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Abstract

Our attentional focus is constantly shifting: in one moment our attention may be intently 

concentrated on a specific spot, while in another moment we might spread our attention more 

broadly. While much is known about the mechanisms by which we shift our visual attention from 

place to place, relatively little is know about how we shift the aperture of attention from more 

narrowly- to more broadly-focused. Here we introduce a novel attentional distribution task to 

examine the neural mechanisms underlying this process. In this task, participants are presented 

with an informative cue that indicates the location of an upcoming target. This cue can be perfectly 

predictive of the exact target location, or it can indicate—with varying degrees of certainty—

approximately where the target might appear. This cue is followed by a preparatory period in 

which there is nothing on the screen except a central fixation cross. Using scalp EEG, we 

examined neural activity during this preparatory period. We find that with decreasing certainty 

regarding the precise location of the impending target, participant response times increased while 

target identification accuracy decreased. Additionally, the multivariate pattern of preparatory 

period visual cortical alpha (8–12 Hz) activity encoded attentional distribution. This alpha 

encoding was predictive of behavioral accuracy and response time nearly one second later. These 

results offer insight into the neural mechanisms underlying how we use information to guide our 

attentional distribution, and how that influences behavior.
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Introduction

Humans and animals alike have the ability to prepare for future events and to focus their 

attention on the spatial location where they expect to observe the upcoming event of interest. 

Just as a feline stalking its prey can wait patiently—attention focused on a single spot in a 

clearing or broadly across an entire glade—so too can humans willfully decide to either pay 

attention to a precise location or spread their attention across their visual field. It is well 

established that performance is worse when attention is distributed compared to when 

attention is focused, which has been documented as a decrement in performance when we 

are not given precise details as to the location of the ensuing event (Mangun and Hillyard, 

1988) or for cued/attended compared to non-cued/unattended locations (Posner, 1980; 

Shulman et al., 1985; Handy et al., 1996). Attentional cueing is so effective that it can even 

reduce the effect of hemispatial neglect symptoms (Riddoch and Humphreys, 1983). 

However, studies that examine the distribution of spatial attention often do so by splitting 

attention across multiple distinct points in the visual field (Gould et al., 2011), such as for 

multiple object tracking (Cavanagh and Alvarez, 2005; Shim et al., 2013), or by 

manipulating the distance between the cued location and the upcoming target (Hollingworth 

et al., 2012).

The studies that have examined more fine-grained spatial certainty have largely focused on 

behavioral effects (Eriksen and St James, 1986; Huang et al., 2016), meaning that the neural 

mechanisms involved in preparatory attentional distribution are not well understood. This is 

critical, as much of the foundational work in this area has converged on cued-attention 

having a limited capacity, with a tradeoff between high precision with spatial certainty and 

lower precision in the face of uncertainty (Eriksen and St James, 1986). Mechanistically, this 

is often conceived of as gain control (Hillyard et al., 1998) or normalization (Reynolds and 

Heeger, 2009) wherein high spatial certainty leads to preparatory modulation of the neuronal 

population within the to-be-attended receptive field. With less spatial certainty, a larger 

neuronal population would need to be modulated, but with less precision.

Here we examined the neural basis of top-down, preparatory attentional focus and 

distribution using a novel spatial distributed attention task. In this task, participants are cued 

as to exactly how narrowly or broadly they need to focus or spread their attention in space in 

order to discriminate an impending visual target (Fig. 1 and Methods). We hypothesized that 

decreased spatial information would both diminish target detection accuracy and increase 

response time (RT). Moreover, visual attention causes strong modulation of visual cortical 

alpha (8–12 Hz) activity (Thut et al., 2006; Palva and Palva, 2007), which indexes neural 

excitation (Jasper and Penfield, 1949) and locks to high frequency neural activity in the 

visual cortex (Voytek et al., 2010). Thus we predicted that alpha amplitude would index 

attentional preparation. That is, the spatial topography of alpha would provide an index of 

attentional gain modulation or normalization. Specifically, we predicted that the spatial 

extent of top-down preparatory attentional distribution would be encoded by the multivariate 

pattern of preparatory visual cortical alpha amplitude, allowing us to estimate the attentional 

focus. This hypothesis is predicated on the idea that, for spatially focused attention versus 

distributed attention, relatively fewer neurons have to be modulated in a preparatory fashion. 

This would mean that as the total spatial area to be attended increases, so too does the 
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number of visual cortical ensembles being modulated. However, this top-down modulation 

of more visual cortical ensembles would result in a decrement in the precision of attentional 

distribution, resulting in behavioral performance costs. It is important to emphasize that the 

visual cortical activity to be analyzed will be during the preparatory period when there is no 

visual stimulus actually present on the screen other than the central fixation cross; that is, all 

alpha activity to be analyzed will be preparatory, rather than target-related, allowing us to 

assess the fine scale of human spatial attention in a manner not possible through behavioral 

analysis alone.

Materials and Methods

All data were analyzed in MATLAB® (R2014b, Natick, MA) using custom scripts. All 

participants gave informed consent in accordance with our protocols approved by the UCSF 

Committee on Human Research in the Human Research Protection Program. Participants in 

all three experiments were between 20 and 30 years old. There were three total experiments: 

two behavioral-only experiments with 12 and 9 participants in each, followed by an 

electroencephalography (EEG) experiment with 17 participants included in the final 

analyses.

Experimental Task.

We designed a novel attentional cueing task—a modification of the Posner cueing task 

(Posner, 1980)—to parametrically manipulate the amount of visual spatial information 

provided by a pre-target visual cue (Fig. 1). Each trial begins with a centrally presented pre-

target cue for 100 ms. This is followed by a variable preparatory period (1500–2000 ms, 

uniformly distributed) wherein the only stimulus on screen is the central fixation cross. This 

preparatory period is followed by the visual target, which remains on screen for 50 ms. For 

the two “bilateral” experiments, simultaneous to the visual target there was also a non-target 

stimulus (see below). Throughout the entire task, participants were asked to maintain central 

fixation; a fixation cross is persistent on-screen to assist them. This is to reduce anticipatory 

saccading toward the hemifield of the upcoming target, maximizing visual extrastriate 

stimulus representation laterality and minimizing non-neural EEG artifacts (e.g., preparatory 

saccades).

The cue is a green- and red-checkered circle surrounding the fixation cross, with matched 

luminances for both colors. This circle is bisected along the vertical meridian with a black 

line. For the 100% certain condition, the green and red checkerboard is broken by a solid red 

line in one hemifield and a solid green line in the other hemifield, along the horizontal 

meridian. These green and red lines are the same vertical width as the arms of the fixation 

cross, and they extend the entire radius of the cue circle. Whether the green segment appears 

in the left or right visual hemifield (and thus the red line in the opposite hemifield) is 

randomized. The hemifield of the green line is perfectly informative of the location of the 

upcoming target stimulus (100% cue certainty), which will appear 4.5° away from center 

exactly on the horizontal meridian in whichever hemifield the green line points to. For the 

75% certain condition, instead of green and red lines, the cue has green and red 90° wedges, 

centered along the horizontal meridian. In this condition, the hemifield of the green wedge is 
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still perfectly informative of the hemifield in which the upcoming target will appear, 

however it also indicates that there is some uncertainty as to where exactly it will appear in 

that hemifield. Specifically, it indicates that the upcoming target will appear somewhere 

along a 90° arc, also centered across the horizontal meridian, at 4.5° central eccentricity. For 

the 50% certain condition, the two hemifields of the cue are either all green or all red, 

indicating that the upcoming target will appear somewhere along the 180° semicircle (a 

whole hemifield), at 4.5° central eccentricity. For the 0% certain condition, the cue is just a 

green and red checkerboard, indicating that the upcoming target will appear somewhere 

along the 360° circle at 4.5° central eccentricity. Condition (100%, 75%, 50%, or 0 % cue 

certainty) and target hemifield are randomized on a trial-by-trial basis.

The targets are plusses enclosed by a circle. Participants are tasked to indicate, via manual 

button press with their dominant hand, whether the plus is exactly vertical and horizontal 

(index finger) or rotated off-angle (middle finger). For the “bilateral” versions of the 

experiment, a non-target stimulus is simultaneously presented in the opposite hemifield, 

mirrored across the vertical meridian. This non-target stimulus is a box enclosed by a circle, 

meaning its basic visual components (two horizontal and two vertical bars enclosed in a 

circle) are the same as that of targets, but its context is different. These non-target stimuli are 

included so that the visual input entering the two visual cortices are largely equivalent during 

both the cue and target periods, allowing us to isolate cognitive/attention EEG activity from 

purely visual processes.

Prior to the main experiment, each participant underwent individual psychophysical 

thresholding to normalize accuracy across participants. The thresholding procedure is a two-

down, one-up staircase (converging on ~70% accuracy (Leek, 2001)). In this thresholding 

task, participants are only presented with the 50% certainty cues, initially being shown either 

a vertical/horizontal “+”, or a 45°-rotated “X”. With every correct trial, the “X” rotates 1.5° 

closer toward the vertical/horizontal; with every incorrect response it rotates 3.0° away from 

the vertical/horizontal. The average angle across the final 10 trials, once behavioral 

asymptote was reached, was used as the final angle for the main experiment. The average 

angle across participants was 5.85° (range: 2.20° to 11.25°). Three separate experiments 

were conducted: in the first—the unilateral variant—12 participants saw a version of the task 

where only a target stimulus was shown, with no non-target presented in the opposite 

hemifield. In the second—the full version of the task described above, minus the EEG—was 

given to 9 participants. In each of these two experiments, each participant performed 200 

trials (50 trials per cue information condition).

To examine the effect of cue information on the dependent variables (behavioral and 

electrophysiological), a linear model was fit on a per-subject basis to get a parameter 

estimate of the within-subjects effect of cue information on the outcome measure. Under the 

null hypothesis, the distribution of these parameters estimates (which index the linear 

change in the dependent variable per cue condition) is not significantly different from zero. 

This was formally assessed using one-sample, two-tailed t-tests, with effect sizes reported as 

Cohen’s d.
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Electroencephalography.

The third experiment included EEG recordings collected from 31 young (20–30 year old) 

adults (though due to very strict inclusion criteria outlined below, only 17 participants are 

included in the final analysis). EEG data were collected using a BioSemi ActiveTwo 64 

channel DC amplifier with 24-bit resolution, sampled at 1024 Hz. In addition to 64 scalp 

electrodes both horizontal (HEOG) and vertical (VEOG) electrooculograms were recorded 

at both external canthi and with a left-inferior eye electrode, respectively. Data were 

referenced offline to the average potential of two mastoid electrodes and analyzed in 

MATLAB® (R2014b, Natick, MA) using custom scripts and the EEGLAB toolbox 

(Delorme and Makeig, 2004).

Horizontal and vertical electrooculogram (HEOG/VEOG) were collected on bandpass-

filtered (0.1–20 Hz) data time-locked to the cue onset using a 100-ms pre-stimulus baseline 

and 700 ms post-cue time window. Only trials where the participant gave a subsequent 

correct response were included in EEG analysis. Event onset times were based on timing 

information provided by a photodiode attached to the stimulus presentation monitor to 

ensure exact timing relative to stimulus presentation. Eyeblink artifacts were removed using 

independent component analysis (ICA) (Bell and Sejnowski, 1995). Trials where electrode 

potentials exceeded ±100 μV and trials with saccades (identified using HEOG channels) 

were excluded from analysis. Because task stimuli were lateralized, all analyses were 

performed by hemisphere where contralateral stimuli were defined as left hemisphere 

channels for right hemifield targets and right hemisphere channels for left hemifield targets 

(and vice versa). For scalp topography plots, electrode potentials were swapped right to left 

across the midline to normalize electrode locations as though stimuli were always presented 

in the right visual hemifield, making left hemisphere channels contralateral to the stimulus 

and right hemisphere channels ipsilateral to it.

For alpha band analyses, the absolute value of the Hilbert transform of alpha bandpass-

filtered continuous (eyeblink corrected) EEG were used to extract alpha band analytic 

amplitudes. Frequency-band analytic amplitude time series were subjected to normal event-

related analyses, removing the same incorrect and artifact-contaminated trials as removed 

from HEOG/VEOG analyses and normalized against a 100 ms baseline. Univariate alpha 

analytic amplitude analyses were performed using a visual extrastriate ROI (PO3/4, PO7/8, 

O1/2).

Each EEG participant performed the full task described above for 400 total trials (100 per 

cue condition) after pre-EEG psychophysical thresholding. Because the neural questions of 

interest are predicated on the laterality of top-down preparatory modulation of visual 

extrastriate regions, we used a very strict EEG artifact rejection procedure wherein any trial 

with any saccade was dropped from subsequent analysis. This resulted in 14 participants 

being dropped from subsequent analyses due to too few trials in each condition (25 trial 

minimum cutoff per condition).
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Inverted Encoding Modeling (IEM).

Because our hypothesis is multivariate in nature –i.e., the scalp pattern of alpha-band activity 

representing the attended location will systematically become less selective as cue certainty 

decreases – we applied a multivariate inverted encoding model (IEM) to quantify 

topographic patterns of alpha activity representing attentional bias. IEMs model the 

relationship between neural responses and stimulus or task features using predefined basis 

functions and have been used to reconstruct basic stimulus features during perception and 

short-term memory (Sprague and Serences, 2013; Wang et al., 2014; Ester et al., 2015). 

Recent evidence has shown that IEMs can successfully reconstruct the spatial focus of 

anticipatory attention from alpha-band topographies (Samaha et al., 2016). Here, our 

approach was to train a model to distinguish left from right attention during the 100% 

certain condition, when attention was most spatially focused. We then tested the model on 

the three other cue certainty conditions (75%, 50%, and 0%), reasoning that the patterns of 

alpha amplitude should become increasingly dissimilar from the 100% certainty pattern as 

certainty decreased, reducing the model’s ability to discriminate left from right. This 

approach has the further advantage of reducing a distributed pattern of data into a single 

metric of attentional bias.

We modeled left versus right spatial attention using a basis set of two binary functions (or 

“channels”), one representing left spatial attention (e.g., [1 0]) and one representing right 

(e.g., [0 1]). This approach is analogous to a linear decoding analysis of left versus right 

attention using differences in classifier evidences to quantify attentional bias (Sprague et al., 

2015). As input to the model we used the averaged alpha amplitude from 500–700 ms post-

cue from all occipital and parietal electrodes (CPz, CP1/2, 3/4, 5/6, TP7/8, Pz, P1/2, P3/4, 

P5/6, P7/8, P9/10, POz, PO3/4, PO7/8, Oz, O1/2). In the first step, training data from all but 

one trial (test data) of the 100% cue certainty condition is used in a general linear model of 

the form:

B1 = W C

Where B1 (m electrodes × n trials) is the observed signal at each electrode (alpha amplitude) 

for each training trial, C1 (k channels × n trials) is a matrix of predicted responses for each 

information channel on each trial, and W (m electrodes × k channels) is a weight matrix that 

characterizes the mapping from “channel space” to “electrode space.” The weight matrix W 
(m electrodes × k channels) can be derived using ordinary least-squares regression as 

follows:

W = B1C C1C1T1T − 1

Next, the model is inverted to transform the observed test data B2 (m electrodes × 1 trial) 

into a set of estimated channel responses, C2 (k channels × 1 trial), using the weights derived 

from the training data, via the equation:

C2 = W TW −1W TB2
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This procedure was iterated until every trial served as a testing set, (i.e., leave-one-trial-out 

cross-validation). The estimated channel responses were then aligned to a common center 

and averaged across trials. After each iteration of the cross-validation procedure, the weight 

matrix W was saved. Once cross-validation of the 100% cue certainty condition was 

completed, these weights were averaged over each iteration and then applied to the 

independent data from the 75%, 50%, and 0% conditions. Attentional bias (or selectivity) is 

computed as the subtraction of the output of the channel representing the unattended visual 

hemifield from that of the attended hemifield. By this metric, zero represents no attentional 

bias and increasing positive values denote higher channel outputs for the attended hemifield, 

that is, greater preparatory attentional bias toward the hemifield of the upcoming target.

Results

The initial behavioral version of the task made use of unilateral stimulus presentation. In this 

version (n = 12 participants), decreasing certainty regarding the spatial location of the 

upcoming target stimulus reduced participant accuracy and slowed response times (Fig. 2a; 

acc: p = 0.003, d = −2.35; RT: p =0.011, d = 1.84). We then modified the task for EEG to 

include a non-target stimulus presented simultaneously to the target, but in the opposite 

visual hemifield (Fig. 1, see Methods). This ensured that visual inputs to both cortical 

hemispheres were equal across all task conditions as well as during both the cueing and 

response periods. Behavioral pilot testing of the bilateral design (n = 9 participants) revealed 

the same behavioral pattern: decreasing spatial certainty led to more errors and slower RT 

(Fig. 2b; acc: p = 0.027, d = −1.91; RT: p = 0.028, d = 1.90). Finally, with concomitant EEG 

recording in another group of participants (n = 17) we again observed the same performance 

pattern, highlighting the robustness of the behavioral effect (Fig. 2c; acc: p < 10−6, d = 

−4.45; RT: p < 10−7, d = 4.69). Note that only during the EEG recording session were we 

able to assess eye movements and saccades, with excessive preparatory period saccades 

resulting in the exclusion of 14 out of 31 total participants from subsequent EEG analyses 

(leaving n = 17). Nevertheless, the 14 excluded participants also showed the same behavioral 

effect (data not shown; acc: p < 10−5, d = −4.55; RT: p = 0.014, d = 1.58).

As a control we sought to examine whether trial-by-trial RT varied as a function of relative 

presentation angle on a subject-by-subject basis. To do this we modeled RT as a linear 

function of the sin and cos of the angle of target position relative to horizontal in the 50% 

certain condition (RT = β1sin(angle) + β2cos(angle) + ε). This tests the assumption that the 

100% certain target position at horizontal locations might serve as an attentional anchor, 

with RT being fastest when the target appears at that location compared to others, even when 

the cue condition suggested the target could be at other locations. We found that only four 

participants showed a significant relationship in this analysis (FDR corrected at p < 0.05). 

Removing those four participants does not influence the main behavioral effects of cue 

information on RT or accuracy (both p < 0.001).

Analysis of focal, event-related visual extrastriate alpha amplitude showed a strong, early 

(200–400 ms) alpha amplitude decrease, followed by a sustained alpha negativity (500–700 

ms) (Fig. 3a). However, neither early nor late visual extrastriate alpha amplitudes were 

parametrically modulated by the cue, in either hemifield (early contra: p = 0.14, d = 0.79; 
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early ipsi: p = 0.40, d = 0.43; late contra: p = 0.70, d = 0.20; late ipsi: p = 0.71, d = −0.19). 

Note that post hoc analysis of univariate alpha shows that 0% certainty is significantly 

different from the other three conditions (p100 = 0.024, p75 = 0.033, p50 = 0.088), but it is 

insensitive to the finer-grained allocation of attention, which we hypothesize may be better 

captured via the multivariate topography of alpha. Additionally, a channel-by-channel 

analysis showing the relationship between alpha amplitude and cue information shows no 

significant effect (p > 0.05) at any given single electrode (Fig. 3b). Despite this lack of 

univariate effects, there are markedly different preparatory alpha topographies between cue 

conditions (Fig. 3c).

To examine preparatory visual cortical encoding of attentional distribution, we used an 

inverted encoding model (IEM; Sprague et al., 2015; see Methods). Here, the IEM takes into 

account the multivariate spatial pattern of late alpha activity across all parietal and occipital 

sites (see Methods) to get a trial-by-trial estimate of each participant’s attentional bias for 

each cueing condition (toward or away from the cued location). We find that with decreasing 

certainty of the upcoming target location, participants showed declining attentional bias 

(Fig. 4a; p = 0.009, d = −1.48). This was driven by a significant bias toward the cued 

location for the 100% condition, with increasingly weaker bias with decreasing certainty 

(post-hoc one sample t-test against zero: p100 = 0.038, p75 = 0.10, p50 = 0.10, p0 = 0.35).

A complementary approach to examine the role of the spatial patterning of late visual alpha 

activity in attentional distribution is to assess trial-by-trial interhemispheric correlations. 

That is, for each participant, for each condition type, for each trial, we can look at how 

similar the alpha amplitudes are in the contralateral and ipsilateral hemispheres. Here, the 

hypothesis is that for more focused conditions there will be greater preparatory, unilateral, 

top-down modulation of contralateral alpha, leading to relatively weak interhemispheric 

correlations caused by stronger unilateral modulation. In contrast, for more broadly 

distributed attention conditions this top-down modulation will be more balanced across both 

visual hemispheres, leading to stronger interhemispheric correlations. Confirming our 

hypothesis, we find that as participants prepare to distribute their attention more broadly, 

trial-by-trial correlation of contralateral and ipsilateral late visual alpha increases (Fig. 4b; p 
= 0.015, d = 1.37).

Finally, we observe that preparatory period electrophysiological activity predicts subsequent 

behavioral performance. We modeled difference in accuracy or RT between the 100% and 

0% certainty conditions as a function of the concomitant difference in alpha bias (from the 

IEM). We find that differences in alpha biasing predicts both accuracy and RT difference 

(Fig. 5; racc = −0.48, p = 0.049; rRT = 0.50, p = 0.021). That is, the participants with the 

largest alpha bias differences between 100% predictive information and 0% information 

showed the biggest behavioral differences, characterized by both a greater decrement in 

accuracy and a slowing of RT. Alpha selectivity explains18% of the variance in accuracy 

difference and 26% of the variance in RT difference.

To control for potential confounds in differences in the number of correct trials across 

cueing conditions, we conducted a series of resampling control analyses. Specifically, we 

randomly sampled 20 trials from each cue condition from each participant and performed 
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the analyses as usual using these surrogate datasets. This was done 100 times. Using this 

approach, every resampling run showed a significant effect of cue information on both RT 

and accuracy (p < 0.05 for both). Using the same approach for the alpha encoding resulted in 

27% of the resampling runs remaining significant (p < 0.05) with a mean effect size 

(Cohen’s d) of 0.81. Note that 27/100 is still significantly more than would be expected by 

chance where p is set at 0.05. Furthermore, the distribution of effect sizes is itself unlikely 

due to chance, as the Cohen’s d values are significantly positively distributed (one sample t-
test, p < 10−36). This is critical as p values can be significant but for effects going in a 

direction opposite of the a priori hypothesis.

Discussion

Spatial attention is a critical aspect of cognition, allowing animals to navigate through our 

complex world and make rapid decisions efficiently and effectively. While a great deal is 

known regarding how spatial attention is deployed to specific regions of the visual field, how 

it is used to track and follow objects, and how attentional signals gets passed between the 

two cerebral hemispheres (Drew and Vogel, 2008), relatively little is understood about how 

preparatory information is used to focus or spread attention as needed. Previous work has 

shown that attention to lateralized visual targets modulates early measures of cortical 

activity, namely the P1 and N1 ERPs (Mangun and Hillyard, 1988; Luck et al., 2000), with 

unilateral prefrontal cortex (PFC) lesions disrupting these ERPs only for stimuli presented 

contralateral to the PFC lesion, suggesting that hemispheric control of attention is semi-

independent (Barcelo et al., 2000; Battelli et al., 2009; Voytek and Knight, 2010).

Although ERPs provide a robust index of top-down attentional modulation of neural activity 

in visual extrastriate cortex, the P1 and N1 are short lasting, time-locked signals, and are 

therefore perhaps less appropriate for assessing preparatory attentional distribution. In 

contrast, event-related alpha amplitude can be used to assess the degree of lateralized 

attention (Worden et al., 2000) and is sustained throughout preparatory and delay periods 

(Palva and Palva, 2007; Capotosto et al., 2009; Jensen and Mazaheri, 2010; Rohenkohl and 

Nobre, 2011). Physiologically, alpha amplitude is inversely correlated with cortical 

potentiation (Jasper and Penfield, 1949), making it an ideal index of top-down preparatory 

modulation of visual cortex (Palva and Palva, 2007).

In order to assess the neural mechanisms underlying the preparatory distribution of attention, 

we used a novel distributed attention task, combined with scalp EEG, to examine how 

preparatory period visual cortical alpha activity influences behavioral outcomes more than a 

second later. The behavioral results suggest that participants are challenged by the task of 

distributing their attention to broader visual areas, and that when they have to focus their 

attention to only one location they can respond more quickly and accurately. Participants 

were only given between 1.5 and 2.0 seconds during the preparatory period to make use of 

the cue in preparation for the upcoming target. However, from behavior alone it is unclear 

whether the accuracy and RT costs associated with more distributed attention are driven 

purely by a spatial search cost after the target appears, or whether participants make use of 

the cue information during the preparatory period to improve their performance. By focusing 

EEG analyses on the preparatory period only, when no task-related visual information was 
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present on screen, we were able to isolate a neural mechanism of preparatory attentional 

distribution.

The fact that multivariate alpha encoding during the preparatory period is predictive of later 

behavioral outcomes shows how participants effectively use contextual cues to optimize 

attentional focus in preparation of a future event. Interestingly, while univariate, focal alpha 

is different for 0% compared to the more informative cueing conditions, it is insensitive to 

finer differences between conditions. However, we hypothesized that preparatory attention 

would not affect just local alpha amplitude, but rather multivariate alpha topography and 
amplitude, captured via the inverted encoding model. The alpha IEM result strongly 

suggests that the distribution of attention is not solely an attentional search problem where 

one must find a target within a visual field. Rather, informative cues influence later 

preparatory spatial attentional deployment, indexed via multivariate alpha distribution. It is 

important to note that such decoding methods, especially at the level of scalp EEG, are 

unlikely to capture topographic maps of feature selectivity, for example; rather they are more 

likely to reflect more coarse-scale maps (Freeman et al., 2011; Wang et al., 2014).

We found that participants who showed the biggest difference in multivariate alpha between 

the focused (100%) versus distributed (0%) conditions also showed the smallest behavioral 

difference. In interpreting this result, a small performance difference could either be 

considered positive if participants performed consistently well, or negative if they were 

consistently poor performers. Upon further examination, participants with the smallest 

accuracy difference between 100% and 0% exhibited the highest performance for the 

uncertain, 0%, condition (r = 0.69, p = 0.0021). This observation suggests that failure to 

modulate the multivariate pattern of preparatory visual alpha is associated with poorer 

overall performance. That is, the behavioral cost associated with distributing attention across 

broader spatial fields is driven by the inability to modulate the pattern of preparatory visual 

cortical alpha. Thus, the ability to more precisely modulate the visual cortical neurons, 

perhaps through gain control (Hillyard et al., 1998) or normalization mechanisms (Reynolds 

and Heeger, 2009), that represent visual fields of varying extents improves performance 

overall across all conditions, reducing the magnitude of performance declines associated 

with distributed attentional focus. This is interesting in the light of evidence that older 

adults, whom are known to perform less well on attention tasks, have both increases in 

neural noise (Voytek et al., 2015) as well as failures to modulate alpha in response to 

relevant cues (Tran et al., 2016). Our current results show that preparatory attention can be 

finely tuned and spatially modified rapidly depending on context, which in turn biases the 

cortex for target detection and influences behavioral outcomes more than a second later.
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Significant Statement

Animals—including humans—frequently shift their visual attentional focus more 

narrowly or broadly depending on expectations. For example, a predator feline may focus 

their visual attention on a burrow hole, waiting for their prey to emerge. In contrast, a 

grizzly bear hunting salmon doesn’t know precisely where the fish will jump out of the 

water, so it must spread its attention more broadly. In a series of novel experiments, we 

show that this broadening of attention comes at a behavioral cost. We find that 

multivariate changes in preparatory visual cortical oscillatory alpha (8–12 Hz) encode 

attentional distribution. These results shed light on the potential neural mechanisms by 

which preparatory information is used to guide attentional focus.
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Figure 1 |. Distributed spatial attention task.
Each trial begins with the presentation of a centrally presented spatial cue (left) overlaid on 

top of a persistent central fixation cross. The cue indicates (with a green wedge) where an 

upcoming target will appear, with varying certainty, after a random length preparatory 

period. In the 100% certain condition (top) the target will briefly (50 ms) appear exactly 4.5° 

to the left or to the right of center (right). In the 75% certainty condition, the target will 

appear anywhere in a 90° arc, with 4.5° central eccentricity. In the 50% certainty condition, 

the target will appear anywhere in a 180° arc, while in the 0% certainty condition the target 

will appear anywhere in the full 4.5° central eccentricity circle. Possible target locations are 

illustrated with the blue arc (not actually shown on screen). For the bilateral task variant, 

simultaneous to the presentation of the target a non-target stimulus with matched visual 

properties is always shown in the non-target hemifield, mirrored across the vertical meridian.
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Figure 2 |. Behavioral results.
a-c, Across three separate experiments using two variants of the behavioral paradigm, we 

find that decreasing spatial certainty regarding the location of upcoming target stimulus 

resulted in less accurate, slower responses. (*significant effect of spatial certainty, p < 0.05; 

error bars: sem).
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Figure 3 |. Univariate alpha responses.
a, Neither early nor late univariate visual alpha amplitude (200–400 ms or 500–700 ms) is 

significantly modulated by attention distribution requirements. b, There is no main effect of 

cue condition on alpha amplitude at any scalp location. c, However, alpha amplitude scalp 

topographies are markedly different between conditions. (n.s.: not significant; error bars: 

sem).
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Figure 4 |. Multivariate alpha encoding and interhemispheric alpha correlations.
a, Inverted encoding model shows that multivariate alpha spatial patterning in visual 

extrastriate encodes the bias of attention. Multivariate alpha patterns representing the 

attended location become less hemifield-selective as spatial attention becomes less focused. 

This pattern is manifest as a linear decline in IEM bias as a function of cue information, 

reaching zero bias when the cue is completely uninformative. b, In addition, 

interhemispheric visual alpha amplitudes are relatively less correlated across trials for the 

focused, 100% conditions, and become increasingly more correlated as attention needs to be 

distributed more broadly and, ultimately, across hemifields. (*significant effect of spatial 

certainty, p < 0.05; error bars: sem).
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Figure 5 |. Electrophysiological behavioral prediction.
Difference in alpha encoding from the 100% to 0% conditions predicts difference in 

accuracy and response times. (dashed line: linear fit).
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