
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Methods in Markov Chain Monte Carlo and Spatiotemporal Data Analysis

Permalink
https://escholarship.org/uc/item/7xc997np

Author
Hui, Jianan

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xc997np
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Methods in Markov Chain Monte Carlo and Spatiotemporal Data Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Jianan Hui

September 2017

Dissertation Committee:

Dr. James Flegal, Chairperson
Dr. Xinping Cui
Dr. Gregory Palardy



Copyright by
Jianan Hui

2017



The Dissertation of Jianan Hui is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would never have been able to finish my dissertation without the guidance of my com-

mittee members, help from friends, and support from my family.

First and foremost, I would like to express my deepest gratitude to my advisor,

Prof. James Flegal for his patient guidance, continuous support, motivation, enthusiasm,

and immense knowledge throughout my Ph.D. study and research. I have been extremely

lucky to have an advisor who cared so much about my work, and who responded to my

questions and concerns so promptly. In addition, I would like to thank Prof. Xinping

Cui, who gave me the opportunity of working on the research topic of classification and

practical issues beyond the textbooks. I would also like to acknowledge Prof. Miguel

Aragon, for countless insightful discussions and valuable thoughts for our research project

and for writing recommendation letters for my fellowship application. My grateful thanks

are also extended to Prof. Alicia Johnson for her important suggestions and remarks and

proofreading our manuscript.

Special thanks go to the rest of my oral exam and thesis committee: Prof. Gregory

Palardy, Prof. Daniel Jeske, and Prof. Jun Li, for their encouragement, insightful comments

and questions and for their time and effort in service on my doctoral committee despite

their already heavy loads of responsibility. Additionally, I would like to sincerely thank

all professors who have been my instructors during my study at UCR for helping me to

develop my background in statistics.

I gratefully acknowledge the funding resources that supported me throughout

my Ph.D. study, the Dean’s Distinguished Fellowship from the Department of Statistics,

the FIELDS Fellowship funded by NASA MIRO and the Dissertation Year Fellowship from

the Graduate Division.

iv



Completing this work would have been more difficult were it not for the support

and friendship provided by the members and friends at UCR. My time at UCR was made

enjoyable in large part due to the many friends and groups that became a part of my life.

I am grateful for the time spent with them and our memorable trips to the mountains and

national parks. I am indebted to them for their help and companionship.

Lastly, I would like to thank my family for all their love and encouragement. For

my parents who raised me with a love of science and supported me in all my pursuits.

For my beloved brother for being such a good boy always cheers me up. And most of all

for my loving, supportive, encouraging and considerate husband Wenchuan Guo whose

faith supported me through the final stages of my Ph.D. I was continually amazed by

his willingness to discuss any new ideas and proofread countless derivations and codes.

Thank you.

v



To my loved ones for all the support.

vi



ABSTRACT OF THE DISSERTATION

Methods in Markov Chain Monte Carlo and Spatiotemporal Data Analysis

by

Jianan Hui

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2017

Dr. James Flegal, Chairperson

Markov chain Monte Carlo (MCMC) methods are highly desirable when the sampling dis-

tribution is intractable. Among all MCMC methods, the fundamental one is the Metropolis-

Hastings algorithm. Despite its extensive application in approximating any distribution,

the Markov chain often suffers from slow mixing, which then causes insufficient estima-

tion. We address this issue by proposing modifications to the Metropolis-Hastings algo-

rithm that, under specified conditions, induces substantial improvements in jump dis-

tances and statistical efficiency while preserving the overall quality of convergence. This

dissertation starts with an introduction of the MCMC methods and continues by propos-

ing the Efficient Conditional Metropolis-Hastings algorithm (ECMH) and a variation of

ECMH under a uniform setting (ECMHu). We further investigate their properties through

a series of models, including a Bivariate normal model, a Bayesian random effects model,

and a Bayesian dynamic spatiotemporal model. Simulation results are compared across all

algorithms.

Spatiotemporal processes are ubiquitous in the environmental and physical sci-

ences. The complexity of these processes and a large number of observations preclude the

use of traditional models such as partial differential equations, integrodifference equa-
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tions, and covariance based space-time models. Alternatively, the spatiotemporal hierar-

chical Bayesian models are ideal in this case as it can conditionally specify the components

in the model and eventually link them together through Bayes’ Theorem. However, the

complex and high-dimensional nature of these models prevents the direct evaluation of

the posterior distribution. Instead, we can apply MCMC methods to draw samples from

the posterior distribution and make Bayesian inferences. In fact, MCMC methods have

revolutionized such modeling by allowing for more realistic and complicated models. As

a novel application of the MCMC methods, we propose several spatiotemporal Hierarchi-

cal Bayesian models to understand the dynamic of post-fire chaparral recovery with data

collected from the Angeles National Forest. This dissertation continues to investigate a

particular spatiotemporal process of galaxy formation and evolution, in which the envi-

ronment (cosmic web) plays a major role. However, the relation between galaxies and

environment is not well understood. To this end, we propose a multi-step approach of

representing galaxy formation trees as feature vectors and classifying along with galaxy

properties to the environment.
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Chapter 1

Introduction

1.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are highly desirable for obtain-

ing information from distributions, particularly for estimating posterior distributions in

Bayesian inference. Specifically, let y denote the data and θ denote a parameter or a set

of parameters by which the data are to be summarized. Bayesian methods combine prior

information on the parameters contained in p(θ) with the likelihood p(y|θ) to obtain the

posterior density p(θ|y) based on the Bayes’ Theorem:

p(θ|y) ∝ p(θ)p(y|θ).

Inference is made by extracting information from the posterior distribution. However,

if the posterior distribution is intractable, it was not straightforward to sample from the

posterior distribution until the advent of Markov chain Monte Carlo methods.

The name MCMC contains two aspects: Markov chain and Monte Carlo. The

Markov chain aspect depicts that the random variables are generated by a sequential pro-

1



cess where each random sample serves as a stepping stone for generating the next random

sample. The Markov property refers to the memoryless aspect of the chain that conditional

on the current sample, the future samples does not depend on past samples. For the other

aspect, the Monte Carlo method tackles the problem by simulating random realizations

and then averaging these to approximate the theoretical average. For example, if we want

to estimate the mean of a random variable that follows a normal distribution. The Monte

Carlo approach is to draw a large number of random samples from the normal distribu-

tion and then compute the sample mean. The benefit of the Monte Carlo method is most

pronounced when random samples are easy to draw. With both properties, the nature of

the MCMC methods is described as follows.

Let the sequence Φ denote a Markov chain for t = 0,1,2, . . ., where Φ = {X(t)
1 , . . . ,X

(t)
p }.

The distribution of Φ converges to the limiting stationary distribution of the chain when

the chain is irreducible and aperiodic. The MCMC sampling strategy is to construct and

irreducible, aperiodic Markov chain for which stationary distribution equals the target

distribution ω(x), so that

lim
i→∞

P (Xi = x) = ω(x).

After a sufficient “burn in” period of k iterations, a realization X(t)
k ,X

(t)
k+1, . . . from this chain

will behave like samples from ω(x).

1.1.1 Metropolis-Hastings algorithm

The art of MCMC lies in the construction of a suitable chain. There is a vast

literature on methods being proposed for this need. A very general and fundamental

method for constructing a Markov chain is the Metropolis-Hastings algorithm (Hastings

(1970); Metropolis et al. (1953)). Begin at t = 0 with the selection ofX(0) = x(0) and π(x(0)) >

0, where π(·) is the target density.
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1. Sample a candidate value X∗ from a proposal density g(·|x(t)).

2. Compute the Metropolis-Hastings ratio R(x(t),X∗), where

R(u,v) =
π(v)g(u|v)
π(u)g(v|u)

.

3.

X(t+1) =


X∗, with probability min{R(x(t),X∗),1}

x(t), Otherwise.

4. Increment t and return to step 1.

The Gibbs sampler is a special case in which the proposal distributions are equal the con-

ditional distributions (Gelfand and Smith (1990); Geman and Geman (1984)).

The Monte Carlo average is calculated from the Markov chain output. Specifi-

cally let f : X 7→ R, then f̄n := 1
n

∑n
i=1 f

(
X(i)

)
provides an estimate of the expected value

Eπf :=
∫
f (x)π(x)dx after sufficient number of iterations. Further by the strong law of large

numbers with probability 1,

f̄n→ Eπf as n→∞.

1.1.2 Challenges in MCMC

Throughout the literature, the number of iterations n required for f̄n to provide a

“sufficiently” accurate estimate of Eπf is impacted by the efficiency of the Markov chain’s

tour around X (see, for example, Jones (2004) and Jones and Hobert (2001)). Ideally, the

Markov chain will explore through the sample space X without getting stuck for too long

in any one “corner”. However, practical implementations of the Metropolis Hastings al-

gorithm often suffer from slow mixing and therefore insufficient estimation. One reason

behind the slow mixing is that the jumps are so short that the chain explores the sample
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space very slowly. On top of that, the jumps are more likely to stuck in low-probability

areas, causing the Markov chain to stand still for most of the time, especially in a high

dimensional setting. In these settings it can be difficult to tune the MH so that it enjoys

efficient “jumps” from the current xi to the candidate x′i drawn from g̃i(·|x). In turn, the

chain’s traversal of X is inefficient and the convergence of f̄n to Eπf is impractically slow.

Johnson and Flegal (2014) proposed a modified conditional Metropolis-Hastings

algorithm (MCMH) which encourages bigger jumps around X by prohibiting candidate

draws x′i within the local neighborhood of xi , denoted Hi . For example, Hi might be an

ε-ball around xi for some ε > 0. Then the MCMH utilizes neighborhood-truncated pro-

posal distributions proportional to proposal density. This simple MH modification, which

extends the work of Liu (1996) to continuous state spaces, is shown to produce substan-

tial gains in statistical efficiency while maintaining the overall mixing quality in certain

settings. However, the extent of these gains and the overall practicality of the MCMH

are sensitive to the selection of neighborhoods Hi . If the Hi are small relative to Xi (e.g.

ε ≈ 0), the performance of an MCMH chain is nearly indistinguishable from that of an

unmodified MH hence there is no incentive for modification. The implications of selecting

Hi that are too large are greater. First, prohibiting movement within a large local neigh-

borhood will naturally push the Markov chain to the ‘edges’ of the state space. Second,

drawing candidates from neighborhood-truncated proposal distributions requires accept-

reject draws. In common settings, the associated rejection rates increase with the size of

Hi . Thus MCMH computational effort can become unwieldy, turning any efficiency gains

into theoretical rather than practical incentives.

We propose a more efficient conditional Metropolis-Hastings algorithm (ECMH)

which, like the MCMH, encourages efficient jumps around state space X . However, the

ECMH takes a softer neighborhood-restriction strategy. Rather than simply prohibiting
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Figure 1.1: Demonstration of the three approaches. The uppermost plot visualizes the
difference between the MH proposal density and the MCMH proposal density. The middle
plot visualizes the difference between the MH proposal density and the ECMH proposal
density. The lowermost plot visualizes the difference between the MH proposal density
and the ECMHu proposal density.
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candidates x′i within local neighborhoods Hi , the ECMH allows candidates to be drawn

from the nontruncated proposal density with some pre-specified probability q. We prove

that the ECMH enjoys the same mixing properties as the unmodified MH under specified

conditions on q and Hi . In addition, we also investigate a variation of the ECMH under

a uniform setting, which, instead of drawing from the original proposal density within

Hi , we propose to draw samples from a uniform distribution. For notation convenience,

this strategy is denoted by ECMHu. The performance of the proposed algorithms is inves-

tigated and validated through a series of numerical examples ranging from toy example

with a few parameters to dynamic spatiotemporal Bayesian model with hundreds of pa-

rameters. A visualization of comparisons between MCMH and MH, ECMH and MH, and

ECMHu and MH are presented in Figure 1.1. By suppressing the probability of drawing

samples from within the local neighborhood, the probability of proposing samples on the

tails is increased.

In high dimensional settings, we can utilize effective sample size (ESS) as a cri-

terion to select components with slow mixing and apply the ECMH or ECMHu. The ESS

measures how much information we have gotten if the samples were independent. If there

is some correlation between successive samples, then we might expect that our sample has

not revealed as much information of the posterior distribution of our parameter as we

could have gotten from independent samples. That is, it measures the size of an indepen-

dently and identically distributed (i.i.d.) sample with the same standard error. One of

the definitions for ESS is described in Christian and Casella (1999) and Chan and Geyer

(1994),

ESSθ =
n

1 + 2
∑∞
i=1ρi(g)

,

where ρi(g) is the autocorrelation of lag k for g.
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1.1.3 Convergence

In any MCMC analysis, the convergence rate of the associated Markov chain is of

practical and theoretical importance. A geometrically ergodic chain converges to its target

distribution at a geometric rate. The formal definition is as follows:

Definition 1. Let Φ = {X(0),X(1), . . .} denote a Markov chain on (X ,B) where B denotes the

σ -algebra associated with state space X . The Markov chain evolves according to some

Markov transition kernel P . Then a Markov chain is geometrically ergodic if there exists

some function M : X →R and some constance t ∈ (0,1) that satisfy

‖ P n(x, ·)−π(·) ‖≤M(x)tn for any x ∈ X .

Note that if M is bounded, the Markov chain is uniformly ergodic.

The results of Rosenthal (1995), Roberts and Tweedie (1999) and Johnson (2009)

allow one to construct a formula giving an analytic upper bound on the distance to station-

arity by deriving drift and minorization conditions, thus establishing geometric ergodicity.

Proofs for geometric ergodicity for all approaches in Chapters 2 and 3 are established via

drift and minorization conditions.

Definition 2. A drift condition holds if there exists some non-negative function W : X →

R≥0 and constants 0 < γ < 1 and b <∞ for which

PW (x) :=
∫
W (x′)P (x,dx′) ≤ γW (x) + b for any x ∈ X . (1.1)

We call W a drift function and γ a drift rate, where smaller γ are loosely indicative of

quicker convergence (see e.g. Jones and Hobert, 2001; Meyn and Tweedie, 2009).
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Definition 3. A minorization condition holds on set C ∈ B if there exist some positive

integer m, ε > 0, and probability measure Q on (X ,B) for which

Pm(x,A) ≥ εQ(A) for all x ∈ C and A ∈ B. (1.2)

Theorem 1. Suppose Markov chain Φ is irreducible and aperiodic with invariant distribution

π. Then Φ is geometrically ergodic if satisfying the two conditions:

1. A drift condition (2.2) holds for some non-negative function W : X →R≥0 and constants

0 < γ < 1 and b <∞.

2. There exists some constant d > 2L/(1−γ) for which a minorization condition (1.2) holds

with m = 1 on set C = {x :W (x) < d}.

Theorem 1 is a corollary of Theorem 12 of Rosenthal (1995). Geometric ergod-

icity is critically important for three reasons: (1) it ensures the attainability of effective

simulation results in finite time; (2) it is the key sufficient condition for the existence of

a Markov chain central limit theorem (Chan and Geyer, 1994; Jones, 2004); and (3) it is

required for consistent estimation the associated asymptotic variance and implementation

of sequential stopping rules (Flegal et al., 2008; Gong and Flegal, 2016; Jones et al., 2006).

1.2 Spatiotemporal Hierarchical Bayesian modeling

The second part of this dissertation focuses on spatiotemporal Bayesian modeling

for continuous data observed on a spatial lattice and repeatedly over discrete time points.

Spatiotemporal processes are ubiquitous in the environmental and physical sciences. Tra-

ditionally, the modeling of such processes has been motivated by applied mathematicians

and the use of partial differential equations (PDEs), integrodifference equations (IDEs),
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and discrete time-space models (e.g. Hastings (1996)). However, substantial simplifica-

tions in the dynamics must be made in order to get analytical solutions to the PDE or

IDE models. Moreover, the complexity of these processes and a large number of observa-

tion locations preclude the aforementioned traditional models. Alternatively, we focus on

conditionally specified spatiotemporal models (i.e. hierarchical Bayesian approach). The

hierarchical Bayesian approach is ideal for such processes since: (1) it allows for specifying

the uncertainty in the components conditionally, which are ultimately linked together via

Bayes’ Theorem; (2) it constructs a natural framework to accept prior scientific knowledge

into modeling; (3) it accommodates data from multiple sources and potentially different

resolutions in space and time; and (4) it provides posterior distributions on quantiles of

interest.

1.2.1 Hierarchical Bayesian Model

The key idea of hierarchical Bayesian modeling is based on the Bayes’ Theorem,

that the joint distribution of a collection of random variables can be decomposed into a

series of conditional models. When modeling complicated processes in the presence of

data, it is helpful to write the hierarchical model in three basic stages (Berliner, 1996):

Stage 1 Data Model: [data|process, data parameters]

Stage 2 Process Model: [process|process parameters]

Stage 3 Parameter Model: [data and process parameters].

The first stage proposes a data model which is mainly concerned with the observational

process and describes the distribution of the data conditioning on the fundamental process

of interest and parameters associated with the process. The second stage is the process

model, demonstrating the process based on other process parameters. Last but not the
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least, the last stage models the uncertainty within the parameters, from the previous two

stages. It is worth noting that each of these three stages can have many sub-stages (e.g., see

Wikle et al. (1998); Wikle et al. (2001)). Our goal is to estimate the posterior distribution

of the process and parameters given the data. Bayesian methods are naturally suited for

estimation in such hierarchical settings as the posterior distribution can be obtained via

Bayes’ Theorem:

[process,parameters|data]

∝ [data|process,parameters]× [process|parameters][parameters].
(1.3)

Although simple in principle, the implementation of such spatiotemporal hierar-

chical Bayesian models can sometimes be challenging. One of the challenges is the speci-

fication for the distribution of the parameterized component in (1.3). Normally, we make

use of available scientific insight, data and theory in such modeling framework and in-

corporate our scientific understanding into the prior distribution of the parameters. The

other practical issue is that, due to the complexity and high dimensionality of the model, it

is very difficult to directly evaluate the posterior distribution. Fortunately, we can utilize

MCMC approaches to draw samples from the posterior distribution and make Bayesian

inferences from the samples. Indeed, the use of MCMC for Bayesian hierarchical models

has led to a revolution such that more realistic and complex models can be considered in

the analysis of spatiotemporal processes. However, MCMC methods are computationally

intensive, especially with the presence of spatiotemporal dependence and a large number

of location observations. Both add up to the high dimensionality issue, where a huge num-

ber of parameters in the model needs to be updated within each iteration of the MCMC

procedure. It is critical for us to efficiently formulate the conditional models and param-

eterize the spatiotemporal process with regard to the computational burden. Therefore,
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the model building phase requires not only the scientific understanding of the problem

but in what ways that understanding can be modified to fit into the MCMC computational

framework. As in any other model-building paradigm, potential issues of model selection

and validation also exist.

Our statistical analyses utilize the Angeles National Forest data, which includes

estimated percentage grass cover for each pixel at 30-meter resolution and corresponding

features such as annual precipitation, slope, elevation, total annual insolation, distance

from the nearest road or urban area, distance from forest perimeter and years since the

most recent fire. The ultimate goal is to model the progression of grass invasions into cha-

parral shrublands and to assess the risk of future invasion across locations with different

characteristics and under different fire and drought regimes. Grass cover describes the

percent grass cover in each pixel, which should be bounded between [0,100]. Note that

the grass cover index, included in the data model, can easily be converted to [0,1]. Then it

is natural to model it with a beta distribution. However, due to systematic errors, some of

the pixels observe grass cover index below 0 or above 1, which were converted to 0 and 1,

respectively. From this conversion, we get excess zeros and ones in the data. To this end,

we propose hurdle models and zero-inflated models. However, such models lack scalabil-

ity. Alternatively, we can remove the boundaries 0 and 1 on the grass cover index and relax

them to the values that were first detected. The benefit of this is that we can model the

grass cover index by a Gaussian distribution, granting access to a vast literature. Again,

we look into and apply the dynamic spatiotemporal model as it incorporates a predictive

process which significantly alleviates the computational burden. This study reports the

first broad-scale, multi-fire modeling of post-fire vegetation recovery, and will endeavor to

identify the primary factors governing the rate and degree of chaparral recovery, as well

as of long-term establishment by invasive herbs.
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1.3 Spatiotemporal process of galaxy formation and evolution

The cosmic web plays a major role in the formation and evolution of galaxies and

defines, to a large extent, their properties. However, the relation between galaxies and

environment is still not well understood. The process of galaxies’ formation and evolution

through time and space can also be considered as a spatiotemporal process. What’s special

about this process is that both space and time are taken to be discrete. Under this scenario,

we present a machine learning approach to study imprints of environmental effects on the

mass assembly of galaxies. We present a galaxy-LSS machine learning classifier based on

galaxy properties sensitive to the environment. We then use the classifier to assess the

relevance of each property. Correlations between galaxy properties and their cosmic envi-

ronment can be used to predict galaxy membership to void/wall or filament/cluster with

an accuracy of 93%. Our study unveils environmental information encoded in properties

of galaxies not normally considered directly dependent on the cosmic environment such

as merger history and complexity.

Understanding the physical mechanism by which the cosmic web is imprinted in

a halo can lead to significant improvements in galaxy formation models. This is accom-

plished by extracting features from galaxy properties and merger trees, computing feature

scores for each feature and then applying support vector machine to different feature sets.

To this end, we have discovered that the shape and depth of the merger tree, formation

time and density of the galaxy are strongly associated with the cosmic environment.

We describe a significant improvement in the original classification algorithm by

performing LU decomposition of the distance matrix computed by the feature vectors and

then using the output of the decomposition as input vectors for support vector machine.
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1.4 Structure

The rest of this dissertation is organized as follows. Chapter 2 introduces the

efficient conditional Metropolis-Hastings (ECMH) algorithm that under specified condi-

tional, encourages more efficient movement on general state spaces while preserving the

overall quality of convergence. Chapter 3 is dedicated to a variation of ECMH under a uni-

form setting. The properties of ECMH, ECMHu, MCMH, and MH are explored through a

series of models. Chapter 4 continues to propose several spatiotemporal hierarchical mod-

els to model the progression of grass invasions into chaparral shrublands and to assess the

risk of future invasion across locations with different characteristics and under different

fire and drought regimes. Chapter 5 investigates the spatiotemporal process of the galaxy

formation and evolution where both the spatial and temporal components are taken to be

discrete. For this special case, we propose a classification algorithm and study the relation

between galaxies and their environments.
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Chapter 2

Improving jump distances for the

Metropolis-Hastings algorithm

Despite its extensive application in practice, the Metropolis-Hastings sampler

can suffer from slow mixing and, in turn, statistical inefficiency. We introduce a modifi-

cation to the Metropolis-Hastings algorithm that, under specified conditions, encourages

more efficient movement on general state spaces while preserving the overall quality of

convergence. We illustrate the modified algorithm and its properties in three separate

settings: a toy bivariate Normal model, a Bayesian random effects model, and a Bayesian

dynamic spatiotemporal model.

2.1 Introduction

Let ω be a probability distribution with support X = X1 × · · · × Xm for Xi ∈ Rdi ,

di ≥ 1. With respect to measure µ = µ1 × · · · × µm, suppose ω admits density π(x1, · · · ,xm)

with associated full conditionals π(xi |x−i). When ω is intractable, we can approximate its

features using Markov Chain Monte Carlo (MCMC) techniques (see e.g. Liu, 2001; Robert
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and Casella, 2004). The Metropolis-Hastings (MH) algorithm is the fundamental MCMC

method for simulating a Markov chain sample

Φ =
{
X(0),X(1), . . .

}
=

{
(X(0)

1 , . . . ,X
(0)
m ), (X(1)

1 , . . . ,X
(1)
m ), . . .

}
(2.1)

with target distribution ω. We describe the MH with a component-wise strategy here.

Let p = (p1, ...,pm) be a fixed set of probabilities where 0 < pi < 1 and
∑m
i=1pi = 1.

Further, fix component-wise proposal distributions g̃i(·) on Xi for i ∈ {1,2, ...,m}. Then

the Markov chain Φ begins at some initial state X(0) = x(0) where π(x(0)) > 0. At each

subsequent step, Φ moves from X(t) = x to X(t+1) by updating a single randomly selected

X
(t)
i with probability pi while fixing all others. The details of this transition are as follows:

1. Draw (Z1, ...,Zm) ∼ Multinomial(1,p) and, for the selected component {i : Zi = 1},

sample a candidate value x′i from g̃i(x′i |x).

2. Compute the MH acceptance probability

α̃i
(
x′i |x

)
= min

{
1,
π(x′i |x−i)
π(xi |x−i)

g̃i(xi |x′)
g̃i(x′i |x)

}

where x′ = (x[i−1],x
′
i ,x

[i+1]) for x[i] = (x1, ...,xi) and x[i] = (xi , ...,xm).

3. With probability α̃i
(
x′i |x

)
replace xi with x′i , i.e. set

X(t+1) =


x′ , with probability α̃i(x

′
i |x)

x, otherwise.

4. Increment t and return to step 1.

The Monte Carlo average can be calculated from the Markov chain output. Specif-

ically for f : X 7→ R, sample average f̄n := 1
n

∑n
i=1 f

(
X(i)

)
provides an estimate of the ex-
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pected value Eπf :=
∫
f (x)π(x)dx. Under the strong law of large numbers, with probability

1,

f̄n→ Eπf as n→∞.

As detailed in the Introduction and Section 2.2.1, the number of iterations n required for

f̄n to provide a “sufficiently” accurate estimate of Eπf is impacted by the efficiency of the

Markov chain’s tour around X . Yet practical implementations of the MH often suffer from

slow mixing, especially for high dimensional ω. As a result, the chain’s traversal of X is

inefficient and the convergence of f̄n to Eπf is impractically slow.

Here we introduce a more efficient conditional Metropolis-Hastings algorithm

(ECMH) which, like the MCMH (proposed in Johnson and Flegal (2014)), encourages ef-

ficient jumps around state space X . However, the ECMH takes a softer neighborhood-

restriction strategy. Rather than simply prohibiting candidates x′i within local neighbor-

hoods Hi , the ECMH allows candidates to be drawn from the nontruncated g̃i(x′i |x) with

some pre-specified probability q. We prove that the ECMH enjoys the same mixing prop-

erties as the unmodified MH under specified conditions on q and Hi .

Through a series of simulation studies and numerical examples, we also examine

the empirical properties of the ECMH, MH, and MCMH. Specifically, we consider a toy bi-

variate Normal, a Bayesian random effects model and a Bayesian dynamic spatiotemporal

model. The latter of these represents a practically relevant setting that requires MCMC

analysis. Our key findings are summarized below:

• The ECMH is more statistically efficient than the MH relative to its traversal around

X and its estimation of Eπf .

• The ECMH is less sensitive than the MCMH to tuning choices by the user. Mainly,

by allowing candidates x′i to be drawn within neighborhoodsHi with positive proba-
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bility q, the ECMH is less susceptible to being pushed out to the edges of state space

X .

• The ECMH is more computationally efficient than the MCMH. Since the ECMH only

utilizes candidate draws from neighborhood-truncated distributions with probabil-

ity 1− q < 1, it requires fewer accept-reject draws than the MCMH.

• Just as specifying neighborhoods Hi presents a goldilocks problem, so too does the

selection of the neighborhood sampling probability q required by the ECMH. Our

examples provide some guidance on this choice.

The rest of this chapter is organized as follows. Section 2.2 introduces the ECMH

and compares its convergence properties to those of the unmodified MH. Section 2.3 illus-

trates our results in three numerical examples. All proofs are deferred to the Appendix.

2.2 Efficient Conditional Metropolis-Hastings algorithm

Recall Φ denotes a Markov chain with target density π(x1, ...,xm) as at (2.1). Fur-

ther recall we construct Φ using a conditional MH algorithm which updates its current

state x = (x1, ...,xm) by randomly identifying component xi with probability pi , drawing a

candidate x′i from g̃i(x′i |x), and accepting the candidate with probability

α̃i
(
x′i |x

)
= min

1,
π(x′i |x−i)
π(xi |x−i)

g̃i(xi |(x[i−1],x
′
i ,x

[i+1]))

g̃i(x′i |x)

 .
The corresponding transition kernel is expressed by

PMH(x,A) =
m∑
i=1

piPMHi
(x,A)
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where PMHi
are the Markov kernels corresponding to the Xi updates. Specifically for i =

1, . . . ,m

PMHi
(x,A) =

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])∈A}
g̃i(x

′
i |x)α̃i(x

′
i |x)µi(dx

′
i)

+
[
1−

∫
g̃i(x

′
i |x)α̃i(x

′
i |x)µi(dx

′
i)
]
I(x ∈ A) .

The convergence properties of the MH depend upon the selection of proposal

distributions g̃i(·|x). To encourage efficient mixing through X , we can modify g̃i(·|x). To

this end, let Hi(xi |x−i) ⊂ Xi denote local neighborhoods of the xi for which the masses do

not exceed 1 on Xi , i.e.

sup
x∈X ,i∈{1,··· ,m}

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) < 1 for x ∈ X .

For example, the neighborhoods might simply be defined by ε-balls around xi : Hi(xi |x−i) =

{z ∈ Xi : d(z,xi) < ε} for Euclidean distance d and ε > 0. To encourage movement outside

the Hi , consider drawing candidates x′i from proposal densities

gi(x
′
i |x) = qg̃i(x

′
i |x) + (1− q)

g̃i(x′i |x)I(x′i ∈H
c
i (xi |x−i))∫

H c
i (xi |x−i )

g̃i(zi |x)µi(dzi)

where q ∈ [0,1]. That is, with probability q draw candidates from the original MH pro-

posals g̃i(x′i |x) and with probability 1− q draw candidates from a neighborhood-truncated

version of g̃i(x′i |x). Subsequently, replace xi by x′i with acceptance probability

αi(x
′
i |x) = min

1,
π(x′i |x−i)
π(xi |x−i)

gi(xi |(x[i−1],x
′
i ,x

[i+1]))

gi(x′i |x)

 .
Thus, what we call the efficient conditional Metropolis-Hastings algorithm (ECMH) has

transition kernel

PECMH(x,A) =
m∑
i=1

piPECMHi
(x,A)
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where for i = 1, . . . ,m

PECMHi
(x,A) =

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])∈A}
gi(x

′
i |x)αi(x

′
i |x)µi(dx

′
i)

+
[
1−

∫
gi(x

′
i |x)αi(x

′
i |x)µi(dx

′
i)
]
I(x ∈ A).

The ECMH depends both on the choice of weight q and neighborhoodsHi(xi |x−i).

When q = 1, all candidates x′i are drawn from g̃i(·|x), thus the ECMH is equivalent to the

conditional MH. Similarly, if q < 1 but neighborhoods Hi(xi |x−i) are small relative to Xi ,

the practical difference between the ECMH and MH (thus any boost in efficiency) will be

negligible.

Consider the other extreme in which q = 0. In this case, all candidates x′i are

drawn from the neighborhood-truncated g̃i(·|x), thus are outside Hi(xi |x−i). This modifi-

cation corresponds to the MCMH algorithm presented in Johnson and Flegal (2014). Our

simulation studies in Section 2.3 confirm our intuition: the MCMH is quite sensitive to

the choice of neighborhoods Hi(xi |x−i). Mainly, the “larger” the Hi(xi |x−i) relative to the

support Xi , the greater the distance between the candidate x′i and current state xi . In

turn, the MCMH is susceptible to either rejecting x′i and getting stuck at xi or accepting x′i

and getting pushed to the ‘edge’ of Xi . In comparison, our proposed ECMH provides the

flexibility of drawing proposals from across the full state space (with probability q) while

occasionally encouraging bigger moves outside the local neighborhood (with probability

1− q). We discuss the goldilocks selection of q in detail in Section 2.3.

2.2.1 Convergence

The quality of using Markov chain output Φ to make inferences about π is di-

rectly impacted by the convergence rate of Φ to π. To this end, let Φ have transition kernel
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P and n-step transition kernel

P n(x,A) = Pr
(
X(n+j) ∈ A X(j) = x

)
for x ∈ X ,A ∈ B

where B denotes the Borel σ -algebra on X . Further, suppose Φ is Harris ergodic and

Feller (for definitions see Meyn and Tweedie, 2009), i.e. for any open set O ∈ B and x,x′ ∈

X , liminfx′→x P (x′ ,O) ≥ P (x,O). Then Φ converges to π in total variation distance as the

Markov chain sample size n increases: for x ∈ X ,

‖ P n(x, ·)−π(·) ‖→ 0 as n→∞ .

Moreover, Φ is geometrically ergodic (converges geometrically quickly) if there exists func-

tion M(x) : X →R and t ∈ (0,1) for which

‖ P n(x, ·)−π(·) ‖≤M(x)tn .

Theorems 2 and 3 below summarize our key findings that the ECMH inherits

geometric ergodicity from the MH in certain settings and that geometric ergodicity of

the MH always follows from that of the ECMH. The proofs are provided in the appendix

and utilize drift and minorization techniques. Specifically, we utilize the fact that Φ is

geometrically ergodic if and only if there exists some drift function W : X → [1,∞) such

that W is unbounded off compact sets (i.e. {x : W (x) ≤ d} is compact for all d > 0) and

satisfies the drift condition

PW (x) :=
∫
W (x′)P (x,dx′) ≤ γW (x) + ν (2.2)
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for x ∈ X , constant ν <∞, and drift rate 0 < γ < 1 (see e.g. Jones and Hobert, 2001; Meyn

and Tweedie, 2009).

Theorem 2. Suppose the MH and ECMH for π are Harris ergodic and Feller. Further, suppose

the ECMH has neighborhood sampling probability q ∈ [0,1] and neighborhoods Hi(xi |x−i) with

measures Mi(xi |x−i) =
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) that satisfy

a ≤
(1− q)Mi(xi |x−i)
1− qMi(xi |x−i)

≤ b for x ∈ X , i ∈ 1, · · · ,m (2.3)

where 0 ≤ a ≤ b < 1. Then if the MH is geometrically ergodic with drift condition (2.2), the

ECMH is geometrically ergodic so long as

b <
1
2

and
1− 2b+ ab

1− a
> γ. (2.4)

Remark 1. Setting q = 0, Theorem 1 of Johnson and Flegal (2014) follows directly from

Theorem 2 here.

Theorem 3. If the ECMH is geometrically ergodic, then so too is the MH.

2.2.2 A Simple Example

Condition (2.3) of Theorem 2 reflects the fact that the ECMH inheritance of ge-

ometric ergodicity from the MH depends upon the user-defined neighborhoods Hi and

neighborhood selection probability q. For example, let π(x1,x2) = 1 be a uniform den-

sity with full conditionals π(xi |x−i) = 1 on (x1,x2) ∈ [0,1]2. Consider the ECMH for π

which utilizes proposal distributions g̃i(x′i |x) = π(x′i |x−i) and neighborhoods Hi(xi |x−i) =

xi ± ε/2 for ε ∈ (0,1). Thus the Hi have measures Mi(xi |x−i) =
∫ min{1,xi+ε/2}

max{0,xi−ε/2}
1dzi so that
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ε/2 ≤Mi(xi |x−i) ≤ ε. In turn, we can simplify (2.3) so that

a :=
(1− q)ε
2− qε

≤
(1− q)Mi(xi |x−i)
1− qMi(xi |x−i)

≤
(1− q)ε
1− qε

=: b.

From Theorem 2, it follows that the ECMH is geometrically ergodic if the following con-

ditions are satisfied

Condition 1:
(1− q)ε
1− qε

<
1
2
⇐⇒ ε <

1
2− q

Condition 2:
1− ε

1− qε
> γ ⇐⇒ ε <

1−γ
1− qγ

(2.5)

where γ is the drift rate of the MH for π.

q Condition 1 Condition 2
0 ε < 1/2 ε < 1−γ
0.25 ε < 4/7 ε < 1−γ

1−0.25γ

0.50 ε < 2/3 ε < 1−γ
1−0.50γ

Table 2.1: Comparison of conditions that ensure geometric ergodicity in a simple example.

Table 2.1 considers (2.5) in two settings examining the trade-offs between the

probability with which we can move within the neighborhood (q) and the size of the neigh-

borhood (ε). First, consider Condition 1. In the extreme setting (q = 0) we only draw

candidates from the neighborhood-truncated full conditionals and Condition 1 restricts

the size of the neighborhood to ε < 1/2 or the half-width of the support [0,1]. However,

as we increase the probability q of drawing candidates from the non-truncated condition-

als, Condition 1 upper bound on ε increases. Similarly, for fixed γ Condition 2 upper

bounds on ε increase as q increases. In short, the restrictions on the size of the local neigh-

borhoods lessen as q increases. Intuitively, the more often we allow the ECMH to draw

candidates from and explore the local neighborhood, the bolder we can be when making
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jumps outside this neighborhood without fear of getting stuck “out there” for too long or

disinheriting geometric ergodicity from the MH.

Condition 2 also illustrates the consideration of the MH drift rate γ ∈ (0,1) in

constructing the ECMH. Mainly, for fixed q, the Condition 2 upper bounds on ε increase

as γ decreases. In interpreting this observation, it is important to note that smaller γ are

loosely indicative of quicker convergence. Thus the results match our intuition that the

quicker the MH convergence (the smaller the drift rate γ), the fewer restrictions we must

place on the ECMH modification in order to inherit geometric ergodicity.

2.3 Numerical studies

Here we apply and compare the ECMH and MH algorithms within a bivariate

Normal model and a Bayesian dynamic spatiotemporal model. In both settings we com-

pare the empirical performance of the finite sample ECMH and MH with respect to ex-

pected square jump distance (ESJD), mean squared error (MSE), candidate acceptance

rate, and per-iteration computational effort. Specifically, consider a generic Markov chain

Φ =
{
X(0),X(1), . . .

}
=

{
(X(0)

1 , . . . ,X
(0)
m ), (X(1)

1 , . . . ,X
(1)
m ), . . .

}
. The ESJD of the corresponding al-

gorithm measures the typical squared distance travelled between subsequent states X(j)

and X(j+1), thus the efficiency of Φ in traversing X . Letting ‖ · ‖2 denote the Euclidean

norm,

ESJD = E
(
‖ X(j+1) −X(j) ‖22

)
.

Further, the MSE measures the combined bias and variance in the Monte Carlo estimate

f̄n := 1
n

∑n
i=1 f

(
X(i)

)
of expected value Eπf as

MSE = E
(
f̄n −Eπf

)2
.
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In MCMC settings, ESJD and MSE are both analytically intractable. To estimate

these quantities, we run N independent chains of length n and estimate ESJD by

ÊSJD =
1
N

N∑
i=1

MSJD(i)

where MSJD(i) is the observed mean squared jump distance of the ith chain, MSJD(i) =

1
n−1

∑n−1
j=1 ‖X(j+1) −X(j)‖22. Further, we estimate MSE by

M̂SE =
1
N

N∑
i=1

(f
(i)
n −Eπf )2 (2.6)

where f
(i)
n is the Monte Carlo average calculated from the ith chain. We compare the

relative efficiency of the ECMH and MH chains by ESJD and MSE ratios

ÊSJDR =
ÊSJDECMH

ÊSJDMH
and M̂SER =

M̂SEECMH

M̂SEMH
,

where the subscripts denote the corresponding algorithm.

Finally, using output from each of the N independent chains, we estimate the

candidate acceptance rate and per-iteration computational effort of the MH and ECMH.

Specifically, we calculate the observed acceptance rate

acceptance rate =

∑N
i=1

∑n
j=1 Iij

nN

where Iij is 1 if the candidate in the jth iteration of the ith chain is accepted. We calculate

the observed per-iteration computational effort by the average number of draws needed to

obtain a candidate from the relevant proposal distribution,

average draws =

∑N
i=1

∑n
j=1 aij

nN
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where aij is the number of draws required to complete the jth iteration of the ith chain.

In our examples, the MH candidates can be sampled directly from a proposal, thus aij = 1

and the average number of draws is 1. On the other hand, the ECMH candidates from

neighborhood-truncated distributions require accept-reject draws, thus aij ≥ 1.

Finally, for all ECMH algorithms we use component-wise local neighborhoods Hi

of fixed width that are centered around the current location (eg: Hi = xi ± c). In consulting

the work of Johnson and Flegal (2014), it seems that this strategy leads to increased effi-

ciency relative to ECMH that utilize Hi of fixed density, thus we do not consider the latter

here.

2.3.1 Bivariate Normal Model

Consider the bivariate normal distribution

X1

X2

 ∼N

0

0

,
2 1

1 1




with full conditionals

X1|X2 ∼N (X2,1) and X2|X1 ∼N
(X1

2
,
1
2

)

and corresponding densities π(x1,x2), π(x1|x2), π(x2|x1). We compare a set of MH and

ECMH for π, each starting at
(
X

(0)
1 ,X

(0)
2

)
and updating the X1 and X2 components with

equal probability, i.e. p = (0.5,0.5). Specifically, let
(
X

(t)
1 ,X

(t)
2

)
= (x1,x2) denote the current

state. Then with equal probability, either propose an update x′1 of x1 or an update x′2 of x2.
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Consider the ECMH of π(x1,x2). We utilize the availability of the full condi-

tionals in updating the selected component X(t)
i = xi : with probability q a candidate x′i is

drawn from π(x′i |x−i) and, with probability 1 − q, x′i is drawn from π(x′i |x−i) truncated at

neighborhood Hi(xi |x−i). To this end, we define fixed-width neighborhoods within c > 0

(conditional) standard deviations of the current xi :

H1(x1|x2) = x1 ± c and H2(x2|x1) = x2 ± c
√

1
2
.

Specifically, the ECMH draws candidates x′i from

gi(x
′
i |x) = qπ(x′i |x−i) + (1− q)

π(x′i |x−i)I(x
′
i ∈H

c
i (xi |x−i))∫

H c
i (xi |x−i )

π(zi |x−i)µi(dzi)

and replaces xi with x′i with probability

αi(x
′
i |x) = min

1,
q+ (1− q)I(xi ∈Hc

i (x′i |x−i))
[∫
H c
i (x′i |x−i )

π(zi |x−i)µi(dzi)
]−1

q+ (1− q)I(x′i ∈H
c
i (xi |x−i))

[∫
H c
i (xi |x−i )

π(zi |x−i)µi(dzi)
]−1

 .

Note that if x′i ∈ Hi(xi |x−i) (hence xi ∈ Hi(x′i |x−i)), αi(x
′
i |x) = min(1,

q

q
) = 1. That is, the

ECMH accepts any candidate x′i within the neighborhood of xi .

Consider the MH special case of the ECMH for which q = 1. Johnson (2009)

and others have shown that this chain is geometrically ergodic with the following drift

condition satisfied by W (x1,x2) = x2
1 + 2x2

2, γ = 0.75, and ν = 1.

PMHW (x1,x2) = γW (x1,x2) + ν (2.7)

where PMH is the MH transition kernel. Proposition 1 follows from (2.7) and Theorem 2.

A proof is provided in the appendix.
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Proposition 1. Let Z ∼N (0,1) with density φ(·) and let M(c) =
∫ c
−cφ(z)dz be the measure of Z

on (−c,c). Then the ECMH is geometrically for any combination of q and c that satisfy

(1− q)M(c)
1− qM(c)

<
1
8

(2.8)

We compare the statistical efficiency of the MH and ECMH under every combina-

tion of c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}. Special cases include

the MH (q = 1) and MCMH (q = 0). Among these sets of parameters, the ECMH is only

guaranteed to be geometrically ergodic by Proposition 1 when c ∈ {0.05,0.1} or q = 1. How-

ever, simulation results suggest this is a conservative rule. We run N = 1000 independent

chains of length n = 1000 for each algorithm and compare the algorithms with respect to

their ESJD, MSE relative to the estimation of EπX1 = 0, computational effort, and accep-

tance rates. These simulation results are summarized in Figure 2.1 and Tables 2.4 and

2.5.

Figure 2.1 provides insight into the balance the ECMH with q ∈ (0,1) for vary-

ing neighborhood sizes c. To begin, consider the influence of c for fixed q. With respect

to all four measures of efficiency, there’s little difference between the algorithms them-

selves, thus their performance, when c is small. With respect to ÊSJDR and M̂SER, ECMH

efficiency peaks when utilizing neighborhoods within c = 1.5 standard deviations of the

current location and decreases rapidly as c increases. The plot of the acceptance rates pro-

vides some insight. Mainly, as c increases, the acceptance rate of the candidate draws x′i

rapidly decreases, i.e. the chain tends to get stuck. As a consequence, the average jump

distance decreases and the MSE increases. In fact, for large neighborhoods with c = 2.5,

the M̂SER of the MCMH exceeds 1.
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Figure 2.1: Simulation results for the Bivariate Normal Model. For the ECMH under each
c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, these plots summarize esti-
mates ÊSJDR relative to ÊSJDMH = 1.5046 (upper left), the average number of draws per
iteration (lower left), and acceptance rates (lower right). Further, the quality of the ECMH
estimation of EπX1 = 0 is captured by estimates M̂SER relative to M̂SEMH = 0.0214 (upper
right).
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Next, consider the influence of q for fixed c. With respect to ÊSJDR and M̂SER,

efficiency of the ECMH generally increases as q decreases between the MH (q = 1) and

MCMH (q = 0) extremes. However, these observations should be interpreted with caution.

First, these plots reveal the sensitivity of the MCMH to tuning errors in the selection of

neighborhood size c. As mentioned above, the M̂SER of the MCMH with c = 2.5 exceeds

1 whereas the M̂SER of the ECMH with q ∈ (0,1) are controlled below 1 for all c. Sec-

ond, as q decreases (i.e. as the algorithm increases its sampling from the neighborhood

truncated proposals), the average accept-reject draws per iteration increases rapidly. As

a consequence, the MCMH with q = 0 requires significantly greater computational effort

than the ECMH. In short, the ECMH enjoys the efficiency in its movement around R
2 and

in its estimation of Eπ(X1) relative to the MH while avoiding the loss of computational

efficiency and sensitivity to neighborhood selection of the MCMH.

2.3.2 Bayesian random effects model

Let Yij represent the jth observation on subject i where i ∈ {1, . . . ,K} and j ∈

{1, . . . ,m}. Then for θ = (θ1, . . . ,θk)T and λ = (λe,λθ)T ,

Yi,j |θ,µ,λ
ind∼ N (θi ,λ

−1
e )

θi |µ,λ
iid∼ N (µ,λ−1

θ )

µ ∼N (s0,q
−1
0 )

λθ ∼ Γ (a1,b1)

λe ∼ Γ (a2,b2)

(2.9)

In this model, we assume that s0 and q0 are known and we say X ∼ Γ (a,b). Let y =

yi,j denote the vector of observed data, then the posterior distribution ω can be written as

π(θ,µ,λ|y) ∝ π(y|θ,µ,λ)π(θ|µ,λ)π(µ)π(λ) with support X = R
k+1 ×R2

+, where π represent
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the densities defined in (2.9). Further, the full conditional densities π(θ|µ,λ),π(µ|θ,λ) and

π(λ|µ,θ) are defined as:

θi |µ,λ
iid∼ N

(
λθµ+mλeȳi
λθ +mλe

,
1

λθ ,mλe

)
for i ∈ {1, . . . , k}

µ|θ,λ ∼N
(
s0q0 + kλθθ̄
q0 + kλ+θ

,
1

q0 + kλθ

)
λθ |θ,µ ∼ Γ

k2 + a1,

∑k
i=1(θi −µ)2

2
+ b1


λe|θ,µ ∼ Γ

km2 + a2,

∑k
i=1m(θi − ȳi)2 + SSE

2
+ b2



(2.10)

where θ̄ = k−1
k∑
i=1

θi , ȳi =m−1
m∑
j=1

yij and SSE =
∑
i,j

(yij − ȳi)2.

Since π(θ,µ,λ|y) is intractable, posterior inference requires MCMC methods. We

simulate data y from (2.9) with K = 3,m = 10, s0 = 0,q0 = 1 and a1 = b1 = a2 = b2 = 2.

For the sake of comparing the efficiency of GS and ECMH, we pretend that the data is

unknown and implement GS and ECMH under the hyperparameter setting where a1 =

b1 = a2 = b2 = 30. In addition, initial values are set as (θ(0),µ(0),λ(0)) = ((ȳ1, ȳ2, ȳ3),0, (1,1))

and three components θ,µ,λ are updated with equal probability in each iteration.

We consider the following modification of the GS: neighborhoods are constructed

with respect to radius parameters r := (rθ , rµ, rλθ , rλe ) ⊂ R
4
+ as follows: H(θ|µ,λ) ⊂ R

k is a

sphere centered at θ with radius rθ, H(µ|θ,λ) = µ± rµ ⊂ R, and H(λe|θ,µ) = Hλθ (λθ |θ,µ)×

Hλe (λe|θ,µ) ⊂R
2 is a rectangle centered at λ with Hλθ (λθ |θ,µ) = λθ ± rλθ and Hλe (λe|θ,µ) =

λe± rλe . Initially, we choose r so that the MCMH (p = 0) maintains approximately common

acceptance rates for each of the θ,µ,λ components. The neighborhoods depend upon cur-

rent state of the chain. Specifically, the neighborhood radii are proportional to the current

full conditional standard deviations: rθ = εθσ (θ|µ,λ), rµ = εµσ (µ|θ,λ), rλθ = ελσ (λθ |θ,µ)

and rλe = ελσ (λe|θ,µ) for εθ ,εµ,ελ > 0.
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Figure 2.2: Simulation results for the Bayesian random effects model. For the ECMH under
each given set of {εθ ,εµ,ελ} and q ∈ {0,0.125,0.25,0.5,0.7}, estimates ÊSJDR with ECMH,
relative to ÊSJDGS = 0.4429 and M̂SER with ECMH, relative to M̂SEGS = 0.0020 are plotted
alongside estimated ECMH acceptance rates and average number of draws per iteration.
For ease of comparison among the lower levels, the M̂SER is plotted within [0,3] in the top
right plot. The M̂SER when p = 0 (dotted black line) and εθ = 3.9 is 7.009.
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We run N = 1000 independent chains of length n = 1000 for each algorithm and

compare the algorithms with respect to their ESJD, MSE, average draws per iteration, and

acceptance rates. These simulation results are summarized in Figure 2.2 and Tables 2.6

and 2.7. For the estimation of M̂SE, we focus on the posterior expectation β = E(µ|y) and

assume that the true value of β to be β∗, where β∗ is an independent estimate based on a

GS run of length 106. Figure 2.2 presents the estimates of ÊSJDR and M̂SER of ECMHu

with respect to MH, under every combinations of εθ, εµ, ελ and q ∈ {0,0.125,0.25,0.5,0.7}.

In light of Figure 2.2, both MCMH and ECMH are more efficient in both their exploration

of the state space and estimation of the β with proper selection of the neighborhood Hi .

In particular, the chain enjoys the most efficient movement around the state space while

yielding the most efficient estimates of β when neighborhood εθ = 2.3, εµ = 1.4 and ελ =

1.9. The benefit of ECMH is fully demonstrated when the neighborhood size gets wide.

The MCMH yields a large M̂SE of around 7 while the ECMH algorithm gives comparable

estimates to the regular MH. It is not hard to conclude that ECMH enjoys similar levels

of movement efficiency as MCMH while controlling the statistical efficiency in estimation.

In addition, the computational effort is reduced significantly by ECMH based on lower

numbers of average draws per iteration and higher acceptance rates.

2.3.3 Bayesian dynamic spatiotemporal model

The R package spBayes (Finley et al., 2007) provides monthly temperature data

collected from 356 weather stations in the Northeastern United States from January 2000

to September 2010. We use only a subset of these data, the observations on a network of

stations between January 2000 and December 2002, to make inferences about the follow-

ing univariate Bayesian dynamic spatiotemporal model proposed by Finley et al. (2012).

To be specific, this subset of the dataset includes 34 stations and 12 months.
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For month t ∈ {1, ...,Nt} and location s ∈ {1, ...,Ns}, let yt(s) denote the recorded

average monthly temperature. Further, let xt(s) = (1,xt1(s))′ be a 2× 1 vector including an

intercept term and a measurement of station elevation xt1(s) with a corresponding 2 × 1

vector of temporal coefficients βt = (βt0,βt1)′. We model yt(s) by a regression model with

a space-time varying intercept µt(s), predictors xt(s), and spatially uncorrelated Gaussian

disturbances εt(s), that is

yt(s) = µt(s) + xt(s)
′βt + εt(s), εt(s) ∼N (0, τ2

t ).

Here the temporal coefficients βt and spatiotemporal intercepts µt(s) are

βt = βt−1 + ηt , ηt ∼N (0,Ση)

µt(s) = µt−1(s) +wt(s), and wt(s) ∼ GP
(
0,Ct(·;σ2

t ,φt)
)
,

where GP (0,Ct(·;σ2
t ,φt)) denotes a spatial Gaussian process with covariance function

Ct(s1, s2;σ2
t ,φt) = σ2

t ρ(s1, s2;φt) for correlation decay φ and spatial variance σ2
t . Finally, the

model utilizes priorsβ0 ∼N (02,1000I2), µ0(s) ≡ 0, Ση ∼ IW (2,0.01I2), τ2
t
ind∼ IG(2,5), σ2

t
ind∼

IG(2,10), and φt ∼Unif (0.001,0.03) (where IW and IG represent the inverse Wishart and

inverse Gamma, respectively).

Letπ(β0,βt ,Ση , τ
2
t ,σ

2
t ,φt |y) denote the posterior density corresponding to the model

above where y is the observed weather station data. Inference for this complicated, high

dimensional target requires MCMC methods. We compare the MH and ECMH for π. For

both algorithms, we complete the updates by utilizing the full conditionals of (β0,βt ,Ση , τ
2
t ,σ

2
t ,φt)

provided by Finley et al. (2012) and use starting values β(0)
0 = 0,β

(0)
t = 0,Σ

(0)
η = 0.01I2, τ

2
t

(0)
=

1,σ2
t

(0)
= 2,φt

(0) = 6
max.d , where max.d is the maximum distance between any two stations.

The components are updated with equal probabilities.
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For ECMH we consider modifying the proposal densities of β0, βt, σ
2
t , τ2

t and

φt. Specifically, for the purpose of targeting the components with slower mixing, it is

reasonable to use effective sample size (ESS) to determine which components we choose to

apply the ECMH, i.e. modify their proposal densities, in this high dimensional setting. ESS

measures the size of an i.i.d. sample with the same standard error. Therefore, components

with smaller ESS correspond to the ones with slower mixing. To this end, we ran the MH

algorithm for n = 10,000 iterations and calculated the ESS with respect to each component

(see Table 2.2). Based on the ESS, we decide to only apply the ECMH, namely, modifying

the proposal densities of β0, βt, σ
2
t , τ2

t and φt.

Component Mean ESS
Ση 8656
β0 7814
τ2
t 3942
σ2
t 1862
φt 677
βt 155

Table 2.2: Effective sample size

We consider the ECMH under a variety of parameter settings q ∈ {0,0.125,0.25,0.5,0.7,1}

and neighborhoods Hi . For the latter, we utilize fixed width neighborhoods that vary by

component. To determine appropriate widths, we ran one MH chain for 106 iterations

and calculated the sample coverage intervals at the (5,10,15,20,25,35) percent levels.

The widths of these coverage intervals are summarized in Table 2.3 and provide the lo-

cal neighborhoods Hi for the ECMH. Mainly, local neighborhoods are defined by

Hi = current value of the component±neighborhood half-width

34



0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

Width of Neighborhood

E
S
JD
R

5 10 15 20 25 35

0
0.125
0.25
0.5
0.7 0.

0
0.
5

1.
0

1.
5

Width of Neighborhood

M
S
E
R

5 10 15 20 25 35

2
4

6
8

10
12

Width of Neighborhood

N
um

be
r o

f d
ra

w
s 

pe
r i

te
ra

tio
n

5 10 15 20 25

0
0.125
0.25
0.5
0.7

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Width of Neighborhood

A
cc

ep
ta

nc
e 

pr
ob

ab
ili

ty

5 10 15 20 25

Figure 2.3: Simulation results for the Bayesian dynamic spatiotemporal model. For the
ECMH under each q ∈ {0,0.125,0.25,0.5,0.7} and neighborhood specified in Table 2.3,
these plots summarize estimates ÊSJDR relative to ÊSJDMH = 0.922 (upper left), the av-
erage number of draws per iteration (lower left), and acceptance rates (lower right). Fur-
ther, the quality of the ECMH estimation of Eπβt is captured by estimates M̂SER relative
to M̂SEMH = 0.785 (upper right). The settings with neighborhood levels of 35 have drasti-
cally high numbers of draws and low acceptance rates, thus are eliminated in the bottom
two plots for ease of comparison among the lower levels.
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where the neighborhood half-widths are presented below for the given component and

desired coverage level.

Table 2.3: Widths of neighborhoods Hi for each component of π and coverage level in (5,
10, 15, 20, 25, 35) percent.

Coverage interval level β0[1] β0[2] βt[1] βt[2] σ2
t τ2

t φt
5% 1.2828 1.1120 0.2043 0.0002 0.0605 0.0202 0.0002

10% 2.5754 2.2209 0.4103 0.0004 0.1211 0.0405 0.0004
15% 3.8680 3.3553 0.6173 0.0005 0.1823 0.0611 0.0006
20% 5.1751 4.4894 0.8265 0.0007 0.2444 0.0819 0.0009
25% 6.5120 5.6394 1.0394 0.0009 0.3074 0.1031 0.0011
35% 9.2951 8.0383 1.4794 0.0013 0.4387 0.1472 0.0016

For each combination of q and Hi , we run N = 200 independent chains of length

n = 10000 and compare the corresponding algorithms with respect to their ESJD, MSE rel-

ative to the estimation of Eπβt, computational effort, and acceptance rates. Since the true

value of Eπβt is unknown, we run 100 chains of length 106 and calculate the expected val-

ues β′. The estimates of β′ are then assumed to be the true values in (2.6). All simulation

results are summarized in Figure 2.3 with supporting Tables 2.8 and 2.9.

Though the Bayesian dynamic spatiotemporal model is a much more sophisti-

cated setting, the simulation results for the model are quite similar to those of the toy

bivariate Normal model. Mainly, we see that the ECMH with q < 1 increases the ef-

ficiency in jump distances and posterior parameter estimation relative to the MH. The

ECMH with q > 0 also provides a safer alternative to the MCMH which is quite sensitive

to neighborhood tuning choices and requires more computational effort. We also observe

the goldilocks problem in selecting neighborhoods. To this end it appears that the ECMH

enjoys maximum efficiency for neighborhoods at the 10% coverage level. It is important

to note that neighborhood half-widths are computed from pooled posterior samples of

all months. Due to the temporal variation within the coefficients, the neighborhood half-

width corresponding to the 10% coverage level is approximately equivalent to 1.2 standard
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deviations. Thus the optimal neighborhood here is consistent with that in the bivariate

Normal model setting.

2.4 Appendix

2.4.1 Proof Preliminaries

The proofs of Theorems 1 and 2 generalize those of Johnson and Flegal (2014)

and utilize the following common properties of the MH and ECMH. First, for notational

convenience, we define the following. Let B̃i(x′i |x) and Bi(x′i |x) denote the MH and ECMH

probabilities of drawing and subsequently accepting candidate x′i , respectively:

B̃i(x
′
i |x) := g̃i(x

′
i |x)α̃i(x

′
i |x) and Bi(x

′
i |x) := gi(x

′
i |x)α̃i(x

′
i |x) .

Further, let x′[i] = (x[i−1],x
′
i ,x

[i+1]) and note that the MH proposal densities and acceptance

probabilities satisfy

B̃i(x
′
i |x) = π(x′i |x−i)min

{
g̃i(x′i |x)
π(x′i |x−i)

,
g̃i(xi |x′[i])
π(xi |x−i)

}
.

Similarly, lettingMi(xi |x−i) =
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) and k(xi |x−i) = q+(1−q)·(1−Mi(xi |x−i))−1,

notice that we can rewrite the ECMH proposal densities as

gi(x
′
i |x) = qg̃i(x

′
i |x)I(x′i ∈Hi(xi |x−i)) + g̃i(x

′
i |x)k(xi |x−i)I(x′i ∈H

c
i (xi |x−i))

thus the ECMH proposal densities and acceptance probabilities satisfy

Bi(x
′
i |x) = qB̃i(x

′
i |x)I(x′i ∈Hi(xi |x−i))

+π(x′i |x−i)min
{
g̃i(x′i |x)k(xi |x−i)

π(x′i |x−i)
,
g̃i(xi |x′[i])k(x′i |x−i)

π(xi |x−i)

}
I(x′i ∈H

c
i (xi |x−i)).
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For all x ∈ X , it holds by assumption (2.3) of Theorem 2 that

1− b ≤ 1−Mi(xi |x−i)
1− qMi(xi |x−i)

=
1

k(xi |x−i)
≤ 1− a (2.11)

thus Bi(x′i |x) is bounded by

[
qI(x′i ∈Hi(xi |x−i)) +

I(x′i ∈H
c
i (xi |x−i))

1− a

]
B̃i(x

′
i |x) ≤ Bi(x′i |x)

≤
[
qI(x′i ∈Hi(xi |x−i)) +

I(x′i ∈H
c
i (xi |x−i))

1− b

]
B̃i(x

′
i |x) .

(2.12)

2.4.2 Proof of Theorem 2

Proof. Assume the MH is geometrically ergodic with drift function W : X → [1,∞) that is

unbounded off compact sets and satisfies the drift condition for 0 < γ < 1 and ν <∞:

PMHW (x) :=
m∑
i=1

piPMHi
W (x) ≤ γW (x) + ν

where

PMHi
W (x) =

∫
W (x′[i])B̃i(x

′
i |x)µi(dx

′
i) +W (x)

[
1−

∫
B̃i(x

′
i |x)µi(dx

′
i)
]

We will extend the guarantee of geometric ergodicity to the ECMH by establish-

ing the following drift condition:

PECMHW̃ (x) ≤ γ̃W̃ (x) +
d + 1
1− b

ν (2.13)
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where

d ∈
(

b
1− 2b

,
(1− b)−γ(1− a)
γ(1− a)− a(1− b)

)
γ̃ = max

{
(d + 1)

( γ

1− b
− a

1− a

)
,
d + 1
d

b
1− b

}
W̃ (x) =W (x) + dV (x)

V (x) = max
j

{
(W (x)−W (x′[j])) I(x′j ∈Hj(xj |x−j ))

}
.

(2.14)

Note that this drift condition satisfies the definition (2.2). Mainly, under the re-

strictions on a,b and assuming without loss of generality that γ > a(1 − b)(1 − a)−1, the

interval for d is non-empty. Further, 0 < γ̃ < 1 and 0 ≤ V (x) ≤W (x), thus W̃ is unbounded

off compact sets on X . In order to establish (2.13) we start with the component-wise drift
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conditions:

PECMHi
W (x) =

∫
W (x′[i])Bi(x

′
i |x)µ(dx′i) +W (x)

[
1−

∫
Bi(x

′
i |x)µ(dx′i)

]
≤ q

∫
Hi (xi |x−i )

W (x′[i])B̃i(x
′
i |x)µ(dx′i) +

1
1− b

∫
H c
i (xi |x−i )

W (x′[i])B̃i(x
′
i |x)µ(dx′i)

+W (x)

1− q∫
Hi (xi |x−i )

B̃i(x
′
i |x)µ(dx′i)−

1
1− a

∫
H c
i (xi |x−i )

B̃i(x
′
i |x)µ(dx′i)


= q

∫
Hi (xi |x−i )

[
W (x′[i])−W (x)

]
B̃i(x

′
i |x)µ(dx′i)

+
1

1− a

∫
Hi (xi |x−i )

W (x)B̃i(x
′
i |x)µ(dx′i)−

1
1− b

∫
Hi (xi |x−i )

W (x′[i])B̃i(x
′
i |x)µ(dx′i)

+
1

1− b

∫
W (x′[i])B̃i(x

′
i |x)µ(dx′i) +

W (x)
1− a

[
1− a−

∫
B̃i(x

′
i |x)µ(dx′i)

]
≤

( 1
1− b

− q
)∫

Hi (xi |x−i )
[W (x)−W (x′[i])]B̃i(x

′
i |x)µ(dx′i)−

a
1− a

W (x)

+
1

1− b

(∫
W (x′[i])B̃i(x

′
i |x)µ(dx′i) +W (x)

[
1−

∫
B̃i(x

′
i |x)µ(dx′i)

])
≤

( 1
1− b

− q
)
V (x)

∫
Hi (xi |x−i )

B̃i(x
′
i |x)µ(dx′i)−

a
1− a

W (x) +
1

1− b
PMHi

W (x)

≤ b
1− b

V (x)− a
1− a

W (x) +
1

1− b
PMHi

W (x)

where, in order, the inequalities follow from (2.12), the fact that a ≤ b, (2.14), and (2.11).

It follows that

PECMHW (x) =
m∑
i=1

piPECMHi
W (x)

≤ 1
1− b

m∑
i=1

piPMHi
W (x)− a

1− a
W (x) +

b
1− b

V (x)

=
1

1− b
PMHW (x)− a

1− a
W (x) +

b
1− b

V (x)

≤
( γ

1− b
− a

1− a

)
W (x) +

b
1− b

V (x) +
ν

1− b
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and the drift condition (2.13) holds:

PECMHW̃ (x) = PECMHW (x) + dPECMHV (x)

≤ (d + 1)PECMHW (x)

≤ (d + 1)
( γ

1− b
− a

1− a

)
W (x) +

d + 1
d

b
1− b

dV (x) +
d + 1
1− b

ν

≤ γ̃W̃ (x) +
d + 1
1− b

ν

2.4.3 Proof of Theorem 3

Proof. Note that the MH and ECMH are reversible with respect to π. Thus we can establish

Theorem 3 by appealing to a capacitance argument. To this end, let Φ be a reversible

Markov chain with kernel P and capacitance

κ := inf
S:0≤π(S)≤1/2

1
π(S)

∫
S
P (x,Sc)π(x)µ(dx) (2.15)

where π(S) =
∫
S(x)π(x)µ(dx). Then Sinclair (1992) prove that Φ is geometrically ergodic

if and only if κ > 0.

By assumption, the ECMH with Hi(xi |x−i) that satisfy

d := sup
x∈X ,i∈{1,··· ,m}

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) < 1 for x ∈ X

is geometrically ergodic. Thus the ECMH has capacitance κECMH > 0 where

κECMH := inf
S:0<π(S)≤1/2

1
S

∫
S
PECMH(x,Sc)π(x)µ(dx).
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The capacitance depends upon PECMH(x,Sc) where for x ∈ S, it follows from (2.12) that

PECMHi
(x,Sc) =

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])}
gi(x

′
i |x)α(x′i |x)µi(dx)

≤ 1
1− b

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])}
g̃i(x

′
i |x)α̃(x′i |x)µi(dx)

=
1

1− b
PMHi

(x,Sc).

Thus the MH is geometrically ergodic since its capacitance satisfies

κMH := inf
S:0<π(S)≤1/2

1
S

∫
S
PMH(x,Sc)π(x)µ(dx) ≥ (1− b)κECMH > 0.

2.4.4 Proof of Proposition 1

Proof. For i ∈ {1,2}, the bivariate Normal model has full conditionals Xi |X−i ∼ N (µi ,σ
2
i ).

The proposed ECMH utilizes the Normal proposal densities g̃i(xi |x) = πi(xi |x−i) and neigh-

borhoods

Hi(xi |x−i) = xi ± cσi .

Thus letting φ(·) denote the standard Normal density and M(c) =
∫ c
−cφ(z)dz, Hi(xi |x−i) has

measure

0 ≤Mi(xi |x−i) =
∫
Hi (xi |x−i )

πi(zi |x−i)dzi

=
∫ xi+cσi

xi−cσi
πi(zi |x−i)dzi

≤
∫ µi+cσi

µi−cσi
πi(zi |x−i)dzi

=M(c).

(2.16)
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It follows that

a := 0 ≤
(1− q)Mi(xi |x−i)
1− qMi(xi |x−i)

≤
(1− q)M(c)
1− qM(c)

=: b . (2.17)

Letting γ = 0.75 be the MH drift rate, (2.4) holds thus Theorem 2 guarantees the geometric

ergodicity of the ECMH so long as

b <min
{1

2
,
1−γ

2

}
=

1
8
.

2.4.5 Simulation Results

Table 2.4: Simulation results for the Bivariate Normal Model. For the ECMH under
each c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, this table summarizes
estimates ÊSJDR relative to ÊSJDMH = 1.5046 and estimates M̂SER relative to M̂SEMH =
0.0214. Standard errors are given in parentheses.

c 0.05 0.1 0.5 1 1.5 2 2.5

ÊSJDR

p = 0
1.009 1.024 1.139 1.285 1.365 1.327 1.152
(0.0025) (0.0025) (0.0027) (0.0029) (0.0033) (0.0041) (0.0063)

p = 0.125
1.006 1.018 1.122 1.249 1.315 1.295 1.175
(0.0026) (0.0025) (0.0027) (0.0029) (0.0033) (0.0037) (0.0044)

p = 0.25
1.004 1.013 1.101 1.210 1.270 1.250 1.151
(0.0026) (0.0026) (0.0027) (0.0029) (0.0031) (0.0034) (0.0037)

p = 0.5
1.005 1.006 1.065 1.136 1.182 1.166 1.097
(0.0025) (0.0025) (0.0026) (0.0027) (0.0029) (0.0030) (0.0032)

p = 0.7
1.000 1.004 1.041 1.085 1.106 1.101 1.062
(0.0025) (0.0026) (0.0026) (0.0026) (0.0027) (0.0029) (0.0030)

M̂SER

p = 0
1.030 1.018 0.906 0.797 0.745 0.776 1.260
(0.0645) (0.0622) (0.0550) (0.0476) (0.0476) (0.0489) (0.0743)

p = 0.125
0.994 0.981 0.855 0.843 0.724 0.841 0.983
(0.0652) (0.0601) (0.0526) (0.0522) (0.0432) (0.0518) (0.0631)

p = 0.25
0.849 0.929 0.951 0.797 0.803 0.847 0.926
(0.0526) (0.0566) (0.0599) (0.0510) (0.0486) (0.0525) (0.0575)

p = 0.5
0.976 0.938 0.914 0.938 0.857 0.886 0.943
(0.0590) (0.0593) (0.0568) (0.0596) (0.0521) (0.0538) (0.0577)

p = 0.7
1.007 0.960 0.962 0.942 0.985 0.880 0.959
(0.0625) (0.0681) (0.0580) (0.0559) (0.0620) (0.0551) (0.0641)
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Table 2.5: Simulation results for the Bivariate Normal Model. For the ECMH under each
c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, this table summarizes the av-
erage number of draws per iteration and acceptance rates. Standard errors are given in
parentheses.

c 0.05 0.1 0.5 1 1.5 2 2.5

Average
draws

p = 0
1.028 1.059 1.406 2.303 4.557 11.405 37.667
(0.0002) (0.0002) (0.0008) (0.0019) (0.0053) (0.0226) (0.1649)

p = 0.125
1.025 1.052 1.355 2.138 4.125 10.039 31.119
(0.0002) (0.0002) (0.0008) (0.0019) (0.0051) (0.0175) (0.0774)

p = 0.25
1.021 1.044 1.305 1.977 3.669 8.701 26.831
(0.0002) (0.0002) (0.0007) (0.0018) (0.0048) (0.0156) (0.0603)

p = 0.5
1.014 1.029 1.203 1.651 2.783 6.145 18.116
(0.0001) (0.0002) (0.0006) (0.0015) (0.0041) (0.0122) (0.0460)

p = 0.7
1.008 1.017 1.120 1.390 2.069 4.086 11.252
(0.0001) (0.0001) (0.0005) (0.0012) (0.0033) (0.0094) (0.0349)

Acceptance
rate

p = 0
0.994 0.987 0.906 0.754 0.574 0.404 0.260
(0.0001) (0.0001) (0.0003) (0.0005) (0.0007) (0.0009) (0.0013)

p = 0.125
0.994 0.988 0.919 0.784 0.626 0.481 0.362
(0.0001) (0.0001) (0.0003) (0.0004) (0.0006) (0.0008) (0.0008)

p = 0.25
0.995 0.990 0.930 0.815 0.680 0.556 0.454
(0.0001) (0.0001) (0.0003) (0.0004) (0.0006) (0.0006) (0.0007)

p = 0.5
0.997 0.993 0.953 0.876 0.787 0.704 0.637
(0.0001) (0.0001) (0.0002) (0.0004) (0.0005) (0.0005) (0.0006)

p = 0.7
0.998 0.996 0.972 0.927 0.873 0.823 0.782
(0.0000) (0.0001) (0.0002) (0.0003) (0.0004) (0.0004) (0.0005)
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Table 2.6: Simulation results for the Bayesian random effects model. For the ECMH under
each given set of {εθ ,εµ,ελ}, this table summarizes estimates ÊSJDR relative to ÊSJDGS =
0.4429 and M̂SER relative to M̂SEGS = 0.0020. Standard errors are given in parentheses.

εθ 0.65 1.3 1.7 2.3 3.0 3.9
εµ 0.14 0.5 0.9 1.4 2.0 2.9
ελ 0.0009 0.9 1.3 1.9 2.6 3.4

ÊSJDR

p = 0
1.015 1.059 1.109 1.139 1.072 0.848

(0.0026) (0.0026) (0.0027) (0.0031) (0.0042) (0.0085)

p = 0.125
1.013 1.051 1.085 1.110 1.069 0.888

(0.0026) (0.0026) (0.0026) (0.0030) (0.0036) (0.0046)

p = 0.25
1.010 1.039 1.065 1.080 1.047 0.898

(0.0025) (0.0026) (0.0027) (0.0029) (0.0033) (0.0040)

p = 0.5
1.007 1.024 1.037 1.032 1.011 0.927

(0.0025) (0.0026) (0.0026) (0.0027) (0.0029) (0.0032)

p=0.7
1.006 1.013 1.017 1.002 0.984 0.947

(0.0025) (0.0026) (0.0026) (0.0026) (0.0028) (0.0028)

M̂SER

p = 0
0.874 0.822 0.689 0.642 0.886 7.009

(0.0565) (0.0508) (0.0438) (0.0420) (0.0566) (0.4163)

p = 0.125
0.921 0.754 0.651 0.643 0.783 1.835

(0.0582) (0.0479) (0.0424) (0.0405) (0.0505) (0.1162)

p = 0.25
0.869 0.784 0.792 0.745 0.713 1.389

(0.0548) (0.0494) (0.0507) (0.0472) (0.0468) (0.0863)

p = 0.5
0.936 0.886 0.769 0.735 0.769 1.046

(0.0585) (0.0563) (0.0492) (0.0475) (0.0497) (0.0678)

p=0.7
0.915 0.812 0.883 0.786 0.846 0.994

(0.0587) (0.0524) (0.0567) (0.0495) (0.0527) (0.0617)
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Table 2.7: Simulation results for the Bayesian random effects model. For the ECMH un-
der each given set of {εθ ,εµ,ελ}, this table summarizes the average number of draws per
iteration and acceptance rates.. Standard errors are given in parentheses.

εθ 0.65 1.3 1.7 2.3 3.0 3.9
εµ 0.14 0.5 0.9 1.4 2.0 2.9
ελ 0.0009 0.9 1.3 1.9 2.6 3.4

Average
draws

p = 0
1.037 1.305 1.766 3.779 12.064 94.213

(0.0002) (0.0007) (0.0014) (0.0053) (0.0413) (1.0191)

p = 0.125
1.032 1.248 1.595 2.892 7.332 55.183

(0.0002) (0.0006) (0.0011) (0.0034) (0.0172) (0.2588)

p = 0.25
1.027 1.199 1.471 2.477 6.138 47.085

(0.0002) (0.0006) (0.0011) (0.0030) (0.0147) (0.1949)

p = 0.5
1.018 1.119 1.279 1.902 4.266 31.482

(0.0001) (0.0004) (0.0008) (0.0025) (0.0102) (0.1226)

p = 0.7
1.010 1.066 1.154 1.517 2.919 19.245

(0.0001) (0.0003) (0.0006) (0.0018) (0.0078) (0.0893)

Accept
rate

p = 0
0.986 0.903 0.802 0.601 0.401 0.212

(0.0001) (0.0003) (0.0005) (0.0007) (0.0011) (0.0016)

p = 0.125
0.988 0.915 0.833 0.701 0.602 0.519

(0.0001) (0.0003) (0.0004) (0.0006) (0.0007) (0.0007)

p = 0.25
0.990 0.928 0.860 0.752 0.669 0.593

(0.0001) (0.0003) (0.0004) (0.0005) (0.0006) (0.0006)

p = 0.5
0.993 0.951 0.905 0.832 0.778 0.729

(0.0001) (0.0002) (0.0003) (0.0004) (0.0005) (0.0005)

p = 0.7
0.995 0.970 0.941 0.892 0.860 0.834

(0.0001) (0.0002) (0.0002) (0.0003) (0.0004) (0.0004)
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Table 2.8: Simulation results for the Bayesian dynamic spatiotemporal model. For the
ECMH under each set of parameters specified in Table 2.3, this table summarizes esti-
mates ÊSJDR relative to ÊSJDMH = 0.922 and estimates M̂SER relative to M̂SEMH = 0.785.
Standard errors are given in parentheses.

Width 5 10 15 20 25 35

ÊSJDR

p = 0
1.065 1.116 1.108 1.081 1.037 0.874

(0.0006) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

p = 0.125
1.058 1.101 1.095 1.072 1.032 0.889

(0.0006) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

p = 0.25
1.051 1.088 1.082 1.062 1.027 0.904

(0.0006) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

p = 0.5
1.035 1.060 1.056 1.042 1.018 0.934

(0.0006) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

p = 0.7
1.020 1.032 1.029 1.022 1.009 0.964

(0.0006) (0.0006) (0.0007) (0.0006) (0.0007) (0.0007)

M̂SER

p = 0
0.757 0.744 0.911 0.886 1.065 1.363

(0.1099) (0.1054) (0.1256) (0.1251) (0.1419) (0.1811)

p = 0.125
0.807 0.834 0.946 0.916 0.976 1.130

(0.1112) (0.1190) (0.1377) (0.1258) (0.1398) (0.1637)

p = 0.25
0.675 0.754 0.820 0.804 0.949 1.045

(0.0912) (0.1079) (0.1083) (0.1128) (0.1362) (0.1413)

p = 0.5
0.796 0.923 0.723 0.900 0.928 0.997

(0.1116) (0.1249) (0.1042) (0.1251) (0.1484) (0.1359)

p = 0.7
0.975 0.878 0.755 0.942 0.874 0.845

(0.1395) (0.1256) (0.1040) (0.1404) (0.1239) (0.1157)
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Table 2.9: Simulation results for the Bayesian dynamic spatiotemporal model. For the
ECMH under each set of parameters specified in Table 2.3, this table summarizes the av-
erage number of draws per iteration and acceptance rates. Standard errors are given in
parentheses.

Width 5 10 15 20 25 35

Average
draws

p = 0
1.200 1.770 2.871 5.399 12.708 257.961

(0.0001) (0.0003) (0.0007) (0.0018) (0.0074) (1.6709)

p = 0.125
1.175 1.675 2.644 4.872 11.335 230.067

(0.0001) (0.0002) (0.0006) (0.0019) (0.0064) (5.1215)

p = 0.25
1.151 1.580 2.415 4.342 9.950 193.862

(0.0001) (0.0002) (0.0006) (0.0017) (0.0063) (2.4615)

p = 0.5
1.100 1.389 1.951 3.262 7.093 127.735

(0.0001) (0.0002) (0.0005) (0.0013) (0.0049) (0.9845)

p = 0.7
1.050 1.195 1.480 2.150 4.125 64.035

(0.0001) (0.0001) (0.0004) (0.0010) (0.0035) (0.5661)

Acceptance
rate

p = 0
0.946 0.836 0.703 0.568 0.445 0.249

(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

p = 0.125
0.953 0.857 0.739 0.621 0.511 0.339

(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

p = 0.25
0.959 0.877 0.776 0.673 0.579 0.430

(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

p = 0.5
0.973 0.917 0.849 0.780 0.716 0.614

(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

p = 0.7
0.986 0.958 0.924 0.888 0.855 0.803

(0.0000) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001)
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Chapter 3

Efficient conditional Metropolis

Hastings algorithm with uniform

distribution

3.1 Introduction

In this chapter, we propose another strategy to improve the jump distances of

the Metropolis Hastings algorithm. By encouraging efficient jumps around state space X ,

the idea is similar to the Efficient Metropolis-Hasting sampler introduced in Chapter 2.

Instead of keeping the original distribution and propose within the local neighborhood

with probability q, we propose samples within the local neighborhood under a uniform

distribution. For notation convenience, this strategy is denoted by ECMHu. To be specific,

denote the current state of the MH by x and suppose the i-th component xi is chosen

for update. Let Hi(xi |x−i) ⊂ X be a local neighborhood of xi that could depend on x−i .

Depending on Xi , we might we might define Hi(xi |x−i) = xi + c for c > 0 when Xi = R or

define Hi(xi |x−i) to be a circle centered at xi with radius c when Xi = R
2. For illustration
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purposes, consider the simple case where Hi(xi |x−i) = xi ± c. The first step is to draw x′i

from the proposal density gi(x′i |x), where

gi(x
′
i |x) =

q
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

2c
I(x′i ∈Hi(xi |x−i)) + k(xi |x−i)g̃i(x′i |x)I(x′i ∈H

c
i (xi |x−i))

and

k(xi |x−i) =
1− q

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)∫
H c
i (xi |x−i )

g̃i(zi |x)µi(dzi)
,

and then replace xi with x′i with acceptance probability:

αi(x
′
i |x) =min

1,
πi(x′i |x−i)
πi(xi |x−i)

q
∫
Hi (x′i |x−i )

g̃i(zi |x)µi(dzi)/2c

q
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)/2c

 I(x′i ∈Hi(xi |x−i))
+ min

(
1,
πi(x′i |x−i)
πi(xi |x−i)

g̃i(xi |x′[i])
g̃i(xi |x)

k(x′i |x−i)
k(xi |x−i)

)
I(x′i ∈H

c
i (xi |x−i)).

Thus, the ECMHu has transition kernel

PECMHu(x,A) =
m∑
i=1

qiPECMHui (x,A)

where

PECMHui (x,A) =
∫
{x′i :(x[i−1],x

′
i ,x

i+1)∈A}
Bi(x

′
i |x)µi(dx

′
i) +

[
1−

∫
Bi(x

′
i |x)µi(dx

′
i)
]
I(x ∈ A)

Similar to the ECMH, if we set p = 0, the ECMHu and MCMH are equivalent.
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3.2 Convergence

We prove that the ECMHu enjoys the same mixing properties as the unmodi-

fied MH under specified conditions of q and Hi by establishing geometric ergodicity. The

proofs again utilize drift and minorization techniques.

Theorem 4. Consider the MH and ECMHu forω and assume both are Harris ergodic and Feller.

Further, suppose that the ECMHu has neighborhoods Hi(xi |x−i) and q satisfying (1) with

a ≤
(1− q)

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

1− q
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)
≤ b for all x ∈ X , i ∈ 1, · · · ,m (3.1)

where 0 ≤ a ≤ b ≤ 1. Then if the MH is geometrically ergodic with drift condition (2.2), the

ECMHu is geometrically ergodic so long as

b <
1
2

and
1− 2b+ ab

1− a
> γ.

Theorem 5. If the ECMHu with neighborhoods Hi(xi |x−i) satisfying

sup
x∈X ,i∈{1,··· ,m}

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) < 1 (3.2)

is geometrically ergodic, the MH is also geometrically ergodic.

3.3 Numerical studies

The ECMHu is applied within a bivariate Normal model and Bayesian random

effects model as specified in Chapter 2. In both models, the empirical performance of

finite sample ECMHu and MCMH are compared by expected square jump distance (ESJD),

measuring how efficiently the ECMHu and MH traverse X and mean squared error (MSE),

51



capturing the combined bias and variance of the estimators. The simulation results are

presented for each model in the following two sections. Additionally, we estimate the

candidate acceptance rate and per-iteration computational effort of the MH and ECMH.

Details on how these measures are computed can be found in Section 3 of Chapter 2.

3.3.1 Bivariate Normal model

Consider the bivariate normal distribution

X1

X2

 ∼N

0

0

,
2 1

1 1


 (3.3)

(3.4)

with full conditionals

X1|X2 ∼N (X2,1) and X2|X1 ∼N
(X1

2
,
1
2

)

and corresponding densities π(x1,x2), π(x1|x2), π(x2|x1). We compare a set of MH and

ECMH for π, each starting at
(
X

(0)
1 ,X

(0)
2

)
and updating the X1 and X2 components with

equal probability, i.e. p = (0.5,0.5). Specifically, let
(
X

(t)
1 ,X

(t)
2

)
= (x1,x2) denote the current

state. Then with equal probability, either propose an update x′1 of x1 or an update x′2 of x2.

Consider the ECMHu of π(x1,x2). We utilize the availability of the full condi-

tionals in updating the selected component X(t)
i = xi : with probability q a candidate x′i is

drawn from π′(x′i |x−i), where π′(x′i |x−i) is a mixture of uniform within the local neighbor-

hood and π(x′i |x−i) outside the local neighborhood and, with probability 1− q, x′i is drawn

from π(x′i |x−i) truncated at neighborhood Hi(xi |x−i). To this end, we define fixed-width
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Figure 3.1: Simulation results for the Bivariate Normal Model. For the ECMHu under
each c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, these plots summarize
estimates ÊSJDR relative to ÊSJDMH = 1.5046 (upper left), the average number of draws
per iteration (lower left), and acceptance rates (lower right). Further, the quality of the
ECMH estimation of EπX1 = 0 is captured by estimates M̂SER relative to M̂SEMH = 0.0214
(upper right).

53



neighborhoods within c > 0 (conditional) standard deviations of the current xi :

H1(x1|x2) = x1 ± c and H2(x2|x1) = x2 ± c
√

1
2
.

Specifically, the ECMHu draws candidates x′i from

gi(x
′
i |x) = qπ′(x′i |x−i) + (1− q)

π(x′i |x−i)I(x
′
i ∈H

c
i (xi |x−i))∫

H c
i (xi |x−i )

π(zi |x−i)µi(dzi)

and replaces xi with x′i with probability

αi(x
′
i |x) =min

1,
πi(x′i |x−i)
πi(xi |x−i)

∫
Hi (x′i |x−i )

g̃i(zi |x)µi(dzi)∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

 I(x′i ∈Hi(xi |x−i))
+ min

(
1,
k(x′i |x−i)
k(xi |x−i)

)
I(x′i ∈H

c
i (xi |x−i)).

Note that for ECMH, if x′i ∈ Hi(xi |x−i) (hence xi ∈ Hi(x′i |x−i)), αi(x
′
i |x) = min(1,

q

q
) = 1. That

is, the ECMH accepts any candidate x′i within the neighborhood of xi . However, the accep-

tance rate within the local neighborhood is not always 1 for ECMHu as values are proposed

under a uniform distribution.

We run N = 1000 independent chains of length n = 1000 for each algorithm

and compare the algorithms with respect to their ESJD, MSE relative to the estimation of

EπX1 = 0, average draws per iteration, and acceptance rates. These simulation results are

summarized in Figure 3.1 and Tables 3.1 and 3.2. Form Figure 3.1, we can see that there’s

little difference between different choices of q when the neighborhood size c is small. With

respect to the efficiency measures ÊSJDR and M̂SER, ECMHu peaks when c = 1.5 and de-

crease rapidly as c increases. As a comparison between ECMH and ECMHu, the ECMH

improves the jump distances for all choices of q in our simulation while ECMHu produces

some small estimates of ÊSJDR below 1 when q and c are large. The plot of acceptance
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rates provides some insight. Mainly, as c increases, the acceptance rate decreases and the

chain gets stuck more often. Further, the M̂SER is well controlled for ECMH for all choices

of q and c. However, similar to MCMH, ECMHu also produces large M̂SER above 1 when

c = 2.5. Especially for the case when q = 0.7, the M̂SER estimates are either compara-

ble to MH or worse. This makes intuitive sense as the proposal density within the local

neighborhood is suppressed to be uniform and not the conditional density, which is nor-

mal. Thus, when q is large, it takes more iterations for ECMHu than ECMH to converge

to the target distribution, yielding larger M̂SER estimates. In regard to the average draws

per iteration, the estimates are identical to the ones from ECMH as both algorithms are

equivalent in terms of drawing candidates from outside of the local neighborhood. Dif-

ferent from ECMH, the acceptance rate within the local neighborhood is not always 1 for

ECMHu. Thus, the overall acceptance rates are smaller in all cases compared to ECMH.

3.3.2 Bayesian random effects model

Let Yij represent the jth observation on subject i where i ∈ {1, . . . ,K} and j ∈

{1, . . . ,m}. Then for θ = (θ1, . . . ,θk)T and λ = (λe,λθ)T ,

Yi,j |θ,µ,λ
ind∼ N (θi ,λ

−1
e )

θi |µ,λ
iid∼ N (µ,λ−1

θ )

µ ∼N (s0,q
−1
0 )

λθ ∼ Γ (a1,b1)

λe ∼ Γ (a2,b2)

(3.5)
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with full conditional densities π(θ|µ,λ),π(µ|θ,λ) and π(λ|µ,θ):

θi |µ,λ
iid∼ N

(
λθµ+mλeȳi
λθ +mλe

,
1

λθ ,mλe

)
for i ∈ {1, . . . , k}

µ|θ,λ ∼N
(
s0q0 + kλθθ̄
q0 + kλ+θ

,
1

q0 + kλθ

)
λθ |θ,µ ∼ Γ

k2 + a1,

∑k
i=1(θi −µ)2

2
+ b1


λe|θ,µ ∼ Γ

km2 + a2,

∑k
i=1m(θi − ȳi)2 + SSE

2
+ b2



(3.6)

where θ̄ = k−1
k∑
i=1

θi , ȳi =m−1
m∑
j=1

yij and SSE =
∑
i,j

(yij − ȳi)2. We simulate data y under the

same setting as in Chapter 2 (2.9) with K = 3,m = 10, s0 = 0,q0 = 1 and a1 = b1 = a2 = b2 = 2.

And implement GS and ECMHu under the hyperparameter setting where a1 = b1 = a2 =

b2 = 30. Details of the model and the neighborhood definitions can be found in section 3

of chapter 2.

We runN = 1000 independent chains of length n = 1000 for both GS and ECMHu

and compare the algorithms with respect to their ESJD, MSE, average draws per itera-

tion, and acceptance rates. These simulation results are summarized in Figure 3.2 and

Tables 3.3 and 3.4. For the estimation of M̂SE, we focus on the posterior expectation

β = E(µ|y) and assume that the true value of β to be β∗, where β∗ is an independent es-

timate of based on a GS run of length 106. Figure 3.2 presents the estimates of ÊSJDR

and M̂SER of ECMHu with respect to GS, under every combinations of εθ, εµ, ελ and

q ∈ {0,0.125,0.25,0.5,0.7}. In Figure 3.2, we see that both MCMH and ECMHu are more

efficient in both their exploration of the state space for all choices of q except 0.7. However,

both algorithms are sensitive to the selection of neighborhoods as the M̂SER estimates are

above 1 with larger values of {εθ ,εµ,ελ}. Especially for ECMHu, it only enjoys similar level

of estimation efficiency when q is small. Although ECMHu tends to yield better estimates

56



than MCMH when the neighborhood gets large, it is not comparable to MH. Thus, we rec-

ommend using smaller values of q where q < 0.3 when applying ECMHu. Average number

of draws plot for ECMHu is very similar to ECMH as both algorithms are equivalent when

drawing from outside of the local neighborhood. However, we are paying more compu-

tational effort for ECMHu as the acceptance rates within the local neighborhood are less

than 1 (unlike in ECMH), which is also the reason that the acceptance rates are very similar

across different choices of q.

3.4 Discussions

In this chapter, we propose a novel method to boost the jump distances of the

Metropolis-Hastings algorithm while controlling the quality of estimation. The improve-

ment is built upon a modification of the proposal distribution where we encourage the

movement of the next state to be outside of a local neighborhood of current state. It pro-

vides practitioners with a framework to target on the components with slow mixing and

boost the performance of the Markov chain. The methodology is applicable to a wide range

of Bayesian models.

Our results from the simulation study with two models suggest that restricting

the movement within the local neighborhood with a certain probability, we can increase

the jump distances of the chain while controlling the statistical efficiency. The ECMHu en-

joys efficient movement in the state spaces when with proper selection of the local neigh-

borhood width and q and avoids substantial loss in the computational efficiency compar-

ing to the MCMH. However, ECMHu fails to control the M̂SER when neighborhood get

too wide or q gets large. In addition, we are also interested in the difference between the

ECMH introduced in chapter 2 and ECMHu. In terms of the efficiency in traversing X ,

these two approaches yield similar improvements comparing to MH. However, when it
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Figure 3.2: Simulation results for the Bayesian random effects model. For the ECMH under
each given set of {εθ ,εµ,ελ}, estimates ÊSJDR with ECMH, relative to ÊSJDGS = 0.4429 and
M̂SER with ECMH, relative to M̂SEGS = 0.0020 are plotted alongside estimated ECMH ac-
ceptance rates and average number of draws per iteration. For ease of comparison among
the lower levels, the M̂SER is plotted within [0,4.5] in the top right plot. The M̂SER when
p = 0 (dotted black line) and εθ = 3.9 is 7.396.
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comes to statistical efficiency in estimation, we can observe from the simulation results

ECMH can better control MSE in both models while avoiding loss in computational effi-

ciency.

3.5 Appendix

3.5.1 Preliminaries

The following results will be utilized throughout the proofs of Theorem 4 and 5.

For notation convenience, we define the following:

B̃i(x
′
i |x) = g̃i(x

′
i |x)α̃i(x

′
i |x) and Bi(x

′
i |x) = gi(x

′
i |x)α̃i(x

′
i |x)

The MH and ECMHu proposal densities and acceptance probabilities satisfy:

B̃i(x
′
i |x) = πi(x

′
i |x−i)min

{
g̃i(x′i |x)
πi(x′i |x−i)

,
g̃i(xi |x′[i])
πi(xi |x−i)

}
; and

Bi(x
′
i |x) =

q

2c
πi(x

′
i |x−i)min


∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

πi(x′i |x−i)
,

∫
Hi (x′i |x−i )

g̃i(zi |x)µi(dzi)

πi(xi |x−i)

 I(x′i ∈Hi(xi |x−i))
+πi(x

′
i |x−i)min

{
g̃i(x′i |x)k(xi |x−i)
πi(x′i |x−i)

,
g̃i(xi |x′[i])k(x′i |x−i)

πi(xi |x−i)

}
I(x′i ∈H

c
i (xi |x−i))

=
q

2c
πi(x

′
i |x−i)min

 g̃i(x′i |x)
πi(x′i |x−i)

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

g̃i(x′i |x)
,
g̃i(xi |x′[i])
πi(xi |x−i)

∫
Hi (x′i |x−i )

g̃i(zi |x)µi(dzi)

g̃i(xi |x′[i])


I(x′i ∈Hi(xi |x−i)) +πi(x

′
i |x−i)min

{
g̃i(x′i |x)k(xi |x−i)
πi(x′i |x−i)

,
g̃i(xi |x′[i])k(x′i |x−i)

πi(xi |x−i)

}
I(x′i ∈H

c
i (xi |x−i))
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respectively. Under assumption (3.1), it is true that for all x ∈ X

1− b ≤
1−

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

1− q
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)
≤ 1− a (3.7)

Note that it is equivalent as

1− b ≤ 1
k(xi |x−i)

≤ 1− a.

a
1− q+ pa

≤
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) ≤
b

1− q+ pb
(3.8)

We assume that

0 < c ≤ g̃i(x′i |x) ≤ d ≤∞ for x ∈ X (3.9)

It follows that:[
q

2c
a

(1− q+ pa)d
I(x′i ∈Hi(xi |x−i)) +

I(x′i ∈H
c
i (xi |x−i))

1− a

]
B̃i(x

′
i |x) ≤ Bi(x′i |x)

≤
[
q

2c
b

(1− q+ pb)c
I(x′i ∈Hi(xi |x−i)) +

I(x′i ∈H
c
i (xi |x−i))

1− b

]
B̃i(x

′
i |x)

(3.10)

For notation simplicity, we denote

S1 =
b

1− q+ pb

S2 =
a

1− q+ pa

Q1 =
q

2c
a

(1− q+ pa)d

Q2 =
q

2c
b

(1− q+ pb)c

R1 =
1

1− b

R2 =
1

1− a

(3.11)
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3.5.2 Proof of Theorem 4

By assumption, the MH is geometrically ergodic with drift function V : X →

[1,∞) that is unbounded off compact sets and satisfies the drift condition for 0 < γ < 1 and

b <∞:

PMHV (x) :=
m∑
i=1

piPMHi
V (x) ≤ γV (x) + b

where

PMHi
V (x) =

∫
V (x′[i])B̃i(x

′
i |x)µi(dx

′
i) +V (x)

[
1−

∫
B̃i(x

′
i |x)µi(dx

′
i)
]

The following drift condition will be established in order to extend these results to ECMHu.

Geometric ergodicity follows directly.

Define function: Ṽ : (X)→ [1,∞)

Ṽ (x) = V (x) + aW (x) (3.12)

for

W1(x) = max
j

{(
V (x)−V (x[j−1],x

′
j ,x

[j+1])
)
I(x′j ∈Hj(xj |x−j )

}
W2(x) = max

j

{(
V (x)−V (x[j−1],x

′
j ,x

[j+1])
)
I(x′j ∈H

c
j (xj |x−j )

}
W (x) = max(W1(x),W2(x))

a ∈
(

b
1− 2b

,
(1− b)−γ(1− a)
γ(1− a)− a(1− b)

)
where 0 ≤ W (x) ≤ V (x) and the interval for a is guaranteed to be non-emply under the

restrictions on a, b and assuming, without loss of generality, that γ > a(1−b)(1−a)−1. Then

Ṽ is unbounded off compact sets on X and satisfies the following drift condition:

PECMHuV (x) ≤ γ̃Ṽ (x) + (a+ 1)b (3.13)
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where

γ̃ = max
{

(a+ 1)
( γ

1− b
− a

1− a

)
,
a+ 1
a

b
1− b

}
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and 0 < γ̃ < 1 by the definition of a. Then we establish the drift condition at (3.13):

PECMHuiV (x) =
∫
V (x′[i])Bi (x

′
i |x)µi (dx

′
i ) +V (x)

[
1−

∫
Bi (x

′
i |x)µi (dx

′
i )
]

≤
q

2c
b

(1− q+ pb)c

∫
Hi (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i ) +

∫
Hc
i (xi |x−i )

V (x′[i])B̃i (x′i |x)µi (dx′i )

1− b

+V (x)

1− q

2c
a

(1− q+ pa)d

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )−

1
1− a

∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )


=Q1

∫
Hi (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i ) +R1

∫
Hc
i (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+V (x)

1−Q2

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )−R2

∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )


=Q1

∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i )−Q1

∫
Hc
i (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+R1

∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i )−R1

∫
Hi (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+V (x)
[
1− (Q2 +R2)

∫
B̃i (x

′
i |x)µi (dx

′
i )
]

+Q2

∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

+R2

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

≤Q1

∫
Hi (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i ) +R1

∫
Hc
i (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+V (x)

1−Q2

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )−R2

∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )


=Q1

∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i )−Q1

∫
Hc
i (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+R1

∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i )−R1

∫
Hi (xi |x−i )

V (x′[i])B̃i (x
′
i |x)µi (dx

′
i )

+V (x)
[
1− (Q2 +R2)

∫
B̃i (x

′
i |x)µi (dx

′
i )
]

+Q1

∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

+R1

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

≤Q1W2(x)
∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i ) +R1W1(x)

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

+ (Q1 +R1)
∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i ) + (Q2 +R2)V (x)

[
1−

∫
B̃i (x

′
i |x)µi (dx

′
i ) +

1
Q2 +R2

− 1
]

≤Q1W2(x)
∫
Hc
i (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i ) +R1W1(x)

∫
Hi (xi |x−i )

B̃i (x
′
i |x)µi (dx

′
i )

+ (Q1 +R1)
∫
V (x′[i])B̃i (x

′
i |x)µi (dx

′
i ) + (Q1 +R1)V (x)

[
1−

∫
B̃i (x

′
i |x)µi (dx

′
i )
]

+ (1−Q2 −R2)V (x)

≤ (Q1(1− S2) +R2S1)W (x) + (Q1 +R1)PMHi
V (x) + (1−Q2 −R2)V (x)
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so that

PECMHuV (x) =
m∑
i=1

piPECMHuiV (x)

≤ (Q1 +R1)
m∑
i=1

piPMHi
V (x) + (1−Q2 −R2)V (x) + (Q1(1− S2) +R2S1)W (x)

= (Q1 +R1)PMHV (x) + (1−Q2 −R2)V (x) + (Q1(1− S2) +R2S1)W (x)

≤ ((Q1 +R1)γ + 1−Q2 −R2)V (x) + (Q1(1− S2) +R2S1)W (x)− (Q1 +R1)b.

Thus (3.13) follows:

PECMHuṼ (x) = PECMHuV (x) + aPECMHuW (x)

≤ (a+ 1)PECMHuV (x)

≤ (a+ 1)((Q1 +R1)γ + 1−Q2 −R2)V (x) +
a+ 1
a

(Q1(1− S2) +R2S1)aW (x)

+ (a+ 1)(Q1 +R1)b

≤ γ̃Ṽ (x) + (a+ 1)(Q1 +R1)b

Upper bound of the neighborhood width

Let us consider the same restriction on b as it was on bMCMH. We want to show

that we will end up with a wider neighborhood Hi(xi |x−i) with ECMHu than it was in the

MCMH.

b < c

(1− q)
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)

1− q
∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi)
< c

(1− q)bMCMH

1− qbMCMH
< c

bMCMH <
c

1− q+ cq∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) <
c

1− q+ cq
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Therefore, as long as 1−q+cq < 1, the upper bound ofHi(xi |x−i) is relaxed, which indicates

that Hi(xi |x−i) is wider than it was in the MCMH setting.

1− q+ cq < 1

(1− c)q > 0

Note that c < 1/2 and q ∈ [0,1]. The inequality holds no matter what value q takes.

3.5.3 Proof of Theorem 5

Since the MH and ECMHu are reversible with respect to π, we are able to prove

this result using a capacitance argument. In general, let Φ be a reversible Markov chain

with kernel q and let P0 denote the restriction of q to L2
0,1(π) = {f ∈ L2(π) : Eωf = 0 and Eωf 2 =

1}. The spectral radius of P0 is r(P0) = sup{|λ| : λ ∈ σ (P0)} where σ (P0) ⊂ [−1,1) is the spec-

trum of P0. Further, Sinclair establish that

1− 2κ ≤ r(P0) ≤ 1− κ
2

for capacitance

κ := inf
S:0≤π(S)≤1/2

1
π(S)

∫
S
P (x,Sc)π(x)µ(dx) (3.14)

where π(S) =
∫
S(x)π(x)µ(dx). It is known that Φ is geometrically ergodic if and only if

r(P0) < 1 or, equivalently, κ > 0.

Consider the ECMHu with Hi(xi |x−i) that satisfy (3.2). Thus there exists some

0 < b < 1 for which

∫
Hi (xi |x−i )

g̃i(zi |x)µi(dzi) ≤ b for all x ∈ X , i ∈ {1, · · · ,m}.
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By assumption, the ECMHu is geometrically ergodic so that

κECMHu := inf
S:0<π(S)≤1/2

1
S

∫
S
PECMHu(x,Sc)π(x)µ(dx) > 0.

Geometric ergodicity of the MH will follow from establishing that κMH ≥ κMCMH > 0 where

κMH := inf
S:0<π(S)≤1/2

1
S

∫
S
PMH(x,Sc)π(x)µ(dx).

To this end, note that the MH and ECMHu can only move from state x ∈ S to x′ ∈ Sc when

their respective M-H proposals are accepted. Thus, it follows from (3.10) that for x ∈ S,

PECMHui (x,S
c) =

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])}
gi(x

′
i |x)α(x′i |x)µi(dx)

≤ 1
1− b

∫
{x′i :(x[i−1],x

′
i ,x

[i+1])}
g̃i(x

′
i |x)α̃(x′i |x)µi(dx)

=
1

1− b
PMHi

(x,Sc).

Finally, it follows that PECMHu ≤
1

1− b
PMH(x,Sc) for x ∈ S and, in turn,

0 < κECMHu ≤
1

1− b
κMH.

3.5.4 Simulation Results
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Table 3.1: Simulation results for the Bivariate Normal Model. For the ECMHu un-
der each c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, this table sum-
marizes estimates ÊSJDR relative to ÊSJDMH = 1.5046 and estimates M̂SER relative to
M̂SEMH = 0.0214. Standard errors are given in parentheses.

c 0.05 0.1 0.5 1 1.5 2 2.5

ÊSJDR

p = 0
1.0083 1.0218 1.1378 1.2859 1.3664 1.3317 1.1516
(0.0025) (0.0026) (0.0027) (0.0030) (0.0033) (0.0042) (0.0065)

p = 0.125
1.008 1.019 1.117 1.246 1.307 1.270 1.131
(0.0025) (0.0026) (0.0028) (0.0029) (0.0033) (0.0038) (0.0046)

p = 0.25
1.009 1.014 1.100 1.202 1.247 1.197 1.074
(0.0025) (0.0026) (0.0026) (0.0028) (0.0031) (0.0034) (0.0041)

p = 0.5
1.000 1.009 1.067 1.128 1.131 1.063 0.947
(0.0025) (0.0026) (0.0027) (0.0028) (0.0029) (0.0031) (0.0034)

p = 0.7
0.999 1.007 1.038 1.061 1.042 0.959 0.835
(0.0025) (0.0025) (0.0026) (0.0026) (0.0027) (0.0028) (0.0029)

M̂SER

p = 0
0.974 0.920 0.830 0.761 0.738 0.816 1.294
(0.0587) (0.0550) (0.0508) (0.0467) (0.0461) (0.0493) (0.0818)

p = 0.125
0.969 1.000 0.876 0.783 0.771 0.827 1.163
(0.0590) (0.0615) (0.0537) (0.0477) (0.0454) (0.0522) (0.0705)

p = 0.25
0.965 0.991 0.898 0.831 0.810 0.807 1.121
(0.0569) (0.0597) (0.0558) (0.0523) (0.0516) (0.0485) (0.0694)

p = 0.5
1.038 0.973 0.919 0.937 0.874 1.000 1.109
(0.0646) (0.0603) (0.0580) (0.0581) (0.0547) (0.0625) (0.0679)

p = 0.7
0.935 1.092 0.908 0.956 0.994 1.026 1.289
(0.0566) (0.0688) (0.0547) (0.0567) (0.0626) (0.0639) (0.0784)
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Table 3.2: Simulation results for the Bivariate Normal Model. For the ECMHu under each
c ∈ {0.05,0.1,0.5,1,1.5,2,2.5} and q ∈ {0,0.125,0.25,0.5,0.7}, this table summarizes the av-
erage number of draws per iteration and acceptance rates. Standard errors are given in
parentheses.

c 0.05 0.1 0.5 1 1.5 2 2.5

Average
draws

p = 0
1.028 2.088 3.496 5.796 10.365 21.724 59.458
(0.0002) (0.0003) (0.0009) (0.0021) (0.0057) (0.0236) (0.1651)

p = 0.125
1.025 2.077 3.433 5.576 9.702 19.726 51.147
(0.0002) (0.0003) (0.0009) (0.0022) (0.0057) (0.0195) (0.0945)

p = 0.25
1.021 2.066 3.370 5.350 9.028 17.790 44.671
(0.0002) (0.0003) (0.0009) (0.0022) (0.0053) (0.0177) (0.0758)

p = 0.5
1.014 2.043 3.247 4.894 7.678 13.846 31.949
(0.0002) (0.0004) (0.0009) (0.0021) (0.0048) (0.0134) (0.0511)

p = 0.7
1.007 2.024 3.147 4.536 6.612 10.700 22.048
(0.0002) (0.0004) (0.0010) (0.0020) (0.0043) (0.0113) (0.0345)

Acceptance
rate

p = 0
0.993 0.987 0.907 0.753 0.573 0.405 0.260
(0.0001) (0.0001) (0.0003) (0.0005) (0.0007) (0.0010) (0.0014)

p = 0.125
0.994 0.988 0.918 0.784 0.627 0.480 0.362
(0.0001) (0.0001) (0.0003) (0.0005) (0.0006) (0.0008) (0.0009)

p = 0.25
0.995 0.990 0.930 0.814 0.680 0.553 0.454
(0.0001) (0.0001) (0.0003) (0.0004) (0.0006) (0.0007) (0.0008)

p = 0.5
0.997 0.993 0.953 0.877 0.786 0.703 0.638
(0.0001) (0.0001) (0.0002) (0.0003) (0.0005) (0.0006) (0.0006)

p = 0.7
0.998 0.996 0.972 0.926 0.873 0.822 0.781
(0.0000) (0.0001) (0.0002) (0.0003) (0.0004) (0.0004) (0.0004)
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Table 3.3: Simulation results for the Bayesian random effects model. For the ECMHu under
each given set of {εθ ,εµ,ελ} and q ∈ {0,0.125,0.25,0.5,0.7}, this table summarizes estimates
ÊSJDR relative to ÊSJDGS = 0.4429 and M̂SER relative to M̂SEGS = 0.0020. Standard errors
are given in parentheses.

εθ 0.65 1.3 1.7 2.3 3.0 3.9
εµ 0.14 0.5 0.9 1.4 2.0 2.9
ελ 0.0009 0.9 1.3 1.9 2.6 3.4

ÊSJDR

q = 0
1.013 1.058 1.107 1.147 1.082 0.849

(0.0026) (0.0026) (0.0027) (0.0031) (0.0043) (0.0086)

q = 0.125
1.013 1.048 1.083 1.106 1.089 1.104

(0.0026) (0.0027) (0.0027) (0.0030) (0.0038) (0.0059)

q = 0.25
1.011 1.041 1.061 1.070 1.094 1.203

(0.0025) (0.0026) (0.0027) (0.0029) (0.0036) (0.0054)

q = 0.5
1.007 1.019 1.031 1.022 1.077 1.323

(0.0026) (0.0025) (0.0026) (0.0028) (0.0034) (0.0047)

q = 0.7
1.005 1.010 1.010 0.995 1.057 1.371

(0.0026) (0.0025) (0.0026) (0.0026) (0.0031) (0.0046)

M̂SER

q = 0
0.897 0.815 0.697 0.655 0.892 7.396

(0.0579) (0.0487) (0.0458) (0.0430) (0.0544) (0.4427)

q = 0.125
0.875 0.766 0.733 0.735 1.030 3.096

(0.0551) (0.0507) (0.0478) (0.0484) (0.0645) (0.1921)

q = 0.25
0.890 0.829 0.839 0.884 1.345 2.769

(0.0571) (0.0517) (0.0530) (0.0582) (0.0845) (0.1720)

q = 0.5
0.868 0.839 0.889 1.090 1.693 3.433

(0.0553) (0.0526) (0.0553) (0.0722) (0.1042) (0.2173)

q = 0.7
0.887 0.872 0.978 1.341 2.384 4.533

(0.0586) (0.0544) (0.0616) (0.0842) (0.1544) (0.2873)

69



Table 3.4: Simulation results for the Bayesian random effects model. For the ECMHu
under each given set of {εθ ,εµ,ελ} and q ∈ {0,0.125,0.25,0.5,0.7}, this table summarizes
the average number of draws per iteration and acceptance rates.. Standard errors are given
in parentheses.

εθ 0.65 1.3 1.7 2.3 3.0 3.9
εµ 0.14 0.5 0.9 1.4 2.0 2.9
ελ 0.0009 0.9 1.3 1.9 2.6 3.4

Average
draws

q = 0
1.036 1.304 1.764 3.780 12.005 92.806

(0.0002) (0.0007) (0.0013) (0.0052) (0.0434) (0.9822)

q = 0.125
1.031 1.259 1.657 3.391 10.311 77.941

(0.0002) (0.0007) (0.0014) (0.0049) (0.0339) (0.6295)

q = 0.25
1.025 1.216 1.549 3.009 8.687 65.160

(0.0002) (0.0007) (0.0014) (0.0045) (0.0263) (0.4596)

q = 0.5
1.015 1.129 1.336 2.254 5.942 42.821

(0.0002) (0.0007) (0.0013) (0.0037) (0.0183) (0.2871)

q = 0.7
1.005 1.061 1.170 1.680 3.797 25.548

(0.0003) (0.0007) (0.0013) (0.0031) (0.0122) (0.1672)

Acceptance
rate

q = 0
0.986 0.903 0.802 0.601 0.405 0.213

(0.0001) (0.0003) (0.0005) (0.0008) (0.0011) (0.0016)

q = 0.125
0.984 0.899 0.796 0.597 0.417 0.256

(0.0001) (0.0003) (0.0005) (0.0007) (0.0010) (0.0012)

q = 0.25
0.982 0.895 0.789 0.594 0.424 0.279

(0.0001) (0.0003) (0.0005) (0.0007) (0.0009) (0.0010)

q = 0.5
0.978 0.887 0.775 0.582 0.427 0.306

(0.0001) (0.0003) (0.0005) (0.0007) (0.0007) (0.0008)

q = 0.7
0.974 0.880 0.765 0.571 0.426 0.321

(0.0002) (0.0003) (0.0005) (0.0006) (0.0007) (0.0007)
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Chapter 4

Modeling Invaded Grasslands

throughout Chaparral Shrublands

4.1 Background

In the face of increasing human encroachment, shortening fire intervals, and

changing climates, chaparral shrublands are increasingly under threat of conversion into

invaded grasslands. Fire has long been implicated as a primary mechanism by which

invasions into formerly intact chaparral may occur, as it provides an opportunity for col-

onization and establishment by exotic species in the immediate post-fire years due to the

removal of native shrub cover. Thus, understanding the dynamics of post-fire chaparral

recovery, as well as the dynamics governing post-fire conversion of chaparral vegetation

into invasive-dominant grasslands is essential to the preservation and management of not

only chaparral flora, but also the many fauna that depends on this uniquely Californian

vegetation.

To complete this task, our objective is two-folded: First and foremost, model the

progression of grass invasions into chaparral shrublands and evaluate the role of the var-
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ious local parameters in determining risk and rate of conversion from intact chaparral to

grasslands or recovery from grasslands back to shrublands. Secondly, quantify the num-

ber of years required for shrub cover to recover to pre-fire levels across multiple fires from

1990-1994 and evaluate the relationship of recovery time to both historical legacy of pre-

fire vegetation and environmental conditions.

4.2 Spatiotemporal hierarchical Bayesian modeling

The data of interest is a set of arrays with estimated percentage grass cover for

each pixel at 30-meter resolution for the Angeles National Forest (roughly 2.86 million

pixels per year, varying depending on recent fires, which are masked out) collected an-

nually from 1985 - 2011. Additional data includes corresponding data arrays for annual

precipitation, slope, elevation, total annual insolation, distance from the nearest road or

urban area, distance from forest perimeter, years since the most recent fire, and the num-

ber of fires recorded over the past. A description of the variables is presented in Table

4.1.

Because of the huge number of pixels included in the Angeles National Forest

data, we only consider a subset in San Dimas for the model building stage. Grass cover

indexes and environmental condition parameters are recorded for 66×90 pixels per year in

the San Dimas data. Grass cover index describes percent cover of grasses and herbaceous,

which should be bounded within [0,1] by definition. However, due to measurement error,

some values of grass cover index fall below 0 or above 1. These values are intuitively taken

as 0 or 1. Naturally, a beta distribution follows if we ignore the values on the boundaries

at this stage. In the mean time, a histogram of the grass cover indexes in the San Dimas

dataset is presented in Figure 4.1.
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Figure 4.1: Histogram of the Grass cover indexed in the San Dimas dataset

Table 4.1: Description of Variables
Name Description Type
Index Estimated proportion of cover by grasses and herbaceous Continuous
BorderDist Distance to the forest edge (m) Continuous
RoadDist Distance to the nearest urban feature (m) Continuous
DEM Elevation above sea level (m) Continuous
Slope Mean slope, rise over horizontal distance (percentage) Continuous
Upslope ACC Total area of upslope pixels that water will flow into (m2) Continuous
Insolation Mean annual incoming solar radiation Continuous
Precip Annual Annual deviation long-term mean precipitation (100mm) Continuous
Precip Spatial Mean precipitation minus the forest wide mean precipitation Continuous
FirePrior Year of most recent fire relative to each year Ordinal
NumFires 20 Number of fires recorded over the past 20 years Ordinal
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4.2.1 Beta Distribution

The beta distribution is very flexible for modeling proportions since its density

can have quite different shapes depending on the values of the two parameters that index

distribution. The beta density is given by

fZ(z) =
Γ (p+ q)

Γ (p) + Γ (q)
zp−1(1− z)q−1 0 < z < 1, (4.1)

where p > 0,q > 0 and Γ (·) is the gamma function. The mean and variance of z are, respec-

tively,

E(Z) =
p

(p+ q)

and

Var(Z) =
pq

(p+ q)2(p+ q+ 1)
.

For regression analysis it is typically more useful to model the mean of the response, Thus,

we work with a different parameterization of the beta density. Let µ =
p

(p+ q)
and φ = p+q,

i.e. p = µφ and q =
(1−µ)
φ

. It follows that

E(Z) = µ and Var(Z) =
V (µ)
1 +φ

where V (µ) = µ(1 − µ), so that µ is the mean of the response variable and φ can be inter-

preted as a precision parameter in the sense that, for fixed µ, the larger the value of φ, the

smaller the variance of Z. The density of Z can be written, in the new parameterization,

as

fZ(z) =
Γ (φ)

Γ (µφ)Γ ((1−µ)φ)
zµφ−1(1− z)(1−µ)φ−1, 0 < z < 1, (4.2)
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where 0 < µ < 1 and φ > 0. Depending on the values of the two parameters, it is worth

noting that the densities can display quite different shapes. In particular, it can be sym-

metric (when µ = 1/2) or asymmetric (when µ , 1/2). Figure 4.2 presents a few different

beta densities depending on the different choices of (µ,φ).

This kind of parameterization is usually adopted in beta regression for model-

ing rates and proportions, first proposed by Ferrari and Cribari-Neto (2004) and then ex-

tended by Simas et al. (2010). The R package betareg can be utilized to implement the

beta regression. From this new parameterization, the regression parameters are then in-

terpretable in terms of the mean and variance of the variable of interest. A number of link

functions g(·) : (0,1)→R can be used for modeling µ, such as the logit function

g(µ) =
µ

1−µ

and the probit function

g(µ) = Φ−1(µ),

where Φ(·) denotes the standard normal distribution function. Motivated by the idea of

the beta regression, we propose Model I in the next section.

4.2.2 Model I: Beta Distribution

Let yt(s) represent the observed grass cover index in year t, for t = 1, . . . ,T and

spatial location s = 1, . . . ,S. Note that yt(s) is measured continuously on the standard unit

interval, i.e. 0 < yt(s) < 1. The model proposed here applies to the settings where space is

viewed as continuous, but time is taken to be discrete. We follow the general structure of

the hierarchical models and write it in three basic stages.
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Figure 4.2: Beta densities with corresponding values of (µ,φ).
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Data Model: The proposed model is based on the assumption that the response

is beta distributed in the new parameterization.

yt(s)|µt(s),φ ∼ Beta(µt(s),φ) (4.3)

Process Model: Here, we choose g(·) to be the logit link function, where g(·) is

a strictly monotonic and twice differentiable function that maps (0,1) into R. Note that

the variance of yt(s) is a function of µt(s) and, as a consequence, of the covariate values.

Hence, non-constant response variances are naturally accommodated into the model. Let

µt = (µt(1), . . . ,µt(S))′ and

logit(µt) = XTt β +ZTα+ εt , εt ∼N (0,σ2
ε I), (4.4)

where Xt are the p time varying covariates and Z represent the q time invariant covariates.

εt is uncorrelated random effect. β is a p×1 vector of coefficients corresponding to Xt and

α is a q × 1 vector of coefficients corresponding to Z.

Parameter Model:

α ∼N (α0,Σα)

β ∼N (β0,Σβ)

σ2
ε ∼ IG(qε,γε)

φ ∼ Γ (a,b)

(4.5)
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Transform µt(s) to be νt(s) ≡ logit(µt(s)), then the Bayesian formulation of the hierarchical

model is summarized by the following posterior distribution:

p(ν1, . . . ,νT ,φ,α,β,σ
2
ε |Y1, . . . ,YT )

∝

 T∏
t=1

S∏
s=1

p[yt(s)|µt(s),φ]p[µt(s)|α,β,σ2
ε ][p(φ)]

 [p(α)][p(β)][p(σ2
ε )]

∝

 T∏
t=1

S∏
s=1

yt(s)
exp(µt (s))

1+exp(µt (s))
φ−1

(1− yt(s))
(1− exp(µt (s))

1+exp(µt (s))
)φ−1 1

σε
√

2π
exp

[
−

(µt(s)−Xt(s)T β)2

2σ2
ε

]
φa−1 exp(−bφ)

[
Σ
− 1

2
β exp(−1

2
(β −β0)TΣ−1

β (β −β0))
][

(σ2
ε )−qε−1 exp(

−rε
σ2
ε

)
]

Followed by the full conditional distributions:

• [logit(µt(s))|·]. Let µt(s) = logit(µt(s)), for s = 1, . . . ,S and t = 1, . . . ,T , sample from its

full-conditional by utilizing an MH algorithm:

1. Generate νt(s)* ∼N (νt(s)j−1,σ2
ε ) and compute the ratio:

r =
[Yt(s)|νt(s)*,φ(j−1)][νt(s)*|α(j−1),β(j−1),σ

2,(j−1)
ε ]

[Yt(s)|νt(s)(j−1),φ(j−1)][νt(s)(j−1))|α(j−1),β(j−1),σ
2,(j−1)
ε ]

2. Set νt(s)(j) = νt(s)* with probability min(r,1). Otherwise, set νt(s)(j) = νt(s)(j−1)).

• [φ|·]: ultilize MH algorithm to sample from its full conditional:

1. Generate φ* ∼ Γ (φ(j−1),1) and compute:

r =
[Yt(s)|νt(s)(j−1),φ*][p(φ*)][Q(φ(j−1))]

[Yt(s)|νt(s)(j−1),φ(j−1)][p(φ(j−1))][Q(φ*)]

2. Set φ(j) = φ* with probability min(r,1). Otherwise, set φ(j) = φ(j−1)).

• [α|·]: Prior α ∼N (α0,Σα). Sample from α(j) ∼N (Ab,A), where

A = (Σα +
ZZT

σ2
ε

)−1
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b =
ZT (V −XTB)

σ2
ε

+Σ−1
α α0

where X = (X
′

1, . . . ,X
′

T )
′
,Z = (Z

′
, . . . ,Z

′
)
′
,V = (ν

′

1, . . . ,ν
′

T )
′

and B = β ⊗ I .

• [β|·]: Prior β ∼N (β0,Σβ). Sample from β(j) ∼N (Dc,D), where

D = (Σβ +
XXT

σ2
ε

)−1

c =
XT (V −ZTD)

σ2
ε

+Σ−1
β β0

where X = (X
′

1, . . . ,X
′

T )
′
,Z = (Z

′
, . . . ,Z

′
)
′
,V = (ν

′

1, . . . ,ν
′

T )
′

and D =α⊗ I .

• [σ2
ε |·] : Prior σ2

ε ∼ IG(qε,γε). Sample from IG(q*
ε, r

*
ε), where

q*
ε = qε +

T S
2

r*
ε = rε +

1
2

T∑
t=1

(νt −XTt β −ZTα)T (νt −XTt β −ZTα)

The performance of model I can be visualized in Figure 4.3. We can see that the

model doesn’t fit the data very well because of its tendency of overestimating values near

0 and underestimating the values near 1. The result is not surprising as we overlooked the

fact that there are a decent number of observations with values on the boundaries (0 or

1). Thus, proper modeling framework that are capable of handling excess zeros and ones

should be considered for our beta model, which obviously poorly fit data with excess zeros

and ones due to inability to generate similar level zeros and ones.
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Figure 4.3: Fitted vs. True values for Model I: Beta distribution. The fitted grass cover
indexes are plotted against the observed grass cover indexes.

4.2.3 Dealing with excess zeros and ones in the data

In this section, we review common modeling approaches for data with excess

zeros, which can be extended to our case. Specifically, we focus on hurdle models (a.k.a

two-tiered models), zero-inflated models and spatial-temporal extensions of these models.

A hurdle model can be considered as a two-component mixture model of a dis-

tribution that generates non-zero values, and a point mass at zero. In fact, hurdle models

have a general definition than just for excess zeros and the “hurdle” could be any value,

which is not necessarily zero. The two components of a hurdle model include a binary

component that generates zeros and ones, where “zeros” correspond to the zero values

in data and “ones” correspond to the non-zero values in data, and a second component

which generates non-zero values. The hurdle model introduces a two-stage process that

generates zero and non-zero values. As an assumption of the hurdle models, the zero

values are “structural” (unconditional) zeros, which can account for the pixels that are

mostly covered with roads or water. For example, a Poisson hurdle model for the set of
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n independently and identically distributed observations Yi ’s, where i = 1, . . . ,n, can be

described as the mixture of a point mass at zero with probability p and a zero-truncated

Poisson distribution with probability (1− p):

P (Yi = 0) = p, 0 ≤ p ≤ 1;

P (Yi = k) = (1− p)
µke−µ

k!(1− e−µ)
, k = 1,2, . . . ,∞, µ > 0.

(4.6)

Under this model, Yi is the i-th response and µ is the mean of the untruncated Poisson

distribution. This definition may be extended so that a log-linear regression model can be

considered for observation-specific means, µi ’s based on predictor variable(s) information.

Similarly, a logistic regression may be considered for observation-specific probabilities,

pi ’s.

A zero-inflated model is also a mixture of a distribution and a point mass at

zero. What differentiates it from the hurdle model is the assumption of the zero values,

which are generated through two different processes, either ”structural” (i.e., a process

that generates only zeros), or ”sampling” (i.e., a process that generates zeros by chance).

For example, the zero-inflated Poisson can be described as the mixture of a point mass at

zero with probability p and a Poisson distribution with probability (1− p):

P (Yi = 0) = p, 0 ≤ p ≤ 1;

P (Yi = k) = (1− p)
µke−µ

k!(1− e−µ)
, k = 0,1,2, . . . ,∞, µ > 0.

(4.7)

Similar to the hurdle model, for the i-th response, Yi , using predictor variables, a log-

linear regression model may be considered for observation-specific means, µi ’s, and also,

a logistic regression may be considered for observation-specific probabilities, pi ’s.
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4.2.4 Three scenarios

Depending on the different assumptions we made for the data (grass cover index),

we have the following three scenarios:

• When the data is assumed to have both a upper bound (1) and a lower bound (0): A

double hurdle model can be utilized in this scenario to generate masses at zeros and

ones.

h1(yij |θ) =


pij , if yij = 0

(1− pij )(1− qij )f (yij |µij ,φ), if 0 < yij < 1

qij(1− pij ), if yij = 1

.

logit(µ) = Xβ +S[µ]

logit(p) = Xγ and logit(q) = Xδ

where f is the density of beta distribution under the new parameterization. S[µ] is a

Gaussian process that accounts for spatial autocorrelation.

• When the data is assumed to only have a lower bound (0): A zero-inflated model can

be utilized in the scenario that generates zero occasionally.

h2(yij |θ) =


pij , if yij = 0

(1− pij )(1− qij )f (yij |µij , r), if 0 ≤ yij < ψ

qij(1− pij )[G(yij + 1
2 |ψ,σ ,ξ)−G(yij − 1

2 |ψ,σ ,ξ)], if yij ≥ ψ

.

log(µ) = Xβ +S[µ]

logit(p) = Xγ +S[p] and logit(q) = Xδ

where f is the density of negative binomial distribution and G represents generalized

Pareto distribution (GPD). Here we are using a discretized version of GPD. S[µ] is a
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Gaussian process that accounts for spatial autocorrelation and S[p] is spatial random

effects.

• If we relax the boundaries and assume the data follows a Gaussian distribution, then

a Bayesian dynamic spatiotemporal models can be utilized. The same model is in-

cluded in the simulation studies for the ECMH algorithm in chapter 2. We con-

tinue to discuss and explain why the Bayesian dynamic spatiotemporal model is best

suited for our need in the next section.

4.3 Bayesian dynamic spatiotemporal models

This univariate Bayesian dynamic spatiotemporal model is proposed by Finley

et al. (2012) and can be implemented in the R package spBayes. Under this model, space

is viewed as continuous while time is taken as discrete. For month t ∈ {1, ...,Nt} and location

s ∈ {1, ...,Ns}, let yt(s) denote the recorded average monthly temperature. Further, let xt(s)

be a (p + 1) × 1 vector including an intercept term and measurements of the p predictors

with a corresponding (p+1)×1 vector of temporal coefficients βt = (βt0,βt1, . . . ,βtp)′, where

p is the number of predictors in our model. We model yt(s) by a regression model with

a space-time varying intercept µt(s), predictors xt(s), and spatially uncorrelated Gaussian

disturbances εt(s), that is

yt(s) = µt(s) + xt(s)
′βt + εt(s), εt(s) ∼N (0, τ2

t ).

Here the temporal coefficients βt and spatiotemporal intercepts µt(s) are

βt = βt−1 + ηt , ηt ∼N (0,Ση)

µt(s) = µt−1(s) +wt(s), and wt(s) ∼ GP
(
0,Ct(·;σ2

t ,φt)
)
,
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Dataset Ns Nt N p
# of parameters
being updated

Weather Station 1530 61 93,330 2 93,640
San Dimas 5940 27 160,380 11 160,880
Angeles National Forest 9,945,924 27 268,539,948 11 268,540,448

Table 4.2: Scale comparison across the weather station data, the San Dimas data and the
Angeles National Forest data.

where GP (0,Ct(·;σ2
t ,φt)) denotes a spatial Gaussian process with covariance function

Ct(s1, s2;σ2
t ,φt) = σ2

t ρ(s1, s2;φt) for correlation decay φ and spatial variance σ2
t . Finally, the

model utilizes priors β0 ∼N (0p,1000Ip), µ0(s) ≡ 0, Ση ∼ IW (2,0.01Ip), τ2
t
ind∼ IG(2,5), σ2

t
ind∼

IG(2,10), and φt ∼Unif (0.001,0.03) where IW and IG represent the inverse Wishart and

inverse Gamma, respectively.

Letπ(β0,βt ,Ση , τ
2
t ,σ

2
t ,φt |y) denote the posterior density corresponding to the model

above where y is the observed weather station data. Inference for this complicated, high

dimensional target requires MCMC methods. Before we take any action, let’s take a closer

look at number of parameters being updated at each iteration of the MCMC in Table 4.2.

For the San Dimas dataset alone, we need to update 160,380 parameters at each iteration,

which needs a huge amount of computational effort, let alone the complete data collected

from Angeles National Park. In fact, univariate Bayesian dynamic spatiotemporal model is

preferred over the other two models because of its scalability, which is achieved by using

a low-rank predictive process to reduce the dimensionality of the data and alleviate the

computational burden of estimation that is commonly encountered with these spatiotem-

poral hierarchical models.

4.3.1 Predictive process (“knots”)

Making full Bayesian inference is computationally onerous, especially with the

number of parameters we are trying to manage in this case. Implementing the Gibbs

84



Figure 4.4: Illustration of biased estimates of variance parameters from the predictive
process based on simulated data.

sampling algorithm in the aforementioned model requires matrix decompositions whose

computational complexity increases in cubic order with the number of spatial locations

(Ns) for each time point, repeated at each iteration.

To ease the computational burden, we replace the spatial process with a low-

rank predictive process (Lin et al. (2000), Rasmussen and Williams (2006), Banerjee et al.

(2008)). The idea is to process realizations of all the spatio processes onto a lower dimen-

sional subspace (See Figure 4.4). To be specific, a smaller set of spatial locations in the

domain of interest (“knots”) are considered, say S∗ = {s∗1,s
∗
2, . . . ,s

∗
n∗}′ with n∗� n. Let θ in-

clude decay and variance parameters. The spatial interpolant at a site s is given by w̃t(s) =

E[wt(s)|w∗t ] = cT (s;θ)C∗−1(θ)w∗t , where c(s;θ) = [C(s,s∗j ;θ)]n
∗

j=1, C∗(θ) = [C(s∗i ,s
∗
j ;θ)]n

∗

i,j=1

andw∗t = (wt(s∗1),wt(s∗2), . . . ,wt(s∗n∗))
′. We then replace µt(s) with µ̃t(s) =

∑t
k=1[w̃k(s)+ε̃k(s)],

where ε̃k(s) compensates for the oversmoothing by the conditional expectation component

and the consequent underestimation of spatial variability(Finley et al. (2009)). The pre-

dictive process model reduces the computation complexity from O(n3) to O(n∗
3
).

The next question follows immediately is the choice of knots as well as how many

knots are needed. In practice, if the observed locations are evenly distributed across the
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domain, Finley et al. (2012) found a relatively small difference in inference based on knot

locations chosen using a grid, space-covering design, or another criterion. Instead, the

number of knots has a stronger impact on parameter estimates and subsequent prediction.

To this end, we investigate the sensitivity of inference to different number of knots within

a computationally feasible range and compare them with the criterion introduced in the

next section.

4.3.2 Model selection criterion

Sampling from the posterior predictive distribution is straightforward using com-

position: for each sampled value of {βt ,µt(si), τ2
t } from the marginal posterior, we draw

yrep,t(si), one for one, from N (xt(si)′βt + µt(si), τ
2
t ). We prefer models that performs well

under a decision-theoretic balanced loss function, penalizing both departure of replicated

means from their observed values (lack of fit) and excessive uncertainty in the replicated

data (predictive variance). Using a squared error loss function (e.g. Gelfand and Ghosh

(1998)), the measures for these two criteria are evaluated as

Bias =
Nt∑
t=1

n∑
i=1

(yt(si)−µrep,t(si))2 and Variance =
Nt∑
t=1

n∑
i=1

σ2
rep,t(si),

where

µrep,t(si) = E[yrep,t(si)|y] and σ2
rep,t(si) = Var[yrep,t(si)|y].

In addition, in order to evaluate the prediction power of the model, we preform 10-fold

cross validation with different number of knots. Within each fold (16380 observations),

the number of correctly predicted is recorded and the mean is reported. Since we are

only interested in the grass cover index within the range (0,1), we define the criterion for

correctly predicted as follows:
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Number of knots 5 10 25 50 100 150
Correctly predicted 6045.91 7121.90 8816.00 10505.17 11931.00 12565.1
Percentage 38% 44% 55% 66% 74% 79%
Bias 846.52 705.670 550.36 418.74 388.61 444.62
Variance 16202.79 10794.60 6239.37 3655.38 1952.75 1336.52

Table 4.3: Selecting number of knots with 10-fold cross validation.

1. If the true value ≥ 1 and the predicted value ≥ 0.95;

2. If the true value ≤ 0 and the predicted value ≤ 0.05;

3. If the true value is in (0,1) and the |true−predicted| ≤ 0.05.

The three criterion with different knot intensities are summarized in Table 4.3. The predic-

tion accuracy increases as number of knots increases. However, computation complexity

increases as the more knots get involved. Based on the results, we choose the number of

knots to be 100, under which the bias is the smallest and the prediction accuracy is decent.

In order to get a visual understanding of how well the model fits the data, we plotted the

fitted grass cover index against the true grass cover index with the number of knots being

100 (Figure 4.5).

4.4 Study results

The first objective in Section 4.1 can be addressed by the dynamic spatiotemporal

Bayesian model we proposed in the previous section. In particular, we assess the role of the

various local parameters from the posterior distributions from the model. For example,

parameter credible intervals for DEM (elevation) and RoadDist (distance to nearest road)

are shown in Figure 4.6. What remains to be accomplished is to quantify the number

of years required for shrub cover to recover to pre-fire levels. To this end, the dynamic
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Figure 4.5: Fitted vs. True grass cover index. The left plot expands to the full range of the
dataset while the right plot is zoomed to show the range (0,1) that we are more interested
in.

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
107417 4 7 4 7 6 3 4 3 7 6 7 6 7 3 2
174762 6 5 8 11 8 10 11 11 10 10 13 11
2338167 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67
427536 17 13 8 11 6 6 13 13 22 33 2 17 8 2 7
46877 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
477294 33 10 17 11 33 33 11 8 3
582484 33 33 33 33 10 33 3 4 3 4 33 3
589472 33 33 33 33 33 33 7 33 33 33 6 33 33 33 33

Table 4.4: Effective number of grids: the first column presents the fire scar dataset and the
first row show number of years after fire.

spatiotemporal Bayesian model is fitted to multiple fire scar data. We apply LOESS (locally

weighted smoothing) to obtain the smooth curve through the fitted values yrep,t(si) from

the model.

Since each class inherently has a built-in variability of around 20%, it might be

obscuring some of the precision of the analysis. Alternatively, we use the difference be-

tween the pre-fire grass cover index and the observed grass cover index. As a result,

the smoothing curves directly show deviations/returns to pre-fire conditions within each
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Figure 4.6: Parameter 95% credible intervals for DEM (elevation) and RoadDist (distance
to nearest road).
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Figure 4.7: Prediction curves. The fitted loess curves for class 1 to 5 are presented. These
classes are based on the their prefire grass cover index: class 1: < 20, class 2: [20,30], class
3: [30,40], class 4: [40,50] and class 5: > 50. The 95% confidence bands are shaded in grey.

class. Specifically, the smoothing curves are created by first aligning the multiple fire scar

data by number of years after the fire; then apply the LOESS (locally weighted smoothing)

to the data.

The confidence bands of LOESS smoothing are normally built based on the as-

sumption that all the observations are independent. However, there are two types of cor-

relation in our data: spatial and temporal correlation. In order to get better estimates

of the confidence band, we need to take these correlations into consideration. To this

end, we remove the spatial correlation within each fire scar data by the spatial parameter

φt estimated by the dynamic spatiotemporal model. To be specific, the effective spatial

ranges in meters (the distance at which the exponential correlation function equals 0.01

i.e., − log(0.01)/φt) can be computed by φt, from which we can derive the equivalent num-

ber of grids by dividing the effective spatial ranges by the size of the each grid (30 meters).

The estimated effective number of grids are presented in Table 4.4. In order to remove the

temporal correlation, we randomly sampling across the years within each fire scar dataset.
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After taking these procedures, we assume the data to be roughly independent and con-

struct confidence bands on the smoothing curves. The results are presented in Figure 4.7.

Based on the pre-fire levels, it takes approximately three to four years for the shrub to

recover.

We also evaluated the degree of clustering exhibited in the distribution of patches

that have type-converted from chaparral to exotic grasses. We discovered a random dis-

tribution of converted patches, which indicate that invasion success is either stochastic or

depends on highly localized factors that are not detectable using the broader-scale param-

eters available for this analysis.
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Chapter 5

A Machine Learning Approach to

Galaxy-LSS Classification: Imprints

on Halo Merger Trees

5.1 Introduction

Galaxies in the Universe display a wide range of properties, from the blue star-

forming spiral and irregular galaxies to red and quenched ellipticals. The origin of this

variation is the result of complex processes affecting galaxy evolution such as galaxy-

galaxy encounters and mergers Mulchaey and Zabludoff (1999), mass accretion via cold

flows Dekel and Birnboim (2006); Dekel et al. (2009), tidal disruption Byrd and Valto-

nen (1990), etc. Several observations point to the cosmic environment as a key factor by

defining local matter geometry and dynamics affecting galaxy evolution. The most salient

example of the effect of environment in galaxies is perhaps the morphology/color-density

relation Dressler (1980) describing the change in morphology/color of galaxies as a func-
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Figure 5.1: Density field computed from an N-body simulation with a box size of 32
h−1Mpc. The slice is 1 h−1Mpc thick across the z axis. We highlight the location of a
representative cluster, filament, wall and void. Walls are two-dimensional sheets and here
appear as projections. Note how voids are surrounded by wall/filaments and clusters are
connected by filaments.
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Figure 5.2: Probability density distribution of density (Log10(δ + 1) for haloes in under-
dense regions (voids/walls, solid line) and overdense regions (filaments/clusters, dashed
line). Both distributions were normalized to unitary area.

tion of local density from blue spirals in low-density environments to red ellipticals in

dense regions.

Local variations in the Large Scale Structure (LSS) are the result of successive

stages in the gravitational collapse of a nearly uniform initial density field. As described in

Zel’dovich (1970), the gravitational collapse of a cloud of matter follows as a succession of

dynamical and geometrical stages during which its density increases as its dimensionality

is reduced. This gives rise to the foam-like system known as the “cosmic web”, composed

by spherically symmetric clusters, joined by thin elongated filaments which form two-

dimensional membranes or walls. Clusters, filaments, and walls define the boundaries

of vast empty regions or voids. Each cosmic environment has specific geometries and dy-

namics, with characteristic densities increasing in the order voids-walls-filaments-clusters

(see Figure 5.1).

Voids and walls are dynamically young environments with zero and one full grav-

itational collapse respectively. They are characterized by low densities (δ < 1) and a low-

rate of galaxy-galaxy interactions. In contrast filaments and clusters (with two and three
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gravitational collapses respectively), having high densities (δ > 10) and complex dynamics,

are dominated by non-linear interactions (see Figure 5.2).

5.1.1 Searching for imprints of environment on halo properties

The observed galaxy distribution defining voids, walls, filaments, and clusters

is determined by density fluctuations of the order of several (∼ 4 − 8) Mpc Einasto et al.

(2011). On the other hand, galaxies originate from the collapse of a Lagrangian volume

with an equivalent spherical radius of the order of ∼ 0.1−1 Mpc. The gravitational collapse

of overdensities from which galaxies emerge is modulated by the large-scale fluctuations

producing the Cosmic Web. Galaxies sitting on top of large peaks will collapse earlier

and have more interactions with other galaxies than galaxies in underdense regions. We

should expect to find imprints of the different environments where galaxies formed in

their mass accretion and merger history Gao et al. (2005). While there is no univocal

relation between galaxies and their environment (i.e. galaxies in the same environment

can have very different properties Peebles (2001)), we should expect to find general trends.

Identifying such trends and their physical origin is a challenging problem since we do

not fully understand how haloes are related to their environment. One possibility is to

apply techniques that do not require a full understanding of the underlying variables of

the system but can still predict its behavior. In the following sections, we will describe a

class of analysis techniques from the area of Machine Learning (ML) which can be used to

predict complex systems and even help to understand the interplay between the variables

in the system.

5.1.2 Cosmic environment classes

In this study, we consider two classes of cosmic environments based on their dy-

namical state and characteristic densities: voids/walls (underdense class) being dynami-
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cally young and filaments/clusters (overdense class) being dynamically more evolved. The

division, while ignoring particular differences between the four basic cosmic environments

encodes the observed relation between galaxies and their environment in a similar way as

the commonly used cluster vs. field classification used to separate galaxies in clusters from

the rest.

5.1.3 Machine Learning in astronomy

There has been a significant increase in recent years in the number of studies

applying ML techniques in astronomy motivated by new computational methods, faster

hardware and availability of large datasets. One of the most important applications of

ML in astronomy is the determination of redshifts of galaxies from a set of broad band

filters. Using ML techniques it is possible to obtain photometric redshifts for a large number

of galaxies using a few broad band filters instead of the more expensive (and accurate)

spectroscopic redshifts Benı́tez (2000); Carliles et al. (2010); Cavuoti et al. (2015); Hoyle

(2016); Hoyle et al. (2015); Ménard et al. (2013); Sadeh et al. (2015). Other uses of ML

in astronomy include the study of the structure of the Milky Way Riccio et al. (2015) and

its mass McLeod et al. (2016) as well as the masses of larger systems Ntampaka et al.

(2015a,b), the assignment of galaxies to dark matter haloes to generate mock catalogs from

N-body simulations Kamdar et al. (2016a,b); Xu et al. (2013) and galaxy morphological

classification, a task where humans used to be the best classifiers Dieleman et al. (2015);

Huertas-Company et al. (2011); Kim and Brunner (2017); Kuminski et al. (2014); Schutter

and Shamir (2015).

ML allows us to express complex physical processes into simpler models. How-

ever, the speed and accuracy of ML come at the cost of a lack of understanding of the

inner workings of the ML system and how this could map to physical processes. For some

applications (such as photometric redshifts) this is not a major concern but for others, this
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“black box” approach can limit their applicability or even our ability to update the model

when new physical understanding is gained. On the other hand, ML can be used not only

as a black box but also to study the interplay between variables in a system, potentially

leading to a better understanding of the physical processes involved Hoyle et al. (2015);

Yip et al. (2014).

In this chapter, we compute different properties of galaxies (represented by dark

matter halos) and apply ML techniques to classify galaxies according to their cosmic en-

vironment and extract the most important properties that relate galaxies to their environ-

ment. The ML contribution of this study can be described as follows: First, we provide a

simple way of encoding the galaxy properties and history into feature vectors. Second, the

technique described here provides a fast and computationally efficient galaxy-LSS classifi-

cation that relies on simple descriptors such as local density, mass, formation time, merger

history, etc. to accurately assign galaxies to their cosmic environment. Third, we apply the

Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani (1996) technique to

identify the most significant galaxy properties that encode environmental effects, gaining

a better understanding of what galaxy properties are relevant for environmental studies.

Last but not the least, we observed a decent classification accuracy based on just infor-

mation from the history of the galaxies, which shows that environmental information is

actually encoded in the history of the galaxies in a measurable way.

The rest of the chapter is organized as follows: Section 2 explains how the data

was generated from N-body simulations. We describe our analysis and results in Section

3, followed by some closing remarks in Section 4. A detailed description of the techniques

is included in the Appendix.
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5.2 Data

5.2.1 N-body simulations

Our analysis is based on the MIP simulation Aragon-Calvo (2016). The MIP sim-

ulation consists of 256 realizations of a 32 h−1Mpc box, each containing 2563 particles,

giving a mass per particle of 1.62 × 108M�h−1. 150 snapshots were evolved and stored

at logarithmic intervals starting at z = 10 until the present time using the publicly avail-

able N-body code Gadget Springel et al. (2001). We adopted a ΛCDM cosmology with

parameters Ωm = 0.3, ΩΛ = 0.7, h = 0.73, σ8 = 0.84 and spectral index n = 0.93, of the

same order of values measured by the Planck mission Planck Collaboration et al. (2015),

the exact values are not relevant for the present work. The box size of the MIP is large

enough to contain several cosmological voids and their surrounding walls and filaments.

The largest cluster in the simulation is ∼ 1014 h−1M�. For the purposes of this study, the

MIP is sufficient in terms of size and number of available haloes.

From every snapshot in the simulation, we computed friends of friends (FoF)

groups with a linking length of b = 0.2 and physical properties such as mass, radius, shape,

angular momentum etc.

5.2.2 Halo merger trees

In order to follow the evolution of individual haloes we generated their merger

trees as follows: For every FoF halo identified at snapshot i (child halo), we map its par-

ticles into the previous snapshot i − 1. The mapping operation is possible since every

particle in the snapshot has a unique ID that is preserved throughout the simulation run.

A halo in snapshot i typically maps most of its particles into one halo in snapshot i − 1

and several other halos with a small number of common particles. This operation is re-
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Figure 5.3: Merger Trees in an overdense environment (left panel), underdense environ-
ment (central panel) and a zoom inside a merger tree showing the individual nodes and
their links. The dots correspond to haloes at different snapshots, here encoded in the ver-
tical axis starting from the bottom (the last snapshot corresponds to the top of the tree).
Links indicate mass transfer between haloes in different snapshots. The connectivity corre-
sponds to a graph (since there are loops caused by mergers and other non-linear processes)
but in general they have a tree-like structure.
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peated for each of the progenitor halos in a recursive way until reaching the first snapshot

in the simulation or until no more halos are found. The network representing the connec-

tions of a given halo with its progenitor haloes in previous snapshots is called a merger

tree. Strictly speaking, the links connecting haloes across the simulation construct a graph

(mainly arising from loops in the tree during halo merger events) and it is customary to

prune the graph to produce a tree in which two haloes can not share the same progenitors.

Figure 5.3 shows a comparison of three merger trees within different LSS.

5.2.3 LSS classification, the Spine method

The LSS classification used as a reference and for training in our analysis was

obtained with the Spine method Aragón-Calvo et al. (2010) extended to a hierarchical

formalism as described in Aragon-Calvo et al. (2010b). The Spine method produces a full

characterization of space into voids, walls filament, and clusters on a voxel basis. Haloes

are assigned the Spine classification of the voxel where the halo’s center is located. It is

important to note that the LSS classification computed with the Spine method is based on

the topology of the large-scale density field and is independent of the properties of haloes,

thus providing an orthogonal method to the one proposed here.

From the N -body simulation we computed graph data of each of the 150 snap-

shots. The final dataset consists of 14975 galaxies with merger trees. A visualization of

merger trees is shown in Figure 5.3. Along with the merger trees, the intrinsic properties

of each galaxy such as mass and density with two different scales are given as well.

Local densities were computed inside a spherical tophat window with radius r =

1h−1Mpc and r = 2h−1Mpc centered at the position of each halo. The number of particles

inside each tophat window was then divided by the mean number of particles inside the

volume of the window.
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5.3 Analysis and Results

In order to identify to which of a set of categories a new observation belongs, a

crucial task in classification is finding an adequate representation that is able to describe

the training data. This is usually done with the use of feature vectors x ∈R which are com-

posed of features used to characterize the object. Representing objects by feature vectors

can benefit from the mathematical wealth of operations available in vector space, which

leads to algorithms with low computational complexity. In our case, the intrinsic prop-

erties of halos such as mass and density can easily be incorporated in the form of feature

vectors. However, the difficulty remains in representing the merger trees. Details of the

feature extraction procudures are included in Section 5.3.1 and the classifiers are described

in Section 5.3.2.

5.3.1 Merger Tree Feature Extraction

Adapting existing feature extraction methods to galaxy merger trees data is non-

trivial. We first observe that most of the galaxies within the underdense class experience

little changes (merge or split), leading their merger trees to look like straight lines (see

Figure 5.4). Therefore, we propose as a first indicator a feature representing the branches

of the merger trees. We define the feature “straight” as follows:

straight =


1, if the merger tree is branched

0, otherwise
.

Note that the straight feature depends on the simulation’s mass resolution. A higher mass

resolution will result in more branches in the merger trees even for the straight class.

However, the straight feature is correlated with the cosmic environment. Higher mass
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Figure 5.4: Straight vs. Tree-like structure. We call the left merger tree straight (straight
= 1) and the right one (straight = 0) tree-like structure.
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resolution will most likely map to very underdense regions in which case it will still have

discriminating value.

Algebraic Connectivity of Graphs

The complexity of the merger history of galaxies depends on their environment.

Galaxies in the underdense void-wall environment experience few encounters and mergers

with other galaxies compared to galaxies in the denser filament-wall environment. This

difference is reflected in the degree of complexity of their merger tree. We expect galaxies

in filament-wall environments to be complex or well-connected and galaxies in wall-voids

to have relatively simpler merger trees.

We first define some matrices that will be used throughout this chapter. Let G =

(V ,E) be a non-directed finite graph without loops and multiple edges. The adjacency

matrix of G is defined as:

A(i, j) =


1, if (i, j) ∈ E

0, otherwise
.

The degree matrix D for G is a n×n diagonal matrix defined as:

D(i, j) =


deg(vi), i = j

0, otherwise
,

where deg(vi) is the number of edges attached to the vertex vi . The Laplacian matrix L is

defined as:

L =D −A,

where D is the degree matrix and A is the adjacency matrix of graph G. Let n ≥ 2 and

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn be the eigenvalues of the matrix L. Applying the Perron-

Frobenius theorem to (n−1)I −L, it follows that λ2 is zero if and only if the graph G is not
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connected. The second smallest eigenvalue λ2 of the matrix L(G) is called the algebraic

connectivity of the graphG in Fiedler (1973). He also stated that the algebraic connectivity

is a good parameter to measure, to a certain extent, how well a graph is connected. The

algebraic connectivity is monotone: it does not decrease when edges are added to the

graph.

The normalized Laplacian matrix of G is defined as:

L =D−1/2LD−1/2

i.e.

Li,j :=


1, if i = j and i , 0

−(didj )
−1/2, if (i, j) ∈ E

0, otherwise

.

In Chung (1997) the authors showed that the second smallest normalized Lapla-

cian eigenvalue λ∗2 of graph G is 0 if and only G is disconnected. In addition, Chung also

established the relationships between λ∗2 and the discrete Cheeger’s constance and isoperi-

metric problems. Furthermore, λ∗2 is also closely related to the aforementioned algebraic

connectivity of G (Butler (2008)). Thus, λ∗2 is also known as a good parameter to measure

how well a graph is connected. The authors in Li et al. (2014) classify trees into six classes

C1, · · · ,C6 and prove that λ2(Ti) > λ2(Tj ) for 1 ≤ i < j ≤ 6, where Ti ∈ Ci and Tj ∈ Cj . More

details of the second smallest eigenvalue of the normalized Laplacian matrix can be found

in Li et al. (2014).

We incorporate the second smallest eigenvalue of the normalized Laplacian ma-

trix as the feature to measure the graph connectivity of the merger trees.
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Figure 5.5: Definition of Formation Time. Suppose we have two galaxies G1, G2 and their
mass M1 and M2 at current time, then the formation time for G1 and G2 is t1 and t2
which corresponds to half of their current mass (M1/2 and M2/2), respectively. Time is
represented by snapshot number.

Formation Time

We define galaxy formation time as the snapshot number when the galaxy reaches

half of its current mass. See Figure 5.5 for the definition of the formation time. Based

on the definition of formation time, we first find the most massive progenitor at each

snapshot, then locate the one that has mass closest to half of the galaxy’s current mass and

mark the snapshot number as the formation time of the galaxy.

Encoding the Tree-like structure

The idea of developing the tree encoding technique was motivated by the work

in Megalooikonomou et al. (2009), where the depth-first string encoding and the Prufer

encoding were adopted to represent trees in appropriate forms to facilitate similarity

searches and further classification. Since the number of snapshots is the same for all galax-

ies, we consider a simple way to encode the tree-like structure by a n × 1 vector, where n

is the number of snapshots. Start tracing the merger trees from present time to the past,

each element represents the number of nodes the tree-like structure has at each snapshot.

Not all the galaxies have its progenitor in all n snapshots, we simply fill in 0 when there is
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Feature Description Range
density tophat density 0-1000
mass halo mass 1010-1014h−1M�
straight indicator of tree branching 0 or 1
formtime time a halo reaches half of final mass 1-151
fidval Fiedler value [0,2]
depth length of the tree 1-151
ratio ratio of node # and edge # (0,1)
diff difference of edge # and node # (0,1)
L1-L151 number of nodes at each level(shifted) 0-1000

Table 5.1: Summary of Features

none. Since not all the galaxies have the same formation time, we need to shift the merger

tree with respect to their formation time. Shifting procedures are depicted in Appendix

5.5.2. Another feature named depth is defined by the number of snapshots where the

galaxy appears. In addition, we extract features “ratio” and “diff” from the merger trees

where

ratio =
total number of nodes
total number of edges

, and

diff = total number of edges− total number of nodes.

Note that the range of the variable ratio will be (0,1) and larger values of ratio are indicative

of more complicated trees. A summary of the features is presented in Table 5.1.

5.3.2 Introduction of Classifiers

In this section, we review the basic idea of support vector machine (SVM) and

SVM with Distance matrix LU decomposition (LU-SVM).

Support Vector Machine

The support vector machine classifier is a binary classier algorithm developed

to solve pattern recognition problems (Boser et al. (1992); Vapnik (1998); Cristianini and
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Shawe-Taylor (2000)). With this classifier, one maps the data into a higher dimensional

input space and constructs an optimal separating hyperplane in that space that can max-

imize the gap between data points on the boundaries, allowing us to separate data points

into classes. Fundamentally, finding the optimal separating hyperplane is equivalent to

solving a quadratic programming problem (see Appendix 5.5.1 for details).

Distance Matrix LU Decomposition

We have now achieved a feature vector for each galaxy which contains the mass,

density, normalized Fiedler value, straight, formation time, depth, ratio, diff and node

number at each level of the merger tree. Denote a galaxy profile1 by Gi = (g1, g2, · · · , gn),

where gi ’s represent the features we extracted from the merger tree as well as intrin-

sic properties of the galaxies and n is the number of features, for 1 ≤ j ≤ n. Let G =

(G1,G2, · · · ,GN )T be a set of all galaxies where N is the total number of galaxies. Thus fea-

ture vectors of each galaxy under the same condition are denoted by a row vector of matrix

G and all the galaxy profiles can be considered as the points mapped to a high-dimensional

space and all the information is included in matrix G.

As the distance matrix is constructed with elements describing the space between

points, we found that through the construction of the distance matrix, the relationship

between various galaxies can be reflected Liangliang et al. (2010). Therefore, we defined

the distance matrix D as follows:

Di,j :=


||Gi −Gj ||, i , j

0, i = j
, (5.1)

where 0 ≤ i, j ≤N and Gi ,Gj are the feature vectors of galaxy i and j, respectively.

By doing so, we are transforming the feature vectors into the space between the points,

1Note that “profile” in this context is different than the traditional term used to describe the light profile
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which represents the difference between various galaxies. Then we factor the distance

matrix as the product of a lower triangular matrix L and an upper triangular matrix U

(LU decomposition), where L captures difference coefficient information between galaxy

profiles and U records different feature information of each galaxy profile after removing

the redundant information in all the galaxy profiles. Now that all the different information

between samples are stored in L and U , we further integrate L and U into a matrix H

by H = L + U − IN where IN is the N -dimensional identity matrix. Then we take each

row vector of H as our updated feature vectors for each galaxy profile. In order to make

the updated feature vectors comparable, we perform the following normalization to l =

(l1, · · · , lj , · · · , lN )T so that all the values are mapped to [−1,1]:

l∗j = 2
lj − min

1≤i≤N
li

max
1≤i≤N

li − min
1≤i≤N

li
− 1, j = 1, · · · ,N . (5.2)

To summarize, the steps of the LU-SVM algorithm are as follows:

1: Input the feature vectors for all the galaxies as row vectors into matrix G.

2: Use equation 5.1 to compute the distance matrix D.

3: The distance matrix matrixD is then decomposed by LU decomposition to obtain L and

U .

4: Integrate L and U into a matrix H by

H = L+U − I,

where I is the identity matrix. Normalize H by equation (5.2).

5: Use row vectors of normalized H as the classifiers’ input and carry out two-fold, five-

fold and leave-one-out cross validation.
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SVM Leave-one-out Five-fold Two-fold
All features 68.08 (1.45) 67.38 (1.45) 65.87 (1.53)

Reduced features 75.23 (1.11) 74.97 (1.14) 74.25 (1.31)
Merger tree features 61.01 (1.11) 60.83 (1.14) 60.64 (1.18)

LU-SVM Leave-one-out Five-fold Two-fold
All features 93.32 (0.68) 92.82 (0.84) 91.59 (0.92)

Reduced features 93.29 (0.62) 92.89 (0.67) 92.02 (0.86)
Merger tree features 79.94 (1.61) 79.12 (1.64) 77.39 (1.96)

Table 5.2: The classification results with leave-one-out cross validation, five-fold cross
validation and two-fold cross validation are reported (standard errors are given in paren-
thesis). Each of the accuracy values reported are based on 100 random sampling of size
1400 with equal probability from each class.

The simulation results are shown in Table 5.2. The classification accuracy im-

proved significantly (more than 20% on average) with the application of LU decomposi-

tion.

5.3.3 Feature Selection

By far, we have extracted the following features: density and mass (from galaxy

intrinsic properties); straight, formation time, Fiedler value, depth, ratio, difference and

node number at each level (from the merger tree). From the set of features used to describe

a halo and its history, we should expect that only a small number of features would contain

relevant information on the cosmic environments of galaxies. From Figure 5.2 it is clear

that local density alone can provide a first-order LSS classification. However, the over-

lapping tails between the void/wall and filament/cluster mass density distributions (see

Figure 5.2) mean that density alone can not fully separate between the halo populations.

The straight measure also seems intuitive to differentiate between haloes in dynamically

young environments, in which case their merger tree would be very simple, and haloes in

dynamically evolved environments where we expect to see haloes with complex merger

trees.
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Figure 5.6: Feature scores for the ten most significant features. The scale on the vertical
axis is arbitrary. Density is clearly the most significant feature followed by formation time,
straight and depth with almost equal feature scores. The remaining features have less than
one-third of the maximum feature score.

In order to provide a quantitative measure of the importance of each feature in

the LSS classification, we performed a feature selection with the Least Absolute Shrinkage

and Selection Operator (LASSO) method (Tibshirani (1996)). The Lasso is a shrinkage and

selection method for linear regression. It is often adopted for variable selection and regu-

larization in order to increase the prediction accuracy and interpretability. To be specific,

several random subsets are sampled from the dataset and logistic regression models are fit-

ted for each random subset. A score is then assigned to each feature based on the tendency

of LASSO in including that feature in the models. Figure 5.6 shows that out of the 161 fea-

tures used in the full analysis only 4 have relatively high feature score: density, straight,

formation, and depth. As expected density is the most important feature and the effect of

the remaining three features somehow encode aspects of the cosmic environment to which

density is insensitive. If we use only straight, formation time and depth to classify galaxies

then we obtain an accuracy of 61.01% with a standard deviation of 1.11%, which is slightly
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above the random expectation but high enough to improve the classification when used in

addition density from 61.01% to 75.23%. In fact, if we apply LU-SVM, the accuracy went

up to 93.29%. We can see that the performance with the four most significant features is

almost as good as using the whole feature set. This is reasonable considering the gist of

LU-SVM is to capture the differences between galaxies (as the fundamental matrix is built

with the distance between galaxy feature vectors). Furthermore, this indicates that the

four most significant features could help to reveal the hidden processes of how the galaxy

formation is associated with the large-scale structure.

5.4 Closing Remarks

We applied a set of machine learning techniques in order to gain a better under-

standing of the processes behind galaxy formation and to provide with a computationally

fast algorithm to classify galaxies according to their cosmic environment. It takes about

three minutes in a regular workstation to classify the galaxies with LU-SVM. The tech-

niques presented here enables us to embed merger trees into feature vectors and infer

large-scale structure based on them. On top of that, we adopted the LASSO method for

logistic regression on the full set of features. With a set of tuning parameters λ being

supplied, we were able to reduce the features and achieve similar prediction accuracy. We

selected four most significant features that are associated with the large-scale structures

and found that them alone can already classify galaxies into void/wall or filament/cluster

with the accuracy of 93%.

The fact that halo properties themselves, apart from local density, contain an im-

print of their cosmic environment is remarkable, even if the measured signal is small.

Standard models of galaxy formation assume that all the information needed to reproduce

the properties of galaxies is contained in their mass accretion history, computed via their
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merger tree, while the cosmic environment is assumed to be implicit in the merger tree

information. The studies presented here shows in a quantitative way that indeed there is

environmental information encoded in the merger tree of galaxies and that this informa-

tion can be exploited to derive the position of galaxies in the Cosmic Web.

While the results presented here are dependent on the resolution of the N-body

simulation, the general trends should be the same once appropriate constraints are ap-

plied to higher-resolution simulations. This is particularly important for our definition

of “straight” vs. “complex” since a simulation with a higher mass resolution (i.e. more

particles used to define the same halo) will most likely transform the “straight” trees into

“complex”. However, the branches in such tree will consist of low-mass objects that could

be easily discarded. Our present work is robust in the sense that the mass resolution used

to define “galaxies” is sufficient to resolve halos with a mass corresponding to the smallest

galaxies observable in galaxy surveys.

This is the first of a series of studies exploring the features that determine the

properties of galaxies and their relative importance. Machine learning techniques pro-

vide a quantitative way to assess and to understand the interplay between different galaxy

properties in an area dominated by qualitative and semi-empirical studies.

5.5 Appendix

5.5.1 Support Vector Machine

Given training data set {xk, yk} ∈ Rn × {−1,1}, where xk are feature vectors and yk

the class labels. For linearly non-separable case, the feature vector x is mapped into a high

dimensional feature space by function φ. This is often referred as “the kernel trick”. Then
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the SVM discriminant function has the form:

f (x) = sign[wTφ(x) + b],

where w is the parameter vector, b is the offset scalar and φ(·) is a nonlinear function that

maps the input space into a higher dimensional space (can be infinite dimensional).

For separable data, the assumptions are:


wTφ(xk) + b ≥ 1, if yk = 1

wTφ(xk) + b ≤ −1, if yk = −1
,

which is equivalent to

yk[w
Tφ(xk) + b] ≥ 1, k = 1, · · · ,N .

To handle non-separable datasets, the constraints were relaxed by making the inequalities

easier to satisfy. Slack variables ξi ≥ 0 were included:

yk[w
Tφ(xk) + b] ≥ 1− ξk , k = 1, · · · ,N .

All constraints can be satisfied if ξk is large enough trivially. To prevent this, the sum of

ξk was added as a penalty and the optimization problem becomes:

minimize:
1
2
‖w‖2 +C

n∑
i=1

ξk ,

subject to: yk[w
Tφ(xk) + b] ≥ 1− ξk and ξk ≥ 0

for k = 1, · · · ,N .
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where ‖ · ‖ is l2 norm of a vector and C is a weight parameter that needs to be chosen with

cautious. Then constructs the Lagrangian

L(w,b,ξ;α,ν) =
1
2
||w||2 +C

n∑
i=1

ξk −
N∑
k=1

αk{yk[wTφ(xk) + b]

− 1 + ξk} −
N∑
k=1

νkξk

by introducing Lagrange multipliers αk ≥ 0,νk ≥ 0(k = 1, · · · ,N ). The solution is given by

the saddle point of the Lagrangian by computing

max
αk ,νk

min
w,b,ξk

L(w,b,ξk ;αk ,νk).

One obtains 

∂L
∂w

= 0→w =
N∑
k=1

αkykφ(xk)

∂L
∂b

= 0→
N∑
k=1

αkyk = 0

∂L
∂ξ

= 0→ 0 ≤ αk ≤ c,k = 1, · · · ,N .

By solving the dual problem and introducing Lagrange multipliers, we arrive at

maximize: − 1
2

N∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj) +

N∑
i=1

αi ,

subject to: 0 ≤ αi ≤ C and
N∑
i=1

αiyi = 0 for i = 1, · · · ,N .

Then we obtain the classifier:

f (x) = sign

 N∑
k=1

αkykΦ(x,xk) + b

 ,
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where αk’s are positive real constants and b is a real constant. Under Mercer condition,

Φ(xi,xj) = φ(xi)
Tφ(xj ).

The kernel function applied here is the RBF SVM:

Φ(x,xk) = exp{−||x− xk||22/σ
2}.

5.5.2 Shifted merger tree with respect to formation time

Note that galaxy formation time is defined as the snapshot number when the

galaxy reaches half of its current mass (see Figure 5.5 for details). Consider formation

time as a time marker for all the galaxies, it is logical to shift the merger tree with respect

to formation time so that the corresponding galaxies are comparable to each other. The

steps are as follows (A demo is included in Figure 5.5.3):

1. Locate the formation time and shift the merger tree with respect to the formation

time. (See the first two subplots in figure 5.7).

2. Fill in the blank cells as a continuation of the adjacent number.

5.5.3 The LASSO technique

The Lasso, introduced by Robert Tibshirani (Tibshirani (1996)), is a shrinkage

and selection method for linear regression. It minimizes the residual sum of the squared

subject to the sum of the absolute values of the coefficients being less than a constant.

Because of the constraint, the lasso method is often adopted for variable selection and

regularization in order to increase the prediction accuracy and interpretability.
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Consider a sample with n observations, each of which consists of p covariates and

a single outcome. Let yi be the outcome and xi := (x1,x2, · · · ,xp)T be the covariate vector

for the ith observation.

Letting β̂ = (β̂1, · · · , β̂p), the lasso estimate (α̂, β̂) is defined by

(α̂, β̂) = argmin


n∑
i=1

yi −α −∑
j

βjxij


2

subject to
∑
j

|βj | ≤ t.

Here t ≥ 0 is a tuning parameter. Let β̂oj be the full least squares estimates. If

t >
∑p
j=1 |β̂

o
j |, then the lasso estimates will be the same as the ordinary lease squares esti-

mates. Values of t <
∑p
j=1 |β̂

o
j | will cause shrinkage of the solutions towards 0, thus some

coefficients may be exactly equal to 0. Then the problem is equivalent to

(α̂, β̂) = argmin


n∑
i=1

yi −α −∑
j

βjxij


2

+λ
∑
j

|βj |


A penalty term λ

∑
j |βj | is added to the loss function. Each non-zero coefficient

adds to the penalty, which forces weak features to have zero as coefficients. It has been

shown in the same article that λ depends on the LASSO parameter t, i.e. larger λ yields

smaller numbers of selected features.
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Figure 5.7: Demo of shifting merger tree with respect to the formation time. In all sub-
plots, we are showing five galaxies with different formation time (marked in red). The
dark blue cells represent the snapshot number and the light blue cells contain the corre-
sponding node number.
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