
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Rationality-Guided AGI as Cognitive Systems

Permalink
https://escholarship.org/uc/item/7xd1940g

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 34(34)

ISSN
1069-7977

Authors
Abdel-Fattah, Ahmed M.H.
Besold, Tarek R.
Gust, Helmar
et al.

Publication Date
2012
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xd1940g
https://escholarship.org/uc/item/7xd1940g#author
https://escholarship.org
http://www.cdlib.org/


Rationality-Guided AGI as Cognitive Systems

Ahmed Abdel-Fattah, Tarek R. Besold, Helmar Gust,
Ulf Krumnack , Martin Schmidt , Kai-Uwe Kühnberger
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Abstract

The integration of artificial intelligence (AI) within cogni-
tive science (CogSci) necessitates further elaborations on, and
modelings of, several indispensable cognitive criteria. We ap-
proach this issue by emphasizing the close relation betweenar-
tificial general intelligence (AGI) and CogSci, and discussing,
particularly, “rationality” as one of such indispensable criteria.
We give arguments evincing that normative models of human-
like rationality are vital in AGI systems, where the treatment
of deviations from traditional rationality models is also nec-
essary. After conceptually addressing our rationality-guided
approach, two case-study systems, NARS and HDTP, are dis-
cussed, explaining how the allegedly “irrational” behaviors can
be treated within the respective frameworks.
Keywords: Rationality; intelligence; AGI; HDTP; NARS

Motivations and Background
For more than five decades, artificial intelligence (AI) has
always been a promising field of research on modeling hu-
man intelligence. The success of projects like IBM’s Watson
(Ferrucci et al., 2010), for instance, increases the hopes in
achieving not only language intelligence but also inference
mechanisms at a human-level and paves the way for solving
more baffling tasks. However, AI has turned into a vague, un-
specific term, in particular because of the tremendous num-
ber of applications that belong, in fact, to seemingly orthogo-
nal directions. Philosophers, psychologists, anthropologists,
computer scientists, linguists or even science fiction writers
have disparate ideas as to what AI is (or should be). The
challenge becomes more obvious when AI is looked at from
a CogSci perspective, where the focus is mainly on explain-
ing processes of general cognitive mechanisms (not only on
how one or another intelligence task can be solved by a com-
puter). We think that from a CogSci perspective the kind of
intelligence characterizing classical AI problems is not yet
exhaustive enough. Solutions to most of the problems are not
cognitively inspired: neither do they consider essential cogni-
tive mechanisms (or general intelligence results) nor do they
show the biological plausibility of the solutions.

Artificial General Intelligence(AGI) refers to a research
direction that takes AI back to its original goals of confronting
the more difficult issues of human-level intelligence as a
whole. Current AGI research explores all available paths, in-
cluding theoretical and experimental computer science, cog-
nitive science, neuroscience, and innovative interdisciplinary

methodologies (Baum, Hutter, & Kitzelmann, 2010). Here,
we approach cognition in AGI systems by particularly pro-
moting “rationality” as one of such indispensable criteria, and
analyze some divergent, sometimes seemingly irrational, be-
haviors of humans.

In this article, our goal is twofold. We first concern
ourselves with explicitly allocating ideas from AGI within
CogSci. Second, we give a conceptual account on some prin-
ciples in normative rationality-guided approaches. Afterex-
plaining our approach at a general level, we explain how two
cognitively inspired systems, namely NARS and HDTP, have
the potential to handle (ir)rationality. We conclude by giving
some remarks and future speculations.

Why AGI?

In current AGI research, there are approaches following dif-
ferent paths, including those (1) inspired by the structureof
human brain or the behavior of human mind, (2) driven by
practical demands in problem solving, or (3) guided byratio-
nal principlesin information processing. We are concerned
with the latter approach, which has at least three essentialad-
vantages. One advantage of the rationality-guided approach,
from an AGI perspective, is that it is less bound to exactly
reproducing human faculties on a functional level. Another
advantage is that it gives AI the possibility of being estab-
lished in a way similar to other disciplines, where it can give
a theoretical explanation to intelligence as a process thatcan
be realized both in biological systems and computational de-
vices. The third advantage of the rationality-guided approach
is that it is not limited to a specific domain or problem.

Rationality
The termrationality is used in a variety of ways in various
disciplines. In CogSci, rationality usually refers to a way
a cognitive agent deliberatively (and attentively) behaves in,
according to a specific normative theory. The prototypical in-
stance of cognitive agents that can show rational behavior is
humans, who so far are also the ultimate exemplar of gener-
ally intelligent agents. When modeling intelligence, it isrea-
sonable to initially take the remarkable abilities of humans
into account with respect to rational behavior, but also their
apparent deficiencies that show up in certain tasks.
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Surprisingly little attention has been paid so far in AI to-
wards a theory of rationality. A reason might be that the con-
cept of rationality was too broad in order to be of interest
to AI, where for a long time usually relatively specific cog-
nitive abilities were modeled and heuristics were suggested.
Moreover, an artificial cognitive agent is usually intendedto
reproduce rational behavior, not to act in seemingly irrational
ways. Consequently, AI researchers are not interested in re-
sults of someclassical rationality puzzles. Still, we think that
a move towards integrating AGI in CogSci cannot ignore ra-
tionality issues, neither the remarkable abilities nor theorigi-
nalities human subjects show in rationality tasks.

Traditional Models of Rationality
Different models of rationality use significantly different
methodologies. Clustering such models according to the
underlying formalism usually results in at least the follow-
ing four classes: (1) logic-based models (Evans, 2002), (2)
probability-based models (Griffiths, Kemp, & Tenenbaum,
2008), (3) heuristic-based models (Gigerenzer, 2008), and
(4) game-theoretically based models (Osborne & Rubinstein,
1994). Several of these models have been proposed for estab-
lishing anormative theory of rationality, normally by judging
a belief as rational if it has been obtained by a formally cor-
rect application of the respective reasoning mechanism, given
some background beliefs or knowledge (cf. e.g. also (Gust et
al., 2011; Wang, 2011)). Therefore, such theories of rational-
ity are not only intended to model “rational behavior” of hu-
mans, but to postdictively decide whether a particular belief,
action, or behavior is rational or not. Nonetheless, although a
conceptual clarification of rational belief and rational behav-
ior is without any doubts desirable, it is strongly questionable
whether the large number of different (quite often orthogo-
nal) frameworks makes this task easier, or if the creation of
a more unified approach wouldn’t be recommendable. From
our perspective, basic cognitive mechanisms seem to offer a
basis for such an endeavor.

Some Rationality Challenges and Puzzles
Although the models mentioned above have been proven to be
quite successful in modeling certain aspects of intelligence,
all four types of models have been challenged. For example,
in the famous Wason selection task (Wason & Shapiro, 1971)
human subjects fail at a seemingly simple logical task (cf.
Table 1.a). Similarly, Tversky and Kahneman’s Linda prob-
lem (Tversky & Kahneman, 1983) illustrates a striking viola-
tion of the rules of probability theory in a seemingly simple
reasoning problem (cf. Table 1.b). Heuristic approaches to
judgment and reasoning try to stay closer to the observed be-
havior and its deviation from rational standards (Gigerenzer,
2008), but they fail in having the formal transparency and
clarity of logic-based or probability-based frameworks with
regard to giving a rational explanation of behavior. Game-
based frameworks can be questioned due to the various forms
of optimality concepts in game-theory that can support differ-
ent “rational behaviors” for one and the same situation.

In order to make such challenges of rationality theories
more precise, we discuss some aspects of the famous Wason
selection task and the Linda problem in more detail.

Wason Selection Task This task shows that a large major-
ity of subjects are seemingly unable to evaluate the truth of
a simple rule of the form“if p then q” (Wason & Shapiro,
1971). In the version depicted in Table 1.a, this rule is rep-
resented by: “If on one side of the card there is a D, then on
the other there is the number 3”. According to classical logic,
in order to assign a truth-value to this rule, subjects need to
turn D and 7. What is interesting is the fact that a slight mod-
ification of the content of the rule to a setting more familiar
from daily life, while keeping the structure of the problem
isomorphic, makes subjects perform significantly better, as
e.g. shown in (Cosmides & Tooby, 1993).

Table 1: a. A description of the Wason selection task. b. An
abbreviated version of the Linda problem setting.

a. Wason Selection Task (Wason & Shapiro, 1971):
Every card which has a D on one side has a 3 on the other side
(and knowledge that each card has a letter on one side and a
number on the other side), together with four cards showing
respectively D, K, 3, 7, hardly any individuals make the correct
choice of cards to turn over (D and 7) in order to determine the
truth of the sentence. This problem is called “selection task”
and the conditional sentence is called “the rule”.

b. Linda Problem (Tversky & Kahneman, 1983):
Linda is 31 years old, single, outspoken and very bright. She
majored in philosophy. As a student, she was deeply concerned
with issues of discrimination and social justice, and also partic-
ipated in anti-nuclear demonstrations.
(F): Linda is active in the feminist movement.
(T): Linda is a bank teller.
(T&F): Linda is a bank teller and is active in the feminist move-
ment.

Linda Problem With respect to the Linda problem
(Tversky & Kahneman, 1983) it seems to be the case that sub-
jects have problems to prevent the so-calledconjunction fal-
lacy: subjects are told a story specifying a particular profile
about someone called Linda. Then, some statements about
Linda are shown and subjects are asked to order them accord-
ing to their probability (cf. Table 1.b). 85% of subjects decide
to rank the statements “Linda is a bank teller and is active in
the feminist movement” (T & F) as more probable than the
statement “Linda is a bank teller” (T). This ranking conflicts
with the laws of probability theory, because the probability of
two events (T & F) is less than or at most equal to the proba-
bility of one of the events (e.g. (T)).

Classical Resolution Strategies of Irrationality
Many strategies have been proposed to address the men-
tioned challenges, ranging from the use of non-classical log-
ics to model subjects’ behavior in the Wason selection task
(Stenning & van Lambalgen, 2008), to considerations involv-
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ing reasoning in semantic models instead of (syntactic) de-
ductions (Johnson-Laird, 1988) in the case of the Wason se-
lection task. With respect to the Linda problem it has been
argued that pure probability theory is not appropriate for ad-
dressing the problem properly, but a foundation of the anal-
ysis of this problem in coherence theories would be neces-
sary (Pfeifer, 2008). Another resolution strategy applicable to
both puzzles is to question whether tasks were appropriately
phrased in the respective experiments. In the Wason selection
task the “if-then” rule presented in natural language is usu-
ally not equivalent to its interpretation in classical logic, and
in the Linda puzzle the term “probable” can be interpreted
differently by the subjects (Gigerenzer, 2005). In any case,
although there are many proposals to address the challenges,
there is no generally accepted rationality concept available
yet. Moreover, specific frameworks can address specific chal-
lenges, but do not generalize to the breadth of the mentioned
problems.

For a generally intelligent cognitive system a question that
can be raised is:which principles of rationality can be trans-
ferred to and modeled in AGI systems, in order to achieve
intelligence on a human scale?We will argue for models that
link rationality to the ability of humans to establish analogical
relations (continuing a line of reasoning started in (Besold et
al., 2011)), and to the ability to adapt to the environment by
making good use of previously obtained experiences.

Non-Standard, CogSci-Based Approaches

The two examples discussed above definitely show that hu-
mans have sometimes problems to apply rules of classical
logic correctly (at least in rather abstract and artificial situ-
ations), and to reason according to the Kolmogorov axioms
of probability theory. Nonetheless, the most that can be con-
cluded from the experiments is that human agents are nei-
ther classical deduction machines nor probability estimators,
but perform their indisputable reasoning capabilities by other
means, necessarily linked to their cognitive capacities.

Resolving the Selection Task by Cognitive Mechanisms
As mentioned above, subjects perform better (in the sense of
more according to the laws of classical logic) in the Wason se-
lection task, if content-change makes the task easier to access
for subjects. We think that the performance of subjects has a
lot to do with the ability of subjects to establish appropriate
analogies. Subjects perform badly in the classical versionof
the Wason selection task, probably because they fail to estab-
lish a correct analogy. Therefore, subjects fall back to other
(less reliable) strategies to solve the problem. In a content-
change version of the task the situation is different, because
subjects can do what they would do in an everyday analogous
situation. In short, the success or failure of managing the task
is crucially dependent on the possibility to establish a mean-
ingful analogy.

Another related resolution is to study the mode of the in-
ference that should underly a normative theory of rational-
ity. When a system has sufficient knowledge and resources

(with respect to the problems to be solved), an axiomatic
logic (such as classical logic) can be used, which treats the
available knowledge as axioms, and derives theorems from
them to solve a given problem. When the system has insuf-
ficient knowledge, it has no absolute truth to be used as ax-
ioms, so has to follow some “non-axiomatic” logic, whose
premises and conclusions are all revisable by new evidence.
In Wason’s task, the expected results are the ones assuming
an axiomatic system, while the actual results may be con-
sistent with a non-axiomatic one. Therefore, the “mistake”
here is mainly the misunderstanding between the psycholo-
gists who run the tests and the subjects who take the tests.
In this artificially structured experiment, it is valid for the
psychologists to assume sufficient knowledge and resources,
therefore to expect the application of an axiomatic type of in-
ference mechanism. Their mistake, however, is the failure to
see the result as coming from another type of inference. On
the side of subjects, since non-axiomatic reasoning is used
more often in everyday life, most of them fail to understand
the experiment setting as a testing of their capacity of us-
ing an axiomatic inference mechanism. This explains why
many subjects admit their mistake afterwards, and do better
in the content-change task (as soon as they realized that the
expected way of reasoning is not their default one, they have
less problem to adapt to follow it).

Resolving the Linda Problem by Cognitive Mechanisms
Here, a natural explanation of subjects’ behavior is that there
is a lower degree of coherence of Linda’s profile plus the
statement “Linda is a bank teller” in comparison to the degree
of coherence of Linda’s profile plus the statement “Linda is
a bank teller and is active in the feminist movement”, as in
the conjunctive statement, at least one conjunct of the state-
ment fits quite well to Linda’s profile.Coherence(Thagard,
2002) is a complicated concept that needs to be discussed in
more detail (as does its connection to notions like the idea of
representativeness proposed as an explanation for the Linda
problem by Tversky and Kahneman themselves), but it can
be mentioned that coherence is important for the successful
establishment of an analogical relation, as well as for guiding
adaptation of obtained knowledge and experiences. In order
to make sense out of the task, subjects tend to rate statements
with a higher probability where facts are arranged in a theory
with a higher degree of coherence. Also, this can be thought
of as a form of coherently adapting beliefs, which also de-
pends heavily on subjects’ experiences rather than on their
knowledge of Kolmogorov axioms of probability theory.

Modeling Rationality: Case Studies

Formal and computational models in CogSci can be roughly
divided into two major types:descriptiveandnormative. A
descriptive model explains how a system actually works, and
its establishment is based on empirical data. A descriptive
model’s quality is evaluated according to its behavior’ssim-
ilarity to that of humans. A normative model, on the other
hand, specifies how a system should work, and its estab-
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lishment is based on certain general principles or postulates.
Such a normative model’s quality is evaluated according to its
behavior’scoherencewith these basic assumptions. Though
the two types of models are closely related, they are still built
and evaluated differently (Wang, 2011). When building a
model of rationality, a central issue is the selection of theas-
sumptions on which the model is based, since all conclusions
about the model are derived from, and justified against, these
assumptions.

In the following, we give two examples for cognitively
inspired systems: NARS and HDTP. Both stand in a cer-
tain tradition to classical cognitive architectures like the well-
known models ACT-R (Anderson & Lebiere, 1998) and
SOAR (Laird, Newell, & Rosenbloom, 1987), because they
attempt to model cognition in breadth and not relative to
highly specialized abilities. Nevertheless, because NARSand
HDTP stand in a tradition of modeling the competence as-
pect of general intelligence, they attempt to integrate a bunch
of different human-inspired reasoning abilities, and theytry
to integrate these abilities in uniform models, they also differ
significantly from the mentioned classical cognitive architec-
tures. We briefly introduce NARS and HDTP and discuss
how they can account for “irrational” behaviors in tasks, such
as the Selection Task and the Linda problem.

AGI with Relative Rationality (NARS) NARS (Non-
Axiomatic Reasoning System) is an AGI system designed
under the assumption that the system usually has insufficient
knowledge and resources with respect to the problems to be
solved, and must adapt to its environment. Therefore, the
system realizes a “relative rationality”, that is, the solutions
are the best the system can getunder the current knowledge–
resource restriction(Wang, 2011). Since this system has been
described in a book (Wang, 2006) and many papers (most of
which are available at the the last author’s website1), here we
only briefly explain the treatment of the “Selection Task” and
“Conjunction Fallacy” in NARS.

Since NARS has insufficient knowledge and resources,
its beliefs are not “absolute truth” but summary of the sys-
tem’s experience. Especially, thetruth-valueof a statement
measures itsevidential support, and the evidence can be ei-
therpositiveor negative, depending on whether the evidence
agrees with the statement. Concretely, for statement “If on
one side of the card there is a D, then on the other there is
the number 3”, the D card always provides evidence (posi-
tive if the other side is 3, otherwise negative); the 3 card may
provide positive evidence (if the other side is D); the 7 card
may provide negative evidence (if the other side is D); the K
card provides no evidence. To determine the truth-value of
the statement, all cards except K should be checked, but due
to insufficient resources, the system may fail to recognize all
evidence. In this case, D is the easiest, while 7 the hardest.
This result is consistent with the common responses of human
beings. It is labeled as “irrational”, because in classicallogic

1At http://www.cis.temple.edu/∼pwang/papers.html.

the truth-value of a statement only depends on the existence
of negativeevidence, and whether there ispositiveevidence
does not matter. Furthermore, classical logic does not con-
sider resource restriction at all. For a detailed discussion on
evidence and truth-value in NARS, see (Wang, 2009).

In NARS, the meaning of a concept, such as “Linda” or
“feminist bank-teller”, is determined by the available infor-
mation about it, in terms of how it relates to other concepts,
as far as the system knows. For a given concept, such infor-
mation may be eitherextensional(indicating its instances or
special cases) or intensional(indicating its properties orgen-
eral cases). To decide the extent to which a concept, “Linda”,
is a special case of another one, “bank-teller” or “feminist
bank-teller”, the system will consider all available evidence.
In this example, the most accessible evidence about all three
concepts areintensional(i.e., about their properties), so the
system reaches its conclusion by checking if Linda has the
properties usually associated with “bank-teller” and “feminist
bank-teller”, respectively. Since according to the given in-
formation Linda has more common properties with “feminist
bank-teller” than with “bank-teller”, her “degree of member-
ship” is higher to the former than to the latter. This is judged
as a “fallacy” when probability theory is appliedextension-
ally to this situation, so only thebase ratesmatters, while the
properties do not. For a detailed discussion on the categoriza-
tion model in NARS, see (Wang & Hofstadter, 2006).

In summary, as soon as a normative model of rationality or
intelligence makes more realistic assumptions, many “heuris-
tics”, “bias”, and even “fallacies” follow from them. In the
above examples, there are strong reasons for assuming that
the truth-value of a statement should depend on both posi-
tive and negative evidence (rather than negative only), and
the meaning of a concept should depend on both extensional
and intensional relations (rather than extensional only).We
believe these examples mainly show the limitations of tradi-
tional models (classical logic, probability theory), rather than
human errors. The practice of NARS and similar systems
shows that it is possible for a new normative model to explain
and reproduce similar results in a unified way.
Rationality Through Analogy (HDTP) As a second case
study, we want to sketch howHeuristic-Driven Theory Pro-
jection (HDTP), an analogy-engine, can be used to imple-
ment some crucial parts of our cognitively-based theory of
rationality (for an expanded elaboration cf. e.g. (Besold et
al., 2012)). HDTP is a framework for computing analogical
relations between two domains that are axiomatized in many-
sorted first-order logic (Schwering, Krumnack, Kühnberger,
& Gust, 2009). It provides an explicit generalization of the
two domains as a by-product of establishing an analogy. Such
a generalization can be a base for concept creation by abstrac-
tion. HDTP proceeds in two phases: in themapping phase,
the source and target domains are compared to find struc-
tural commonalities, and a generalized description is created,
which subsumes the matching parts of both domains. In the
transfer phase, unmatched knowledge in the source domain
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is mapped to the target domain to establish new hypothe-
ses. HDTP is therefore similar in spirit to the well-known
Structure-Mapping Engine (SME) (Falkenhainer, Forbus, &
Gentner, 1989), e.g. with respect to the mentioned mapping
and transfer phases and the symbolic representation of do-
mains. Nevertheless, HDTP also differs significantly from
SME, e.g. with respect to the strong expressive power of the
underlying domain theories (many-sorted first-order logicin
HDTP vs. propositional logic in SME), the establishment of
the analogy relation as a by-product of an abstraction, and the
massive usage of heuristics differ from the ones used in SME.

HDTP implements a principle (by using heuristics) that
maximizes the coverage of the involved domains (Schwering
et al., 2009). Intuitively, this means that the sub-theory of the
source (or the target) that can be generated by re-instantiating
the generalization is maximized. The higher the coverage the
better, because more support for the analogy is provided by
the generalization. A further heuristics in HDTP, for which
the motivation is to prevent arbitrary associations, is themin-
imization of substitution lengths in the analogical relation,
i.e. the simpler the analogy the better (Gust, Kühnberger,
& Schmid, 2006). There is a trade-off between high cover-
age and simplicity of substitutions: An appropriate analogy
should intuitively be as simple as possible, but also as gen-
eral and broad as necessary, in order to be non-trivial. This
kind of trade-off is similar to the trade-off that is usuallythe
topic of model selection in machine learning and statistics.

The modeling of the Wason selection task with HDTP is
quite simple as long as appropriate background knowledge
is available, in case an analogy should be established, or the
lack of appropriate background knowledge prevents analogy
making, in case no analogy should be established. In other
words, the availability of appropriate resources in form of
background knowledge is crucial. If appropriate background
knowledge for an analogous case is missing, then there is
no chance to establish an analogical relation or a potential
analogy (with low coverage and complex substitutions) is
misleading the subject. Hence, subjects have to apply other
strategies. This is the situation when subjects are confronted
with the original Wason selection task based on properties of
cards. Most subjects have problems to establish a meaning-
ful analogy with a well-known domain due to the high degree
of abstractness of the task itself. In the other case, if there
is a source theory with sufficient structural commonalities,
then the establishment of an analogical relation is straightfor-
ward. This happens if the task is changed in the following
way: the rule that needs to be checked is now:“If some-
one is drinking beer in a bar, he / she must be older than
21” . In the experiment, subjects can choose between “drink-
ing beer”, “drinking coke”, “25 years old”, and “16 years
old” (Cosmides & Tooby, 1993). In the corresponding exper-
iments, subjects behave significantly better than in the orig-
inal selection task. With analogy making the improvement
of the subjects in mastering the task can be explained. They
can establish an analogy between the sketched set-up of the

experiment and a standard situation in daily life, in which
they would simply do the necessary actions to check whether
there is someone who is drinking beer in the bar without being
older than 21: check people who are drinking beer, and check
what people are drinking who are 16. As both situations are
very similar to each other, the generalization is straightfor-
ward, substitutions length are minimal, and coverage is high.

The Linda problem is structurally different in comparison
to the Wason selection task. In an analogy making context,
an explanation of subjects’ behavior in terms of coherence
maximization is promising. Coherence aspects of input the-
ories are crucial for establishing analogies in several ways.
Roughly speaking, the statement“Linda is a bank teller”
has less coherence with Linda’s profile than the statement
“Linda is a bank teller and is active in the feminist move-
ment”. Therefore, it is easier to establish an analogy between
Linda as given in Linda’s profile and Linda as described in
“Linda is a bank teller and is active in the feminist move-
ment” than in the pure “bank teller” case. Notice that from
an abstract point of view the coherence-based resolution of
the task is rather similar with the intensional interpretation of
the task in NARS, where “feminist bank teller” has a higher
degree of membership with Linda’s profile than “bank teller”.

Conclusion and Future Work

There are multiple models of rationality, each with its own as-
sumptions and applicable situations. The traditional models
are based on certain idealized assumptions, and thus are lim-
ited to the domains where the latter are satisfied. Since human
cognition has evolved in and is usually used in realistic situ-
ations where those idealized assumptions do not hold, those
models of rationality are not universally applicable, and vio-
lations should not be deemed “irrational” per se. The seem-
ingly irrational behaviors are there not because the intelligent
systems (e.g. humans) are irrational, but because the tradi-
tional normative theories do not cover rationality very well.

Instead, we believe what is needed are new models of ra-
tionality that are based on more realistic assumptions and de-
veloped in a more holistic framework. Such models should be
able to provide an adequate and feasible positive account of
actual human rationality, also accommodating particularities
of human-style reasoning. Such a framework could form a
cornerstone of a closer connection between AGI and CogSci,
embedding important parts of the AGI program within a
CogSci context, whilst making the more general methods and
theories of AGI accessible to the CogSci side.

The overall appeal for a “more cognitive” view on ratio-
nality models and systems is infrequent, but not unusual.
Amongst others, already Kokinov (2003) reaches the conclu-
sion that the concept of rationality as a theory in its own right
ought to be replaced by a multilevel theory based on cognitive
processes involved in decision-making. On the more techni-
cal side, there is a growing body of evidence that analogy
engines (like HDTP) and general-purpose reasoning engines
(like NARS) can be used for implementing these cognitive
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mechanisms and, thus, also as foundations of a rationality-
guided approach to general intelligence.

This paper should merely be considered as a point of depar-
ture, leaving questions for future research galore. For exam-
ple with respect to the present proposal concerning HDTP, it
seems recommendable to figure out to which extent different
types of coherence concepts can be integrated into the frame-
work. In particular, the challenges mentioned above need to
be addressed, and a formal treatment of coherence needs to
be fleshed out. Furthermore, an implementation of coher-
ence principles for retrieval, mapping, and re-representation
purposed in the analogy making process needs to be formu-
lated. Concerning NARS, amongst others the following is-
sues would merit work and effort: real-time temporal in-
ference, procedural inference, and self-control. Regarding
competing theories for rationality, clarifying to what extent
cognitive capacities and limitations have already been taken
into account (implicitly as well as explicitly) when designing
the theories, and to what extent the classical frameworks can
be re-instantiated by a cognitively-based approach, has tobe
considered one of the principal questions for future research.
Finally, on a fundamental conceptual level, a broader defini-
tion of rational beliefs is still needed.
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