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On the Existence of Characteristic Diffuse Light in Natural Waters 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

ABSTRACT 

I t i s shown that the radiance distributions in homogeneous natural 

waters approach an asymptotic radiance distribution with increasing 

depth. In th i s way the conjecture by L. V. Whitney concerning the 

existence of characteristic diffuse l ight in natural waters i s 

proved. A brief discussion i s included of the equations governing the 

angular form of the characteristic diffuse l i gh t . 

INTRODUCTION 

Recent experimental evidence (Tyler , 1958) forms the b a s i s for 

fresh support of the long-standing conjecture that the radiance d i s ­

tribution about a point in an optically deep natural hydrosol approaches, 

with increasing depth, a characteristic form which i s independent of 

the external l ighting conditions and the optical state of the surface 

of the medium, and which depends only on the inherent optical pro­

perties of the medium. This conjecture wag apparently given i t s 

f i r s t definit ive formulation by Whitney (1941a), (1941b), who referred 

^ S b M t i 0 n f r ° m th™ S c r i p p s I n *t i tut ion of Oceanography, New 
h ^ h f i ° ° rsl J h i S ***** r e s e n t s results of research which 
has been supported by the Bureau of Ships, U. S. Navy. 
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to the asymptotic radiance distribution as the characteristic diffuse 

light. In this note we complement the experimental evidence in favor 

of this conjecture by supplying a simple proof of the existence of 

characteristic diffuse light in all homogeneous optically deep natural 

waters. The discussion concludes with a derivation of the integral 

equation governing the angular structure of the characteristic diffuse 

light and a brief discussion of an interesting and tractable example > 

for the case of isotropic scattering. 

We note in passing that since the time of tho formulation of the 

asymptotic radiance hypothesis by Whitney, its domain of applicability 

has been widened considerably. The problem of a limiting angular 

distribution has since been encountered in modern neutron transport 

theory but basically as an abstract mathematical problem rather than 

experimental phenomenon. A similar type of problem has long been 

extant in astrophysical radiative transfer. A general proof of the 

existence of an asymptotic radiance distribution which covers all these 

contexts has recently been devised (Preisendorfer, 1958a). 

Despite the widening of the domain of applicability of the hypo- • 

thesis, it still retains its greatest usefulness in the context of 

geophysical optics. For in this field, unlike tho others mentioned 

above, the trend to a characteristic limiting form is a directly 

observable phenomenon. Furthermore the existence of such a form is 

of inestimable importance to all experimental research work dealing 

with the determination of the optical properties of natural waters. 



SIO Ref. 58-59 - 3 

In many important instances, knowledge that an asymptotic radiance 

distribution exists will obviate the necessity for experimental 

probings to extremely large depths; for such knowledge will allow, 

by means of relatively simple formulas, the accurate prediction of 

the geometrical structure of the light field in the great-depth ranges. 

Some of these practical consequences of the asymptotic radiance hypo­

thesis recently have been formulated (Preisendorfer 1958b). 

PHYSICAL BACKGROUND OF THE METHOD OF PROOF 

The argument used by Whitney in establishing experimental evi­

dence for the asymptotic radiance hypothesis went basically as 

follows: he showed that when the experimentally obtained plots of 

radiance distributions at various large depths were all blown up to 

the same size, they formed a set of nearly congruent figures. Now, -

an interesting feature of such radiance distributions is that they 

assume the same shape, and decrease in sizo with increasing depth at 

very nearly the same exponential rate. This fact can be stated 

precisely as follows: 

N(2,0,^) as ^ ( e y ^ ) e 
-4* 

It is implicit in tho definition of radiance that it applies to an 
arbitrary but fixed wavelength of radiant flux. This is also true 
of all tho other radiometric quantities used in this note. 

(1) 
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From this we see that the asymptotic radiance hypothesis is 

equivalent to the statement that the directional and depth A ^ * ^ 

of radiance distributions multiplicativey uncouple at. ̂ eat depth*. 

That is, the radiance function N may be represented as the product 

of two functions: the function 3, gives the shape or directional 

structure common to all the distributions, and the exponential func­

tion gives the depth dependence of the distributions. 

Each factor on the right hand side of (l) has special physical 

significance. The function <j, evidentally defines the angular form . 

of the characteristic diffuse light. The exponent Jk of the exponen­

tial function has the following interesting interpretation: Define 

the scalar irradiance h(2) at depth 2 as follows: 

ha) = \ \ N(zte,<fi) sine dec/jrf , 
2TT r 7T 

(2) 

The quantity hiZ) is a measure of the volume density of radiant energy 

at depth Z . Countless measurements of hft) over the years in many 

hydrosols have shown that h(Z) varies essentially in an exponential 

manner with depth. That is, semi-log plots of fa vs. depth show an 

unmistakable trend forward to linearity as depth increases. In any 

events h(Z) may be accurately represented by a formula of the type: . 

(3) 
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where ,#(Z)is seen to be the logarithmic derivative of \\CZ) . As depth 

increases, the experimental evidence is that >fe(Z) approaches a con­

stant value. Let us denote this limit value by Jflo, . Now assuming 

that an asymptotic radiance distribution is approached by the radiance 

distributions in a particular body of water, we see from (l), (2) and 

(3), that 

where 20 is the depth below which we may assume that Jfc(2) =• Jfa 

From this we conclude that 

4= i. <*> 

Hence under the above assumption (1), we see that at great depths 

in tho water, the size of the radiance distribution plots decrease 

exponentially with increasing depth, and the rate of this decrease is 

precisely that of the scalar irradiance (or energy density). 

The close connection between the depth dependence of scalar 

irradiance and that of the radiance distributions, as summarized in 

(5), suggests the following mode of representation of the radiance 

distributions for any depth: Define, for each direction (&,<£) , 

K(*,*»= r1^— mim. <6) 
N(2,6» cf2 
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Then, in analogy to (3), N(H,e,<£) at any depth 2 may be repre­

sented exactly by: 

N(*,e,^)= N(o,e,<1>) exp]-\ \<(t',e}<t) dz'] (7) 

Now suppose there i s some depth 20 below which we have K(?,©,<£) = jfc 

for a l l d i rec t ions ( © ; ^ ) . Then (7) may bo written 

N(a,«,*)« N(o,e,<£) e * p | - {̂  foz', s,rf;da ' - f K&,9><t>)dl'l 

- N(2o,e» e^j-JLc*-*,,) j o 

I f we set 

^(e,*) = NC2o,9̂ ) e x p { l z j ? 

then we may write 

2 
W*,e,*)"». £<*.*) e • , • ' . . . " . . . • • ; . ( 8 ) 

for a l l depths £ below £„ . 
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The similarity between (l) and (8) is unmistakable. This simi­

larity points out a method of attack wo may follow in order to prove 

the asymptotic radiance hypothesis: we must show that the quantities 

\((2,Q,<t) approach a limit as depth is increased, and that this 

limit is independent of the directions ££>;<£) t Furthermore, this 

limit, in accordance with the preceding discussion, should be none other 

than the limit j^of Jkii) , as defined in (3). 

THE PROOF ' " 

We make use of the equation of transfer for radiance: 

ah (9) 

where 

^(z.e,^)^ I <F(8,$', e',4') N(2,e', j>')sme'd9'dj' 

defines the path function N^J QT is the volume scattering function 

(which governs the law of scattering in the water), and oC 'is the 

volume attenuation coefficient. The formal solution of (9) is readily 

obtained: 

h ' ' ' 
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The f i r s t term represents the component of N consist ing of unscattered 

l i g h t . The second represents the space l igh t over the path of 

length r , (Figure l ) . This space l i gh t has been generated by l i g h t 

scattered into the path of sight a l l along i t s extent . The formal 

solution (11) has been wr i t ten for a general downward di rec t ion of 

flow of l igh t (see Figure 1 ) , so t h a t . N ° C Z , M ) i s in terpre ted as 

the d i r e c t l y transmitted l i gh t from the upper boundary of the medium, 

and i s of the form 

N ° ( 2 , e , ^ ) = N ° ( 0 , © , < £ ) e " - 0 ^ 

where 

— h cose =• ? . 

We now turn equation (11) into a useful inequality by means of 

the following three steps: 

First, since N(Z, 0, </>) clearly exceeds its spacelight com­

ponent at all depths, we can write: 

h 

'o 
N(z,e,<s) > \ N*£z',©ITMe

 } j t i 0 

Second, using the definition of N#, we strengthen the inequality when 

^ere <rmin is the minimum value of the volume scattering function; 

that is, we have used (10) to deduce that 
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F ina l ly , since n(2) decreases with increasing depth, we certainly 

strengthen the inequal i ty by wr i t ing: 

H 

t v ( Z , e , > ) > CTm.nhfZ) ( <2 ~ ^^^*" * of/-'. 

That i s , we have 

« « , » , * ) > ^ = ' h f * ) 0 - e " ' " ' ) (12) 

for all depths 2 . From this we see that as depth increases indefi­

nitely, the exponential rate of decrease K ( 2 , 0 , 0 ) of the radiance 

cannot eventually exceed,and remain larger by any finite amount, 

the JlCi) of the scalar irradiance (for if it did, the plot of f\) 

would eventually fall and remain below that of h ), • This observation 

is stated symbolically as follows: 

l,r"2-*« K<*/»i*> ^ Im^^* M B ) - J L (13) 

for all downward directions, (fc,^) . We now show that strict equality, 

must hold in (13). We achieve this by initially assuming the contrary, 

that is we assume that there is a non zero solid angle j£ of 

directions over which 

I""*-*. I^e.*) « J L - e 



SIO Ref. 58-59 

where 6 is any. small positive number. Then it is clear that the 

radiances in this set of directions decreases at a definitely smaller 

rate than the scalar irradiance, so much smaller., in fact that, by 

our assumption, it is true that for some depth ?, , we must have 

1 r 
"0 

However, this conclusion clearly contradicts (2) (a part cannot 

exceed the whole). We have reached a contradiction which leaves only 

one other possibility, namely that 

for all downward directions ( 0, S* ). In tho light of the preced­

ing discussions (cf (8)) this means that the shape of the radiance 

distributions impinging on the upper boundaries of deep layers of 

water eventually assume a fixed form. But it is known that the shape 

of the reflected radiance distribution at the upper boundary of a 

scattering layer is determined by the shape of the incident radiance 

distribution at that boundary. Hence if the incident radiance dis­

tribution approaches a fixed shape, so does that of the reflected dis­

tribution. This.completes the proof. 

We observe that the present proof can also be applied in all 

natural waters which eventually become homogeneous. That is, the 
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preceding arguments are basically unchanged if the medium is inhomo-

geneous over any initial finite depth range below the surface. Even 

more general situations exist which allow asymptotic radiance distribu­

tions, namely media in which the ratio 0"/oC eventually becomes inde­

pendent of depth (Preisendorfer, 1958a). 

THE EQUATION FOR THE CHARACTERISTIC DIFFUSE LIGHT 

Using the equation of transfer, the definition (6), and the 

relation between 2 and r , we can write the equation of transfer 

in the following general form: 

c< •+ U(2,B,<t>)cose 

From (14) and (8) we see that the limiting form of (15) (as depth 

increases indefinitely) is 

^<•,*)« j * r Je-° : (i6) 
©̂  -•• Aa, cos Q 

which is the equation governing the angular form of the characteristic 

diffuse light. It is a property of equations of tho type shown in (16) 

that tho function j is independent of ̂  for all real physical situations. 



SIO Ref. 58-59 - 12 -

Thus tho characteristic diffuse light is always represented by a sur­

face of revolution whose axis of symmetry is vertical. 

The theory of the solution of such equations as (16) is fairly 

well understood (see e.g., Davison, 1957). The present note, therefore, 

will not discuss in any detail the general solutions of (16). However, 

there is one simple special case which is immediately solved and which 

can shed much light on some of the salient details of the structure 

of the asymptotic radiance distributions. This is the case of isotropic 

scattering, where the volume scattering function 0" is independent 

of direction and has the form: 

(r<e,*i «',**) » % U 7 ) 

where A> is the total scattering coefficient. 

To see what the resulting structure of the asymptotic radiance 

distribution is, it is convenient in the present case to turn to 

(15). With the assumption (17) and the definitions (2) and (10), we 

have 

N(2,©,*) =r ^ ~ S 
^ <*+ \<(Z,0,4*)COSB 

which at great depths approaches the form: 

««.»,•) - ;£&) (18) 

t*) COS B 
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Here /0 is the depth below which h(2) is essentially of exponential 

behavior. Comparing (18) with (8), we see that for the present case, 

»•""*<*>-^F=r. • " 

We have written (19) in the indicated form to point up the following 

geometric fact: A polar plot of QOtP) is generally a prolate 

ellipsoid of revolution with vertical axis, and of eccentricity Jka>/ot> • 

It is easy to deduce that when there is no absorption in the medium, 

then / £ w ~ 0 , and the characteristic diffuse light is represented 

by a sphere. On the other hand, if there is very little scattering 

as compared to absorption, the figure assumes a very narrow, pencil­

like shape. In the limit of no scattering, Jg w approaches o(. > 

and the figure degenerates into a vertical line. 

The structure (18) is related to the limiting form for a 

simple model for the radiance distribution discussed elsewhere 

(Preisendorfer, 1958), and to a formula derived by Poole (1945). We 

conclude with the observation that (19) predicts a different limiting 

ratio of the horizontal to the upward radiance than that derived by 

Whitney (1941a) under the same circumstances (i.e., isotropic scatter­

ing). Instead of the ratio 2sl, as suggested by Whitney, the present • 

formula yiolds: 

^ ^ - . + (*.) < 2.' ^ 
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In other words, the ratio in (20) is not a fixed magnitude, but 

depends on the optical properties of the medium in the manner shown. 

The distribution (19) can serve as a convenient standard reference 

distribution against which experimentally determined radiance distri­

bution can be compared. The amount of departure of the experimental 

distributions from (19) would then serve as a measure of the anisotropy 

of scattering in the real medium, ' 
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