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SMOOTHED ANALYSIS OF SYMMETRIC RANDOM MATRICES WITH

CONTINUOUS DISTRIBUTIONS

BRENDAN FARRELL AND ROMAN VERSHYNIN

Abstract. We study invertibility of matrices of the form D + R where D is an arbitrary
symmetric deterministic matrix, and R is a symmetric random matrix whose independent
entries have continuous distributions with bounded densities. We show that ‖(D+R)−1‖ =
O(n2) with high probability. The bound is completely independent of D. No moment
assumptions are placed on R; in particular the entries of R can be arbitrarily heavy-tailed.

1. Introduction

This note concerns the invertibility properties of n×n random matrices of the type D+R,
where D is an arbitrary deterministic matrix and R is a random matrix with independent
entries. What is the typical value of the spectral norm of the inverse, ‖(D +R)−1‖?

This question is usually asked in the context of smoothed analysis of algorithms [9]. There
D is regarded as a given matrix, possibly poorly invertible, and R models random noise.
Heuristically, adding noise should improve invertibility properties of D, so the typical value
‖(D + R)−1‖ should be nicely bounded for any D. Sometimes this is true, but sometimes
not quite.

This is indeed the case when R is a real Ginibre matrix, i.e. the entries ofR are independent
N(0, 1) random variables. A result of Sankar, Spielman and Teng [10] states that

P
{

‖(D +R)−1‖ ≥ t
√
n
}

≤ 2.35/t, t > 0. (1.1)

In particular, ‖(D + R)−1‖ = O(
√
n) with high probability. Note that this bound is in-

dependent of D. It is sharp for D = 0, since ‖R−1‖ &
√
n with high probability ([1], see

[8]).
For general non-Gaussian matrices R a new phenomenon emerges: invertibility of D + R

can deteriorate as ‖D‖ → ∞.

Suppose the entries of R are sub-gaussian1 i.i.d. random variables with mean zero and
variance one. Then a result of Rudelson and Vershynin [6] (as adapted by Pan and Zhou
[5]) states that as long as ‖D‖ = O(

√
n), one has

P
{

‖(D +R)−1‖ ≥ t
√
n
}

≤ C/t+ cn, t > 0.

Here C > 0 and c ∈ (0, 1) depend only on a bound on the sub-gaussian moments of the
entries of R and on ‖D‖/√n.

Surprisingly, sensitivity to ‖D‖ is not an artifact of the proof, but a genuine limitation.
Indeed, consider the example where each entry of R equals 1 and −1 with probability 1/4 and

Date: June 2, 2015.
2010 Mathematics Subject Classification. 60B20,15B52.
1See [14] for an introduction to sub-gaussian distributions. Briefly, a random variable X is sub-gaussian

if p−1/2(E|X |p)1/p ≤ K < ∞ for all p ≥ 1; the smallest K can be called the sub-gaussian moment of X .
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0 with probability 1/2. Let D be the diagonal matrix with diagonal entries (0, d, d, . . . , d).
Then one can show2 that ‖(D + R)−1‖ & d/

√
n with probability 1/2. In particular, ‖(D +

R)−1‖ ≫ √
n as soon as ‖D‖ = d ≫ n.

Note however that the typical value of ‖(D + R)−1‖ remains polynomial in n as long as
‖D‖ is polynomial in n. This result is due to Tao and Vu [12, 11, 13]; Nguyen [4] proved a
similar result for symmetric random matrices R.

To summarize, as long as the deterministic part D is not too large, ‖D‖ = O(
√
n),

Sankar-Spielman-Teng’s invertibility bound (1.1) remains essentially valid for general random
matrices R (with i.i.d. subgaussian entries with zero mean and unit variance). For very large
deterministic parts (‖D‖ ≫ n), the bound can fail. It is not clear what happens in the regime√
n ≪ ‖D‖ . n.
Taking into account all these results, it would be interesting to describe ensembles of

random matrices R for which invertibility properties of D+R are independent of D. In this
note we show that if the entries of a symmetric matrix R have continuous distributions, then
the typical value of ‖(D+R)−1‖ is polynomially bounded independently of D; in particular
the bound does not deteriorate as ‖D‖ → ∞.

Theorem 1.1. Let A be an n×n symmetric random matrix in which the entries {Ai,j}1≤i≤j≤n

are independent and have continuous distributions with densities bounded by K. Then for

all t > 0,

P
{

‖A−1‖ ≥ n2t
}

≤ 8K/t. (1.2)

Since we do not assume that the entries have mean zero, this theorem can be applied to
matrices of type A = D+R, and it yields that ‖(D+R)−1‖ = O(n2) with high probability.
This bound holds for any deterministic symmetric matrix D, large and small. We conjecture
that the bound can be improved to O(

√
n) as in Sankar-Spielman-Teng’s result (1.1).

Remark 1.2. We do not place any upper bound assumptions in Theorem 1.1, either on the
deterministic part D or the random part R. In particular, the entries of R can be arbitrarily
heavy-tailed. The upper bound K on the densities precludes the distributions concentrating
near any value, so effectively it is a lower bound on concentration.

Remark 1.3. A result in the same spirit as Theorem 1.1 was proved recently by Rudelson
and Vershynin [7] for a different ensemble of random matrices R, namely for random unitary

matrices. If R is uniformly distributed in U(n) then

P
{

‖(D +R)−1‖ ≥ tnC
}

≤ t−c, t > 0.

As in Theorem 1.1, D can be an arbitrary deterministic n × n matrix; C, c > 0 denote
absolute constants (independent of D).

Remark 1.4. For the specific class where D is a multiple of identity, sharper results are avail-
able than Theorem 1.1. In particular, results by Erdős, Schlein and Yau [2] and Vershynin
[15] yield an essentially optimal bound on the resolvent, ‖(D− zI)−1‖ = O(

√
n). Moreover,

the latter estimate does not require that the entries of D have continuous distributions; see
[2, 15] for details.

2This example is due to M. Rudelson (unpublished); a similar phenomenon was discovered independently
by Tao and Vu [13].
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Remark 1.5. While Theorem 1.1 is stated for symmetric matrices, it holds as well for Her-
mitian matrices. The proof for the Hermitian case only requires an easy change to the proof
of Lemma 2.1 below.

Remark 1.6. The proof of Theorem 1.1 shows that one can relax the assumption of joint
independence of the entries. Is suffices to assume that the individual distribution of each
entry Aij, conditioned on all other entries except Aji, has density bounded by K.

In the rest of the paper, we prove Theorem 1.1. The argument is very short and is based
on computing the influence of each entry of A on the corresponding entry of A−1.

2. Proof of Theorem 1.1

Recall that the weak Lp norm of a random variable X is

‖X‖p,∞ := sup
t>0

t (P{|X| > t})1/p , 0 < p < ∞. (2.1)

Lemma 2.1. Let A be the random matrix defined in Theorem 1.1. Then for all 1 ≤ i, j ≤ n,

‖(A−1)i,j‖1,∞ ≤ 2K.

Proof. Let us determine how a single entry of the inverse, say (A−1)i,j, depends on the
corresponding entry of A, i.e. Ai,j. To this end, let us condition on all entries of A except
Ai,j, thus treating them as constants. We could proceed by the cofactor expansion. But we
find it easier to use Jacobi formula, which is valid for an arbitrary square matrix A = A(t)
that depends on a parameter t:

d

dt
|A(t)| = tr

[

adj(A(t))
dA(t)

dt

]

.

Here and later |A| denotes the determinant and adj(A) denotes the adjugate matrix of A.
Let A(i,j) be the submatrix obtained by removing the ith row and jth column of A, and let
A(i,j),(k,l) be the submatrix obtained by removing rows i and k and columns j and l from A.

Consider the off-diagonal case first, where i 6= j. The Jacobi formula yields d
dAi,j

|A(i,j)| =
(−1)i+j |A(i,j),(j,i)|, so that

|A(i,j)| = (−1)i+j |A(i,j),(j,i)|Ai,j + a (2.2)

for some constant a (meaning that a does not depend on Ai,j). Further,

d

dAi,j
|A| = (−1)i+j(|A(i,j)|+ |A(j,i)|) = (−1)i+j2|A(i,j)| = 2|A(i,j),(j,i)|Ai,j + (−1)i+j2a.

Thus, for some constant b one has

|A| = |A(i,j),(j,i)|A2
i,j + (−1)i+j2aAi,j + b. (2.3)

Equations (2.2) and (2.3) and Cramer’s rule imply that for all (i, j) there exist constants
p, q such that

|(A−1)i,j| =
∣

∣

∣

∣

|A(i,j)|
|A|

∣

∣

∣

∣

=
|Ai,j + p|

∣

∣(Ai,j + p)2 + q
∣

∣

=
∣

∣

∣

X

X2 + q

∣

∣

∣
, where X = Ai,j + p.

First, assume that q ≥ 0. Then |(A−1)i,j | ≤ 1/|X|, and thus we have for all t > 0:

P{|(A−1)i,j| > t} ≤ P{|X| < 1/t} ≤ 2K/t. (2.4)
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Next, assume 0 > q =: −s; then

|(A−1)i,j| =
1

|X − s/X| .

Note that the function f(x) := x− s/x satisfies f ′(x) = 1+ s/x2 > 1 for all x 6= 0. Thus the
set of points {x ∈ R : |f(x)| < ε} has diameter at most 2ε for every ε > 0. When x = X is
a random variable with density bounded by K, it follows that P{|f(X)| < ε} ≤ 2Kε. Using
this for ε = 1/t, we obtain

P{|(A−1)i,j| > t} ≤ P{|f(X)| < 1/t} ≤ 2K/t.

We have shown that in the off-diagonal case i 6= j, the estimate (2.4) always holds.
The diagonal case i = j is similar. The Jacobi formula (or just expanding the determinant

along i-th row) shows that |A| = |A(i,i)|Ai,i + c for some constant c. Then a similar analysis
yields P{|(A−1)i,j| > t} ≤ 2K/t. This completes the proof. �

Proof of Theorem 1.1. Although the weak L1 norm is not equivalent to a norm, the following
inequality holds for any finite sequence of random variables Xi:

∥

∥

∥

(

∑

i

X2
i

)1/2∥
∥

∥

1,∞
≤ 4

∑

i

‖Xi‖1,∞. (2.5)

This inequality is due to Hagelstein (see the proof of Theorem 2 in [3]); it follows by a
truncation argument and Chebyshev’s inequality. We use (2.5) together with the estimates
obtained in Lemma 2.1 to bound the Hilbert-Schmidt norm of A:

∥

∥‖A−1‖HS

∥

∥

1,∞
=

∥

∥

∥

(

∑

1≤i,j≤n

((A−1)i,j)
2
)1/2∥

∥

∥

1,∞
≤ 4

∑

1≤i,j≤n

‖(A−1)i,j‖1,∞ ≤ 8Kn2.

The definition of the weak L1 norm then yields

sup
t>0

tP{‖A−1‖HS > t} ≤ 8Kn2.

Since ‖A−1‖ ≤ ‖A−1‖HS, the proof of Theorem 1.1 is complete. �
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