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ORIGINAL CONTRIBUTION

Fourier-Domain Optical Coherence Tomography
and Adaptive Optics Reveal Nerve Fiber Layer
Loss and Photoreceptor Changes in a Patient

With Optic Nerve Drusen

Stacey S. Choi, PhD, Robert J. Zawadzki, PhD, Mark A. Greiner, MD,

John S. Werner, PhD, and John L. Keltner, MD

Background: New technology allows more precise

definition of structural alterations of all retinal layers

although it has not been used previously in cases of

optic disc drusen.
Methods: Using Stratus and Fourier domain (FD)

optical coherence tomography (OCT) and adaptive

optics (AO) through a flood-illuminated fundus

camera, we studied the retinas of a patient with

long-standing optic disc drusen and acute visual loss at

high altitude attributed to ischemic optic neuropathy.
Results: Stratus OCT and FD-OCT confirmed

severe thinning of the retinal nerve fiber layer

(RNFL). FD-OCT revealed disturbances in the

photoreceptor layer heretofore not described in optic

disc drusen patients. AO confirmed the FD-OCT

findings in the photoreceptor layer and also showed

reduced cone density at retinal locations associated

with reduced visual sensitivity.
Conclusions: Based on this study, changes occur not

only in the RNFL but also in the photoreceptor layer in

optic nerve drusen complicated by ischemic optic

neuropathy. This is the first reported application of

FD-OCTand the AO to this condition. Such new imag-

ing technology may in the future allow monitoring of

disease progression more precisely and accurately.

(J Neuro-Ophthalmol 2008;28:120–125)

Optic nerve drusen are calcified prelaminar concre-

tions that are visible at the disc surface or buried

beneath it (1,2). A range of visual field defects is associated

with optic nerve drusen (3–5). As drusen enlarge, the optic

disc tends to become pale and the surrounding nerve fiber

layer becomes thin. Nerve fiber loss has been demonstrated

histologically and by optical coherence tomography

(OCT) (6–8).

This report describes a case of presumed ischemic

optic neuropathy causing vision loss in an unusually young

man with optic nerve drusen, in which high-resolution

Fourier domain (FD)-OCT and adaptive optics (AO)

through a flood-illuminated fundus camera were used 36

years after loss of vision to evaluate the retina at resolutions

that could not have been achieved with conventional

imaging instruments. This is the first report of the use of

this new technology to study optic nerve drusen compli-

cated by ischemic optic neuropathy.

METHODS AND RESULTS

Clinical Features
A previously healthy 19-year-old man awoke while

camping at over 11,000 feet elevation in September 1969

with sudden painless loss of vision in both eyes and sever-

ely constricted visual fields with the right eye most con-

stricted. The day before losing vision eyes he felt somewhat

sick with flu-like symptoms, did a fair amount of hiking and

backpacking, and was dehydrated. He had been smoking 5–

10 cigarettes daily. His blood pressure had been in the low

100s (systolic) and mid-60s (diastolic) for many years.

There was no history of trauma, eye pain, glaucoma, double

vision, headache, vertigo, dysarthria, tremor, paralysis, or

loss of sensation. The patient did not have diabetes mellitus,

hypertension, or other cardiovascular disease.

On neuro-ophthalmic examination in October 1969,

visual acuity was 20/20 in both eyes with a low myopic

correction. Visual field testing showed preservation of
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10 degrees of central field in both eyes, surrounded by

a ring scotoma interspersed with patchy islands of intact

peripheral field. The pupils, extraocular motility, and

cranial nerves were normal, and there was no afferent

pupillary defect. Dilated ophthalmoscopic examination

showed marked drusen in both optic nerves, with diffuse

elevation of the optic nerve. There were no other fundus

abnormalities. Results of general medical and neurologic

examinations performed were normal. Results of standard

laboratory testing, pneumoencephalography, electroen-

cephalography, and spinal fluid examination were

unremarkable.

Although the patient’s severe visual field loss was

thought to be related to his optic nerve drusen, the etiology

of the sudden new visual loss was unclear to investigators,

in part due to the lack of published reports in 1969 of

drusen associated with sudden vision loss.

Neuro-ophthalmic examination by the University of

California Davis Neuro-Ophthalmology service in March

2005, when the patient was 54 years old, revealed best-

corrected visual acuities of 20/15 and 20/15 in both eyes.

Visual fields were constricted when measured by kinetic or

automated static perimetry but expanded appropriately on

confrontation testing. Color vision testing showed correct

responses on 4/6 American Optical Hardy-Rand-Rittler

pseudoisochromatic plates with the right eye and 6/6 plates

with the left eye. The pupils, extraocular motility, cranial

nerves, stereoacuity, exophthalmometry, and slit lamp exam-

ination were normal. Intraocular pressures were 11 mm Hg

in the right eye and 13 mm Hg in the left eye. The dilated

fundus examination showed optic nerve drusen in both

eyes with severe loss of the nerve fiber layer (Fig. 1) and

a normal macula.

Ancillary Studies: Electroretinography (ERG)
A conventional Ganzfeld electroretinogram (ERG)

obtained in 2005 showed normal amplitude and latency in

both eyes under photopic, scotopic, and flicker conditions.

Visual field tests have been performed on several occasions

since 1984 and have shown consistency and no change.

Multifocal visual evoked potentials in 2005 demonstrated

the same pattern of visual field loss (Fig. 2).

Ancillary Studies: Optial Coherence
Tomography (OCT)

The patient’s retinal nerve fiber layer was evaluated in

2005 with Stratus OCT images (Fig. 3) and with FD-OCT

(9,10) constructed at University of California, Davis.

Because of its high acquisition speed (20–40 times faster

than Stratus OCT) and the broad spectral bandwidth of the

light source used for imaging, FD-OCT allows volumetric

imaging of retinal structures at 3 times higher axial resolution

than does Stratus OCT (FD-OCT provides ~4.5 mm; Stratus

OCT provides $10 mm) (11). Three-dimensional (3D)

images of the retina (6 mm3 6 mm3 2 mm) were acquired

in about 11 seconds (12). All images were taken with the

pupil dilated, and a bite bar and forehead rest were used to

minimize head movement. FD-OCT 6 mm B-scans of the

patient’s right and left optic nerve heads acquired with this

system are shown (Fig. 4), along with the FD-OCT B-scans

of normal optic nerves from an age-matched and two younger

subjects (aged 32 and 38 years) for direct comparison.

Scanswere made through the center of the optic nerve in

all cases. The OCT scans of the normal eye showed a normal

optic nerve, RNFL, and photoreceptor layers (Fig. 4A, boxes).

There were three distinct lines corresponding to the retinal

pigment epithelial layer (RPE), Verhoeff’s membrane, and the

junction between the inner and outer photoreceptor segments

(Fig. 4A, arrows). We tentatively identified Verhoeff’s mem-

brane as a distinctive band visible between the photoreceptor

inner and outer segment junction and the RPE (13,14), a

change in refractive index likely to derive from the area where

the cone outer segments are enveloped by the apical processes

of the RPE (15). Similar outer retinal layers in FD-OCT

images of normal retina have previously been described in FD-

OCT systems built in research laboratories (9,16-18).

The OCT scans of the patient’s eyes showed

prominent drusen inside the optic nerve, almost no RNFL

FIG. 1. Fundus photographs per-
formed in 2005 show optic nerve
drusen. (A) right eye, (B) left eye.
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in the nasal retina, relatively thinned RNFL in the temporal

retina, and an altered photoreceptor layer. That is, there

were two broad bands rather than three distinct lines

(arrows) in both the nasal and temporal retina (Fig. 4B–C,

boxes). The photoreceptor layer at the temporal aspect of

the patient’s left optic nerve appeared to be healthier,

showing more defined layers.

Ancillary Studies: Adaptive Optics (AO)
To investigate the integrity of cone photoreceptors in

more detail, an adaptive optics (AO) flood-illuminated

fundus camera was used to image the cone photoreceptor

mosaic in vivo. This system, described in detail elsewhere

(19), provides lateral resolution of 2.5 mm and makes it

possible to resolve individual cone photoreceptors in living

eyes. The eye’s aberrations were measured and corrected by

a Hartmann-Shack wavefront sensor and a deformable

mirror (Itek, 109 actuators), respectively. The imaging

wavelength of 650 6 40 nm was used to acquire images of

1 degree field of view. Cone density was then measured

using a custom program (20) and compared with typical

cone photoreceptor histology (21). All images were taken

FIG. 2. Visual fields performed in
1984, 1990, and 2005 showmarked
constriction but stability. Kinetic
Goldmann visual fields performed
in 1984 (A, F) and 2005 (C, H).
Humphrey visual field grayscale and
total deviation plots using stimulus
size III/white performed in 1990 (B,
G) and 2005 (D, I). Multifocal visual
evoked potential (MfVEP) amplitude
deviation plots obtained in 2005 for
the right eye (E) and left eye (J).
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with the pupil dilated, and a bite bar and forehead rest were

used to stabilize the head. AO en-face images from two

retinal locations in the right eye are shown in Figure 5 as an

example. The retina at 2� nasal 2� superior represents

a location with normal retinal sensitivity by Humphrey

visual field (HVF) testing, whereas 6� temporal 6� superior
retina represents an area of scotoma on HVF testing

(Fig. 5A). The cone mosaic at 2� nasal 2� superior retina
(Fig. 5B) was densely packed with a cone density measured

at 87% of expected value from histology (which is within

the standard deviation of normal cone density at the cor-

responding retinal location). However, the cone mosaic at

6� temporal 6� superior retina contained areas of dark space
and had a reduced cone density measured at 56% of

expected, indicating altered and/or missing cone photo-

receptors at this location (19,22).

DISCUSSION
Our patient presented with sudden and severe loss of

peripheral vision with preservation of central vision and

visual acuity. The diagnosis of optic nerve drusen was made

because of the characteristic finding of refractile deposits at

the optic disc. However, the acute vision loss was not

adequately explained by the drusen

We suppose that the acute visual loss was caused by

drusen with the addition of strenuous physical activity at

an altitude of more than 11,000 feet, dehydration, a flu-like

syndrome, nocturnal hypotension, smoking, and a history of

low blood pressure, which combined to produce nonarteritic

anterior ischemic optic neuropathy (NAION) in both eyes.

The optic disc swelling of NAION was not observed on

neuro-ophthalmic examination because too much time had

elapsed (23). We had the opportunity to evaluate this patient

with advanced imaging techniques 35 years after the NAION

to see if there had been structural changes in the retina and

optic nerve after this long time interval.

Our high-resolution FD-OCT system (24) confirmed

the Stratus OCT findings of RNFL thinning and disclosed

thinning of the photoreceptor layer not previously described

(arrows in Fig 4). The RNFL is clearly present in the

temporal retina, but it appears thin compared with normal

RNFL at this location. The thicker temporal retina and

relatively preserved papillomacular bundle most likely

FIG. 3. Stratus optical coherence
tomography (OCT) 6 mm line
B-scans performed in 2005 through
the center of the optic nerve.

FIG. 4. High-resolution Fourier domain optical coherence tomography (FD-OCT) B-scans through the center of the optic
nerve in an age-matched normal left eye (A), the patient’s right eye (B), and the patient’s left eye (C). The retinal nerve fiber
layer (RNFL) is indicated (arrow). The photoreceptor layer is highlighted with a dashed-line box (– – –) at the nasal aspect and
a solid-line box (——) at the temporal aspect of the optic nerve. The photoreceptor layer in A has three distinct lines
corresponding to the retinal pigment epithelium (RPE) (arrow 1), Verhoeff’s membrane (arrow 2), and the inner and outer
photoreceptor segment junction, IS/OS (arrow 3). Altered photoreceptor layers are shown in B–C, each with two broad bands
corresponding to the RPE (arrow 1) and indistinct Verhoeff’s membrane and IS/OS (arrow 2). N, nasal; T, temporal.
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explain the patient’s good visual acuity. The altered

appearance of the photoreceptor layer on FD-OCT results

from inability to distinguish the inner and outer photore-

ceptor segment junction from Verhoeff’s membrane and

blurring in the photoreceptor outer segment layer, creating

the appearance of two broad bands in our patient’s eyes

(Fig. 4B–C, arrows) rather than three distinct layers in the

normal eyes (Fig. 4A, arrows). The observation of three

distinct layers in the outer retina has been also documented

by other groups (Fig. 4A) (9,16–18). These photoreceptor

changes cannot be seen with Stratus OCT.

The AO en-face images demonstrated altered and/or

missing cone photoreceptors at areas of vision loss (Fig. 5).

The cone mosaic from an area of more intact retina shows

densely packed cones with normal cone density, whereas the

cone mosaic from an area of scotoma shows some dark

spaces with cone density reduced nearly by half. Our

imaging indicates that such changes in cone photoreceptors

occur in conjunction with expected changes at the inner

retina in optic nerve drusen. Further investigation is

necessary to better characterize these dark spaces in the

cone mosaic. From these images, one cannot differentiate

a loss of cones from changes in structural integrity, such as

swelling or shortening of the outer segment of cones, which

may decrease cone reflectivity and produce similar findings.
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