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Abstract

Misconceptions about the impact of case–control matching remain common. We discuss several 

subtle problems associated with matched case–control studies that do not arise or are minor 

in matched cohort studies: (1) matching, even for non-confounders, can create selection bias; 

(2) matching distorts dose–response relations between matching variables and the outcome; (3) 

unbiased estimation requires accounting for the actual matching protocol as well as for any 

residual confounding effects; (4) for efficiency, identically matched groups should be collapsed; 

(5) matching may harm precision and power; (6) matched analyses may suffer from sparse-

data bias, even when using basic sparse-data methods. These problems support advice to limit 

case–control matching to a few strong well-measured confounders, which would devolve to no 

matching if no such confounders are measured. On the positive side, odds ratio modification 

by matched variables can be assessed in matched case–control studies without further data, and 

when one knows either the distribution of the matching factors or their relation to the outcome 

in the source population, one can estimate and study patterns in absolute rates. Throughout, we 

emphasize distinctions from the more intuitive impacts of cohort matching.
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Introduction

Matching ensures that the distributions of certain variable(s) are identical (or as close to 

identical as possible) across exposure groups in cohort studies and outcome groups in 
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case–control studies. While matching on confounders can improve statistical efficiency (i.e., 

reduce the variance and improve power) for effect estimation, such improvement is not 

guaranteed, especially in case–control studies [1]. Matching in case–control studies can 

also have other counterintuitive effects because the matching is across outcome groups 

rather than exposure groups, and thus does not necessarily result in balancing the matching 

factors across exposure groups. Unfortunately, misconceptions about the implications of 

such matching can still be found in expository writings on the topic. We thus review several 

subtle issues that arise in case–control matching.

There are many types of matching protocols, including individual matching, matching to 

a given distribution (e.g., frequency matching), partial matching, and marginal matching 

[2]. There are also many protocols for selecting controls, including cumulative sampling, 

density sampling, and cohort sampling, for which the sample odds ratios estimate population 

incidence odds ratios (OR), incidence-rate ratios, or risk ratios, respectively, with little 

difference among the measures if the outcome is uncommon. Thus, for simplicity, we will 

assume a cumulative case–control study of an uncommon disease nested in a closed source 

population (one with no immigration or emigration) to estimate an incidence OR, with 

no bias present except those under discussion; we will also focus on balanced matching, 

in which the same number of matched controls are selected for each case. Except where 

indicated, however, our points apply to other situations as well [3, 4]. We will also 

assume all conditional associations are in the same direction across levels of variables 

(monotonicity).

Bias introduced by case–control matching is an intentional selection bias

Over the past two decades, a consensus has emerged in epidemiology that causal reasoning, 

with the help of directed acyclic graphs, has improved our understanding of confounding 

and its control [5–10]. When confounding is defined by characteristic structures among 

causal relationships in the source population, the definition has proven to be more robust 

to challenging examples in theory and in practice than earlier definitions based only on 

associations. For example, when a covariate is affected by exposure or disease, it does not 

fit the causal definition of a confounder yet its associations in a study might fit one of the 

obsolete associational definitions of a confounder. Control of such a covariate will usually 

introduce bias.

A similar consensus about selection bias is growing but much more slowly. In particular, 

selection bias arising from matching in case–control studies, which has puzzled investigators 

for almost a century, is still widely misunderstood and often considered a type of 

confounding (using an associational definition.) For example, p. 237 and 239 of the 

first edition of Modern Epidemiology [11] says ‘‘Indeed, for case control studies it 

would be more accurate to state that matching introduces confounding rather than that 

it prevents confounding.… In case–control studies, matching on factors associated with 

exposure builds confounding into the data, whether or not there was confounding in the 

source population’’[5]. Thirty years later, Pearce [12] wrote that matching ‘‘can introduce 

confounding by the matching factors even when it did not exist in the source population… 
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if there is an association between the matching factor and the exposure, then matching will 

introduce confounding’’.

These descriptions are inconsistent with systems that treat confounding as a consequence 

of causal relationships among confounders and the exposure and disease under study [5–

10]. Associations are not sufficient to define confounding because they cannot distinguish 

between confounding and non-confounding relationships of the putative confounding 

covariate with exposure and disease (e.g., a covariate affected by exposure or disease is 

not a confounder, and its control will usually introduce bias).

Suppose our goal is to estimate a causal OR, such as the ratio of disease odds if everyone 

in the population were exposed as compared to the odds if everyone were unexposed. This 

targeted effect is said to be standardized to the source population, and is often called the 

marginal causal effect for that population [13]. We contrast this measure with the unadjusted 

(‘‘crude’’) OR from the 2 × 2 table for exposure and disease in the source population, 

which measures only the association of exposure with disease. With an uncommon outcome, 

confounding is indicated when this unadjusted OR does not equal the causal OR (i.e., if the 

unadjusted association does not equal what the population effect of changing exposure in the 

source population would be).

Table 1 gives an example of such confounding (taken from Table 1 of Pearce [12]), a table of 

expected population counts for which the unadjusted OR is 0.86. If there were no additional 

confounding beyond age and no residual confounding within age strata, the disease risk if 

everyone in the population had been exposed would be

100090 80/80080 + 100300 100/20100 / 100090 + 100300
= 598.99/200390 = 0.00299

where the two terms refer to the young (C = 1) and old (C = 0) strata, respectively. The 

analogous risk if everyone is unexposed is 300.14/200390 = 0.00150. The resulting causal 

OR is (0.00299/(1 – 0.00299))/(0.00150/(1 – 0.00150)) = 1.996 ≈ 2.00. The fact that 0.86 

differs from 2.00, together with the assumption that age influences exposure and age also 

influences the disease (and not the other way around for either), indicates the presence of 

confounding by age. Since we are working with expected rather than observed frequencies, 

this conclusion does not depend on any statistical procedure but is instead a consequence of 

the assumed causal structure alone.

The bias introduced by case–control matching does not follow the causal definition of 

confounding because such confounding exists in the source population independent of any 

case–control aspect of the design or analysis strategy. Instead, matching controls to cases on 

variables associated with exposure alters the sample association of exposure with disease, 

thereby resulting in a selection bias in the sample OR [1]. Although this bias has been 

termed ‘‘selection confounding’’, [14, 15] bias introduced by case–control matching is a 

type of control-selection bias, where selection bias is a spurious (non-causal) component of 

association created by causes of selection rather than causes of disease [3, 16].
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If there is confounding in the source population, as in Table 1, case–control matching 

superimposes this selection bias over the initial confounding in estimating the causal OR. 

Unlike cohort matching, case–control matching does not and cannot remove confounding, 

but instead may contribute a selection bias that can itself be removed by adjustment for the 

matching variables [1, 5, 17]. In particular, balanced matching (using a constant case/control 

ratio across matched sets) may improve test power and estimator precision in an analysis 

that adjusts appropriately for the matching variables, although this benefit is not guaranteed 

and is quite context dependent [18–21]; it may improve power and precision for inference on 

modification across matching factors as well [22, 23]. This matching necessarily makes 

the matching variables independent of disease, apparently removing confounding. But, 

assuming there are no other confounders, it is necessary that a factor associated with 

exposure be independent of disease conditional on the exposure to ensure that it does not 

produce confounding [1, 5, 6].

Note that, using the data from Table 2, the adjusted OR remains at 2.00 whereas the 

unadjusted OR is now 1.68. This difference is sometimes interpreted as the confounding by 

age left by the matching (residual confounding), but is instead a mixture of that confounding 

and the selection bias introduced by matching. Perhaps counterintuitively, the proportion 

of the original confounding remaining depends on the association of exposure with disease 

given age (i.e., C): The stronger that association, the more the exposure-conditional age-

disease association differs from the marginal age-disease association after matching (which 

was forced to be null by the age matching), although there will be no residual confounding if 

there is no association of exposure with disease given age. In a parallel fashion, the amount 

of selection bias produced by the matching depends on the association of age with exposure 

given disease status: The stronger that association, the more the age-conditional exposure-

disease association differs from the marginal age-disease association after matching; on the 

other hand, there will be no selection bias if there is no association of age with exposure 

given disease status.

The causal diagrams in Figs. 1 and 2 illustrate the mix of confounding and selection bias in 

a matched case–control study of the effect of E on D with C as confounder and matching 

variable [5–8, 17]. The variable S in Figs. 1 and 2 indicates whether an individual from the 

original cohort is selected into the matched case–control study (1: yes, 0: no), and the square 

around S = 1 indicates that the analysis is conditional on having been selected (S = 1). There 

are arrows from D and C to S because, by definition of a matched case–control study, both 

D and C affect S. Figure 1 shows that case–control matching does not break the confounding 

path E ← C → D, but instead introduces the selection-bias path E ← C → S ← D. With no 

effect of E on D, however (Fig. 2), the net bias is zero: The paths C → S ← D and C → D 

now ‘‘unfaithfully’’ cancel each other exactly, leaving C and D independent both marginally 

and conditional on E after matching [17].

As displayed in Table 2, the impact of adjustment is not as dramatic after case–control 

matching, and now the unadjusted OR is in the same direction as the adjusted OR. This 

example illustrates a general phenomenon under monotonicity that, after matching, the 

change in the unadjusted OR relative to the adjusted OR is towards the null (which follows 

from algebra paralleling that given by Samuels [20, p. 580]). It also shows why balanced 
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case–control matching does not introduce selection bias if exposure does not affect the 

disease and why, in this special null case, it counterbalances confounding by the matching 

factors in the source population: Under the null, a bias toward the null can produce no bias. 

In purely associational terms, the difference between the adjusted and unadjusted OR from 

the matched study may also be viewed as an example of non-collapsibility of the sample 

OR, in this case where the unadjusted OR is always closer to the null [20]. We discuss this 

point further below.

When the matching variables are risk factors, their distribution among the controls will 

differ from their distribution in the source population. Nonetheless, if the distribution of 

exposure and matching factors in the study cases equals that distribution among all cases in 

the source population (i.e., if the cases are ‘‘representative’’), the standardized ORs in the 

source population can also be estimated by comparing the numbers of cases expected with 

and without exposure (either or both of which may be partially or entirely counterfactual) 

[24, 25 p. 269]. Table 3 provides an example of OR heterogeneity in hypothetical matched 

case–control data. Here, the ORs standardized to the exposed is 160/(72(10)/18 + 60(240)/

260) = 160/95.38 = 1.68, to the unexposed is (18(80)/72 + 260(80)/60))/250 = 366.67/250 

= 1.47, and to the total is (160 + 366.66667)/(95.3846 + 250) = 1.52. The Mantel–Haenszel 

OR is 1.53, close to the OR standardized to the total, although slightly biased because its 

weights are derived by assuming the underlying true stratum-specific ORs are all 1.

Adjustment for matching variables should account for both the actual matching protocol 
and further confounding effects

With some care in modeling, it is often possible to break the matched sets and instead 

use the matching variables as regressors in an ordinary logistic regression model. This use 

can lead to bias, however, if the variables are not coded to adequately reflect the matching 

protocol [3, 24]. Furthermore, even if matching is retained, the matching variables may still 

not be adequately controlled due to coarseness of the matching. Thus, contrary to some 

assertions [26, p. 182] it is important that the analysis employ sufficient stratification to 

ensure adequate confounding control.

With matching on a continuous variable, this goal is not achieved by simple regression 

adjustments because the matching distorts trend relations into a discontinuous form [2, 27]. 

As noted above, case–control matching requires analytic adjustment for both the selection 

bias produced by matching and for the confounding effects of the matching variable. It 

is usually overlooked that distinct adjustments for these two bias sources are needed. In 

particular, age is often inadequately adjusted in age-matched case–control analyses, in one 

of two ways:

1. Matched analysis is done but the age matching is too loose to completely adjust for 

age, leaving unnecessary age confounding in the matched analysis. For example, there 

can be considerable trends in sarcoma risks within 5-year childhood age categories, and 

in carcinoma risks within 5-year elderly age categories. These trends can result in non-

negligible residual age confounding in matched analyses, despite the age matching.
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2. The matches are broken and adjustment for matching is instead done using a regression 

model [28]. Entering age as a continuous variable then results in an incorrect adjustment for 

age, because case–control age matching creates a discontinuous ‘‘saw-tooth’’ age trend in 

disease which is not controlled by continuous age [2, 23].

One model-based solution to these problems is to enter a term for residual age into the 

regression analysis [27, 29]. An example is the difference between each person’s age in 

years and the center of their age-matching category (e.g., this residual age variable would 

equal − 2, − 1, 0, 1, 2 for children age 6, 7, 8, 9, 10 in the 6–10 year category, and 

also for children age 11, 12, 13, 14, 15 in the 11–15 year category). This term would 

be entered in the conditional logistic model for the matched data, or the unconditional 

logistic model when breaking the matches; for the unconditional model, indicators for the 

matching categories would additionally be needed to control the selection bias produced by 

age matching [29–31].

Identically matched sets should be collapsed together

Although case–control matching usually dictates adjustment for matching variables, 

matched sets with identical matching values are best combined into a single matched set 

for the analysis. For example, if pair matching is not based on variables that tend to be 

unique to very few individuals (e.g., sibling status, residence location at block level, etc.), 

but rather over variables shared by multiple study subjects (e.g., sex, age categories), the 

matched design does not require analysis at the pair level so long as the matching strata are 

retained [12, 30]. The latter kind of matched data is often referred to as stratum matched or 

frequency matched [1, 31], although frequency matching often refers instead to a selection 

protocol based on the frequency distribution among cases.

With stratum matching, retaining pair matched data is superfluous since cases and controls 

cannot be distinguished from other pairs in the same stratum based on the matching 

factors alone. Therefore, analysis at the pair-level involves unnecessary stratification, which 

increases variability without reducing bias [32, 33]. Combining pairs with identical values 

for the matching factors into a single stratum thus improves accuracy over an analysis 

keeping the pairs separate. Another advantage of combining is that it can eliminate ‘‘double 

loss’’ of subjects: that is, when one member of a pair has missing data, its corresponding 

match will also be ignored by the analysis at the pair level [30].

Case–control matching on a non-confounder associated with disease may lead to 
selection bias

It is often stated that case–control matching on a variable not associated with exposure does 

not introduce selection bias [1, 12, 26, p. 180–181]. This is practical advice to the extent 

that case–control studies are ordinarily recommended for situations involving uncommon 

diseases. When however the disease is common these statements can become technically 

incorrect due to the effect of disease on control selection. In particular, for the usual case–

control designs, bias can arise from ignoring a matched disease predictor if the disease is 

common, even if the predictor is unassociated with exposure in the source population and 

thus not a confounder [17].
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In cumulative case–control studies (as in Table 1), controls are sampled from those who do 

not develop disease by the end of follow-up. Similarly, in incidence density case–control 

studies, controls are sampled based on person-time at risk. In order for the matching-factor 

adjusted and unadjusted OR to be equal in a cumulative case–control study, independence 

between matching factors and exposure should be among those available as controls; in an 

incidence density study, the independence is among the total person-time at risk [17, 21]. 

In either case, however, this independence will be broken if the disease predictor is initially 

independent of exposure, before events affecting availability as a control occur (such as the 

study disease, a competing risk, or loss from the source population). In that case, matching 

on the predictor introduces a selection bias if exposure indeed affects disease or otherwise 

affects the chance of becoming a control, a bias that is removed by adjustment for the 

predictor.

As an example, if both the matching variable and exposure affect disease risk, they will 

both reduce the number of non-cases available as controls, and so will (apart from artificial 

exceptions) become associated among the controls. This association arises from the joint 

effect of the variables on events that remove one from availability as a control. Graphically, 

this phenomenon is an example of collider bias [34]: a bias arising from a collision of causal 

arrows [17, 35]. Fortunately, the bias is negligible when exposure effects are small or the 

disease is uncommon over the study period (which typifies the usual setting in which a 

case–control design is recommended). In that setting, these control-source populations will 

differ only negligibly from the starting population, and in particular initial independence will 

be little altered by subsequent events. The bias also does not occur in case-cohort studies, 

for in the latter the controls are sampled from the total cohort and thus independent of 

disease, which leaves matching factors and exposure independent in the controls (apart from 

sampling error).

Matching may lead to overadjustment, thus harming precision or creating uncorrectable 
bias

Table 1 shows extreme confounding, to the point that without adjustment exposure appears 

to be protective, but appears harmful within age strata. Yet the precision improvement from 

case–control matching is small: The unmatched confidence interval for the age-specific OR 

(assumed constant) shrinks only slightly from (1.38, 2.89) in the unmatched scenario to 

(1.42, 2.81) in the matched scenario (Tables 2, 4). When an exposure is strongly associated 

with both the confounder and disease, but the association between confounder and disease is 

weak, matching can even lead to a loss in efficiency [21].

Tables 5, 6, 7 gives an example in which the stratum-specific association of E and D 

is stronger than in Table 1, but the E-specific association between C and D is weaker, 

and case–control matching slightly harms precision. Matching can also harm precision by 

creating unnecessary concordance (correlation) between case and control exposures [1], e.g., 

while matching on sibling can control genetic factors, dietary variables may also vary too 

little among siblings to allow precise estimation of diet and nutrient effects. Such examples 

suggest avoiding case–control matching on covariates only weakly related to the disease, 
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even if they are strongly related to the exposure (exceptions occur although they appear 

difficult to identify in advance [36]).

Matching can also produce irremediable selection bias, especially if matching on a variable 

affected by exposure. Consider next surviving birth at the same hospital as a matched control 

in a study of prenatal death. The choice of hospital may be dictated by certain pregnancy 

conditions including the study exposure, and hospital itself will ordinarily affect death risk, 

making hospital a mediator. Because matching results in adjustment for hospital, the study 

OR will be biased for the total effect of any exposure that affects hospital choice (e.g., 

neonatal care). If one had total births by date and place of delivery, one could correct for 

this bias by reweighting the observations with weights inversely proportional to the date- and 

hospital-specific sampling factions in cases and controls to ‘‘undo’’ the matching [37, 38], 

but such corrective data are often unreliable or unavailable.

Subtleties in assessing modification of the OR in matched case–control studies

It is well known that the effect of a matching variable usually cannot be examined without 

further data to ‘‘undo’’ the matching effect, but that modification of the OR for exposure 

effect by a matching factor can be examined by stratifying on the factor [31, 39]. As 

with unmatched factors, there is almost never an empirical basis for assuming homogeneity 

(no modification) across matching factors, and so checking for important violations is 

good practice. Nonetheless, tests for modification generally have little power to detect the 

direction let alone degree of modification [40], and the multiple tests involved in looking 

at many factors creates a high risk of reporting exaggerated or spurious ‘‘false positive’’ 

findings.

A sophisticated answer to this problem is to conduct an analysis that accounts for the 

multiplicity, using for example ‘‘shrinkage’’ methods (such as hierarchical, empirical, or 

partial-Bayes methods, or penalized-likelihood) applied to the product terms that represent 

log-OR modification in a conditional-logistic model [29]. A simpler heuristic approach 

(which is the implicit default in many studies) is to not explore modification, instead treating 

the (fictional) constant OR estimated using a main-effects only (‘‘no-interaction’’) model 

as an estimate of the marginal (standardized) OR in the underlying source population. This 

can be a fair approximation in an unmatched study of an uncommon disease, but can break 

down if matching is done on a strong modifier of the exposure-effect OR, or if the exposure 

or matching factor have strong effects on the probability of being selected as a control: In 

either case, matching alters the weighting across matching strata implicit in the regression 

analysis, leading to discrepancies between the OR estimated under homogeneity and the 

population OR standardized to the total (which is the marginal causal OR if there is no 

further confounding) [41, 42]. This discrepancy is often small however, as in Table 3.

Another question is how to estimate modification of the OR across a continuous variable. 

Using unordered categories may severely harm power of an already low-power test, which 

can be mitigated by using continuous versions of the variable in product terms. The crucial 

point for matched studies is that, unlike for main effects, the variable as entered into 

product terms need not follow the form used for matching. For example, age is often (and 

wisely) matched in categories so small as to preclude analysis of the categories separately. 
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Nonetheless, exposure can be multiplied by a continuous version of age and entered into 

the regression model. What then should be the scale of age in the product (‘‘interaction’’) 

term in the model? We recommend a simple form close to a well-informed prior expectation 

regarding effect modification. In particular, given the exponential dependence of the OR on 

a continuous variable in a logistic model, we advise transforming the variable to dampen 

extreme projections, e.g., by using log(age) rather than untransformed age [43].

Further differences between the effects of cohort and case–control matching

Matching has a more favorable cost–benefit analysis in cohort settings: Cohort matching 

balances confounder distributions across exposure groups, and hence can prevent 

confounding by the matched variables (although this balance can be disrupted by further 

adjustments [44]). And although (as with case–control matching) cohort matching can 

sometimes lead to efficiency loss, this problem appears less severe than in case–control 

studies [45]. Nonetheless, non-random losses from the cohort or adjustments for unmatched 

variables may lead to bias from failure to control matching variables [1, 17, 44].

When cohort-matching factors are strong effect-measure modifiers (strong heterogeneity is 

present) and, as usual, the unexposed are matched to the exposed, the matched marginal 

effect measure can differ dramatically from the marginal effect in the original unmatched 

source population from which the cohort was drawn [46]. This concern does not apply 

to matched randomized trials with no loss, because the marginal distribution of matching 

variables is not altered by the randomization process [45]. For case–control matching 

however the problem is worse in this sense: Matching alters the distribution of the factors 

to follow the distribution in the cases rather than in the source population, thus making the 

usual matched OR estimators (which assume a constant OR) biased for any marginal causal 

OR in the source population if the factors are important modifiers of the OR. Again, if the 

modification can be captured using stratified methods or product terms in a logistic model, 

the data can still be used to obtain population standardized OR estimates as in Table 3, 

although nonstandard estimators and variance formulas are needed [24, 25 p. 269].

Another divergence arises because the OR suffers from non-collapsibility: Even in the 

absence of confounding, factor-specific ORs can differ from the unadjusted OR [6, 47–49]. 

In a cohort, baseline independence between risk factors and exposure (e.g., as induced 

by matching on the factors) does imply no confounding by the factors if no further 

adjustments are made [17, 44]. The degree of OR non-collapsibility that remains depends 

directly on disease frequency and the strength of covariate and exposure effects (with only 

slight non-collapsibility if the disease is uncommon or either the covariate or exposure 

effects are weak) [50]. Unfortunately, these observations do not carry over to case–control 

studies with matching on the same factors, since (again) the matching does not change the 

source population and thus does not prevent confounding. This means that the difference 

between the matching-adjusted and unadjusted OR reflects not only non-collapsibility but 

also includes the matching-selection bias in the unadjusted OR, as discussed above.
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Discussion

Although matched case–control studies date at least back to 1920s [51, 52] and the purpose 

of matching in case–control and cohort studies was clarified long ago [19, 21, 45], there is 

still much confusion among researchers and data analysts. Some confusion may have arisen 

from false analogies with matched experiments, although these misconceptions had been 

recognized by the 1980s [18–21].

We often encounter misconceptions to the effect that any covariate that temporally precedes 

and predicts exposure or disease (and so might be a confounder) should be controlled. These 

notions appear to be an incorrect generalization from theoretical results that control of all 

such variables will prevent confounding by those variables [53]. Another incorrect notion 

is that variables whose distribution differs between cases and controls should be matched. 

Such naïve recommendations ignore the variance inflation and biases due to modeling error 

or sparse data that unnecessary covariate adjustment can produce. We have reviewed how 

they can also lead to matching that harms study precision or validity. A further, practical 

problem is that matching may decrease cost efficiency if finding matches requires effort (as 

in studies collecting original data). The effort in finding closely matched subjects can instead 

go toward selecting a greater number of less matched or unmatched subjects, thus increasing 

precision beyond that of a matched design [1].

Matching on strong confounders should however remain a core design option. Modeling 

variables with strong effects can disrupt typical fitting methods by creating very sparse data 

in certain categories, and can also increase sensitivity to model misspecification; control of 

such variables can be improved by at least partial matching, rather than by modeling alone 

[54].

These points are seen most clearly for age: The majority of cancers have huge (power-law) 

relations to age, as do common dementias and vascular disorders. To fail to match for 

age in a case–control study of such an outcome would guarantee little overlap between 

the cases and controls in the relevant age ranges. The result would be that control of age 

confounding would have to rely mostly on correct specification of the age-incidence relation 

to extrapolate age adjustments between the mostly younger controls and the mostly older 

cases. With age matching and its proper control, that extrapolation dependence would be 

reduced to the residual relation within age-matching categories. Similar comments apply 

when other very strong measured confounders are present.

Matching can also enable adjustment for confounding variables that are difficult to measure. 

For example, use of siblings as controls partially adjusts for genetic and childhood 

environmental factors; use of neighborhood controls partially adjusts for social class, 

ambient air and water, and other local geographic factors [31, sec. 16.7]. Matching on 

such factors also provides a convenient sampling frame for controls (e.g., the control for 

each prenatal death was the next surviving birth at the same hospital). A minor complication 

arising from such matching is that it will usually result in very small numbers of cases and 

controls in each matched set, and thus sparse-data methods will be required to analyze the 
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data without breaking the matching. A major drawback however is that the matched sets so 

produced may be too concordant in exposure to provide accurate estimates.

Although common sparse-data methods (such as conditional logistic regression and 

Mantel–Haenszel techniques) were initially developed as a remedy for sparse-data bias 

in conventional unconditional logistic regression analysis, they too can suffer from 

considerable sparse-data bias when certain types of discordant matched sets are infrequent 

or when the model contains too many parameters [54, 55]. As an example, matched-pair 

estimates develop bias away from the null value if the number of discordant pairs is low 

[56]. Penalization and related ‘‘shrinkage’’ methods can be applied to matched samples both 

to reduce sparse-data bias while achieving finer confounding adjustments [54, 55, 57–59].

Propensity-score methods are sometimes promoted to address the concerns we have 

discussed. Even in cohort studies, however, propensity-score matching may lead to 

overadjustment and variance inflation, or poor control of strong confounders [60–62], and 

can also generate spurious results in case–control studies [63]. Thus propensity scoring 

does not address the need to consider causal structure, associational strength, and potential 

artefacts when formulating a matching protocol.

In conclusion, we concur with advice that matching should be used with great caution, 

especially in case–control studies [1]. Variables expected to be strong confounders (like 

age and sex) are good candidates for direct matching, whereas weak confounders may be 

better addressed via subsequent model-based adjustments, while matching or adjustment 

for variables unrelated to disease is best avoided. Nonetheless, practical considerations may 

dictate use of conveniently matched controls such as relatives, neighbors, or friends, despite 

risks of efficiency overmatching and overlap bias [64]. In particular, we think it highly 

misguided if not destructive to ignore the practical difficulties of locating and recruiting 

valid population control groups while attempting to avoid theoretical biases that are likely to 

be minor.

The most practical option may often be to match only on age and sex, and perhaps one 

more important nominal-scale confounder, especially those with a large number of possible 

values (e.g., neighborhood, occupation) for which model-based adjustment is difficult [1]. 

Regardless, one should account for matching variables in the analysis, paying special 

attention to the matching protocol and the distortions produced by case–control matching, as 

well as sparse-data bias [54–59].
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Fig. 1. 
Case-control matching on a confounder
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Fig. 2. 
Case-control matching on a confounder under the causal null hypothesis of no exposure 

effect

Mansournia et al. Page 16

Eur J Epidemiol. Author manuscript; available in PMC 2022 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mansournia et al. Page 17

Table 1

Example of confounding in the source population (row 1 of Pearce Table 1) [12]

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 80 10 100 200 180 210

0 80,000 20,000 20,000 80,000 100,000 100,000

OR = 2 OR = 2 OR = 0.86
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Table 2

Matched case–control study from Table 1 (row 3 of Pearce Table 1) [12]

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 80 10 100 200 180 210

0 72 18 60 240 132 258

OR = 2 OR = 2 OR = 1.68

MH OR 2 (95% CI 1.42, 2.81)
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Table 3

Matched case–control study with OR heterogeneity

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 80 10 80 240 160 250

0 72 18 60 260 132 278

OR = 2.00 OR = 1.44 OR = 1.35

*
MH OR 1.53; OR standardized to exposed: 160/(40 + 55.4) = 1.68; to unexposed: (20 + 346.7)/250 = 1.47; to total: (160 + 20 + 346.7)/(40 + 55.4 

+ 250) = 1.52
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Table 4

Unmatched case–control study from Table 1 (row 2 of Pearce Table 1) [12]

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 80 10 100 200 180 210

0 156 39 39 156 195 195

OR = 2 OR = 2 OR = 0.86

*
MH OR 2 (95% CI 1.38, 2.89)
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Table 5

An example of confounding in the source population based on a modification of Table 1 with the age 

stratum-specific E-D association strengthened, and the E-specific C-D association weakened

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 160 10 80 80 240 90

0 80,000 20,000 20,000 80,000 100,000 100,000

OR = 4 OR = 4 OR = 2.67
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Table 6

Unmatched case–control study using Table 5

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 160 10 80 80 240 90

0 132 33 33 132 165 165

OR = 4 OR = 4 OR = 2.67

*
MH OR 4 (95% CI 2.65, 6.03)
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Table 7

Matched case–control study using Table 5

D C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 160 10 80 80 240 90

0 136 34 32 128 168 162

OR = 4 OR = 4 OR = 2.67

*
MH OR 4 (95% CI 2.65, 6.04)
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