersects the beach (mean swash position).

For simplicity, we used the mean standard deviation of the horizontal swash position as

measured by the lidar to establish the foreshore region (+/- 2 standard deviations from

the mean swash position) to obtain the linear best fit line to estimate beach slope. Once

we obtain this beach slope estimate, we repeat the process for the same hour until the

estimate for beach slope asymptotes. This entire process is repeated for the remaining

hours using the previous hour’s estimate for β as the starting point to obtain the timeseries

for β0 and β(t). We also calculated curvature of the beach using the coefficient of the x2

term of a second order polynomial fit for the area over which β0 and β(t) were calculated.

If values of curvature fell outside of two standard deviations from the mean, we assumed

these beach slope values were unrepresentative of the foreshore beach and excluded them

from our timeseries.

Skill Calculations

To assess model performance in estimating wave runup, we utilized the definition

of Skill = 1−NMSE, where NMSE (normalized mean square error) is as follows:

NMSE =
Σn

i=1(p− o)2

Σn
i=1(o− ō)2

(2.2)

where p is the runup prediction and o is the lidar-derived runup observation.
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2.3.3 Oceanographic Conditions

Offshore Wave and Water Level Properties

Figure 2.2. (A) Significant wave height as measured by the 8 m pressure array, (B) runup
proxy

√
H0L0 extrapolated from 8 m pressure array measurements of Hs and Tp, (C) peak

frequency as calculated from hourly 8 m pressure array data, (D) hourly still water level
(SWL, solid line) and sea level anomaly (SLA, dashed line) measured by FRF end-of-pier
(EOP) NOAA station 8651370. Lines are colored by storm dataset as indicated by the
legend in panel (A).

Significant wave height (Hs), wave direction (θ) and directional spread (θspread),

and peak frequency (fpeak) were specified using a pressure array in 8 m depth offshore of

the FRF property (figure 2.1C). Deep water significant wave height (H0) and wavelength

were calculated by back refracting significant wave height and peak period recorded by

the 8 m pressure array.

All four storms reached maximum Hs > 4.0 m as recorded at the 8 m pressure

array (figure 2.2A). Deep water wave height and wavelength were used to calculate a
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runup proxy,
√
H0L0, following the runup parameterization from Stockdon et al. (2006)

(figure 2.2B). We assume that the hour of highest runup corresponds with the hour of

maximum
√
H0L0, and thus set this hour as ”Hour 0”, or the storm peak, for each storm

timeseries. This allowed us to align the time axes for all storms, despite each timeseries

being a different length. Maximum values of
√
H0L0 ranged from 29.3 m (Joaquin) to 36.0

m (Nor’Easter) (figure 2.2B). Although this runup proxy has a stronger dependency on

period than wave height, since L0 ∝ T 2, the peak runup proxy does not correspond to the

hour of lowest frequency, because wave height and frequency do not change concurrently

and the runup proxy is dependent on both factors.

Hurricanes Jose, Maria, and Joaquin maintained similar and steady fpeak of ∼ 0.09

Hz throughout their timeseries, whereas the Nor’Easter began in the higher frequencies

and then decreased over the course of 25 hours to a peak frequency of ∼ 0.07 Hz (figure

2.2C). This decrease in frequency is characteristic of Nor’Easters in the Outer Banks, as

wind driven seas tend to precede the incoming storm swell (Brodie, 2010).

For all storms, incoming waves were oriented in approximately the shore-normal

direction at the storm peak and subsequently. However, for Jose and Maria, we note higher

variability in θspread throughout the timeseries, while the directional spread is roughly

maintained between 18 and 35 degrees surrounding the storm peaks for Joaquin and

the Nor’Easter (not shown). These storm characteristics are within the range of values

reported from numerous previous studies (Holland, Holman, 1996; Miller et al., 1989;

Lee et al., 1998; ?; Holland, 1998), suggesting that the target storms of interest are not

uncommon events at this site.

Water level observations were taken from the NOAA tide gauge at the end of the

FRF pier (figure 2.2D). The sea level anomaly (SLA) is the observed still water level

(SWL) at the tide gauge with the predicted astronomical tidal water level removed. Here

we define total water level (TWL) as the observed SWL plus the lidar observed R2%, which

includes both wave setup and swash.
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Lidar-Derived Wave Runup

From the stationary lidar outputs (Section 2.2.1), the runup tongue was identified

following the methods outlined in Brodie et al. (2015). To reduce noise at the seaward end

of mean hourly beach profiles, any elevation data observed less than 1.5% of the number of

returns per cross-shore position were assumed to be water elevation or sea spray and were

removed. Then a moving standard deviation with a window of 1.5 m in the cross-shore

was applied to the elevation data, and areas in the seaward edge of the profile with a

standard deviation higher than 5 cm were removed. Finally, the profile was smoothed

using a 1.5 m running mean at the seaward edge of the profile and data with an upward

slope over a 1 m horizontal distance were removed.

Empirical Runup Prediction

As part of this study, we aim to assess the skill of runup predictions using a beach

slope generated from a fixed ’pre-storm’ beach profile as opposed to a time-varying beach

profile. We use the runup parameterization from Stockdon et al. (2006) (referred to as

Sto06), given by:

R2% = 1.1
(
0.35β

√
(H0L0) +

√
H0L0(0.563β2 + 0.004)

2

)
(2.3)

where β is the foreshore beach slope and H0 and L0 are the deep-water wave height and

wavelength calculated from the 8 m pressure array, respectively. This formulations has a

stronger dependence on wave period than wave height since L0 ∝ T 2.

For hours in which the Iribarren number (ξ = β√
H0/L0

) was less than 0.3 (i.e. a

dissipative state), we use the dissipative equation from Stockdon et al. (2006), given by:

R2% = 0.043
√

H0L0 (2.4)
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Figure 2.3. Timeseries of beach slope calculated from hourly beach morphology and
runup observations (βobs), pre-storm beach profile and predicted setup (β0), and hourly
beach profiles and predicted setup (β(t)) for each storm.

However, this dissipative state is observed for only 10 hours of the Jose timeseries, which

accounts for 14% of the Jose runup timeseries and 2% of the combined storm runup

timeseries.

2.4 Results

2.4.1 Intra-Storm Beach Evolution

We calculate the three beach slope definitions as described in section 2.2.3: βobs,

β0, and β(t) (figure 2.3). For each storm, as expected, the time-varying beach slope, β(t),
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Figure 2.4. 10 cm gridded pre-storm (solid, colored by storm) and final (dashed)
beach elevation profiles for (A) Hurricane Joaquin, (B) the Nor’Easter, (C) Jose, and
(D) Hurricane Maria as measured by the stationary lidar. Mean sea level (MSL) for
each dataset is indicated by the horizontal dotted blue line. (E) Mean profiles for each
storm and mean profile of all storms combined as indicated by the dashed black line. (F)
Difference of mean profile of each storm from overall mean profile.

closely follows the observed beach slope βobs. The beach slope based on a pre-storm profile,

β0, oscillates between over- and under- predicting βobs. To further assess the observed

and calculated beach slopes, we examine the intra- and inter- storm variability in beach

profiles, as shown in figures 2.4 and 2.5. For hurricanes Jose and Maria, the beach began

as a more planar wide beach than during Joaquin and the Nor’Easter (figure 2.4E & F).

Of the 4 target storms, the maximum local bed elevation change recorded was -0.46 m

(Maria) and up to 0.30 m of local beach aggradation was observed (Jose). Overall, the
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mean bed elevation change across the beach, measured from 50 m ≤ x ≤ 120 m in the

cross-shore for location where data was available, was 0.06 m, 0.06 m, 0.02 m, and -0.23

m for Joaquin, the Nor’Easter, Jose, and Maria, respectively. The spatial distribution of

these changes was not uniform. For Joaquin and the Nor’Easter in particular, by the end

of the storm period the profile became more convex (centered around 75 m and 85 m in

the local FRF coordinate system, respectively), while for Maria, the profile seaward of

the dune face was mostly eroded, except for a small area around 62 m. During Jose, the

beach generally changed little, but a ∼ 0.4 m scarp feature around 62 m was destroyed by

the end of the storm period.

Despite the similarities in the magnitudes of the runup proxy
√
H0L0 during the

peak of each storm (Fig 2.2), the mean bed elevation change across the profile through

the storm peak (hour 0), was quite different: -0.08, -0.08, 0.07, and -0,19 for Joaquin, the

Nor’Easter, Jose, and Maria, respectively (Fig 2.5). These results demonstrate that the

morphological evolution of the sub-aerial and sub-aqueous swash zone cannot be simply

related to deepwater wave characteristics, total water levels, or swash parameterizations

alone, and is instead the cumulative result of the interplay of complex processes which

requires further investigation.

The timestacks in figure 2.5 show hourly elevation changes relative to the first hour

for each storm. The lidar-derived TWL line (dashed black line on each timestack) indicates

that most major elevation occurred seaward of the TWL line, as expected. Landward of

this limit, changes may reflect the role of extreme runup (e.g., Rmax) or aeolian processes.

For Joaquin and the Nor’Easter, accretion of the upper/mid beach occurred on high tides

(after hour -50 for Joaquin and for the majority of the Nor’Easter) with erosion of the lower

beach occurring near low tides. During Maria, the beach profile eroded throughout the

storm everywhere seaward of the TWL line. The elevation changes for Jose were generally

less pronounced than the three other storms, although a net bed elevation lowering was

observed seaward of the TWL location.
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These patterns in bed elevation change have some influence on the resulting foreshore

beach slope at both the tidal and storm timescale (Figure 2.3). The differences between

the beach slopes using hourly profiles (βobs and β(t)) and β0, are partially due to the

concavity of the profiles throughout the storms, notably Joaquin and the Nor’Easter. The

estimated beach slopes increase with the tidal elevation and wave setup on the concave

profile.

To characterize the net beach change, we calculate volume change timeseries for

each event within the green dashed lines in figure 2.5. The elevation changes were assumed

to be uniform in the alongshore over 1 m in order to convert to volume changes. Compared

to the first hour of data collection for each storm, the maximum changes in volume were

-6.2 (Joaquin), +7.7 (Nor’Easter), +2.8 (Jose), and -10.4 (Maria) m3/m (figure 2.6).

2.4.2 Observations and Empirical Parameterization of Runup

Although continuous coastal morphologic measurement is rare, pre-storm beach

morphology data is readily available for many coastal field sites from beach surveying

(Spore et al., 2019; Agredano et al., 2019), airborne lidar (Burvingt et al., 2017), or

satellite imagery approaches (Almeida et al., 2019). These pre-storm data often are used to

define beach slopes within empirical parameterizations of wave runup for the purposes of

characterizing coastal hazards. Here we compare the skill of calculated runup from Sto06

using our estimates of β0 and β(t), relative to lidar-derived runup. We aim to determine if

runup estimates calculated from pre-storm profiles are accurate or whether a time-evolving

profile is necessary to generate more reliable runup predictions. For both parameterization

approaches, we used the hourly H0 and L0 generated from the 8 m array. The resulting

timeseries of both empirically predicted and the lidar-derived R2% are shown in figure 2.7.

For Hurricane Joaquin, the Sto06 skill using β0 is low (0.09). Sto06 with β0 notably

tends to overestimate runup maxima near the peak hours of the storm: at hour -12, R2%

is overestimated by ∼ 0.7 m when using β0 as the model input. Skill increases to 0.30
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Figure 2.5. Hourly cross-shore elevation changes from the first hour of each storm. Blue
indicates accretion and red indicates erosion. Cross-shore position of hourly TWL is shown
as a black dashed line and limits of beach volume calculations are shown as dashed-dotted
green lines. Hour of emergence of beach cusps is indicated by gold (Joaquin) and pink
(Nor’Easter) solid vertical lines.
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Figure 2.6. Hourly volume change from the first hour of each storm with cross-shore
limits of calculation indicated in figure 2.5. Hour of emergence of beach cusps is indicated
by gold (Joaquin) and pink (Nor’Easter) dashed-dotted vertical lines. Stars indicate the
hour in which the pre-storm beach profile was identified.

if β(t) is used in Sto06. Both parameterizations appear to underpredict runup maxima

towards the beginning of the timeseries. For example, at hour -135, both parameterizations

underpredict R2% by about 0.4 m. Additionally, during the last 60 hours of the dataset,

the parameterizations using β0 and β(t) underpredict runup by an average of 0.46 m and

0.33 m respectively. This coincides with a reduction in tidal variability of the observed

runup timeseries.

For the Nor’Easter, skill also increases from 0.12 to 0.49 when β(t) was used over

β0. However, both parameterizations underestimate runup maxima by up to 1.0 m in the

last 40 hours of the data set when higher tidal variability is seen in the observed runup

dataset. This increase in tidal variability enhances runup maxima to levels similar to those

during the peak of the storm.

Skill of both parameterizations is relatively high (0.65 using β0 and 0.49 using β(t))

when predicting runup during Hurricane Jose. This is likely attributed to the minor beach

changes during this storm as shown in the beach profile change figures (figures 2.4 & 2.5)

and the volume change timeseries (figure 2.6), and the dissipative state that the beach

is briefly in for 3 of the observed low tides. Both parameterizations tend to capture the
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runup maxima during this timeseries but slightly underpredict the minima after the peak

of the storm.

During Hurricane Maria, the parameterizations predict runup with the least amount

of skill. Throughout the storm, both parameterizations overpredict runup, however Sto06

using β0 better recreates observed R2% with a skill of 0.20 as opposed to -0.33 for Sto06

using β(t).

Figure 2.7. Observed (blue solid), predicted with β0 (orange dotted), and predicted with
β(t) (black dotted) R2% for each storm. Still water levels in the NAVD88 vertical datum
as measured by the tide gauge on the FRF pier are shown on the gray twin axis.
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2.4.3 The influence of beach cusps on runup

For approximately 60 and 40 hours after the storm peaks of Joaquin and the

Nor’Easter, respectively, the observed runup events during high tides reached magnitudes

nearly equal to the maximum runup for each storm (figure 2.7). Additionally, after hours

∼ 9 and ∼ 25 of Joaquin and the Nor’Easter, respectively, the magnitude of R2% is not well

captured by Sto06 (figure 2.7). The sustained high runup values and underprediction of R2%

post storm peak are not present in the Jose or Maria runup timeseries. We hypothesize that

these discrepancies in observed versus estimated runup are due to alongshore variability in

morphology, which limits treatment of runup as a purely cross-shore problem. To gain

insight, we use the hourly framescans from the stationary lidar to qualitatively analyze

the alongshore structure of the beach/dune face.

Around hour 9 of Hurricane Joaquin, beach cusps form with ∼ 30−40 m wavelength

(figure 2.8), which coincides with the sustained runup maxima and underprediction of

R2%. These features are consistent which beach cusps observed in other studies at the

FRF, including Holland, Holman (1996), Holland (1998), and Miller et al. (1989). The

cusps increase in prominence by the end of the timeseries, reaching nearly 0.5 m in height.

For the Nor’Easter, beach cusps of similar size and shape form beginning at hour 28.

In contrast, during hurricanes Jose and Maria, the beach face did not develop rhythmic

alongshore features. This suggests that sustained observed magnitudes of runup at high

tides that are underpredicted may be related to the presence of beach cusps.

To further understand the effect of beach cusps on runup parameterizations, we

split the storm datasets into hours without cusps (NC) and hours with cusps (CO). We

analyze the ability of equation 2.3 to estimate R2% using β0 and β(t) during these two

time periods and assess the accuracy of each result by comparing skill, bias error (BE),

root mean-squared error (RMSE), and the regression equation, shown in table 2.1. In

the regression analysis, we assume that there was no error in the observed R2% and 95%
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Figure 2.8. Contour plot of beach elevation during Hurricane Joaquin (left), the
Nor’Easter (middle), and Maria (right) for three chosen hours. Jose is not shown because
of its similar behavior to Maria. Contour levels are reported on the plot in units of m,
NAVD88. The position of the lidar cross-shore scans are denoted by the vertical dashed red
line, and the hourly mean swash position, if present in the chosen domain, is denoted by
the horizontal dotted black line. The abrupt increase in sand volume around yFRF=1025
m for Hurricane Maria is due to the nourishment that was placed near the north end of
the FRF property in June 2017.

confidence intervals are reported with all regression slope and intercept values.

Table 2.1. Table of model error. Dataset, skill (as calculated by equation 2.2), mean error
percentage (error %), bias error (BE), root mean-squared error (RMSE), and regression
slope (m) and intercept (b) with 95% confidence intervals shown in parentheses. ’NC’
indicates dataset compiled from all storms without hours where cusps were observed and
’CO’ indicates dataset compiled from Joaquin and the Nor’Easter with hours where cusps
were observed only. Errors are reported in units of m.

Dataset Skill Error % BE [m] RMSE [m] m b
β0, NC 0.57 1.3% -0.02 0.26 1.0 (0.4) 0.1 (0.6)
β(t), NC 0.56 5.1% 0.02 0.26 0.9 (0.4) 0.1 (0.6)
β0, CO -2.55 8.2% 0.44 0.24 0.6 (0.3) 0.2 (0.6)
β(t), CO -0.86 8.2% 0.28 0.21 0.6 (0.3) 0.5 (0.5)

For the NC dataset, using β0 or β(t) in Sto06 (equation 2.3) yields similar regression

equations and skill values (figure 2.9, table 2.1). The root mean square error (RMSE) and

mean bias error (BE) were both 0.26 and |0.02|, respectively, for the NC β0 and β(t) cases.
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Figure 2.9. Stockdon estimates of R2% versus observed values (A) using equation 2.3
with β0 (squares, gold trendline) and β(t) (stars, pink trendline) for all hours without
cusps present; (B) same as (A) but for all hours with cusps present. The 1:1 line is shown
as a light gray dotted line.

However, error percentage increased from 1.3% for the β0 case to 5.1% for the β(t) case.

For the CO dataset, there is a large decline in skill and an increase in error percentage

for both types of parameterizations. The negative skill values for the β0 (skill=-2.55) and

β(t) (skill=-0.86) parameterizations indicate that Sto06 does not perform any better than

using the mean value as a model for time periods where cusps are present. These results

suggest that for empirically calculating wave runup, the pre-storm beach morphology is

just as good, if not better, for defining runup than the availability of continuously evolving

topography. However, they also indicate that Sto06 breaks down when the beach becomes

highly variable in the alongshore, whether there are accurate measurements of cross-shore

morphology or not.
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2.5 Discussion

2.5.1 Insights from New Intra-Storm Runup and Morphology
Observations

Typically field observations of storm-induced morphologic changes to coastal beach

systems are only available from pre- and post-storm surveys that may have occurred

relatively far from the date of the event. Consistent with the few other datasets of

∼ hourly scale morphological changes during storms, these data from Duck, NC, USA

indicate that beach changes are complex in both the cross-shore and temporal dimensions

at the event scale. In the case of Hurricane Joaquin, the onset of the event triggered

substantial erosion from the water line to the back of the beach. While the beach scarp was

maintained throughout the remainder of the storm, the beach morphology continued to

evolve considerably with beach volume losses mostly recovering over the following 5 days.

Despite a typical conclusion that storms are broadly erosional to the beach, the upper

portion of the foreshore instead accreted due to swash processes during the 2016 Nor’Easter

and Hurricane Jose. Across all events, the bed elevation locally changed by upwards of 20

cm (either accretion or erosion) and, as such, these morphologic changes have important

implications on the instantaneous foreshore slope. While these net slope changes across

the intertidal zone (e.g., from MLW to MHW) were non-negligible over the course of the

storm, it is important to note that that the formal definition of foreshore slope that has

time variable vertical limits depending on the swash itself results in broad slope variability

on the sub-daily timescale associated with fluctuations in the tides. Therefore use of a

static slope value, such as between MHW and the dune toe that is commonly used for

hazard studies, is likely to under-resolve morphologic effects on runup extremes. However,

incorporating the full pre-storm profile to iteratively develop time-variable foreshore slope

estimates may serve to enhance predictions when intra-storm morphology data is not

broadly available.
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Although the cross-shore linescans indicate intra- and inter- storm morphologic

variability, our results suggest that alongshore variability due to beach cusps has a greater

effect on the skill of Sto06 in predicting runup than the variability in foreshore beach slope

throughout the storm. If beach cusps are not present, an estimate of beach slope using a

pre-storm beach profile seems sufficient to predict runup throughout a storm. However, if

beach cusps are present, then runup predictions using Sto06 are likely an underestimate.

2.5.2 How do other empirical runup parameterizations per-
form?

While Stockdon et al. (2006) remains the most widely used empirical formula

for wave runup prediction on sandy coastal systems, numerous other parameterizations

exist in the literature that synthesize the role of wave height, wavelength, and beach

morphology on wave runup in different ways. To examine the generality of our results,

we investigate the skill of other common runup parameterizations at the FRF property.

Specifically, we compare the performance of five additional commonly used empirical

parameterizations (as shown in a table 2.2) using β0 and β(t) during the NC time periods.

For the parameterization from Holman (1986), we use the formulation based on the

relationship between the non-dimensional runup and the Iribarren number (Hol86); for the

parameterization from Nielsen (2009), we use the formulation for extreme runup heights

(Nie09) with Z100 = 0 since we are not adding SWL to our other R2% predictions and Z100

is often approximated at SWL (Atkinson et al., 2017); and for the parameterization from

Atkinson et al. (2017), we use the M2 model of models since it yielded the smallest error

in the original study (Atk17). The results of these analyses are shown in figure 2.10.

Overall, the parameterization from Ruggiero et al. (2001) (Rug01) and Sto06 have

the highest skill in predicting R2% using both β0 (0.61 for Rug01, 0.57 for Sto06) and

β(t) (0.60 for Rug01, 0.56 for Sto06). Both these parameterizations were tuned using

data from our study site, which liekly explains their high skill overall. The skill of the
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parameterization from Vousdoukas et al. (2012b) (Vou12) slightly decreases from 0.47 using

β0 to 0.35 using β(t). Faro Beach, the study site at which the Vou12 parameterization was

formulated, is generally a more reflective and steep beach than our study site. For Hol86

and Atk17, which are similar parameterizations, skill increases from 0.29 (Hol86) and 0.18

(Atk17) when using β0 to 0.44 (Hol86) and 0.35 (Atk17) when using β(t). Although Hol86

was calibrated using data from our study site and encompassed two storms, the three week

study period did not cover the recovery period following the second storm and did not

account for a wide range of beach states. Alternatively, Atk17 was not assessed under

extreme wave conditions, and the authors note that this is an explicit limitation of the

model (Atkinson et al., 2017), which may explain it’s low performance during our storm

periods. Nie09 performed most poorly in predicting R2%, which could be attributed to

the model’s tuning on a range of 6 Australian beaches.

All models utilize a factor of
√
H0L0 (except Nie09, which uses the analogous

√
HrmsL0), with coefficients that were tuned using different datasets from various study

sites. Similar to Sto06, the formulations have a stronger dependence on wave period than

wave height. Thus, the result that Sto06 and Rug01 were the most skillful parameterizations

in predicting R2% is expected, since they utilized datasets from the FRF. Generally, Sto06

is a model with predictive skill over a wide variety of beaches (?), so it’s performance

here is consistent with previous studies. Collectively there is not a uniform response in

the runup models when using time-varying instead of pre-storm beach morphology, so

we cannot conclude that a pre-storm morphology is sufficient in predicting storm driven

runup for all parameterizations.

2.5.3 How localized are the beach cusps?

The initial lidar analysis indicates that there was complex spatio-temporal behavior

in beach morphology at the study site. However, the stationary lidar system has a restricted

∼ 500 m field of view which (1) may limit the ability to observe longer wavelength cusp
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Table 2.2. List of abbreviations, R2% equations, and references for empirical runup param-
eterizations. The variables not previously defined in the text are: LR = 0.6 tan β

√
HrmsL0

for tan β > 0.1 or LR = 0.06
√
HrmsL0 for tan β < 0.1 (Nielsen, 2009), Z100 which is defined

as the highest elevation passed by all waves (Nielsen, 2009), and Hrms = Hs/
√
2. The

py-wave-runup toolbox used to calculate predicted runup with these parameterizations is
found on GitHub (Leaman et al., 2020).

Abbrev. R2% Equation Reference

Sto06 R2% = 1.1
(
0.35β

√
(H0L0) Stockdon et al. (2006)

+

√
H0L0(0.563β2+0.004)

2

)
Hol86 R2% = 0.83 tan β

√
(H0L0) Holman (1986)

+0.2Hs

Nie09 R2% = 1.98LR + Z100 Nielsen (2009)

Rug01 R2% = 0.27
√
βH0L0 Ruggiero et al. (2001)

Vou12 R2% = 0.53β
√
(H0L0) Vousdoukas et al. (2012b)

+0.58ξ
√

(H3
0/L0) + 0.45

Atk17 R2% = 0.92 tan β
√
(H0L0) Atkinson et al. (2017)

+0.16H0

Figure 2.10. (A) Skill for R2% calculated from empirical models described in table 2.2
using β0 and β(t) (colors shown in legend). The magnitude of Nie09 skill in both cases is
greater than -4, which goes beyond chosen limits. (B) Model-predicted versus observed
R2% for the NC dataset using β0. Model markers are listed in legend. 1:1 line is shown as
dashed black line.
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features and (2) does not in itself indicate whether these cusp behaviors are highly

localized or representative of the broader region. To gain a sense of how localized the small

wavelength (< 40 m) beach cusp features were, we analyzed the regional CLARIS mobile

terrestrial lidar data that was available for hurricanes Jose and Maria. The 8 km elevation

maps with a 505 m wavelength trend removed for 9/18/2017, 9/22/2017, and 9/29/2017

are shown in figure 2.11. A beach nourishment was completed between approximately 1100

m and 3200 m yFRF in 2017, resulting in large temporary increases in the beach width in

this area. Unsurprisingly, we observed some ‘leakage’ of sediment from the nourishment,

including within the stationary lidar field of view, as shown in the framescans in figure 2.8.

For the purposes of this subsection we refer to the zones observed by the CLARIS system

as the south (-3000 m to 1100 m yFRF), the nourishment (1100 m to 3200 m yFRF), and

the north (3200 m to 5000 m yFRF). The position of the cross-shore linescans (yFRF =

945) is marked on the elevation map (figure 2.11), which is in the south zone.

As the storms passed over the region, beach cusps of similar magnitude to those

observed during Joaquin and the Nor’Easter formed throughout this regional section but

were especially prominent in the south. In the nourishment, larger wavelengths cusps are

qualitatively apparent as well, especially in the 9/22/2017 elevation map (figure 2.11). To

quantify these changes, we generate an elevation change map, by subtracting the 9/22

map from the 9/29 map (Note: we do not use the 9/18 map due to missing data in the

nourishment zone), and establish a no change contour to use in a wavelet analysis (figure

2.12). We observe higher frequency movement of the contour in the south that is less

prominent in the nourishment zone or the north. The wavelet shows that there is energy

in the 20-50 m cusp band, with some persisting in the megacusp band, in the south. In

the nourishment zone and the north, we see most of the energy in the megacusp band

with some 20-50 m cusp energy (figure 2.12). These results suggest that the wider, flatter

beach in the nourishment zone may inhibit movement of cusps and megacusps.

These regional analyses indicate that beach cusps are not localized to the 200 m

33



around the cross-shore lidar scans. For Jose and Maria, cusps were not present in the 3D

stationary lidar framescans, but CLARIS data shows that they are prominent in almost

all other parts of the region. These results show that beach cusp fields are non-uniform in

presence and behavior, which when combined with the results from section 3.3 that show

that runup behavior is difficult to predict where beach cusps form, offer a complex look at

runup on a 3D variable beach.

Figure 2.11. Elevation maps of CLARIS gridded data for 9/18/17, 9/22/17, and 9/29/17
with 505 m trend removed. The 2.0 m (black), 1.8 m (magenta), and mean interpolated
(cyan) contours are marked by solid lines. Location of cross-shore linescans are denoted
by dashed red line. Nourishment boundaries denoted by dotted black line. Elevation is
reported in the NAVD88 datum.
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Figure 2.12. (A) Elevation map of difference between 9/29/17 and 9/22/17 CLARIS
datasets with 0 m change contour marked by solid black line. Location of cross-shore
linescans are denoted by dashed red line. Nourishment boundaries denoted by dotted black
line. (B) Wavelet of 0 m change contour marked in panel (A). Positions of cross-shore
lidar scans and nourishment boundaries denoted by dashed red line and dotted black
lines, respectively. 20-50 m cusp wavenumbers and 100-330 m megacusp wavenumbers are
marked by dotted blue and pink lines, respectively.
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Figure 2.13. Daily maximum and minimum foreshore beach slope, calculated from mean
lidar-observed swash position and beach morphology.

2.5.4 What scales of variability of beach slope are observed?

Timeseries of daily maximum and minimum beach slopes are used to assess the

main scales of variability and to put the storm results in context (figure 2.13). The slopes

are computed following the method of βobs (Section 2.2.3). The maximum slope tends to

occur at high tide, and the minimum at low tide, so the difference in the slope timeseries

reflects the tidal range over the tidal cycle, as well as another indication of the consistent

concave beach profile over time. Although the slope exhibits a weak seasonal cycle with

a weak seasonal high in June (β̄June = 0.07) and low in February (β̄Feb = 0.05), more

significant changes occur on longer time scales with shifts over weeks to months (e.g.,

mean slopes are low (0.03) for January to June of 2018 and high (0.08) during January

to June of 2019). In addition, short-term changes occur presumably due to wave events

changing the cross-shore profile as well as the intermittent presence of cusps and megacusp

features. The slopes observed during the four storms fall mostly within +/- 1 standard

deviation (0.03) of the long-term mean (0.06). If we use a seasonal mean beach slope

in the Sto06 paramaterization for our observed four storms, the mean skill is low (-1.0).

36



Lacking a model for beach profile change at this location, the time series and lack of

parameterization skill when using seasonal beach slope highlight the need to observe slopes

as close as possible to a wave event of interest to reduce slope errors in runup calculations.

2.5.5 Discussion Synthesis

The effect of beach cusps on the FRF property and the temporal variability of

beach slope at multiple scales on various runup parameterizations are complex. At the

FRF, Sto06 is sufficient in predicting bulk runup throughout high energy events with a

pre-storm beach profile, however, other runup parameterizations improve with the use of a

time-varying beach profile. This lack of generality suggests that certain parameterizations

may be better suited for other types of beaches. Regardless of whether a time-varying or

pre-storm beach profile is used, once beach cusps develop, predicted runup is likely to be

an underestimate due to 2D swash circulation.

Beach cusps induce a 2D circulation in the swash zone that spatially impact runup.

According to Masselink et al. (1997), higher runup elevation is expected along the cusp horn

(the maximum of the morphologic feature), while a longer horizontal runup excursion with

a smaller maximum vertical excursion is expected along the embayment (the minimum of

the morphologic feature). For both Joaquin and the Nor’Easter, the cross-shore linescans

were measuring close to a horn for the majority of the timeseries in which beach cusps

were present (figure 2.8). There may be various modes of swash circulation depending on

the height, spacing of the cusps, and mean swash height (Masselink, Pattiaratchi, 1998).

The complicating factors of swash dynamics due to the presence of beach cusps reduces

the skill of the Stockdon parameterization, as shown in Section 3.3.

Given the ubiquity of these cusps, runup estimates in the greater Outer Banks

region are likely to be affected. The presence of cusps also seemingly induce increased

high tide magnitudes (Nor’Easter, figure 2.7), which not only influences runup estimate

skills, but suggests greater implications for real world storm impacts. Additionally, the
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variations in yearly beach slope and low skill when using seasonal means to predict runup

through storms further indicate that accurate estimates or runup may be unattainable

through storm events unless a profile close to the beginning of the storm, before large

beach morphology changes occur, is measured.

2.6 Conclusion

Detailed lidar observations collected at hourly timescales within storms indicate a

range of sediment redistribution patterns in both the long- and cross-shore that influence

wave runup. The four storms investigated in this work had similar offshore oceanographic

forcing, although differing beach responses were observed. The increasing convexity and

steepening of the beach profile during Hurricane Joaquin and the Nor’Easter were not

observed during Hurricanes Maria or Jose. While Jose and Maria began with similar beach

profiles, their responses were distinct. During Jose there was little change to the shape or

volume of the profile, while during Maria, the beach eroded seaward of the R2% leading to

a maximum volume loss of 10.4 m3/m.

Despite the distinct differences between the pre-storm and the time-varying intra-

storm beach morphologies, on non-cusped beaches the added information of time-variable

beach slopes generally does not drastically improve estimates of empirically predicted

wave runup over an assumption of the pre-storm beach profile being constant across the

storm. It is of note that the definitions of slope in this work do not account for the role

of curvature in the beach profile. Specifically, steeper slopes near the dune toe lead to

higher runup in the observations due to highly local slope feedbacks, but these feedback

mechanisms are missed by parametric runup models based on a pre-storm profile based

foreshore slope. However, understanding how beach slope changes due to the intersection

of mean swash at different parts of the tide on a curved beach is vital to predicting tidal

variability in runup.
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Our comparison of runup parameterizations using a pre-storm and time-varying

beach slope was conducted over a range of periods (5.4 s to 16.7 s) and significant wave

heights (0.8 m to 4.2 m) and encompassed two types of storms commonly seen on the East

Coast of the United States. The result that a pre-storm beach slope may be sufficient in

predicting runup throughout a storm was likely a function of the minimal changes in beach

profile shape over the observed storm events. Further study is required to determine how

generalizable this result is to other locations, and in particular beaches with larger grain

size (e.g. gravel or cobble beaches), during larger storms, or even during other time periods

in Duck, NC. These results highlight the need for continued research on understanding

the morphology evolution of the beach profile near the shoreline for varied beach types

during a range of storm conditions.

Our findings indicate that care must be taken when using runup parameterizations

with a beach that is highly variable in the alongshore. Short-wavelength cusps (30-40 m)

can degrade runup predictions even when the beach morphology is known at an hourly

time scale. With the unique CLARIS dataset, we observed the presence of these beach

cusps over much of the 8 km region near the FRF. Given that beach cusps are known

to affect swash circulation and that the presence of mega cusps degraded the skill of the

Sto06 parameterization in the original study, we anticipate that the low skill of runup

parameterizations in the presence of beach cusps would likely be an issue for a large range

of beach types.

The ubiquity of cusp features along sandy coastlines suggest that empirical runup

parameterizations may not be sufficient over an entire field site or throughout an entire

storm period, as these features are both spatially and temporally non-uniform. Additionally,

the lack of skill when using seasonal beach slope means indicate the need for beach

morphology measurements that more closely represent the beach profile at the beginning

of storm periods. This presents a line of investigation for future work in defining how to

best parameterize runup during alongshore variable beach conditions and when and how
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often to collect morphological data in the interest of storm impact mitigation.
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2.A Beach slope calculation example

Figure 3.3 shows how beach slope is obtained during hour 20 of the Nor’Easter.

βobs and β(t) are calculated from the beach profile measured at hour 20, whereas β0 is

calculated from the pre-storm beach profile. For βobs, the position of mean swash +/- 2

standard deviations are determined by runup observations as explained in section 2.2.3

and represented by the black dots in figure 3.3. Beach slope is then determined by linearly

interpolating through the beach profile between these two positions. For β0, the iterative

process of determining the predicted mean swash as described in section 2.2.3 is used

on the pre-storm beach profile, with the limits over which the beach profile is linearly

interpolated to determine β0 depicted as pink dots on figure 3.3. To calculate β(t) the

same iterative process is used, but on the hourly lidar-measured profile, with the limits

over which β(t) is calculated depicted by the grey dots in figure 3.3.
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Figure 2.A.1. Beach profiles for pre-storm and hour 20 for the Nor’Easter as measured
by the stationary lidar. The mean swash positions +/- 2 standard deviations are shown
by the colored dots. The black dots show the observed limits over which βobs is calculated
from the hourly profile, the pink dots show the predicted (using the setup parameterization
from Stockdon et al. 2006) limits over which β0 is calculated from the pre-storm profile,
and the gray dots show the predicted (using the setup parameterization from Stockdon
et al. 2006) limits over which β(t) is calculated from the hourly profile.
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Chapter 3

Drivers of saltwater intrusion in sur-
face sloughs

3.1 Abstract

Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in

the face of climate change-driven sea level rise and hydrologic variability. SWI of freshwater

in the coastal California Pajaro Valley exemplifies this concern. Pajaro Valley freshwaters

are diverted for agricultural uses, but the water is unsuitable if saline. Closures at the

mouth of the Pajaro River Lagoon, a bar-built estuary in the Pajaro Valley, are associated

with SWI. Both closures and SWI are driven by a combination of offshore climate, coastal

hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management.

Here, we describe the Pajaro Valley coastal water system using available observational

data between 2012 and 2020, and identify the oceanic and inland hydrologic drivers of

SWI to improve understanding of coastal freshwater management under climate change.

To quantify ocean-inland connectivity, we use time series and exploratory statistical

analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge,

and contextual knowledge from local water managers. We observe that wet season lagoon

closure and SWI events follow high oceanic TWLs coupled with low stage and discharge

in the inland freshwater network, revealing how both wave and inland flow conditions

govern lagoon closures and coincident SWI. This study yields novel empirical findings
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and a methodology for connecting coastal oceanography, estuarine coupled hydro- and

morpho-dynamics, inland hydrology, and water management practices relevant to climate

change adaptation in human-modified coastal water systems.

3.2 Introduction

In coastal watersheds, the movement of ocean saltwater into coastal freshwater net-

works creates uncertainty in freshwater supplies and thereby threatens coastal populations

and industries. Coastal areas are projected to house more than one billion people by the

end of the century (Hauer et al., 2020). In coastal communities, climate change and sea

level rise (SLR) manifest as change in the interactions between oceanic and terrestrial

systems. For example, the occurrence of coastal overtopping, driven by SLR and increased

storm surge and wave runup, is predicted to increase 50-fold by the end of the 21st

century globally (Almar et al., 2021). Similarly, SLR is expected to contribute to saltwater

intrusion (SWI) of surface water and groundwater systems in coastal regions (Paul et al.,

2019; Rice et al., 2012; Kaushal et al., 2021). SWI is defined as the landward movement of

the freshwater–saltwater interface in coastal water systems typically considered fresh, and

may occur in surface freshwater systems or groundwater aquifers (White, Kaplan, 2017).

Coastal threats are typically driven by increased storm surge, wave runup, frequency

of storm and precipitation events (Almar et al., 2021), prolonged drought (Tully et al.,

2019), and higher freshwater usage due to growing populations and water demands (Michael

et al., 2017; Cosgrove, Loucks, 2015), or the confluence of two or more of these phenomena

(Lucey, Gallien, 2022). Of these challenges, the issue of SWI into coastal freshwaters has

received less attention than extreme events such as coastal storm-driven flooding. However,

previous studies have highlighted that SLR is likely to have a profound impact on the

salinity of freshwater habitats and drinking water supplies globally. In the Chesapeake Bay,

USA, under a SLR scenario of 100 cm, the mean salinity of 2 tributaries were modeled
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to exceed the US EPA drinking water standards, which would severly limit water intake

(Rice et al., 2012). In four reservoirs of the Yangtze River Estuary, China, that provide

water for 50 million people, the duration of undrinkable water was modeled to increase

by up to 758% under a 2 m SLR scenario (Chen et al., 2015). Increased duration of

water that exceeds chloride concentration thresholds were also modeled under SLR in

conjunction with drought conditions in several branches of the Rhine River, demonstrating

the vulnerability of drinking water supplies to rising seas (Brink van den et al., 2019).

Ultimately, SWI is a persistent and growing concern for coastal water managers and

planners (Michael et al., 2017).

SWI in coastal groundwater aquifers has been relatively well-documented using

models and case studies throughout the U.S. (Jasechko et al., 2020; Sawyer et al., 2016),

with one of the first studies on this phenomenon published in the mid-19th century (Houben,

Post, 2017). Under climate change scenarios, SWI in aquifers is generally expected to

increase due to SLR and groundwater pumping, with coastal aquifers being more vulnerable

to pumping than SLR (Ferguson, Gleeson, 2012; Jasechko et al., 2020). Although the

effect of SWI on groundwater supplies in regions with coastal aquifers is spatially variable,

SWI has substantially affected the quality and availability of groundwater supplies in the

Pajaro Valley and surrounding areas (Barlow, Reichard, 2010; Carollo, 2014; Pajaro Valley

Water Management Agency, Montgomery & Associates, 2022).

For coastal surface waters, the role of saline water in general estuarine circulation

has been well documented (e.g., Geyer, MacCready, 2014), and several studies have

examined variability and drivers of salt wedge intrusion, often showing a relationship

between the salinity intrusion length (L) and river discharge (Q) as proportional: L ∝ Q−n,

where the value of n may change depending on the estuary regime (MacCready, 2004;

Ralston et al., 2010; McKeon et al., 2021; Monismith et al., 2002; Hansen, Rattray, 1965).

The longitudinal salt wedge intrusion length and the associated timescales of estuarine

adjustment may be modulated by antecedent flow and intrusion conditions, bathymetry,

44



tidal phase and range, and anthropogenic modification (Monismith et al., 2002; McKeon

et al., 2021; Payo-Payo et al., 2022; Ralston et al., 2010; Li et al., 2020). However, more

episodic far upstream-reaching SWI events have received less attention outside the context

of coastal flooding, particularly with respect to impacts on freshwater supplies.

Understanding the individual and combined contributions of offshore and inland

drivers of SWI into coastal surface water and groundwater systems is important but lack-

ing. There are multiple causes for this. First, coastal and inland hydrologic systems are

frequently evaluated as separate systems, wherein the study of hydrodynamics, hydrology,

and climatology is distinct with respect to data, models, and research products. Second,

modeling studies may evaluate connected ocean and inland processes, but use spatial

and temporal resolutions relevant only to a subset of planning and water management

decisions. For example, the USGS Pajaro Valley Hydrologic Model (PVHM), which inte-

grates conceptual water budget and numerical groundwater model components, captures

relatively high resolution (monthly, 250 m) surface water and groundwater interactions in

the Pajaro Valley and serves many regional water management planning activities (Hanson

et al., 2014b). However, the model does not incorporate coastal wave conditions or estuary

morphology, and is not designed to relate short timescale (hourly, daily, weekly) oceanic

and inland hydrologic dynamics that contribute to surface SWI. Third, observational (mon-

itoring) studies of coastal and inland freshwater interactions are valuable but face usability

and generalizability challenges: reports from coastal water management communities

present useful local data and model analyses, but typically pertain to specific geographic

or infrastructure foci, target niche water management activities and regulatory mandates,

and may not be published in peer-reviewed journals (e.g., Gomez, Sullivan Engineers, 2012;

Susquehanna River Basin Commission, 2006). Lastly, data sparsity and complexity are

exacerbated when water resources studies cross scales and domains, and particularly in

human-modified or managed systems (Levy et al., 2016); synthesizing oceanic and terres-

trial hydrologic data, groundwater and surface water data, water quantity and quality data,
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and the role of infrastructure and management, is technically challenging. Thus, further

data-driven and stakeholder-engaged exploration of ocean-inland hydrologic systems has

the capacity to advance water science at the coastal-inland interface, as well as deliver

local information to managers, planners, and policymakers (Jacobs et al., 2010; Vogel et al.,

2015). Here, we provide a novel coastal-inland data harmonization, exploratory analysis,

and quantify ‘typologies’ of coastal-inland connectivity, which provide information relevant

to coastal water planning efforts under climate change.

We explore data from the Pajaro Valley, California, a groundwater-reliant coastal

agricultural region located near the mouth of the Pajaro River and along Monterey Bay

(Figure 3.1). This region represents an excellent opportunity to study a climate-challenged

coastal freshwater system, wherein key water management questions and infrastructure

investment decisions hinge on understanding ocean-inland connectivity. The Pajaro Valley

faces SWI into its coastal surface water network and groundwater aquifer, both of which are

managed jointly to maintain freshwater supplies (Pajaro Valley Water Management Agency,

Montgomery & Associates, 2022; Hanson et al., 2014b). While SWI of the groundwater

aquifer has been explored in previous research (Barlow, Reichard, 2010; Carollo, 2014;

Pajaro Valley Water Management Agency, Montgomery & Associates, 2022), the surface

water system has received less research focus even though it is connected to the groundwater

system through local water management activities and natural interfaces.

We use the Pajaro Valley and its Harkins-Watsonville Slough (HWS) surface water

system (Figure 3.1) as a setting within which to quantify, document, and describe patterns

in observational data across the ocean-freshwater interface. Therein, we empirically

document connectivity between climate, oceanic, inland hydrologic, and human water use

and management processes, including the role of artificial (infrastructure) features. First,

we provide a limited exploration of patterns in ocean and inland stage and salinity in

the HWS during dry (summer) periods in order to understand baseline offshore-inland

connectivity in slough stage and salinity. Next, we document time series patterns during
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wet (winter) periods, and then conduct a statistical analysis to reveal thresholds in joint

offshore and inland hydrologic conditions under which SWI occurs. Our primary objective

is to address how oceanic drivers, such as wave height, wave period, and total water

levels, interact with hydrologic drivers, including inland stage and river discharge, during

open and closed lagoon mouth conditions, to generate surface water SWI events. This

study represents an important step in the process of quantifying system variables and

drivers of freshwater constraints in coastal systems, a hydrologic domain of research that

is increasingly important with climate change, but understudied relative to other (e.g.,

inland freshwater) hydrologic domains. Importantly, the methods used in this case study

are readily exportable to other coastal regions, and involve simple empirical approaches

that can be used by practitioners to improve local to regional understanding and prediction

of coastal surface water SWI.

3.3 Study Region: The Harkins-Watsonville Slough

and intermittently closed Pajaro River estuary

3.3.1 Agriculture, climate and water supply

The Pajaro Valley is located on the central coast of California between Santa Cruz

and Monterey counties (Figure 3.1). As of 2022, the Pajaro Valley contained about 28,500

acres of irrigated farmland that produces agricultural products valued at approximately

$1 billion annually (Pajaro Valley Water Management Agency, Montgomery & Associates,

2022). This farmland houses a multitude of crops including high valued fruits such as

berries, vegetable row crops, orchards, and vineyards (Hanson et al., 2014a). The region

lies in a Mediterranean climate zone characterized by cool, wet winters and dry summers.

Historically, the low-lying areas of the Pajaro Valley received an average 22 in/year of

precipitation (Balance Hydrologics, 2014), an amount in between the average annual

precipitation in the partially overlapping Santa Cruz and Monterey counties (29 and 20
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in/year, respectively) (202, 2023c). The Pajaro Valley is arid and heavily irrigated, with

annual average evapotranspiration rate (39.2 in/year) higher than annual precipitation

(Balance Hydrologics, 2014). Unlike other arid California agricultural regions, the Pajaro

Valley was never connected to state and federal water projects, the region has very

limited local surface water supplies, and local freshwater streams terminate in saline

ocean-connected waters. Hence, the region has historically been reliant on groundwater for

domestic and irrigation uses. In the 2022 water year, groundwater accounted for 93% of

the 53,756 acre feet/year of total water used in the region and 80% of this total water was

used for irrigation (Pajaro Valley Water Management Agency, Montgomery & Associates,

2022).

3.3.2 Geography

The HWS surface water network within the Pajaro Valley (Figure 3.1 (a)) is the

focus of our case study. The HWS is a coastal slough network that is part of a small

11,687 acre watershed that includes several upstream freshwater streams and a downstream

slough segment connected to the Pajaro River lagoon. The HWS and its watershed

are hydrologically separate from the Pajaro River and its tributaries within the Pajaro

Valley, but both the HWS and Pajaro River watersheds terminate in the Pajaro River

lagoon (Figure 3.1 (b)). The HWS overlies several water bearing geological formations: an

Alluvium layer underlying the Pajaro River mainstem and upstream tributaries; Terrace

Deposits and Alluvium underlying the lower-elevation segments of the HWS network; the

Aromas Red Sands formation, which underlies both the Alluvium and Terrace Deposits and

higher-elevation portions of the HWS watershed, and provides the majority of groundwater

to the region; and the Purisima Formation, a deeper aquifer beneath the Aromas Sands

that is only penetrated by a few deep wells (Hanson et al., 2014b). The Aromas Red

Sands aquifer has an average thickness of 500 feet and consists of sorted brown to red

sands with clay and gravel layers interspersed (Carollo, 2014). Groundwater connections
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Figure 3.1. The Harkins and Watsonville Slough (HWS) system, connected river networks,
and coastal zone in the Pajaro Valley, California. (a) Location of the Pajaro Valley along
the California Central Coast (inset); the Pajaro Valley Water Management Agency (PV
Water) statutory boundary (gray boundary); river, stream, and slough networks within
the study area (blue lines); the HWS watershed (light blue region); oceanic (wave) and
hydrologic (stage, salinity, discharge) measurement sites (colored points) used to assess
ocean-inland connectivity in the HWS system; and the locations of the freshwater diversion
site, slough tide gates, and the Pajaro River lagoon (black annotations). The HWS is
hydrologically disconnected from the Pajaro River watershed, although both enter into
the Pajaro River Lagoon. (b) Lagoon confluence of the Monterey Bay, Pajaro River,
and Watsonville Slough, which corresponds to the annotated region in (a); the lagoon
mouth is closed in this image. (c) Watsonville Slough tide gates and associated hydrologic
(stage, salinity) measurement sites (colored points), which corresponds to the annotated
region in (a). Note that schematics of the lagoon mouth shown in (b) and the tide gates
shown in (c) are presented in Figure 3.3. Data source: Imagery sourced from Stamen and
Google Maps imagery acquired through the R ggmap package (Kahle, Wickham, 2013);
PV Water boundary and measurement site locations courtesy PV Water; river network is
derived from National Hydrography Dataset Flowline data via the R nhdplusTools package
(Blodgett, Johnson, 2022).

to the sloughs are mostly limited to areas with functioning tile drains during dry months

and areas with shallow groundwaters (Balance Hydrologics, 2014). Surface waters and
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the deeper primary aquifers are minimally connected within the HWS watershed (Pajaro

Valley Water Management Agency, Montgomery & Associates, 2022).

3.3.3 Groundwater sustainability connections to surface
waters

Overdraft of the coastal aquifer due to groundwater pumping for irrigation is a

longstanding regional challenge on two connected fronts: water table decline owing to

pumping, and SWI into the coastal aquifers as a result of water table decline. As of 2014,

annual water table decline was estimated to be equivalent to a loss of 1,400 acre-feet

(af) due to pumping and 1,900 af due to SWI (Carollo, 2014). Due to overdrafting of

the groundwater aquifer and insufficient recharge from surface water supplies (i.e., from

rainfall and stream bed infiltration and irrigation return flow), SWI has increased in the

coastal aquifer since it was first observed in the basin in 1953 (Carollo, 2014). In order to

eliminate basin overdraft and halt aquifer SWI while meeting water use needs, the local

water management agency – the Pajaro Valley Water Management Agency, or “PV Water”

– has executed several water management projects over the past several decades, including

conservation programs, optimization of supplemental supplies, and development of new

supplemental water supply facilities.

One such project is a managed aquifer recharge (MAR) (Levintal et al., 2023)

program designed to infiltrate and store diverted surface water underground in a perched

aquifer, and later extract and deliver that water to users in order to reduce groundwater

demand (Pajaro Valley Water Management Agency, Carollo, 2018; Russo et al., 2015). The

MAR project, combined with other local projects (e.g., recycled municipal water and piping

of water to coastal growers located in areas of significant aquifer SWI), yielded 10,740-

11,240 af of water annually, or 19.5-20.4% of average annual estimated water consumption

(an average of 55,000 af/year between 2009 to 2013) (Pajaro Valley Water Management

Agency, Montgomery & Associates, 2022; Carollo, 2014). Pajaro Valley groundwater
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SWI and MAR, in particular, have been the subject of extensive hydrogeological research

(Schmidt et al., 2012; Goebel et al., 2017, 2019; Beganskas et al., 2019; Racz et al., 2012;

Schmidt et al., 2011; Hanson et al., 2014b). The MAR project began operation in 2002,

and diverted approximately 10,000 af of water between the water years (Oct-Sep) 2002

and 2021, or just under 500 af/year on average. Of the total volume diverted over this

20 year period, two thirds were diverted in the first 10 years (6,750 af between 2002-2011

water years) and only a third in the subsequent 10 year period (3,200 af between 2012-2021

water years) that overlaps with our study period (Figure 3.2 (a)-(b)). On average, PV

Water was able to divert only half the volume of water per year between 2012-2021 (320

af/year on average) relative to the previous decade (675 af/year on average), representing

a significant decline in MAR capacity during a period when production was originally

expected to stabilize or increase. The proximate cause of this decline is surface SWI.

The MAR project is supplied by surface water that is diverted from the HWS,

and decline in diversion capacity is due to increasing variability in slough salinity that

limits freshwater diversions for MAR. Thus, surface SWI destabilizes freshwater diversions

and compromises planning of future water supplies by introducing uncertainty about the

diversion and MAR storage capacity. Salinity conditions are known to align to some

extent with both inland hydrology (Figure 3.2 (c)) and ocean water levels (Figure 3.2 (d)),

although the specific relationships between these complex factors are not well understood

or documented. This poses challenges for water management and planning activities like

those of PV Water that are susceptible to change in water quantity and quality as a

function of ocean-freshwater dynamics.

3.3.4 SWI and estuary dynamics

HWS surface water salinity intrusions stem from the slough network being connected

to Monterey Bay via the Pajaro Lagoon (Figure 3.1 (b), Figure 3.3 (a) and (c)), wherein

closure of the lagoon typically precedes surface SWI. Closure is a natural process that
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Figure 3.2. Distributions in slough freshwater diversions, inland freshwater discharge,
and ocean water levels during freshwater diversion months of November-May, water years
2002-2021. (a) Monthly occurrence (count of days) of freshwater diversion from the HWS
within each water year (Oct-Sep). (b) Water year distributions of Nov-May total monthly
freshwater volumes (af) diverted from the HWS; years with no diversions show no values.
(c) Water year distributions of Nov-May within-month means of daily mean discharge
(100 cfs) in the Pajaro River, upstream of the Pajaro River lagoon. (d) Water year
distributions of Nov-May within-month maxima of 30-minute total water levels (TWL, ft)
in the Monterey Bay. Distributions in (b)-(d) show the interquartile range (IQR) boxes
and ± 1.5*IQR whiskers, with outliers omitted from the visualization only. Data sources:
see Methods.
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Pajaro River Lagoon Mouth Watsonville Slough Tide Gates(a) (b)

(d)
(c)

Figure 3.3. Schematics of the Pajaro River lagoon mouth and Watsonville Slough
tide gates. (a) Schematic of closed versus (c) open lagoon mouth states, adapted from
Nielsen (2009). For the closed mouth state, the buildup of the sill halts most oceanic
connectivity, but if TWL exceeds the sill height, wave overtopping may occur and raise
the stage within the lagoon. Mean sea level (MSL) refers to the long term average sea
level, which the tidal range may oscillate around. For the open mouth state, the lower
sill height allows for a dynamic connection between the coastal ocean and the lagoon. (b)
Schematic of non-overtopping versus (d) overtopping event at the tide gate structure. For
the non-overtopping event (b), water may move downstream through the tide gates under
sufficient pressure, and minimal upstream leakage may occur. For the overtopping event
(d), water may move upstream (reverse flow) through the vents or via overtopping of Shell
Road and increase stage levels above-gate; during these events, stronger tidal variations
in stage are observed above-gate due to the connectivity across the tide gate structure.
When water is moving in a downstream direction due to high inland freshwater discharge,
water may move through the flap gates, through the vents, and over the road depending
on stage levels.

occurs when sediment deposition from coastal processes overwhelms the ability of tidal

and riverine currents to maintain an open connection between the river and ocean. Thus,

estuarine dynamics are central to understanding surface water SWI in the Pajaro Valley.

The Pajaro Lagoon is a low-inflow, bar-built, intermittently closed estuary. These estuaries

may be vertically mixed or stratified depending on winds, solar heating/convective cooling,

evaporation, and tidal phase (Largier, Taljaard, 1991; Ranasinghe, Pattiaratchi, 2003;

Harvey et al., 2023; Largier, 2023). They exhibit morphodynamically active mouths

wherein sandbars are built by ocean waves and strong and/or persistent inflowing currents
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(Largier et al., 1992; Clark, O’Connor, 2019), and are eroded by river discharge and strong

and/or persistent outflows (Behrens et al., 2013; Orescanin et al., 2021).

During open lagoon conditions, the estuary is dynamically connected to the ocean

(Figure 3.3 (c)), and typically has lower flushing times or a smaller ratio of the volume of

freshwater within the estuary to the total rate of freshwater inflow (Dawson et al., 2023).

However, sandbar buildup can close the river mouth and halt most oceanic connectivity,

though there may be some leakage through or over the sill. During closures, ocean water

from overtopping waves (Harvey, 2019; Williams, Stacey, 2015) can be trapped in the

lagoon (Balance Hydrologics, 2014). This causes lagoon water levels to increase, and saline

water from the lagoon can move upstream into freshwater bodies via multiple mechanisms,

including gravitational adjustment and gravity currents initiated by wind-driven internal

seiches (Behrens et al., 2016; Okely, Imberger, 2007). During open or partially-open estuary

conditions, saltwater may still be retained in the estuary and may not be immediately

flushed out (Largier, Taljaard, 1991; Williams, Stacey, 2015), which may exacerbate

salinity conditions upstream in the slough system. Estuaries like the Pajaro River estuary

that receive less freshwater input than a classical estuary and have mouths that close

intermittently are common worldwide in Mediterranean climates and wave-dominated

coasts, and are found across California (Duong et al., 2016; Harvey, 2019; Largier, 2010;

McSweeney et al., 2017; Largier, 2023).

Several studies have analyzed the multiple factors that drive estuary closures and

openings for bar-built, intermittently closed estuaries along the California coast. Using

60 years of data at the Russian River (90 km north of San Francisco Bay), Behrens et al.

(2013), identified tidal, weather related, seasonal, and interannual cycles of mouth closure.

At the tidal timescale, hydraulic parameters (river discharge, inlet aspect ratio, and tidal

prism) appeared more important to mouth closure than wave conditions, and seasonal

scale closures appeared connected to interactions between wave height and river flow. This

is likely due to the fact that sufficient wave energy for closure is present for the majority
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of the year, and thus other processes tend to control closures. At the longer, interannual

timescale, closure was hypothesized to be related to the Pacific Decadal Oscillation (PDO)

and Northern Oscillation Index (NOI) via connections with river flow patterns. Mouth

closures may also be heavily wave-dominated (Hanes et al., 2011; Orescanin, Scooler, 2018;

Bertin et al., 2019; Harvey et al., 2023). Lagoon breaches, on the other hand, tend to

occur under high river discharge conditions following heavy precipitation and may be

modulated by longshore wave forcing, as observed in the nearby Carmel River State Beach

(Orescanin, Scooler, 2018; Orescanin et al., 2021).

The Pajaro River estuary experiences closures and openings throughout the year.

Along with other central California sites, closure events at the Pajaro River estuary can

occur in most months of the year, but tend to be most common in the summer or fall

(Clark, O’Connor, 2019). This is because streamflow tends to be low from May to October,

while long-period swell waves are often present in late spring and early fall. While powerful

swell waves can initiate closure events and rapidly build up a sill in front of the estuary,

coincidence with low streamflow is a requirement for closure events to last for more than

several days. This is because the closed estuary can rapidly fill and overtop the sill

(reopening the inlet) during periods of high flow. Nevertheless, the reliance of closure

events on coincident river and coastal conditions leads to sharp variations in the closure

pattern from year-to-year. For example, in drought years such as 2014, 2015, and 2021, the

estuary was closed for more than 6 months of the year (typically from late spring through

late fall). In wet years, the estuary sometimes remains open throughout the year. In most

years, brief closure events lasting only a few days occur in winter or spring (coincident

with strong wave events), and the longest closure events occur beginning in summer or fall

(when strong wave events coincide with low streamflow).

Thus, Pajaro Lagoon closures followed by natural or mechanical openings, have

occurred in the November-May time period during which PV Water can divert freshwater

from the HWS. During closures, the estuary may open naturally or be manually dredged by
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the County of Santa Cruz (CSC) during a particularly lengthy closure for the purposes of

flood control and public safety (i.e., to cause a water level decline in the lagoon and sloughs

adjacent to residential and agricultural land). However, manual breaching is only carried

out when the closure poses significant and immediate flood risk to people or property, not

for water management purposes.

The same factors that have been found to drive estuary closure and opening

dynamics (climate patterns, weather, tides, hydraulics and hydrology) also necessarily

govern coastal SWI in estuary-connected freshwater environments. In the Pajaro Valley,

the movement of saline water into the HWS can be described as a function of multiple

observable drivers – the same drivers that govern estuary closures: inland and offshore

climate (precipitation, storm events), coastal hydrodynamics (tides, wave runup and

overtopping), estuarine dynamics (inlet mouth morphology), inland hydrology (freshwater

runoff), and infrastructure and management (tide gates, freshwater diversion, lagoon

dredging). Yet, the drivers of salinity pulses into surface freshwater supply systems – in the

Pajaro Valley and elsewhere – are not well understood in the context of coastal freshwater

management, even if the joint roles of river discharge and coastal hydrodynamics are

somewhat more well-defined within the coastal storm surge and flood frequency estimation

literature (Lucey, Gallien, 2022; Ganguli, Merz, 2019; Vitousek et al., 2017).

3.4 Methods

3.4.1 Data

We utilized a variety of datasets to obtain offshore, estuarine, inland hydrologic,

and climatologic conditions, the consistency and durations of which vary (Table 3.1).

Details are provided with respect to each dataset below.
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Figure 3.4. Data availability for stage, salinity, discharge, precipitation, and total water
level (TWL) between October 2011 and December 2020. Colored bars indicate that data
are available for the corresponding variable and sensor. All data were aggregated to a 30
min resolution, except for precipitation, which is hourly, and discharge, which is measured
every 15 minutes. Note that estuary/slough sensors are colored from downstream (darkest)
to upstream (lightest) as indicated on Figure 3.1.

Offshore oceanic and estuary conditions

Offshore water level (OWL) and total water level (TWL)

To represent offshore tide conditions in the Monterey Bay, we acquired publicly

available hourly offshore water level (OWL, converted to ft NAVD) measurements from

the NOAA tide gauge closest to the study region (station 9413450) in Monterey Bay, CA

between the dates of 10/1/2011 and 9/30/2020 (202, 2023a). To represent wave conditions

at the Pajaro Valley coastline, we used data from the National Data Buoy Center (NDBC)

from NOAA, which outputs hourly deep water significant wave height and wave period; we

acquired data between the dates of 10/1/2011 and 9/30/2020. We used the Monterey Buoy

Station 46042 (NOAA, 2023a) and the West Monterey Buoy Station 46114 (NOAA, 2023b)
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for dates 1/1/2012-1/9/2012 when Station 46042 was unavailable. We used the significant

wave height (Hs, m) and peak wave period (Tp, seconds), which provide measures of

coastal ocean wave magnitude and frequency that are relevant to estuary closure and

surface SWI along the Pajaro coastline.

The estimated hourly total water level (TWL, converted to ft NAVD) at the Pajaro

Valley shoreline is the sum of the Monterey Bay OWL and Pajaro Valley coastline-specific

wave runup, and was calculated for the period between 10/1/2011 and 9/30/2020. TWL

provides a measure of the total height of ocean water incident upon the Pajaro Valley

coastline, and specifically upon sandbars of the Pajaro River lagoon mouth. The actual

TWL was not observed during this period of time and is likely lower than our estimates

due to limiting factors like the beach width and lagoon mouth sill height. However, our

approach to TWL estimation is intended to capture an upper-bound combination of wave

energy and water levels at the shoreline during the study period.

The OWL component is the directly observed offshore water levels from the NOAA

tide gauge that includes the combination of astronomical tides, storm surge, sea level

anomalies, and possible wave setdown (Pugh, 1987; Chelton, Davis, 1982). Runup is

defined as the vertical position of discrete (ocean) water level maxima due to the uprush

of broken waves and wave setup at the shoreline. We chose to estimate TWL with the

R2% exceedance value because of its prominence in coastal flooding and storm impact

literature (Almar et al., 2021; Sallenger, 2000; Stockdon et al., 2007b; Ruggiero et al., 2001).

Here, we estimated an hourly 2% exceedance runup value with the widely used Stockdon

parameterization (Stockdon et al., 2006). Inputs to this parameterization include deep

water wave height and period, and beach slope for the Pajaro Valley shoreline. Deep water

wave height is taken from the NDBC Buoy, and deep water wavelength is calculated from

the buoy-measured wave period following the linear dispersion relationship, L = gT 2/(2π)

(Stockdon et al., 2006). We calculated beach slopes from beach elevation data collected

at Pajaro dunes (lat, lon) via GPS walking surveys using a Spectra GPS antenna and
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a Post-Processing Kinematic correction technique on 2/18/22, 3/11/22, and 4/15/22.

GPS walking surveys include a perimeter outlining the beach low water line, the mouth

boundary, and into the lagoon region, coupled with 20 m transect spacing filling the

perimeter. Any high-gradient areas (scarps, dunes) included higher resolution transects.

We linearly interpolated GPS point cloud data onto a 1x1 m grid, creating a surface of the

entire beach, and extracted cross-shore transects (perpendicular to the mean longshore

beach direction) near the lagoon mouth to establish an estimated measure of beach slope.

Because beach slopes change with time and location (i.e., along the coast), and due to

the lack of continuous beach morphology observations for our study period, we used the

average of multiple beach slope measurements. For consistency with inland hydrologic

data, we linearly interpolated hourly oceanic water level variables (OWL and TWL) to a

30 minute temporal resolution.

Observations of the date of manual breaching events and several closure observations

were provided by the County of Santa Cruz (CSC). Manual (visual) observations of lagoon

closures and openings, including openings through natural and manual breaching, were

conducted by CSC on an intermittent daily basis. CSC utilized a binary open/closed

classification to describe the lagoon mouth conditions between December 1, 2008 and

January 31, 2020. However, this dataset did not identify all closure events and durations of

lagoon closures, so we manually identified closure periods as periods when the stage at the

below-gate site on the Watsonville Slough (see section 3.1.2) had diminished tidal variation

and consistently increasing stage values. Lagoon mouth openings were identified by events

in which below-gate stage quickly decreased and tidal variability was re-introduced. We

cross-referenced these opening events with the CSC-provided breach records, validating

the accuracy of our manual identification; for every available manual or natural opening

recorded in the CSC records, our method correctly catalogued the event.
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Inland hydrologic conditions

Infrastructure complicates hydrology in the HWS system, and specifically the

presence of a tide gate in the Watsonville Slough portion of the lower HWS system (Figure

3.3 (b) and (d)), located approximately 2.5 km upstream of the lagoon (Figure 3.1 (a)

and (c)). The tide gate structure consists of the following features: vertical flap gates

that open with downstream slough discharge, but close if downstream flow is insufficient;

vents above the flap gates that allow flow over the gates in either direction under high

water conditions (i.e., during lagoon closure-induced high water levels); and two pumps

located just above the gates that pump pooled water from above the gates to a location

just below the gates in order to maintain sufficiently low water levels above the gates for

irrigation drainage from adjacent agricultural plots. The two pumps are automatically

triggered when the above-gate stage reaches 2 and 2.4 ft NAVD (North American Vertical

Datum of 1988), respectively; during high stage events (> 7 ft NAVD), i.e., during tide

gate overtopping, the pumps are rendered useless and are manually shut off. The tide

gates prevent significant SWI into the HWS so long as ocean water levels remain lower

than the top of the tide gates (below the open vents located at 7 ft NAVD), however some

upstream leakage may occur. We used hydrologic monitoring data provided directly by

PV Water at five locations within the HWS (Figure 3.1): immediately downstream of

the tide gates on Watsonville Slough (“below-gate” site), immediately upstream of the

tide gates on Watsonville Slough (“above-gate” site), near the MAR diversion location

on Watsonville Slough (“diversion” site), 600 m upstream of the diversion site on the

Watsonville Slough (“WS upstream”), and 950 m upstream of the diversion site on the

Harkins Slough (“HS upstream” site). The monitoring station we refer to as the “diversion

site” is located 300 m downstream of the true point of MAR diversion at the confluence

of the Harkins and Watsonville Sloughs. We use the “diversion site” location to reflect

diversion conditions (as done previously, see Balance Hydrologics, 2014) due to its more
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consistent data, relative to monitoring at the true diversion point, and its location at a

point that conveniently reflects the combined flows of Harkins and Watsonville Slough

under typical downstream flow conditions.

At these monitoring sites, PV Water provided 30 minute resolution measurements of

inland surface water stage and salinity from water logger sensors (In-Situ Aqua Troll 200 or

In-Situ Rugged Troll 100, depending on location). The water loggers have a potential level

of error of ± 0.05 ft. These data were provided for the period between September 2011 and

September 2020. However, the logger data are intermittent; missing stage data range from

14% (below-gate) - 47% (HS upstream), while missing salinity data range from 49% (above-

gate) - 95% (below-gate). Data coverage stems from the nature of PV Water monitoring

and management needs; in situ measurements are collected by Balance Hydrologics, a

hydrologic consulting firm contracted by PV Water, for regular monitoring needs as well

as infrastructure-specific objectives and time periods. Increasingly consistent logger data

is available in more recent years (after 2018). PV Water also provided approximately

monthly “grab sample” measurements of salinity, which were collected as a part of routine

agency water quality monitoring.

Measurements of stage are recorded in ft NAVD, and measurements of salinity

in units of microsiemens per centimeter at 25 ◦C (µS/cm). Salinity was converted to

practical salinity units (psu) for ease of comparison with oceanic conditions. Calculations

of volumetric discharge (cubic feet per second- cfs) were calculated using rating curves

at some, but not all, PV Water stream monitoring locations in the HWS; thus we use

stage in our analyses. Pajaro River stage and discharge were measured at 15 minute

intervals upstream of the Pajaro lagoon at station 11159000 (Pajaro River at Chittenden)

by the USGS (USGS, 2023); we used discharge in our analysis due to the use of that

metric in previous assessments of lagoon closure conditions (Balance Hydrologics, 2014;

Orescanin, Scooler, 2018). We acquired daily precipitation data from the California

Irrigation Management Information System (CIMIS) station 129 located in the Pajaro
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Valley west of Watsonville (California Department of Water Resources, 2023).

Much of the data used in our analysis has been used in previous studies commissioned

by PV Water for its own planning and management purposes (e.g., see “Watsonville Slough

System Hydrologic Monitoring Water Year” reports) (Pajaro Valley Water Management

Agency, 2023). For all PV Water data, we performed quality assurance and quality

control (QA/QC), which included visual inspection of time series, removal of outliers and

data indicating sensor failure (e.g., exact zeroes, static measurements, irregular/artificial

patterns), and checking that data distributions conformed with expectations.

Salinity data required significant QA/QC. Salinity data were collected only at HWS

sites with demonstrated historical salinity intrusion relevant to PV Water management

activities. There were four HWS sites with usable salinity measurements: the below-gate,

above-gate, diversion, and WS upstream sites. Salinity at the below-gate site was only

available in 2012. We would expect below-gate salinity to be related to lagoon salinity at

some depth; lagoon salinity is unmeasured but may exhibit vertical stratification as similar

systems do (Harvey et al., 2023; Williams, Stacey, 2015). For these sites, we identified

time periods within which salinity records were not available or biased. We evaluated bias

by comparing daily-aggregated logger salinity to monthly grab sample measurements taken

by PV Water during the study period. For three of the sites (above-gate, diversion, and

WS upstream sites), we confirmed consistency between logger and grab sample salinity

records at the daily time scale over the full period of study. For the diversion site between

March 2014 and March 2018, records were either missing or logger records were biased

upwards according to comparisons with grab sample data; the logger and grab sample

records were consistent for other dates within the study period at this site. The diversion

site bias was likely caused by brackish water backflow in the stilling well. We replaced

the biased diversion site salinity with available logger measurements from the site of true

MAR diversions – the Harkins Slough Pumphouse, which is located approximately 300m

upstream of the diversion site (Supplementary Figure S1). We confirmed the Pumphouse
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site salinity to be statistically consistent (according to interquartile range overlap) with

diversion site salinity during non-biased time periods, and thus a suitable substitute. PV

Water typically uses stage and salinity measurements at the Pumphouse site to monitor

freshwater availability and suitability for MAR.

We use a diversion site salinity threshold of 0.5 psu to represent the upper limit of

salinity in water suitable for MAR. This salinity threshold is an approximation because

salinity ranges within which freshwater diversion can occur are in practice variable (Sup-

plementary Figure S1) and a function of salinity in the slough and MAR basin; slough

salinity must be less than that of the water in the recharge basin at the time of diversion

as to not degrade groundwater quality. Furthermore, vertical mixing of stratified saline

water as well as mixing of converging slough waters at the confluence of Harkins and

Watsonville Sloughs can occur as a result of diversion pumping itself, altering diverted

water (sample) salinity relative to logger measurements (Supplementary Figure S1). Given

this complexity, we use a simple threshold of 0.5 psu at the diversion site to represent

the salinity threshold for freshwater diversion. This is consistent with the greater of

available logger and grab sample salinity mean values on diversion days (0.5 and 0.4 psu,

respectively) and is the same threshold used previously in modeling studies of slough

salinity conditions (Environmental Science Associates, 2020).

In coordination with PV Water and the CSC, which are responsible for above-gate

and below-gate components of HWS management, respectively, we outlined a set of tide

gate “rules” governing flap gate behavior with respect to HWS stage (Supplementary

Table S1). These rules document ocean-slough connectivity conditions that are governed

by the tide gates: vent overtopping occurs when above-gate or below-gate stage exceeds

7 ft NAVD (i.e., during lagoon closures); downstream (open tide gate) flow occurs when

the above-gate stage is greater than the below-gate stage (i.e., during high freshwater

discharge periods); and upstream leakage (closed tide gate) occurs when the above-gate

stage is lower than the below-gate stage (i.e., during low freshwater discharge periods).
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With regard to the height at which vent overtopping can occur, we use 7 ft NAVD as an

approximate height to represent vent overtopping conditions based on a combination of

previous measurement and modeling efforts (Balance Hydrologics, 2014), and observed

maximum stage at the tide gates, which ranges between 7 ft NAVD-8 ft NAVD during

closure and overtopping events documented by PV Water. Although precise vent height

and vent overtopping measurements were made in the past, and specifically with respect

to the 2012 event, there remains uncertainty in the precise vent overtopping height in

subsequent years due to one or more of the following: head differences above and below

the tide gate, with associated pressure head that opens or closes flap gates, which can

create head differences across the gate even during lagoon closure events; calibration error

in the pressure transducer used to generate stage measurements; or error in the surveyed

elevation at the tide gate.

3.4.2 Time series analysis

Using the synthesized data, we first inspected connectivity between ocean and

inland hydrologic signals graphically using aligned time series visualizations. To understand

different types of connectivity, we focused on two primary conditions: wet/extreme and

dry/baseline conditions. Our analysis focused on wet/extreme conditions that pose the

greatest challenge to freshwater availability, but we also provide a limited analysis of

dry/baseline conditions. For both, we selected representative time periods and visualized

oceanic and hydrologic conditions along a transect from ocean waters in the Monterey

Bay, to inland freshwater levels and salinity in the HWS system, to Pajaro River discharge

and Pajaro Valley precipitation.

For the wet/extreme case, we isolated periods of time in wet/winter diversion months

(November-May) during which below- and/or above-gate stage levels approached and/or

exceeded levels at which tide gate vent overtopping occurs, representative of conditions

under which there may be flow of saline lagoon water upstream into the freshwater system,
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i.e., surface water SWI. Using visualizations alongside contextual knowledge from local

water managers, we provide qualitative descriptions of the observed dynamics within and

across events. For the dry/baseline conditions, we identified periods of time in dry/summer

non-diversion months (June-August) during which there was no or minimal precipitation

and associated freshwater discharge in the HWS system, and when gates were closed

(i.e., below-gate water levels exceeded above-gate levels). To establish an understanding

of baseline ocean-slough connectivity conditions (relative to those under wet/extreme

conditions), we performed a spectral and coherence analysis of summer month data to

understand features of ocean-inland connectivity in the HWS (Supplementary Text S1,

Supplementary Figure S2).

3.4.3 SWI event Typology

With respect to the wet/extreme conditions, we sought to investigate joint offshore

and inland hydrologic conditions that correspond to SWI events in the HWS system.

Although PV Water previously qualitatively identified the drivers of salinity intrusion for a

single event, we used multiple events over the period between 2012-2020 to quantify these

drivers generally, and establish criteria for when we might anticipate salinity intrusion in

the Pajaro Valley’s HWS system. We subset Hs, Tp, TWL, upstream stage, and Pajaro

River discharge time series data into three categories representing the following events: 1)

tide gate overtopping events with associated SWI; 2) tide gate overtopping events without

associated SWI; and 3) events during which stage levels approached the height of the

tide gates, but wherein no overtopping occurred. We categorized these events using the

following ordered criteria: first, stage relative to the tide gate vent, and second, salinity

levels. Specifically, we defined tide gate overtopping events with associated SWI using

observations from the 12 hours before and 1 hour after the below-gate stage exceeded

the tide gate vent height (7 ft NAVD), and with a concurrent or subsequent (within 24

hours) increase in salinity at the above-gate and/or diversion site (depending on data
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availability). Similarly, we defined tide gate overtopping events without associated SWI

events using observations from the 12 hours prior to and 1 hour following the onset of stage

at the below-gate site exceeding the tide gate vent height with a concurrent decrease or no

change in salinity at the above-gate and/or diversion site. Finally, we defined events during

which stage levels approached the height of the tide gates, but no overtopping occurred,

using observations from the 12 hours prior to and 1 hour following the onset of stage at

the below-gate site reaching 6 ft NAVD but not exceeding the vent height (7 ft NAVD);

salinity was not considered during these non-overtopping events. We based our selection of

12 hours before and 1 hour following event onset to define events because it encompasses a

full tidal cycle leading up to the event. We performed a supplementary analyses in which

we varied the number of hours included prior to and immediately following the overtopping

onset to understand the sensitivity of our results to variation in the selected time frame.

We then calculated the percentiles of the values of each of the variables (Hs, Tp,

TWL, upstream stage, and discharge) using all data from November to May (months

during which freshwater diversion can occur) across all available years, and then recorded

the percentiles of those variables for data in the 13 hour windows of the 3 event types.

For upstream stage percentiles, which were based on a time series with missing data, the

number of stage observations ranged from 67% of the total possible number of observations

(March, 8,916 observations) to 76% of the total possible observations (December, 10,183

observations); these constitute sufficiently large samples sizes that are adequately balanced

across months. For an event to be included in the percentile analysis, data available

for the duration of the event needed to include the offshore data: Hs, Tp, TWL; stage

at the below-gate site for establishing whether the vent was overtopped; salinity at the

above-gate or diversion site for determining whether the event included SWI; and Pajaro

River discharge. We also evaluated WS upstream stage data for 2 of the 4 events in which it

was available. We visualized the distribution of the event percentiles using box and whisker

plots, representing the interquartile range (IQR, box) and ±1.5 ∗ IQR (whisker) of those
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event percentile values; outliers of the ±1.5∗IQR are shown as scatter points. The suitable

data used to represent overtopping events with SWI (4 events with 50 observations of Hs

and Tp, 108 observations of TWL, 54 observations of upstream stage, and 216 observations

of Pajaro River discharge) and without SWI (32 events with 417 observations of Hs and

Tp, 837 observations of TWL, 702 observations of upstream stage, and 1620 observations

of Pajaro River discharge) were limited relative to the high but non-overtopping events (96

events, with 830 observations of Hs and Tp, 1809 observations of TWL, 1161 observations

of upstream stage, and 3461 observations of Pajaro River discharge). We performed a

limited sensitivity analysis by iteratively calculating leave-one-out estimates of percentiles

within event categories and variables, and assessing variability in resulting distributions

for the overtopping with SWI case (Supplementary Figure S7).

3.5 Results and Discussion

3.5.1 Dry/Baseline Connectivity

We evaluated baseline conditions of the slough during summer periods to compare

to winter/wet conditions in which we observe large salinity intrusion events. During the

summer/dry season, Pajaro Valley water managers observe minimal connection between

downstream and upstream stage due to low upstream stage conditions and presence of

tide gates designed to block reverse flow of higher stage ocean water into the slough.

Furthermore, leakage that does occur is generally understood to not extend further

upstream than the diversion site due to channel gradients and sediment fans in the

stream channel downstream of the diversion site. In several summer periods, we observed

salinity at the above-gate site slowly increase, despite gate closure. Consistent with local

understanding, management-relevant salinity increases were not observed further upstream.

For example, between June and August of 2016, we observed above-gate salinity gradually

increase from 2.4 to 7.1 psu (Figure 3.5 (d)). During this time, there was minimal or no

68



precipitation (Figure 3.5 (e)), and stage at the diversion and both upstream sites gradually

decreased. Stage decreases were steady in the case of the diversion and HS upstream

sites, and the WS upstream site stage shows minor fluctuations potentially associated with

minor (< 1mm/hour) precipitation, diurnal baseflow variation, and/or irrigation drainage.

Based on this alone, it may be possible to conclude that gradual salinity increases are

associated with decreased freshwater discharge, evaporation, and resulting concentration of

salts in the above-gate water pool, wherein salts are contributed by agricultural drainage

(Thorslund et al., 2021). Leakage of saline water across the tide gate may also play a role

in this increasing salinity, however defining the contributions to salinity from each of these

processes is complex and outside the scope of this work. Because we observed regular small

amplitude stage fluctuations at both the below- and above-gate sites potentially indicative

of connectivity (Figure 3.5 (c)), we investigated the drivers of these fluctuations further

using a spectral and coherence analysis (Supplementary Text S1, Supplementary Figure

S2). We found that multiple drivers of variability in stage may be present, including minor

leakage and/or atmospheric pressure variations, but that additional observations would be

needed to properly attribute driver contributions to those fluctuations.

3.5.2 Wet/Extreme Connectivity

During wet/extreme conditions, the timing and magnitude of interactions between

coastal water levels (TWL), climate (precipitation), and hydrology (stage, river discharge)

govern the presence or absence of SWI, and its intensity. From a collection of 36 events

wherein slough stage at the tide gates exceeds the overtopping height of the tide gate

vents according to stages measured at the below-gate site, we demonstrate time series

relationships for several key illustrative examples.
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Figure 3.5. Coastal to inland stage and salinity connectivity under dry/baseline conditions
over 2 months (June 1, 2016–August 31 2016). (a) Significant wave height (Hs) and peak
period (Tp); (b) offshore water level (OWL) and total water level (TWL); (c) stage at
the below-gate, above-gate, diversion, and upstream stations, with the elevation of the
tide gate vent (dashed turquoise line). (d) salinity at the above-gate and WS upstream
stations; (e) precipitation and Pajaro River discharge.

January 2012: SWI following vent overtopping with a closed lagoon,
high TWL, and subsequent manual breach coincident with storm-driven
freshwater flow

During wet periods, the tide gates open to facilitate HWS discharge during rainfall-

runoff events, or close to block reverse flow of higher stage ocean water into the slough

(similar to dry/baseline conditions). However, the tide gates do not prevent SWI during
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Figure 3.6. Coastal to inland stage and salinity connectivity under wet/extreme conditions
over 1 month (January 1, 2012–January 31 2012). (a) Significant wave height (Hs) and
peak period (Tp); (b) offshore water level (OWL and total water level (TWL); (c) stage
at the below-gate, above-gate, diversion, and upstream stations, with the elevation of
the tide gate vent (dashed turquoise line); (d) salinity at the below-gate, diversion, and
upstream stations with the salinity threshold for diversion (dashed line); (e) precipitation
and Pajaro River discharge. Note that the estuary mouth was closed at the start of this
record. The vertical gray dotted line indicates when the mouth was manually breached by
the County of Santa Cruz on January 18, 2012 (no time listed). Note vertical axes on (a),
(d), (e) are different from Figure 3.5 (dry/baseline conditions).

high-stage events when below-gate waters overtop the tide gate, which typically co-occurs

with periods when the lagoon mouth is closed. The closed-mouth state and slough SWI

event that occurred in January 2012 illustrates this wet/extreme condition connectivity
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between the ocean, lagoon, and slough (Figure 3.6), which resulted in salinity levels

exceeding the threshold at which freshwater diversion from the HWS was allowable.

In a previous investigation by PV Water (Balance Hydrologics, 2014), below-gate

stage and salinity conditions were assessed with respect to wave height, and findings

supported an association between wave height and overtopping, Pajaro River discharge,

lagoon mouth closures, and below-gate salinity. During the closed-mouth state in January

2012, indicated by non-tidal below-gate water levels (Figure 3.6 (c)), large wave heights

drove overtopping of seawater over the sill at the mouth, into the lagoon, and thus increases

in stage and salinity within the lagoon were observed. High, non-tidal, water levels were

sustained until the occurrence of a sill breaching event, which was manual in this case.

Here, we additionally connected this previously-documented January SWI event with

supplemental oceanic measurements (Hs, Tp, OWL, and TWL) and measurements of

stage and salinity at multiple sites above the tide gate in order to observe specific lag

times at which stage and salinity increases propagated upstream.

We observed that high significant wave heights and corresponding long peak periods

(Figure 3.6 (a)), which together resulted in high TWL (Figure 3.6 (b)), coincided with the

rapid rise in stage at the below-gate site (i.e., in the lagoon), which propagated upstream

through and over the tide gate. Specifically, on January 6th, 2012, in association with

maximum TWL within a 31 day period (Figure 3.6 (a) and (b)), stage at the below-gate

site (Figure 3.6 (c)) was high enough to overtop the vents located at the top of the tide

gate (7 ft NAVD), thus establishing connectivity across the tide gate. This is evidenced

by an increase in stage from 2.4 ft NAVD to 7.1 ft NAVD at the above-gate site, which

began 1 hour after the below-gate stage reached the vent height (7 ft NAVD). At the time

of vent overtopping, salinity levels at the below-gate site were near oceanic levels at 27

psu. The increase in stage above the gate then propagated further upstream and reached

the diversion point 26 hours later, at which point stage increased by 1.2 ft (Figure 3.6 (c)).

Salinity at the diversion site also increased at a 24 hours lag following vent overtopping,
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reaching 16 psu (Figure 3.6 (d)). An investigation of this event by Balance Hydrologics

suggests that roughly 270 af of ocean water moved into the HWS (Balance Hydrologics,

2014).

Dissimilar from the more immediate salinity increases that occurred at the above-

gate and diversion sites following the vent overtopping, increases in salinity at the WS

upstream site were not immediately observed in the logger data (Figure 3.6 (c)). Instead,

increases in salinity at the WS upstream site were smaller, and more gradual and delayed.

Relatively small salinity increases started approximately 6 days later on January 12th, 2012,

and were observed as both a spike in grab sample salinity accompanied by a subsequent

slow longer-term climb in logger salinity (Supplementary Figure S4). For salinity incursions

to occur in the Watsonville Slough, the SWI event must be sizable due to the slough’s

steeper channel gradient compared to the gradient at the confluence of the Harkins and

Watsonville sloughs, which directs the water’s preferential flow path up the Harkins slough.

When reverse flow of saline waters does pass the diversion site in the Watsonville Slough,

this reverse flow resembles a slow-moving, low-sitting plume that may vertically stratify.

During this event, PV Water observed that salinity incursion also went into and stratified

within the deeper body of Harkins Slough, as far as a point located 2.5 km upstream of the

Harkins-Watsonville confluence; the freshwater diversion site is located just downstream

of this confluence. Specifically, grab sample salinity measurements at two Harkins Slough

locations located 350 m and 2.5 km upstream of the Harkins-Watsonville confluence

(Supplementary Figure S3) show elevated salinity levels in February and extending through

the rest of the 2012 water year (Supplementary Figure S4). In subsequent years, PV Water

also observed that runoff events would mix the stratified saline water and further limited

the ability to divert water.

The lagoon mouth was opened through manual breaching on January 18, 2012 and

was followed by a precipitation and discharge event in the Pajaro River (Figure 3.6 (e))

which helped naturally decrease the lagoon’s stage and salinity levels (Balance Hydrologics,
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2014). At this point in time, we observed an accompanying drop in stage at the diversion,

above-gate, and below-gate sites, and tidal influences on stage returned at the below-gate

and above-gate sites, indicating connectivity across the gates during open gate discharge,

and an open lagoon mouth. With the onset of precipitation, stage increased at the WS

upstream site (and presumably in the upper HWS as well, although this was unmeasured)

due to freshwater flow. At the same time, with the lagoon mouth breach and onset of

precipitation and discharge, below-gate salinity dropped rapidly and experienced tidal

fluctuations (as with stage). However, diversion site salinity dropped much more slowly

over time, and remained above the MAR diversion threshold through the entirety of the

remaining wet season months; ultimately, there was no freshwater diversion possible during

this year. This, combined with reports from water managers that freshwater flow would

mix lingering vertically-stratified salinity in upper reaches of the HWS, indicates that SWI

impacts on freshwater use may far exceed the duration of the SWI event itself.

February–March 2014: SWI following vent overtopping during a closed
lagoon and high tide, and a subsequent breach coincident with storm-driven
freshwater flow

A persistent lack of tidal variability in stage was evident at the below-gate site

during the February 5th–March 7th, 2014 time period (Figure 3.7), which is attributable

to a prior lagoon mouth closure. The precise closure date cannot be determined with

study data due to missing stage data in early 2013 through November 2013. However, a

lack of tidal stage oscillations between the measured period beginning in November 2013

until the end of February 2014 suggests that the closure occurred during the period of

missing data. A manual breach on February 28th, 2014 occurred just prior to a large wave

and TWL event (Figure 3.7 (a) and (b)) and a moderate precipitation and discharge event

(Figure 3.7 (e)).

Similar to the 2012 case, during a lagoon mouth closure, vent overtopping occurred

and coincided with reverse flow of saline water up into the HWS, leading to increased
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salinity levels at the diversion site. Upon manual lagoon breaching, the below-gate stage

immediately decreased and tidal variability returned. Diversion site salinity decreased,

but slowly – remaining above the freshwater diversion threshold for another month at a

minimum; there is a gap in the logger record after March 25th, 2014, but grab sample

salinity confirms an eventual decrease (Supplementary Figure S5).

Dissimilar to the 2012 case, the 2014 vent overtopping did not coincide with a high

wave and TWL event. Rather, it occurred with increasing OWLs during a transition to

a spring tide (during which higher tidal amplitudes occur), suggesting that the sill was

overtopped due to higher tidal water levels, and when lagoon water levels were already

high following the prior closure. Both the 2012 and 2014 events had a high wave and TWL

event that occurred after a lagoon mouth breach, and coincident with a precipitation and

discharge event. Following the breach, neither of these coincident events (high TWL and

discharge) resulted in upstream flow of saline water due to the open estuary mouth and

increased river discharge driving overall lower water levels and downstream flow directions

in the slough. Both the 2012 and 2014 overtopping and SWI events occurred during closed

mouth conditions, which is important in setting the high background estuary water levels

on top of which high wave and TWL events can induce SWI. The much higher salinity

values during the 2012 SWI event, relative to the 2014 event, suggest that high wave and

TWL events, coincident with lagoon mouth overtopping and closure conditions, exacerbate

SWI.

October–December 2016: SWI following vent overtopping during a closed
lagoon and high TWL, and a subsequent manual breach with no coincident
storm-driven freshwater flow

The period between October 1, 2016–December 10, 2016 (Figure 3.8) is notable due

to oceanic and inland conditions that occurred during an extended closure period (October

16, 2016–December 1, 2016) and an ensuing SWI event between November 7, 2016 and

December 5, 2016. Therein, CSC carried out an emergency manual breach on December 1,
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Figure 3.7. Coastal to inland stage and salinity connectivity under wet/extreme conditions
over 1 month (February 5, 2014–March 7, 2014). (a) Significant wave height (Hs) and
peak period (Tp); (b) offshore water level (OWL) and total water level (TWL); (c) stage
at the below-gate site (above-gate, diversion, and upstream stage data missing during
this time), with the elevation of the tide gate vent (dashed turquoise line); (d) salinity
at the diversion station (below-gate and upstream salinity data missing during this time)
with the salinity threshold for diversion (dashed line); (e) precipitation and Pajaro River
discharge. The vertical gray dotted line indicates when the mouth was manually breached
by the County of Santa Cruz on February 28, 2014 (no time listed)

2016, but the Pajaro river was not fully draining through the lagoon until December 5,

2016. This event in many ways resembles the 2012 event, with several differences. Due to

the increased fidelity of monitoring available during this time period (relative to earlier

years), the 2016 event more comprehensively demonstrates full HWS system behavior
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during and following a lagoon mouth closure with wave overtopping, and how the system

responds to a manual breach of the mouth, especially regarding the persistence of slough

salinity. Additionally, the 2016 event demonstrates salinity conditions at, and upstream of

the diversion site under conditions wherein there was no precipitation-driven runoff event

coincident with the lagoon mouth breach itself, as there was in 2012.

The onset of lagoon closure during the latter half of October, marked by the

rising of below-gate stage and loss of tidal variability, appears to have been a function of

wave-driven high TWL events and relatively low early wet season discharge. However, the

precipitation and consequential discharge event in mid-October likely eroded the berm

height, but did not fully open the lagoon, as evidenced by the drop in below-gate stage

levels between October 17th and October 22nd that then hovered around 6 ft NAVD

(Harvey et al., 2020). Stage at this site did not significantly increase again until early

November. During the first 11 days of November 2016, which centered on a neap tide (a

period of time during which there were mostly lower tidal amplitudes), several large waves

events with long periods drove increases of stage at the below-gate sensor, which eventually

propagated to upstream sites once the 7 ft NAVD vent threshold was reached. Concurrently,

salinity moved upstream into the Watsonville Slough, including at the diversion site, and

potentially briefly into upstream segments of the Harkins Slough (Supplementary Figure

S6). Salinity at the diversion site remained high throughout the closure, although it began

to steadily decrease after November 19th and prior to the manual breach. Following the

manual breach on December 1st, the diversion site salinity continued to decline for the

next several months (Supplementary Figure S6). Salinity at the above-gate site remained

elevated throughout the closure, and only decreased after the manual breach.

This example emphasizes that the combination of OWL and wave runup within

TWL are important to understanding wave overtopping and SWI in this system, as wave

overtopping of the closed lagoon mouth occurred in early November, despite the reduced

OWL during neap (low amplitude) tides. Similar to the 2012 event, both logger and
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grab sample salinity measurements demonstrate that saltwater moved upstream past

the diversion site to the WS upstream site and likely stratified vertically there. By

mid December 2016, the WS upstream site’s logger salinity levels exceeded those at the

diversion site, and remained higher than at the diversion site until mid-January 2017

(Supplementary Figure S6) when precipitation and discharge finally drove down upstream

salinity levels (Figure 3.9). Thus, the 2016 event confirms prior understanding of the 2012

event (Balance Hydrologics, 2014), bolstering the argument that the confluence of low

precipitation and discharge, lagoon closure, and high wave and TWL conditions constitute

a recurrent feature of the Pajaro estuary system highly relevant to water supply planning.

December 2016–January 2017: No SWI following vent overtopping during
open lagoon, high TWL, and high storm-driven freshwater flow conditions

The period between December 10, 2016–February 1, 2017 (Figure 3.9) immediately

follows the 2016 period (Figure 3.8). As in December, 2016, January 2017 is characterized

by continuing post-breach declines in salinity. However, in January, the lagoon mouth

remained open, and there were multiple precipitation events over a 13 day span that drove

3 large discharge events, which were some of the largest seen during the study period. In

January 2017, precipitation and discharge were responsible for slough stage increases that

propagated downstream, sequentially raising stages (with short < 1 hour lag times) at

the upstream, diversion, above-gate, and below-gate sites – briefly above the vent height.

Downstream flow opened the tide gates, allowing tidal connectivity across the gates: stage

at the above-gate site oscillated tidally with stage fluctuations at the below-gate site

due to the open gate conditions during downstream flow (Figure 3.9). Until the onset of

precipitation in early January, relatively high salinity had persisted at the diversion site

stemming from the previous closure (Figure 3.8), but with sustained precipitation and

discharge, salinity gradually declined to pre-SWI levels by February, 2017 (Supplementary

Figure S6).
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Figure 3.8. Coastal to inland stage and salinity connectivity under wet/extreme conditions
over 2.3 months (October 1, 2016–December 10, 2016). (a) Significant wave height (Hs)
and peak period (Tp); (b) offshore water level (OWL) and total water level (TWL); (c)
stage at the below-gate, above-gate, diversion, and upstream stations, with the elevation
of the tide gate vent (dashed turquoise line); (d) salinity at the below-gate, diversion, and
upstream stations with the salinity threshold for diversion (dashed line); (e) precipitation
and Pajaro River discharge. The vertical gray dotted line indicates when the mouth was
manually breached by the County of Santa Cruz on December 1, 2016 (no time listed).

During this time period, moderately-sized wave events did occur, but coincided

with precipitation and discharge that drove substantial downstream flow. At the tide gates,

two brief vent overtopping events occurred (1/9/2017, 1/21/2017) due to a combination of

heightened TWL and storm-driven (downstream) discharge in the HWS, which occurred
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during open lagoon conditions. The maximum Harkins and Watsonville Slough stage

values were reached when large wave events with long periods (thus high TWL) coincided

with high precipitation and discharge. The first vent overtopping event occurred during a

spring (high amplitude) tide, and the second event occurred during coincident large, long

period waves during a neap (low amplitude) tide. Both vent overtopping events occurred

despite different tide conditions, and during an open lagoon mouth, wherein overtopping

was enabled by pre-existing discharge-driven high stage levels. Salinity levels continued to

decline during vent overtopping. Thus, high wave and TWL, in the absence of a lagoon

mouth closure, and with high rather than low flow river discharge conditions, did not

result in SWI. This example demonstrates how ocean conditions alone do not drive surface

SWI in systems like the Pajaro River estuary.

3.5.3 SWI Event Typology

In observing time series patterns across multiple years’ wet periods (Figures 3.6-

3.9, Figures S4-S6), a typology of ocean-inland interactions emerges, which we quantify

statistically (Figure 3.10, see Methods). For events in which SWI occurred (Figure 3.10

(a)), high percentiles from November-May observations of Hs (median 95th percentile),

Tp (median 85th percentile), and TWL (median 84th percentile) coincide with relatively

low percentiles of freshwater flow as measured by WS upstream stage (median 17th

percentile) and Pajaro River discharge (median 37th percentile); these conditions occurred

predominantly while the Pajaro River lagoon mouth was closed.

This pattern is distinct from the distribution of these same variables for overtopping

events without SWI (Figure 3.10 (b)) and non-overtopping events (Figure 3.10 (c)). These

two event types are described by a wider range of oceanic and hydrologic conditions, have

lower median percentiles of Hs, Tp, and TWL, and higher median percentiles of WS

upstream stage and Pajaro River discharge. For overtopping events without SWI, WS

upstream stage and Pajaro River discharge percentiles are much higher (median 78th
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Figure 3.9. Coastal to inland stage and salinity connectivity under wet/extreme conditions
over 1.6 months (December 10, 2016-February 1, 2017). (a) Significant wave height (Hs)
and peak period (Tp); (b) offshore water level (OWL) and total water level (TWL); (c)
stage at the below-gate, above-gate, diversion, and upstream stations, with the elevation
of the tide gate vent (dashed turquoise line); (d) salinity at the below-gate, diversion, and
upstream stations with the salinity threshold for diversion (dashed line); (e) precipitation
and Pajaro River discharge.

percentile and 80th percentile, respectively) than those seen during overtopping events with

SWI. Overtopping events without SWI occurred predominantly while the Pajaro River

lagoon mouth was open (66% of observations were during open periods). Overtopping

events without SWI encompass conditions during which discharge in the HWS causes

increases in stage above the tide gates, coincident with discharge in the Pajaro River
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that maintains open lagoon conditions, and conditions in which below-gate stage is high

enough to overtop the tide gate vents, but salinity is not affected due to predominantly

downstream flow and/or brief enough timescales of vent overtopping. High stage but

non-overtopping events with/without SWI (Figure 3.10 (c)) represent a control condition

that establishes that the patterns observed for overtopping events (SWI and non-SWI) are

distinct from otherwise similar events. For the non-overtopping events, there is a wide

range of percentiles for most variables, representing the range of conditions under which

stage downstream of the tide gates may reach levels close to the tide gate height, without

overtopping.

This analysis relied on a necessarily limited number of suitable overtopping events

with (4) and without (32) SWI. Nevertheless, the identified pattern (Figure 3.10) is

consistent with and extends the prior qualitative understanding of the joint role of lagoon

closure and high TWL in the January 2012 event (Balance Hydrologics, 2014). This

analysis therefore highlights the utility and potential generalizability of analyzing specific

variable (TWL, stage, discharge) statistics. We conclude that high significant wave height

(median 95th percentile), long wave period (median 85th percentile) and thus high total

water levels (median 84th percentile), in association with distinctly low flow conditions in

the HWS system (median 17th percentile of diversion period WS upstream stage) and

through the Pajaro River lagoon (median 37th percentile of diversion period discharge)

are associated with SWI at levels that affect coastal freshwater use in the Pajaro Valley.

While we expect that the availability of additional SWI event samples would alter

these percentile thresholds, we expect the identified pattern (high ocean levels coupled

with low inland stage/discharge) to persist; according to our leave-one-out event sensitivity

analysis, the identified percentile medians varied by ±5 percentile units. Notably, the

February 2014 event was distinct from the other three SWI events because of high

background stage levels due to a prior lagoon closure that allowed for a SWI event without

a particularly high TWL event (Figure 3.7). This is evident in the leave-one-out sensitivity
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analysis, which indicates that the removal of this event from the statistical analysis

narrows the range of Hs, Tp, and TWL percentiles under which SWI occurs in this system

(Supplementary Figure S7 (b)). Additionally, this sensitivity analysis suggests that the

lack of upstream stage data for 2 of the 4 SWI events does not greatly affect the median

percentile of the WS upstream variable during SWI events. The median of the related

inland flow variable, Pajaro River discharge, increases marginally with the removal of

the 2014 event (Supplementary Figure S7 (b)), but does not change with the removal

of the 2018 event (Supplementary Figure S7 (d)). Thus it is reasonable to assume that

the range of upstream stage could grow wider and the median of upstream stage could

slightly increase if upstream stage data were available during these two events, however we

expect that the percentiles would remain distinctly low. Lastly, the sensitivity analysis in

which we varied the number of hours included prior to and immediately following events

(Supplementary Figure S8) demonstrated that a longer event time frame increased the

number of outliers for some variables, and the pattern identified for SWI events slightly

diminished, suggesting that the timescale of the overtopping events relevant to SWI occurs

within a tidal cycle.

Complicating this analysis is the fact that drivers of lagoon mouth closure and SWI

are very similar in the Pajaro system, although they may be more or less similar in other

systems – depending on estuary dynamics and infrastructure (e.g., presence or absence of

tide gates). 3 of 4 SWI events occurred when the lagoon was in a fully closed-mouth state

and 1 occurred coincidentally with a closure, whereas 66% of non-SWI and high stage

events occurred when the lagoon was in an open-mouth state (Supplementary Table S2).

An SWI event in January 2018 occurred 9 days after the lagoon had been mechanically

breached. However, below-gate stage records indicate that the mouth coincidentally closed

during the high TWL event (the highest recorded during our study period) that caused

the SWI event (Supplementary Figure S9). This indicates that lagoon closures are part

of the identified oceanic and hydrologic process that drives propagation of saline water
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upstream in this particular system. Prior research has shown that large waves alongside

weak downstream flow (discharge or outflow) or strong upstream flow (e.g., strong flood

tides) can lead to sill accretion and closure, while strong downstream flow leads to sill

erosion and opening (Largier et al., 1992; Clark, O’Connor, 2019; Behrens et al., 2013;

Orescanin et al., 2021). Here, the lagoon mouth must be closed, or have been recently

closed to allow lagoon water levels to build up high enough to overtop the tide gate vents

from the downstream side. High discharge conditions can not only force downstream flow

and eliminate the possibility of SWI, they can also maintain or create an open estuary

mouth. We therefore acknowledge that low river discharge and flow conditions are drivers

for both our observed SWI events and for maintaining a closed-mouth state at the lagoon

(Orescanin et al., 2021). Further investigation of this phenomenon and its generalizability

would require more regular lagoon mouth observations in conjunction with more SWI

event samples – here and in other systems.

The presence of tide gates complicates the estuarine dynamics in this system.

Without these tide gates, salinity intrusions would likely be able to move further upstream

under closed and open lagoon mouth conditions. Under open conditions, in bar-built

estuaries, salinity likely moves inland via some variation of flood tide intrusion controlled by

internal hydraulics, followed by a basal density current (Largier, Taljaard, 1991). Though

most studies of bar-built estuaries during closures focus on the biogeochemical drivers that

may contribute to hypoxia/anoxia, a few studies observed the mechanisms of landward

salinity movement. At the Russian River in Northern California following lagoon mouth

closures, salinity moved upstream into areas usually devoid of saline water under open

conditions within two separate phases. The first phase was driven by the relaxation of

longitudinal gradients in the outer estuary, which initiated a rapid intrusion of near-bottom

saline water that was blocked by bathymetric sills in the estuary. In the second phase, these

sills aided in one-directional wind-driven movement of saline water upstream as a gravity

current, which became trapped in bathymetric deep pools (Behrens et al., 2016). Similar
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sills and deep pools are present in the HWS slough system, and we hypothesize that deep

pool trapping may be occurring according to previous reports (Balance Hydrologics, 2014)

and observations made by PV Water (e.g., grab sample documentation of upstream slough

salinity mixing in the months following an otherwise concluded SWI event). Nevertheless,

the presence of tide gates interrupts similar salinity intrusion mechanisms and distances in

the HWS. Given the high elevation of the tide gates and the vents that allow for saline

water to move upstream only under high stage conditions below the tide gate (aside

from some upstream leakage through closed tide gates), estuary mouth closure and wave

overtopping of the closed mouth are likely necessary for stage to increase to levels high

enough to reach the tide gate vents and drive reverse flow and SWI.

Notably, even very short SWI events result in elevated salinity in the HWS system

– at the freshwater diversion site and further upstream – for weeks to months past the

SWI event itself. On average, according to logger salinity data, it took 25 weeks after

the onset of a SWI for salinity levels at the HWS diversion site to return to levels that

permit freshwater diversion; this length of time represents 48% of the entire allowable

diversion period each winter season. However, for some events, like the January 2012 vent

overtopping, diversion was impacted for years due to upstream stratification of salinity in

the water column. This significantly impacts the amount of water that may be diverted

in a given year from the HWS. In the water years during which a SWI event occurred

(2012–2014, 2016–2017, 2019), freshwater diversion volumes were approximately half the

diversion volumes in years where no SWI event occurred (2009–2011, 2015, 2018, 2020).

In the PV Water case, these freshwater diversions supply a MAR project intended to

help limit withdrawal from critical coastal groundwater aquifers. Thus, ironically, a MAR

project intended to help a coastal region adapt to the impacts of climate variability and

change on groundwater is stymied by the impact of that same climate variability and

change on the surface water system.
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(a)

(b)

Figure 3.10. Distribution of offshore and inland hydrologic variables during tide gate
overtopping events with and without SWI. (a) tide gate overtopping events with associated
SWI; (b) tide gate overtopping events without associated SWI; (c) high stage events that
approach but do not overtop the tide gate vent, with or without SWI. Data summarized in
all panels include percentiles, relative to all November - May freshwater diversion period
observations of each variable across all years (2012-2020), of significant wave height (Hs),
peak wave period (Tp), total water level (TWL), WS upstream site stage, and Pajaro
River discharge within the (13-hour) time periods of events categorized within the three
event types (a, b, c).
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3.5.4 Water management implications

Surface SWI events have substantially impacted PV Water’s ability to operate their

existing MAR facility and pose a challenge for similar future projects. More broadly, SWI

has impeded the region’s progress toward an overarching goal of achieving groundwater

sustainability while maintaining existing beneficial water uses. Nevertheless, water planning

and infrastructure investments are proceeding despite data limitations and uncertainty,

highlighting the importance of the present research.

In response to documented surface SWI events (Figures 3.6-3.8) and associated

freshwater diversion deficits (Figure 3.2), and alongside the continued updating and

development of other inland supplemental water supply projects, PV Water plans to

improve its existing MAR facility and also develop an additional new MAR facility (202,

2023b). Specifically, a second MAR diversion site will be located further upstream than the

present site, approximately 1,150 meters upstream of the WS Upstream site (see Figure 3.1)

in order to provide greater resiliency to SWI (Pajaro Valley Water Management Agency,

Carollo, 2018). This greater resiliency and improved operational capability is critical given

that diverted water is ultimately delivered to coastal growers and utilized in lieu of pumping

groundwater in the coastal areas that are historically affected by aquifer SWI. Single year

and multi-year water quality impacts that result from SWI events pose a significant risk

of limiting or prohibiting MAR operations, which could result in lost opportunities to

divert thousands of acre-feet of supplemental supply water. It remains that larger SWI

events have reached the new proposed upstream site for freshwater diversion (i.e., the

WS Upstream site in the 2012 and 2016 events, see Figures 3.6 and 3.8). Additionally,

post-SWI event salinity has been observed to persist in upstream slough locations within

vertically stratified water (see Figures S4 and S6). This underlines the importance of

understanding the conditions that contribute to SWI events, including estuary flushing

dynamics in stratified systems and in the presence of deep salt pools, as well as assessments
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of potential measures to mitigate their occurrence.

PV Water is proceeding with its MAR plans while also anticipating SWI risk will

increase with sea level rise and inland hydrologic variability as a result of climate change.

This reality poses the question to PV Water, and coastal water managers globally, of how

frequently large surface SWI events will occur in a climate changed future. While we leave

this question for future research, the present study reveals key process understanding and

simple analytical tools – joint threshold quantification based on observational ocean and

hydrology data (Figure 3.10) - that are critical for beginning to answer questions about

the timing, frequency, and magnitude of water supply-relevant SWI in the Pajaro Valley,

and that are replicable in other coastal regions.

3.6 Conclusions

This study represents an important step in the process of quantifying system

variables and drivers of freshwater constraints in coastal systems, a hydrologic domain

of research that is increasingly important with climate change, but understudied relative

to other hydrologic domains. Pulses of saline ocean water disrupt capacity to divert

freshwater along coasts, making coastal hydrodynamic processes directly relevant to the

sustainability of inland freshwater management – in the Pajaro Valley, and in other

regions facing similarly complex ocean-inland connectivity. Our results demonstrate that

offshore and inland hydrologic drivers jointly determine coastal freshwater use capacity, the

quantification of which is novel and presently limited globally. Our findings complement

those of previous surface water SWI studies in other locations that find that both sea

levels and inland hydrologic conditions modify the extent of SWI (Rice et al., 2012).

Additionally, results complement those of coastal flooding studies in which the extreme

event of flooding, rather than SWI, is similarly attributed to the co-occurrence of joint

drivers (Lucey, Gallien, 2022; Ward et al., 2018). Previous work on salinity intrusions in
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estuaries suggests that discharge, OWL, and wind may be factors in driving upstream

SWI at various timescales (MacCready, 2004; Behrens et al., 2016; Tian, 2019). In the

HWS system, which has been heavily modified by infrastructure, TWL (the combination

of OWL and wave runup) and low upstream flow conditions coupled with a closed lagoon

mouth appear to consistently drive SWI at the event timescale.

The methods used in this study are readily exportable to other coastal regions, and

involve simple empirical approaches that can be used by practitioners to improve local

to regional understanding of surface water SWI. With the availability of similar datasets

– measured or modeled, this approach is replicable in other environments. Specifically,

because SWI-relevant thresholds can be calculated using only ocean level and hydrologic

stage/discharge measurements, for which the record is more comprehensive than when

also including salinity, it is possible to use observation-based thresholds to identify change

in the occurrence and frequency of threshold events throughout the historical record and

under modeled future conditions. We leave this exercise for future research.

As a case study, our data and analyses are specific to the Pajaro Valley, but

are nevertheless relevant to coastal regions elsewhere, and especially to other low-inflow

bar-built estuaries, which constitute a significant fraction of coastal communities along the

U.S. Pacific Coast. The Pajaro Valley is not alone in facing SWI challenges to freshwater

(Rodrigues et al., 2019; Medelĺın-Azuara et al., 2014; Hong, Shen, 2012; Knowles et al.,

2018; Chen et al., 2016). Thus, these findings are not only important to help guide water

management decisions in a specific location, but are also novel and extensible in their

synthesis of coastal oceanography, inland hydrology, and water management practices

relevant to climate change adaptation in human-modified coastal water systems.
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3.A Dry/Baseline Connectivity

We attempted to evaluate possible connectivity across below-gate and above-gate

sites during the summer dry/baseline season, when the tide gates are typically closed but

may experience leakage, by examining corresponding variability in stage at the below-gate

and above-gate sites using a spectral analysis. The working assumption of both PV Water

and CSC is that tide gate leakage occurs, but that it is sufficiently minimal for salinity

management purposes. From a scientific perspective, and with respect to the question of

establishing baseline ocean-slough connectivity conditions (rather than water management

function) several factors motivated additional exploration of this baseline connectivity.

First, gradually increasing levels of salinity were observed during several summer periods

upstream of the tide gates, the causes of which were hypothesized to be tide gate leakage

(unmeasured), agricultural return flow (unmeasured), or a combination of both; the cause
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did not appear to be sensor drift according to comparison with available salinity grab

samples. Second, stages at both the above-gate and diversion sites demonstrated small,

potentially tidal fluctuations. Third, research in other ocean-connected freshwater estuaries

has demonstrated that salinity transport can occur far upstream under sufficient vertical

stratification and wind conditions (Behrens et al., 2016). Thus, we briefly evaluated

connectivity across the tide gates (while lacking sufficiently detailed salinity data). We

selected 30 min below-gate and above-gate stage between the months of June–August 2016

(which we use as a representative dry/baseline time period), and calculated the power

spectral density (PSD) of the stage timeseries to identify the frequencies that account for

the most timeseries variance. Additionally, we used barometric pressure (in millibars) data

from the NOAA Monterey Bay tide gauge (downloaded at 6 min intervals and aggregated

to 30 min intervals to match our stage datasets) and similarly calculated the PSD of the

pressure timeseries. We then calculated the squared coherence between the below-gate

and above-gate power spectral density estimates and between the pressure and above-gate

PSD estimates to characterize the correlation between the spectral density estimates at

each frequency.

The PSD of the below-gate site (Figure 3.C.2 (a)) shows variability in several tidal

frequency bands (roughly 1, 2, 3, 4, and 5 cycles per day), with the most prominent

peaks in the diurnal and semidiurnal tidal frequencies. The PSD of the above-gate site

indicates that the stage record is dominated by mostly diurnal, with some semi-diurnal,

variability. A coherence analysis across the below-gate and above-gate sites (Figure 3.C.2

(b)) show high coherence in the diurnal band, which may suggest that water is somehow

moving across the tide gates in the upstream direction once a day, possibly on the higher

high tides or via wind-driven movement. If the coherence were wind driven diurnal stage

fluctuations (i.e., Behrens et al., 2016), we would expect stage peaks to occur at the same

time every day. Analysis of the original time series (Figure 5 (c)) shows that above-gate

and diversion stage peaks do not occur at the same time every day, but that they also don’t
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evolve in a way that appears tidal. A coherence analysis with barometric pressure (Figure

3.C.2 (b)) also indicates high coherence with above-gate stage in the diurnal band, which

suggests that atmospheric pressure is likely playing a role in the small-scale fluctuations

of stage above-gate. These analyses suggest that multiple drivers of variability in stage

may be present. However, further observations would be needed to properly separate the

contributions of each of these drivers.

3.B Supplementary tables
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Table 3.B.2. Dates of gate overtopping events with SWI and the corresponding dates of
nearest closure (before SWI event) and opening (after SWI event) of the lagoon mouth, as
recorded by the CSC. For events 1, 2 and 4, observations of below-gate stage were missing
prior to 12/2011, 12/2013, and 10/2017, respectively, and thus we were not able to identify
a more specific closure date. ∗The opening date of event 4 is based on below-gate stage
levels rather than CSC-identified opening dates due to the coincident closure during the
event that occurred 9 days after a CSC manual breach.

Event Event date Lagoon mouth state Closure date (approx.) Open date (rec.)
1 1/6/2012 closed before 12/2011 1/18/2012

2 2/7/2014 closed before 12/2013 2/28/2014

3 11/5/2016 closed 10/16/2016 12/1/2016

4 1/17/2018 coincidentally closed before 10/2017 1/29/2018∗

3.C Supplementary figures
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Figure 3.C.1. Salinity (psu) from 30 minute logger (boxplot) and monthly grab sample
(point) data at the diversion and pumphouse sites (colors) for days on which PV Water
diverted freshwater (only) during the 2002-2021 water years. The modeled salinity threshold
for MAR diversion suitability is 0.5 psu (dashed line). Boxplot distributions show the
interquartile range (IQR) boxes and ±1.5∗ IQR whiskers of the 30 minute logger data,
with outliers omitted from the visualization only.
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Figure 3.C.2. Power spectral density and Coherence between below-gate and above-gate
stage and barometric pressure. (a) Power spectral density estimates for below-gate stage,
above-gate stage, and barometric pressure from the NOAA tide gauge in units of ft
NAVD2/cycles/day for stage data and millibars2/cycles/day for barometric pressure. (b)
Calculated coherence-squared across frequencies between the below-gate and above-gate
stage and between the above-gate stage and barometric pressure. Units of the x-axis are
cycles per day (CPD).
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1000 m

N
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36.91°N
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WS Upstream (stage, salinity)

HS Upstream (stage)

Pumphouse (salinity, salinity grab sample)

HS 350 m (salinity grab sample)

HS 2500 m (salinity grab sample)

Figure 3.C.3. Salinity grab sample site locations. Location of the (MAR) Pumphouse,
located 300 m upstream of the diversion site, and HS 350 m and HS 2500 m grab sample
sites, which are located on the Harkins Slough 350 m and 2500 m upstream of the Harkins-
Watsonville confluence (above the diversion point). Other sites (diversion, WS upstream,
and HS upstream) refer to sites, and corresponding logger stage and salinity measurements,
used in the main analysis (see Figure 1). Data source: Imagery sourced from Stamen and
Google Maps imagery acquired through the R ggmap package (Kahle, Wickham, 2013);
PV Water boundary and measurement site locations courtesy PV Water; river network is
derived from National Hydrography Dataset Flowline data via the R nhdplusTools package
(Blodgett, Johnson, 2022).
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Figure 3.C.4. Stage and salinity from logger and grab sample data at and above the
diversion site, December 1, 2011 – April 1, 2012. (Top) Available stage measurements.
(Bottom) Available logger salinity (solid lines), grab sample measurements (points), and
salinity threshold for the Diversion site (dashed line). HS 350 m and HS 2500 m refer
to grab sample sites located on the Harkins Slough 350 m and 2500 m upstream of
the Harkins-Watsonville confluence (above the diversion point), and show long-lasting
elevated post-SWI salinity within upstream segments of the Harkins Slough. Water
managers attribute mismatch in WS upstream site logger and grab sample observations
to sensor/sample placement within vertically stratified water that can occur at these
upstream sites.

98



psu

Jan Feb Mar
0.0

2.5

5.0

7.5

10.0

Site

Diversion

HS 2500 m

HS 350 m

WS Upstream

Figure 3.C.5. Salinity from logger and grab sample data at and above the diversion
site, January 1, 2014 – April 1, 2014. Available logger salinity (solid lines), grab sample
measurements (points), and salinity threshold for the Diversion site (dashed line). HS 350
m and 2500 m refer to grab sample sites located on the Harkins Slough 350 m and 2500
m upstream of the Harkins-Watsonville confluence (above the diversion point), and show
no elevated post-SWI salinity within upstream segments of the Harkins and Watsonville
Sloughs.
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Figure 3.C.6. Stage and salinity from logger and grab sample data at and above the
diversion site, November 1, 2016 – February 1, 2017. (Top) Available stage measurements.
(Bottom) Available logger salinity (solid lines), grab sample measurements (points), and
salinity threshold for the Diversion site (dashed line). HS 350 m and 2500 m refer to grab
sample sites located on the Harkins Slough 350 m and 2500 m upstream of the Harkins-
Watsonville confluence (above the diversion point), and show elevated post-SWI salinity
within upstream segments of the Harkins and Watsonville Sloughs through February
2017. Water managers attribute mismatch in WS upstream site logger and grab sample
observations to sensor/sample placement within vertically stratified water that can occur
at these upstream sites.
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(a) (b)

(c) (d)

Figure 3.C.7. Leave-one-out sensitivity analysis of event sampling for the SWI event
typology analysis. Calculations replicate those described in the Methods section for the
SWI Event Typology analysis, while leaving out (a) salinity event 1 on 1/6/2012, (b)
salinity event 2 on 2/7/2014, (c) salinity event 3 on 11/5/2016, and (d) salinity event 4
on 1/17/2018. Median percentiles for the variables remain relatively stable despite event
selection.
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(a) Pre 12 Post 12 (b) Pre 12 Post 6

(c) Pre 24 Post 6

(e) Pre 24 Post 1 (f) Pre 3 Post 3

(d) Pre 24 Post 24

Figure 3.C.8. Timescale sensitivity analysis of event time duration for the SWI event
typology analysis. Calculations replicate those described in the Methods section for the
SWI Event Typology analysis, but with different windows of time prior to and immediately
following the tide gate vent overtopping onset as labelled on panel titles (a)-(f).
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Figure 3.C.9. Coastal to inland stage and salinity connectivity under wet/extreme
conditions over 1 month (January 1, 2018-January 31 2018). (a) Significant wave height
(Hs) and peak period (Tp); (b) offshore water level (OWL and total water level (TWL); (c)
stage at the below-gate, above-gate, diversion, and upstream stations, with the elevation
of the tide gate vent (dashed turquoise line); (d) salinity at the below-gate, diversion, and
upstream stations with the salinity threshold for diversion (dashed line); (e) precipitation
and Pajaro River discharge. Note that the estuary mouth was closed at the start of this
record. The vertical gray dotted line indicates when the mouth was manually breached by
the County of Santa Cruz on January 8, 2018 (no time listed).
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Chapter 4

Assessing future SWI risk using pro-
jections of TWL and precipitation

4.1 Abstract

In the coastal watershed of the Pajaro Valley, CA, USA, saltwater intrusion (SWI)

has historically threatened freshwater supplies and an established managed aquifer recharge

program. SWI risk is expected to increase under climate change scenarios, however the

magnitude of this increase has not been previously explored. In this study, we utilized

projections of sea level and precipitation from the Coupled Model Intercomparison Project

5 (CMIP5) general circulation models (GCMs) under the ’business-as-usual’ climate change

scenario (RCP 8.5) combined with simulations from a stochastic wave emulator to explore

the joint distributions of variables that drive SWI: high oceanic total water level (TWL)

and precipitation representative of low upstream flow conditions. We established thresholds

of TWL and precipitation that indicate SWI risk along the Monterey Bay coast, and

estimated the percentage of time in which SWI risk would occur for historical (1950-2005),

early century (2006-2050), and late century (2051-2100) periods. Although there was

variability in the frequency of SWI risk amongst the models for each time period, there was

a clear upward trend with time in this percentage, primarily driven by the sea level rise

component of TWL. Uncertainty in SWI risk frequency was driven by both precipitation

variation across GCMs and variation across wave simulations. Although this study is
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inherently limited due to uncertainty in climate change projections, it offers a framework

in which future projections of SWI risk can be studied in the Pajaro Valley and other

coastal watersheds.

4.2 Introduction

Saltwater intrusion (SWI) in coastal watersheds is a threat to coastal populations

and industries. Coastal regions are expected to house more than one billion people by the

end of the century (Hauer et al., 2020). SWI is a coastal hazard that this population is

anticipated to face given that it limits the usability of freshwater supplies .

SWI driven by sea level rise is likely to affect surface freshwater habitats and

drinking water supplies. Several modelling studies have identified that under sea level

rise scenarios, water within tributaries of the Chesapeake Bay (USA), the Yangtze River

(China) and the Rhine River (Europe), will become undrinkable for extended periods of

time (Rice et al., 2012; Chen et al., 2015; Brink van den et al., 2019). In the Yangtze

River Estuary, for example, four reservoirs, which provide water for 50 million people, will

have undrinkable water over 7 times more often than current conditions if sea levels rise

by 2 m (Chen et al., 2015). SWI in groundwater aquifers has also been well documented

(Jasechko et al., 2020; Sawyer et al., 2016; Houben, Post, 2017), and is expected to increase

around the globe due to sea level rise and increases in groundwater pumping (Ferguson,

Gleeson, 2012; Jasechko et al., 2020; Loáiciga et al., 2012). Whether SWI affects a region’s

groundwaters or surface waters, SWI has been identified as a serious concern for coastal

water managers and planners (Michael et al., 2017).

At our study site, the Pajaro Valley in Monterey County, CA, USA, SWI affects

both surface water (Ch.3) and groundwater supplies (Barlow, Reichard, 2010; Carollo, 2014;

Pajaro Valley Water Management Agency, Montgomery & Associates, 2022). While surface

SWI has been less well documented in the Pajaro Valley, as elsewhere, SWI in the Pajaro
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Valley can have far-reaching impacts on freshwater supplies. The movement of oceanic water

upstream through the Pajaro Lagoon and into the Harkins-Watsonville slough has greatly

diminished the local water managers’ ability to divert freshwater from the slough system.

SWI has impeded the region’s progress towards groundwater sustainability by negatively

impacting managed aquifer recharge programs that rely on freshwater withdrawals from

coastal sloughs. Nevertheless, water planning and infrastructure investments have been

made and more are required despite uncertain climate change outcomes. Thus, improved

understanding of future change and SWI risk with climate change is needed to help adapt

water sustainability programs in the Pajaro Valley and other regions.

Through previous work (Chapter 3), we identified that the coupling of oceanic total

water level (TWL), which is a combination of sea level and wave runup, with low upstream

flow conditions drive SWI in the surface waters of the Pajaro Valley. These drivers are

expected to be affected by climate change within the coming century. California’s Fourth

Climate Change Assessment for the Central Coast, where the Pajaro Valley is located,

reports heightened variability in precipitation and drought risk, and an acceleration of sea

level rise (SLR) in this time frame (Langridge, 2018). These environmental changes will

likely influence saltwater intrusion in the Pajaro Lagoon as well as freshwater (groundwater

and surface water) availability in the Pajaro Basin. This presents a challenge to regional

water managers as they assess and adapt water management strategies under a changing

climate.

To assess changes in oceanic and hydrologic variables under climate change scenarios,

studies frequently rely on projections from GCMs provided by CMIP. These models, which

are frequently used in combination with hydrologic models, have been used to assess climate

change driven hazards in coastal regions, such as flooding (Bai et al., 2019; Try et al.,

2022), drought (Basharin et al., 2016), and sea level rise (Hermans et al., 2021). While

GCMs have been used to understand coastal freshwater SWI, particularly in large delta

systems (Bellafiore et al., 2021; Anh et al., 2018; Eslami et al., 2021), GCM projections
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have more frequently been applied in coastal flooding contexts (Bai et al., 2019; Try et al.,

2022; Xu et al., 2023).

The co-occurrence of high oceanic TWL and low upstream freshwater flow, which

indicates SWI risk (Ch.3), is analogous to the more often studied co-occurrence of high

TWL and high upstream flow that typifies compound coastal flooding conditions (Lucey,

Gallien, 2022; Ward et al., 2018; Xu et al., 2023). Within that analogous literature,

future projections of compound coastal flooding suggest an increase in this phenomenon,

mainly due to sea level rise, under the ’business-as-usual’ (RCP 8.5) climate change

scenario (Bevacqua et al., 2019). However, even under a more conservative scenario (RCP

4.5) coastal flooding is expected to increase across the US (Bates et al., 2021). These

studies focus on the confluence of high TWL and inland flow conditions driven by high

precipitation and river discharge. Alternatively, SWI in the Pajaro Valley, and other

similar coastal regions (Tian, 2019), is reliant on the confluence of high TWL and low

inland flow conditions. The co-occurrence of these drivers has received little to no attention

in climate change studies.

The Pajaro Valley offers a unique study site wherein we build on understanding

of the joint drivers of SWI risk (Ch.3) to assess change in the occurrence of those joint

drivers in the future. In this study, we assess changes in the frequency at which SWI risk

conditions occur in the next century, relative to the historical observational period and the

modeled past century, using sea level and precipitation projections from CMIP5 GCMs

combined with a stochastic wave emulator. In section 4.2.1, we describe the types of data

used in this study, including observed data, CMIP5 GCMs, and simulated wave time

series. In section 4.3, we establish thresholds in which we may expect SWI to occur at our

study site, compare observed data to modelled and simulated data, and explore the joint

distributions of TWL and precipitation-proxied inland flow conditions for historical and

projected time periods. Next, in section 4.4, we discuss the limitations and applications of

our novel study, and finally, we discuss conclusions in section 4.5.
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4.2.1 Data

In order to expand our findings from chapter 3 into historical and projected periods,

we developed analogous total water level (TWL) and inland flow condition time series in

which we could explore the joint occurrence of high TWL and low flow conditions that

have been documented to coincide with SWI events. We evaluated the frequency with

which these conditions occurred for historical (1950-2005), observed (2011-2020), early

century (2006-2050), and late century (2051-2100) periods at our study site. We utilized a

wide range of datasets, including observed sea level, wave height and period, discharge,

and precipitation (See Ch.3 for details on these datasets); downscaled regional sea level

rise and precipitation estimates from 8 Coupled Model Intercomparison Project Phase

5 (CMIP5) general circulation models (GCMs); and wave height and period from 100

TESLA wave simulations. The details of these datasets are discussed in the following

subsections.

Observations

We utilized the observations of ocean water level (OWL), wave height and period,

beach slope, precipitation, and river discharge, as outlined in Chapter 3, Section 4.1 for the

observed time period, 10/2011-05/2020. We then split the data into wet and dry periods by

similarly defining the yearly wet periods as the months of November through the following

May, which corresponds to the time periods in which the local water management agency,

Pajaro Valley Water Management Agency (PV Water) is permitted to divert freshwater

from the Harkins-Watsonville Slough. For this study, we focused solely on wet periods

during which SWI can disrupt the diversion of freshwater from the sloughs.

CMIP5 Models

Modelled sea level and precipitation time series of the historical, early century, and

late century periods were available at regional scales from 8 CMIP5 GCMs: ACCESS1-
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0, CanESM2, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES,

and MIROC5. We used the hourly downscaled regional sea level at the location of the

NOAA tide gauge in Monterey Bay (station 9413450). These data are publicly available

(https://albers.cnr.berkeley.edu/data/scripps/hourly sea level/). The GCMs output values

of secular sea level rise, tides, and weather/ocean components for each site, but for our

purposes we will use the sum of these 3 contributors to generate oceanic water level (OWL,

or the equivalent of TWL minus the wave component – see below).

We also utilized daily precipitation values from LOCA-downscaled (Pierce et al.,

2014) CMIP5 meteorology at the grid cell that overlapped with the location of a weather

station used previously to establish SWI drivers in the Pajaro Valley (Ch.3), CIMIS station

129. LOCA CMIP5 data are publicly available (Livneh et al., 2023).

CMIP5 GCM runs for sea level and precipitation were available for historical

(1950-2005) and projected (2006-2100) periods for the RCP 4.5 and 8.5 scenarios. For this

study, we focused on the most extreme scenarios: RCP 8.5 and the 99.9th percentile for

sea level rise projections. We then further split the projected time series into early century

(2006-2050) and late century (2051-2100) periods for analysis.

TESLA wave simulations

Simulated time series of wave height and period were generated using TESLA,

a wave emulator that generates wave time series based on historical statistics following

the methods of Anderson et al. (2018, 2019) and Cagigal et al. (2020). The historical

statistics were generated using significant wave height, peak period, and wave direction

time series from 06/1987-12/2021 from the NDBC buoy described in Chapter 3 section

4.1. We assumed that the wave climate will not change extensively throughout the rest of

the century, an assumption that we confirmed to be valid by comparing the distributions

of the MIROC5 modelled wave component time series for the historical, early century, and

late century periods. There was little change across these distributions. Similarly, Erikson
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et al. (2016) project that mean significant wave height and peak period will have little to

no change in the early and late century periods along the West Coast of the US. Thus, we

generated all wave simulations based on statistics from the 1987-2021 NDBC wave buoy

dataset. The wave emulator generated daily wave parameters (significant wave height,

peak period, and incident direction) by establishing 25 daily weather types (DWTs) based

on sea level pressure fields and gradients in the Pacific Basin. Then a synthetic sequence

of DWTs were generated using an autoregressive logistic regression, following Anderson

et al. (2019) and Guanche et al. (2014). Synoptic states were established and defined by

sets of consecutive days in which the DWT was constant, spanning 1 to 5 days. Then

Gaussian copula generated from historical distributions were used to generate significant

wave height, peak period, and incident direction for each synoptic state (Cagigal et al.,

2020; Ben Alaya et al., 2014). To explore the most extreme events, we used the same wave

parameter values for all the days within the same synoptic state. We generated 100 daily

150-year wave simulations (representing the date range of 01/01/1950-12/31/2100) at the

location of the NDBC buoy from which historical data was used. These statistical sets

of wave simulations are not dynamically coupled to the climate projections’ atmospheric

states. However, since SWI events rely on the coupling of high wave events and low inland

flow, we utilized the 100 TESLA simulations to better explore the timing of these combined

events and to offer multiple realities under which the conditions of SWI may or may not

be satisfied in a given day.

Total water level (TWL)

TWL was calculated as detailed in Chapter 3 section 4.1. For the OWL component

we used the observed OWL from the NOAA tide gauge in Monterey or the modelled

OWL total from the CMIP5 GCMs. The same average beach slope value of 0.033 m/m

from Chapter 3 section 4.1 was used as an input to the 2% runup exceedance value

parameterization from Stockdon et al. (2006). For the significant wave height and peak
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period inputs we used either observed wave parameters from the NDBC buoy or simulated

wave parameters from the 100 TESLA runs, as described above. TWL was then calculated

at the daily scale for observed data by adding the hourly observed OWL to the hourly R2%

calculated from observed wave parameters and using the maximum hourly value per day.

For the modeled data, we calculated daily TWL by taking the maximum hourly OWL

value per day for each CMIP5 GCM and adding R2% calculated from the daily resolution

TESLA simulations. Thus we have 100 time series of daily TWL for each model for all

time periods.

Figure 4.1. R2 correlation coefficient values for cumulative precipitation over 1-30 day
timescales and river discharge (green) and for cumulative precipitation over 1-30 day
timescales for days in which mean daily discharge is greater than or equal to 1500 cfs and
river discharge (purple). 7 days is marked by the vertical gray line.

Upstream flow conditions: Precipitation

Downscaled freshwater discharge specific to our study region was not available

at the time of this study, so we used cumulative precipitation (antecedent to TWL) to

represent inland flow conditions. First, we evaluated the relationship between observed
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Figure 4.2. Scatter plot of cumulative 7-day precipitation (mm) versus mean daily
discharge (cfs) for (a) the full study period and (b) all times when discharge is below the
37th percentile (24 cfs). Note that the scale of the x-axis in panel (a) is logarithmic.

discharge and cumulative precipitation to determine an appropriate formulation of a

precipitation variable for this analysis. We calculated the daily mean value of 15-min

river discharge from the Pajaro River (see chapter 3 section 4.1 for details on dataset)

and calculated the daily mean discharge’s correlation with cumulative precipitation over a

range of the preceding 1-30 days, as shown in Figure 4.1. Daily discharge and cumulative

precipitation is most correlated for high values of discharge (>= 1500 cfs), so we calculated

the correlation both for the full dataset (all levels of discharge) and separately for times

in which discharge was greater than 1500 cfs. The greatest correlation values are for

cumulative precipitation over the preceding 7 days for all data and cumulative precipitation

over the preceding 6 days for data above discharge values of 1500 cfs. For simplicity, we use

the cumulative precipitation for the preceding 7 days or 1 week as our proxy for upstream

freshwater discharge.

We compare the 7-day cumulative precipitation to the mean daily discharge in

Figure 4.2. Although visually there is lower correlation between precipitation values
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associated with discharge values under 1500 cfs, low values of precipitation generally

represent low values of discharge that satisfy the threshold-based conditions for SWI.

Thus we suggest that precipitation is a suitable proxy for river discharge in the following

analyses.

4.3 Methods and Results

4.3.1 SWI Thresholds

Using observational data in Chapter 3, we established a range of percentiles of

significant wave height (Hs), peak wave period (Tp), total water level (TWL), river

discharge, and upstream stage that occurred during saltwater intrusion (SWI) events in

the ocean-connected Harkins-Watsonville Slough. To explore the prevalence of SWI events

under future climate scenarios, we first defined periods of SWI risk as periods of time

during which TWL exceeded, and upstream flow fell below, levels during which documented

SWI events occurred, as discussed in chapter 3 section 5.4. SWI risk percentages refer

to the percentage of days during the wet season (November-May) in which conditions

for SWI risk are satisfied. To define these thresholds, we used the median of percentile

values of 30-minute TWL (84th percentile, 2.7 m NAVD) and of 15-minute river discharge

(37th percentile, 24 cfs) over the 12 hours that preceded and the 1 hour that followed

a documented SWI event. These thresholds then represent conditions under which it is

possible for SWI to occur in the freshwater slough during the wet season. To convert the

river discharge threshold to a cumulative precipitation threshold, we take the median value

of all 7-day cumulative precipitation that occurs when daily mean river discharge is at

the 37th percentile or below, which results in a precipitation threshold of 9.5 mm. Thus,

we suggest that if daily maximum TWL is above 2.7 m NAVD and the coincident 7 day

cumulative precipitation is below 9.5 mm, then the conditions for possible SWI are met.
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Figure 4.3. Distributions of observed OWL (blue) and modelled OWLs (orange) from
the 8 CMIP5 GCMs (panels a-h) for the observed period (2011-2020).

4.3.2 Observed vs. Modelled data comparisons

TWL

TWL is comprised of an ocean water level component (OWL) and a wave runup

component (R2%). To validate the accuracy of modeled TWL, we compared the observed

and modelled components (OWL and waves separately) as well as the combined TWL
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within the observed period (2011-2020). Thus OWL is compared between observations

and CMIP5 modeled values, and waves are compared between observations and TESLA

wave simulations. Finally TWL is compared between observations (observed OWL + R2%

from observed wave parameters) and modelled (CMIP5 OWL + R2% from TESLA wave

parameters).

For modelling historical and projected periods of OWL, we used the output of 8

CMIP5 GCMs, as described in Section 4.2.1. We compared the observed OWL from our

observed period (2011-2020) to the modelled OWL in Figure 4.3. The modelled data had

similar distributions across GCMs, but all were biased slightly higher than the observed

OWL distributions: GCM median OWL exceeded observed median OWL by a mean of

0.05 m. Therefore, the modelled OWL data may contribute to slight over-estimations of

TWL.

For the wave component of TWL, we used simulated wave data from the TESLA

emulator and compared those to the observed wave data from the NDBC buoy (Figure

4.4). The distributions of Hs, Tp, and wave direction from TESLA during the observed

period were similar to the observed datasets, however the distributions from TESLA

were smoother in shape across ranges of Hs, Tp, and wave direction, because TESLA

wave components are generated from prescribed statistical distributions. The TESLA

Hs distribution had a heavier upper tail, with more waves above 2.5 m. Tp, on the

other hand, was biased slightly lower (median of 12.9 s for TESLA vs. 13.8 s for the

observed values). Although wave direction was not used to calculate R2%, we included it

as further validation of the TESLA simulation. The distribution of wave direction from

TESLA also resembled the observed data, but had more weight in the lower tail (wave

angles below 250 degrees). For R2%, there are few differences between the distributions of

observed and TESLA-simulated data, with slightly more density in values over 2 m for

the observed dataset. Therefore, the TESLA-simulated waves may bias the TWL slightly

lower than true values. The empirical cumulative distribution functions (ECDFs) show
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Figure 4.4. Distributions of daily (a) significant wave height, Hs, (b) peak period,
Tp, (e) wave direction, and (f) wave runup, R2%, and empirical cumulative distribution
functions for (c) Hs, (d) Tp, (g) wave direction, and (h) R2% for observed (blue) and
TESLA-simulated (orange) datasets for the observed period (2011-2020).

some differences between the observed and TESLA-simulated Hs and Tp (Figure 4.4(c) and

(d)), however, these differences do not materialize in large differences between observed

and TESLA-simulated R2%. Here we do not conduct more formal comparisons, like the

Kolmogorov-Smirnov test, due to their sensitivity to sample sizes.

We compared the distributions of TWL generated from observed OWL and observed
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Figure 4.5. Distributions of TWL for the (a) observed period, using each CMIP5 GCM’s
OWL with R2% calculated from observed wave parameters, and (b) historical, (c) early
century, and (d) end century time periods using each CMIP5 GCM’s OWL (colors) with
R2% calculated from the 100 simulated wave time series from TESLA (identical for all
GCM TWLs). Dashed black line indicates the SWI risk threshold for TWL (2.7 m).

wave parameters to TWL distributions generated from CMIP5 GCM modelled OWL and

observed wave parameters (Figure 4.5(a)). As stated previously, the slight bias towards

higher values in the modelled CMIP5 GCM OWLs led to a similar bias in TWL values for

the observed period. However, the distributions of observed TWL and all modelled TWL

are fairly similar in shape. We also generated 100 time series of TWL per model for the
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historical, early century, and late century periods by calculating R2% for the 100 TESLA

wave simulations and adding the resulting time series to the CMIP5 GCM modelled OWL

time series. We then compared these distributions across time periods in Figure 4.5(b)-(d).

The modelled TWL distributions had few differences from each other for all time periods.

The historical and early century TWL distributions were similar in shape, however the

distributions shifted towards higher values in the early century period. By the late century

period, the distributions had a greater spread and the majority of the data shifted to

values higher than the TWL threshold. Thus, the greatest change in TWL distribution

will likely be seen during the late century, and we would expect this shift to increase the

amount of time in which SWI may occur.

Precipitation

We compared the observed precipitation distributions with CMIP5 GCM modelled

distributions for the observed period in figure 4.6 (a). The observed data had more weight

in the lower tail (values under 10 mm of cumulative precipitation), while the modelled

values had more weight in the upper tail (between 20 mm and 150 mm). The variability

in precipitation distributions across models was greater than the variability seen in TWL

across the same models. The CanESM2, CNRM-CM5, and HadGEM2-ES models produced

more large precipitation events (> 150 mm) than the other models for the observed period.

This higher density of larger precipitation events was less distinct in the historical period

(Figure 4.6 (b)), however it was prominent in the early century and late century time

periods (Figure 4.6 (c) and (d)). We suggest that the decreased probability of lower

precipitation events for these models may lead to under-estimates of amount of time in

which SWI may occur for future scenarios.
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Figure 4.6. Distributions of precipitation for the (a) observed period, using observed 7 day
cumulative precipitation and each CMIP5 GCM’s modelled 7 day cumulative precipitation
(colors), and similarly for (b) historical, (c) early century, and (d) end century time periods.
The density axis is on a logarithmic scale.

4.3.3 Joint distributions of TWL and precipitation for histori-
cal, early century, and late century periods

Finally, we explored the joint distributions of TWL and precipitation to better

understand how the frequency of SWI risk conditions may change under future climate

scenarios. To begin, we looked at the observed period and compared the distributions of

observed data to the combination of CMIP5 GCM modelled data and TESLA simulated
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(a) (b) (c)

Figure 4.7. Joint distributions of TWL and precipitation for (a) observed TWL and
precipitation, (b) TWL comprised of MIROC5 OWL and observed wave components and
MIROC5 precipitation, and (c) TWL comprised of MIROC5 OWL and the 100 TESLA
simulated wave components and MIROC5 precipitation. Dashed gray lines indicate
the TWL and precipitation thresholds and outline the lower-right quadrant space that
represents SWI risk conditions, and percentages listed on the figure indicate the percentage
of time in which those SWI risk conditions occur for each dataset.

data. Using observed data within the observed period, the conditions for possible SWI were

met 40% of the time (Figure 4.7(a)). The percentage of time within the SWI risk thresholds

changed marginally to 43% when we used a GCM-modelled OWL, specifically MIROC5 as

an example, with the observed wave components and the corresponding modelled MIROC5

precipitation (Figure 4.7(b)). For this MIROC5 example, the TWL distribution is shifted

upwards due to the bias in modelled OWL, but the precipitation distribution is fairly

similar across the different modelled and observed sources of precipitation data. We also

compared the distributions of the 100 time series of TWL generated from the simulations

of TESLA wave parameters combined with MIROC5 modelled OWL, and the MIROC5

modelled precipitation (Figure 4.7(c)). This also resulted in a similar estimate of SWI risk

occurrence (41%). The similarities in percentages of time in which SWI may occur suggest

that the CMIP5 GCM modelled OWL and precipitation, and the TESLA wave simulations

are suitable for generating representative joint distributions of TWL and precipitation

under future climate scenarios.

Using MIROC5 as an example, we compared the joint distributions of TWL
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(a) (b)

Figure 4.8. Joint distributions of TWL comprised of CMIP5 GCM modelled OWL and
TESLA wave components and CMIP5 GCM modelled precipitation for (a) the MIROC5
model only for the historical (green), early century (orange), and late century (purple)
periods, and for (b) all CMIP5 GCM models. Dashed gray lines indicate the TWL and
precipitation thresholds and outline the lower-right quadrant space that represents SWI
risk conditions, and percentages listed on the bottom right of the panels indicate the
percentage of time in which those SWI risk conditions occur for the dataset.

and precipitation for the historical (1950-2005), early century (2006-2050), and late

century (2051-2100) periods (Figure 4.8 (a)). Moderate increases in the frequency of lower

precipitation events coupled with significant increases in the frequency of higher TWL

correspond to increased SWI risk. Time spent within the joint distribution threshold

of SWI risk (represented by the lower right quadrant of the figure) increased from 34%

in the historical period to 45% in the early century period. The greatest change in

this percentage was estimated between the early century and late century periods, in

which the frequency of SWI risk increased by 16%, indicating that this system could be

vulnerable to SWI 61% of the time. Similar joint distributions from all CMIP5 GCM

models (Figure 4.8 (b)) demonstrate a similar shift with time. Slight variations between

joint distributions from each of the CMIP5 GCMs were observed, but the overall pattern

was similar (Supplementary Figure 4.A.1).
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Figure 4.9. Boxplots showing the median and 1.5*IQR of the percentage of time in which
SWI risk occurs for different datasets during the observed (O), historical (H), early century
(EC), and late century (LC) periods. Boxplots are comprised of datasets in which we (a)
vary precipitation and OWL (8 values per boxplot), (b) vary precipitation only (8 values
per boxplot), (c) vary OWL only (8 values per boxplot), and (d) vary wave simulations
(800 values per boxplot). The dashed black line on the panels indicate the % SWI risk for
the observed period from the observed variables (4.7(a)).

In addition, we explore which component of TWL or precipitation contributed the

most to the increase in SWI risk under future scenarios. Figure 4.9 shows the variability
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in the % SWI risk amongst the CMIP5 GCMs for each time period. We first varied both

precipitation and sea level (Figure 4.9(a)): TWL was composed of OWL from each of the 8

CMIP5 GCMs and the 100 simulations of wave parameters from TESLA, and precipitation

was taken directly from each of the 8 (corresponding) CMIP5 GCMs. % SWI risk was

calculated over all 100 TWL time series for each model (8 values per boxplot). We then

varyied precipitation only (Figure 4.9(b)): TWL was composed of the MIROC5 OWL

and one randomly chosen simulation of wave parameters from TESLA, and precipitation

was taken from each of the 8 CMIP5 GCMs (8 values per boxplot). Then we varied

sea level only (Figure 4.9(c)): TWL was composed of OWL from each of the 8 CMIP5

GCMs and the same randomly chosen simulation of wave parameters from TESLA, and

precipitation was taken from MIROC5 (8 values per boxplot). Finally, we varied waves

(Figure 4.9(d)): TWL was composed of OWL from each of the 8 CMIP5 GCMs and 100

unique simulations of TESLA wave parameters, and precipitation was taken directly from

each of the (corresponding) 8 CMIP5 GCMs (800 values per boxplot). The boxplots in

Figure 4.9(d) differ from Figure 4.9(a) because the SWI risk percent was calculated for each

individual run of the TESLA simulation instead of calculating it for all 100 simulations

as a whole to better assess the variability due to TESLA wave simulations. There was a

clear upward trend in SWI risk frequency with progression through the historical, early

century, and late century periods, with some variability within each time period. This

variability is likely due to the variability in precipitation and TESLA wave simulations, as

shown by the larger inter-quartile ranges in Figure 4.9(b), when precipitation was varied,

and Figure 4.9(d), when TESLA simulations were varied, than in Figure 4.9(c) when

OWL was varied. Although the observed period falls within the early century period,

the early century as a whole demonstrates greater SWI risk occurrence, likely due to

increased OWL as the century progressed. Thus we conclude that the wave simulations

and modelled precipitation contribute to variability within and across time periods, but

that the increasing trend in OWL is the main contributor to the increase in the frequency

123



of SWI risk over time.

4.4 Discussion

This study offers a novel look at the modeled future co-occurrence of high TWL

and low precipitation conditions that are known to be conducive to SWI in the Pajaro

Valley region and elsewhere. The use of CMIP5 GCMs allows us to assess realizations from

different models run under the same (radiative forcing) scenario; differences in TWL and

precipitation values amongst the models capture the uncertainty of SWI risk projections.

The use of TESLA wave simulations enabled us to explore variation in the timing of wave

events, and thus variability in the co-occurrence of high TWL and low precipitation.

The use of precipitation as a proxy for river discharge was necessary due to the

lack of availability of routed flows for our study site from CMIP5 GCMs. However, this

proxy likely introduces bias in our % SWI risk calculations. Since the precipitation values

for times when discharge is below the 37th percentile range from 0 to 120 mm (Figure 4.2

(b)), our chosen threshold of 9.5 mm (the median value) likely results in an underestimate

of the percentage of time at which the low upstream flow conditions for SWI risk were

met. Ultimately, CMIP-modelled routed flow would be preferable to precipitation, and

could be included in a similar study once the data is available. Nevertheless, this bias is

likely far less important than the overall SLR trend in OWL.

Additionally, there is inherent uncertainty in the CMIP5 GCMs and the true nature

of future wave time series. CMIP5 precipitation projections are known to be uncertain

due mostly to variations in the responses of different models to the same radiative forcing

conditions (Wu et al., 2024). Depending on the direction of the uncertainty (lower or

higher modelled precipitation), we may expect our calculated % SWI risks to be over-

or under-estimations. For our study, we observed a difference in calculated % SWI risk

across GCMs, which was especially prominent in the late century (Figures 4.A.1 and
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4.A.2). For waves, although little change is expected for mean Hs, mean Tp may increase

by 0.25-0.50 s in March through November in the late century (Erikson et al., 2016). This

could contribute to a slight overall increase in TWL not captured by the TESLA wave

simulations, suggesting that our %SWI risk calculations may be an underestimate.

Despite these uncertainties, the robustness of the upward trend in the percentage

of time in which SWI risk occurs into the future (Figure 4.9) suggests that significant

increases in SWI risk will be seen in the coming century. Moreover, the main driver of

this increased SWI risk is sea level rise in the OWL predictions. Although there may be

changes in future precipitation and waves that could affect SWI in the Pajaro Valley, sea

level rise is likely the greatest threat to the region’s surface freshwater supplies.

The drivers of SWI in the Pajaro Valley are the same drivers as those for lagoon

closures (Orescanin et al., 2021). In Chapter 3, we concluded that observed lagoon closures

were necessary to induce SWI in the surface slough system. However, for the current

study, we lack predictions of lagoon closures at our study site. The behavior of berms at

lagoon mouths in response to SLR is an open area of research. A recent study proposed

that the berm height of intermittently closed estuaries scales with TWL, suggesting that

berm heights should increase under SLR scenarios (Booysen, Theron, 2020). However,

identifying the limit in which berm heights will stop increasing and the berm will be

permanently over-topped remains an open question. Regardless, the management of lagoon

closures under future climate scenarios will be inextricably linked to the management of

freshwater in the Pajaro Valley. For the current study, we assume that when conditions

are met for SWI, lagoon closures may also occur, but we leave further investigation of

this phenomenon to future research. Ultimately coupled hydro-morphological response

at the estuary mouth to climate change (particularly SLR), may alter the % SWI risk as

estimated here based on TWL and precipitation alone.

Another approach that is complimentary to the one used here for assessing the risk

of events like SWI that have compound drivers is a copula approach. Copulas are popular
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in hydrologic research (Tootoonchi et al., 2022) and have been used in compound coastal

flooding studies (Lucey, Gallien, 2022). In theory, a copula would allow for simulating

realizations of TWL and precipitation from the joint distribution established from a single

time series (e.g., single model simulation or observed record of TWL and precipitation).

In our study, a copula method was not utilized because the theoretical requirements for

copula inputs (e.g., variable autocorrelation) (Tootoonchi et al., 2022) were not met when

examining TWL and precipitation at the desired (hourly - daily) temporal resolution.

Some studies in the coastal flooding literature have relied on monthly maximum/minimum

value inputs to copulas (Lucey, Gallien, 2022). In our case, monthly summaries would

not allow us to directly connect our analysis to the SWI thresholds previously established

from hourly to daily data in the Pajaro Valley (Ch. 3). We would also have to use a

monthly minimum instead of a maximum for precipitation to represent the low upstream

flow conditions. However, by nature of precipitation this minimum would almost always

be zero, making the copula fitting process difficult. Nevertheless, we acknowledge that a

carefully designed copula study could be an alternative approach for future research, and

might be particularly useful in cases where TESLA wave simulations are not available to

generate realizations of variably-timed wave events, which enabled us to effectively ’sample’

from the joint distribution of TWL and precipitation. Another example wherein a copula

would be useful would be when using a single time series of wave simulations from CMIP5

GCMs (instead of a wave emulator). In that case, a copula would be used to model the

joint distribution of TWL and precipitation based on a single GCM-generated time series

for the purpose of ’sampling’ the occurrence of high TWL and low precipitation from their

fitted joint distribution, similar to what we have done in this study.

Although we have focused our study on the Pajaro Valley and the management

decisions of its local water management agency, PV Water, this work provides a framework

for assessing SWI vulnerability in coastal watersheds worldwide. While here our thresholds

are specifically defined for surface water SWI based on historical observations in the Pajaro
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Valley, this approach could be applied broadly across many systems. In particular the

co-occurrence of high TWL with low precipitation (i.e., low upstream freshwater discharge)

is important not only for surface water SWI, but also groundwater SWI and other processes

such as estuary mouth morphodynamics. The finding that the main driver of increased

SWI risk is SLR in the OWL predictions is likely to be found as a key driver in SWI

projections in other regions and systems as well. As SWI is a growing problem in coastal

watersheds, methods like ours are required to aid coastal managers in protecting freshwater

resources and adapting to climate change.

4.5 Conclusion

Using observed, modelled, and simulated data to assess the joint distributions of

TWL and precipitation, we explored the risk of surface water SWI in the coastal Pajaro

Valley under climate change. This work used a novel approach to address how SWI

and its drivers may change in the future. Based on our results, we anticipate that SWI

risk will substantially increase as we move from the CMIP5 GCM-modeled early century

(2006-2050) to late century (2051-2100). Although this study was limited by uncertainty in

climate model projections and the lack of lagoon closure predictions, our approach provides

both local results and a generalizable framework that can help guide water managers as

they adapt their freshwater preservation strategies.
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(c)(a) (b)

(f)(e)(d)

(g) (h)

Figure 4.A.1. Joint distributions of TWL comprised of CMIP5 GCM modelled OWL and
TESLA wave components and CMIP5 GCM modelled precipitation for (a) the ACCESS1-0,
(b) the CanESM2, (c) the CMCC-CMS, (d) the CNRM-CM5, (e) the GFDL-CM3, (f)
the HadGEM2-CC, (g) the HadGEM2-ES, and (h) the MIROC5 models for the historical
(green), early century (orange), and late century (purple) periods. Dashed gray lines
indicate the TWL and precipitation thresholds indicating SWI risk conditions and the
percentages listed on the panels indicate the percentage of time in which SWI risk occurs
for the dataset.
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Figure 4.A.2. Boxplots showing the median and 1.5*IQR of the percentage of time in
which SWI risk occurs for each model during historical (H), early century (EC), and late
century (LC) periods. % SWI risk was calculated for each individual TWL time series
(100 total per model).
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Rodrigues Marta, Fortunato André B., Freire Paula. Saltwater intrusion in the upper
Tagus estuary during droughts // Geosciences. 9 2019. 9, 9.

Ruggiero P., Komar P. D., McDougal W. G., Marra J. J., Beach R. A. Wave runup,
extreme water levels and the erosion of properties backing beaches // Journal of Coastal
Research. 2001. 17, 2. 407–419.

Russo Tess A., Fisher Andrew T., Lockwood Brian S. Assessment of managed aquifer
recharge site suitability using a GIS and modeling // Groundwater. 2015. 53, 3. 389–400.

Sallenger Jr. Storm impact scale for barrier islands // Journal of Coastal Research. 2000.
16, 3. 890–895.

Sawyer Audrey H, David Cédric H, Famiglietti James S. Continental patterns of submarine
groundwater discharge reveal coastal vulnerabilities // Science. 2016. 353, 6300. 705–707.

141



Schmidt C. M., Fisher A. T., Racz A., Wheat C. G., Los Huertos M., Lockwood B. Rapid
nutrient load reduction during infiltration of managed aquifer recharge in an agricultural
groundwater basin: Pajaro Valley, California // Hydrological Processes. 7 2012. 26, 15.
2235–2247.

Schmidt Calla M., Fisher Andrew T., Racz Andrew J., Lockwood Brian S., Huertos
Marc Los. Linking Denitrification and Infiltration Rates during Managed Groundwater
Recharge // Environmental Science & Technology. 11 2011. 45, 22. 9634–9640.

Senechal N, Coco G, Bryan K R, Holman R A. Wave runup during extreme storm
conditions // J. Geophys. Res. 2011. 116. 7032.

Senechal Nadia, Coco Giovanni, Plant Nathaniel, Bryan Karin R., Brown Jenna, MacMa-
han Jamie H. M. Field Observations of Alongshore Runup Variability Under Dissipative
Conditions in the Presence of a Shoreline Sandwave // Journal of Geophysical Research:
Oceans. 9 2018. 123, 9. 6800–6817.

Smit P.B., Stelling G.S., Roelvink D., Vries J.S.M. van Thiel de, McCall R.T., Don-
geren A.R. van, Zwinkels C., Jacobs R. XBeach: Non-hydrostatic model. Delft, The
Netherlands, 2010.

Smith Jane McKee, Bak Spicer, Hesser Tyler, Bryant Mary A., Massey Chris. Frf Wave
Test Bed and Bathymetry Inversion // Coastal Engineering Proceedings. 2017. 35. 22.

Splinter Kristen D., Carley James T., Golshani Aliasghar, Tomlinson Rodger. A relation-
ship to describe the cumulative impact of storm clusters on beach erosion // Coastal
Engineering. 2014. 83. 49–55.

Splinter Kristen D., Kearney Edward T., Turner Ian L. Drivers of alongshore variable
dune erosion during a storm event: Observations and modelling // Coastal Engineering.
2018. 131, December 2016. 31–41.

ERDC/CHL SR-19-4 ”Coastal Lidar and Radar Imaging System (CLARIS) Lidar Data
Report: 2011 - 2017”. // . 2019. July.

Stockdon Hilary F., Holman Rob A., Howd Peter A., Sallenger Asbury H. Empirical
parameterization of setup, swash, and runup // Coastal Engineering. 2006. 53, 7.
573–588.

Stockdon Hilary F., Sallenger Asbury H., Holman Rob A., Howd Peter A. A simple model
for the spatially-variable coastal response to hurricanes // Marine Geology. 3 2007a.
238, 1-4. 1–20.

Stockdon Hilary F., Thompson David M., Sallenger Asbury H. Hindcasting potential

142



hurricane impacts on rapidly changing barrier islands // 6th International Conference
on Coastal Sediments, New Orleans. 2007b. 976–985.

Susquehanna River Basin Commission . Conowingo Pond Management Plan. 2006.

Thornton E. B., MacMahan J., Sallenger A. H. Rip currents, mega-cusps, and eroding
dunes // Marine Geology. 2007. 240, 1-4. 151–167.

Thorslund Josefin, Bierkens Marc F.P., Oude Essink Gualbert H.P., Sutanudjaja Edwin H.,
Vliet Michelle T.H. van. Common irrigation drivers of freshwater salinisation in river
basins worldwide // Nature Communications. 12 2021. 12, 1.

Tian Richard. Factors controlling saltwater intrusion across multi-time scales in estuaries,
Chester River, Chesapeake Bay // Estuarine, Coastal and Shelf Science. 7 2019. 223.
61–73.

Tootoonchi Faranak, Sadegh Mojtaba, Haerter Jan Olaf, Räty Olle, Grabs Thomas,
Teutschbein Claudia. Copulas for hydroclimatic analysis: A practice-oriented overview.
3 2022.

Try Sophal, Tanaka Shigenobu, Tanaka Kenji, Sayama Takahiro, Khujanazarov Temur,
Oeurng Chantha. Comparison of CMIP5 and CMIP6 GCM performance for flood
projections in the Mekong River Basin // Journal of Hydrology: Regional Studies. 4
2022. 40.

Tully Kate, Gedan Keryn, Epanchin-Niell Rebecca, Strong Aaron, Bernhardt Emily S.,
Bendor Todd, Mitchell Molly, Kominoski John, Jordan Thomas E., Neubauer Scott C.,
Weston Nathaniel B. The invisible flood: The chemistry, ecology, and social implications
of coastal saltwater intrusion // BioScience. 2019. 69, 5. 368–378.

Turner Ian L., Harley Mitchell D., Short Andrew D., Simmons Joshua A., Bracs Melissa A.,
Phillips Matthew S., Splinter Kristen D. A multi-decade dataset of monthly beach
profile surveys and inshore wave forcing at Narrabeen, Australia // Scientific Data.
2016. 3. 1–13.

USGS . Water Data: Pajaro R a Chittenden CA - 11159000. 2023.

Vitousek Sean, Barnard Patrick L., Fletcher Charles H., Frazer Neil, Erikson Li, Storlazzi
Curt D. Doubling of coastal flooding frequency within decades due to sea-level rise //
Scientific Reports. 12 2017. 7, 1. 1399.

Vogel Richard M., Lall Upmanu, Cai Ximing, Rajagopalan Balaji, Weiskel Peter K.,
Hooper Richard P., Matalas Nicholas C. Hydrology: The interdisciplinary science of
water // Water Resources Research. 6 2015. 51, 6. 4409–4430.

143



Vousdoukas M. I., Kirupakaramoorthy T., Oumeraci H., Torre M. de la, Wübbold F.,
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