
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Case Study in Computational Math Cognition and Embodied Arithmetic

Permalink
https://escholarship.org/uc/item/7xd205jv

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 29(29)

ISSN
1069-7977

Author
Goldfain, Albert

Publication Date
2007
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xd205jv
https://escholarship.org
http://www.cdlib.org/


A Case Study in Computational Math Cognition and Embodied Arithmetic

Albert Goldfain (ag33@cse.buffalo.edu)
Department of Computer Science and Engineering,

Center for Cognitive Science,
University at Buffalo, Buffalo, NY 14260

Abstract

This paper defends the claim that a part of human mathemat-
ical cognition can be realized in a computational cognitive
agent (thereby rejecting the claim that the human embodiment
has a privileged status with respect to mathematical cognition).
The defense of this position rests on two points: (1) The em-
bodied activities that provide a semantics for arithmetic are
performable by computational agents and (2) abstraction from
these activities yields representations that can be reasoned with
by such agents (while still remaining associated with the origi-
nating embodied activities). In particular, such representations
can be used in a justification of arithmetic results. A case study
in computational math cognition is presented using the task
of finding the greatest common divisor (GCD) of two natural
numbers. An overview of a preliminary agent implementation
is given using the SNePS knowledge-representation, reason-
ing, and acting system and GLAIR architecture.

Keywords: knowledge representation; cognitive architecture;
cognitive modeling

Introduction
Mathematical cognition is an interdisciplinary investigation
into the cognitive mechanisms underlying human mathemat-
ical activity. This emerging branch of cognitive science has
seen contributions from psychology (Piaget, 1965; Gelman
& Gallistel, 1978), linguistics (Wiese, 2003), and neuro-
science (Dehaene, 1997). Lakoff and Núñez (2000) have pro-
vided one of the seminal unifying works in the field of math
cognition. The central claim of this work is that mathematics
is not objective and disembodied, but rather is subjective and
highly dependent on the embodied human mind, along with
its particular conceptual system, inference mechanisms, and
representations. The possibility of realizing human mathe-
matical cognition in a non-human embodiment (e.g., a com-
puter) is dismissed as being a part of the “Romance of Mathe-
matics” that Lakoff and Ńuñez hope to dispel. In their view, a
computational agent’s mechanical embodiment and rigid rep-
resentations prevent the kind of experiences and conceptual-
izations that give rise to human mathematical cognition.

In this paper, I argue that at least a part of (developmen-
tally) early mathematical cognitioncanbe realized in a com-
putational cognitive agent. By this I mean that such an agent
would be capable of passing an empirical test for mathemat-
ical understanding. Mathematical understanding is a notion
I will make more precise and distinguish from mathematical
ability. As a case study, I look at the problem of finding the
GCD of two natural numbers and consider how a cognitive
agent (either human or computational) would justify its un-
derstanding of GCD.

Along the way, the following semantic questions must be
considered and at least partially answered: (1) Where do

the semantics for the natural numbers and quantities come
from? (2) Where do the semantics for the arithmetic op-
erations come from? (3) Where do the semantics for post-
arithmetic operations come from? A theory of math cogni-
tion can be formulated that is both cognitively plausible and
computational, i.e., suitable for an symbolic-AI agent imple-
mentation. The preliminary implementation of such an agent
using the SNePS system and the GLAIR architecture is de-
scribed below. First, we will look at some features of a com-
putational theory of math cognition.

Computational Math Cognition
This work is part of a larger project whose long-term goal is a
computational theory of math cognition with a particular em-
phasis on counting and arithmetic routines. The focus of the
theory is on mathematical understanding rather than concept
acquisition, learning, or teaching (although these are inextri-
cably tied to understanding).

Ability and Understanding

It will first be necessary to make a sharp distinction between
mathematical ability and mathematical understanding. It is
fairly uncontroversial to claim that computers (even the un-
sophisticated pocket calculator) have mathematical ability.
Simply put, they are able to produce correct results reliably.
Even though it is left to the human user to interpret these re-
sults, it is clear that the computer is the one doing the “work”
(and thus the request from teachers to “show your work in-
stead of using a calculator”). In contrast, it is not at all clear
what the necessary and sufficient conditions for mathematical
understanding are or what it would mean for a computational
agent to have mathematical understanding. The term ‘under-
standing’ is both vague and ambiguous.

Roughly, I take understanding to be a process that happens
alongside and after the learning of procedures and acquisi-
tion of concepts. From a methodological standpoint, the best
we can do is try to identify empirically testable features of
mathematical understanding and then look for these features
in both human and computational agents. Treated this way,
understanding is a gradient of features. A cognitive agent
with more of these features can be said to have more under-
standing than one with less.

The feature of mathematical understanding that I will be
focusing on is the ability to justify mathematical results in a
common-sense explanation. Although a logic will be used,
this is opposed to a formal proof-as-explanation. This will
constitute a sort of mathematical Turing test for a computa-
tional agent.

293



Towards a Theory

This section summarizes four important claims from existing
research on human mathematical understanding that inform a
computational theory.

The representation of numbers and quantities must be flex-
ible. To be cognitively plausible in a symbolic AI system,
numbers should be associable with various numeral systems
(e.g., Arabic numerals, Roman numerals, talleys) and naming
systems (e.g., the number names in some natural language).
The representation of number must also allow for the use of
numbers as cardinal quantities (e.g., “three apples”), ordinal
positions (e.g., “the third apple from the right”), and nominals
(e.g., “House number 3”) (Wiese, 2003). Quantities must also
be able to present themselves in various sensory modalities,

The representation of procedures must be flexible. Math-
ematical routines can be viewed structurally or opera-
tionally (Sfard, 1991). An agent should be able to consider
both a given operation and the result of that operation. There
is an interplay between procedural and declarative knowledge
in mathematical reasoning.

Embodied acts are a source for meaning in early arithmetic
Actions involving object collection, object construction, and
motion along a path serve as source domains for conceptual
metaphor mappings to the abstract objects and operations of
arithmetic (Lakoff & Núñez, 2000). So addition, for exam-
ple, can be conceived of as accumulating two collections of
objects, constructing a new object from two pieces, or walk-
ing for a distance to a given point and then walking further to
another point. Beyond addition, removal can be construed as
an implementation of subtraction, iteration as an implemen-
tation of multiplication, and sharing as an implementation
of division. According to Lakoff and Ńuñez, these ground-
ing metaphors are combined with further metaphoric map-
pings (called linking metaphors) and the mapped concepts
become applicable to mathematics beyond arithmetic. Mac
Lane (1981) speculates that other “originating” human ac-
tivities serve as the basis for the various branches in higher
mathematics.

Mathematics often involves extended cognition. This claim
is consistent with observations made by Hutchins (1995). An
agent must have the ability to act externally and the ability
to represent information beyond the boundary of its embodi-
ment. This includes using external tools to represent this in-
formation (e.g., marks on paper, results on a calculator). For
a computational agent, this amounts to providing access to
external resources and providing a representation scheme for
external information that is compatible with the framework
already in place for internal information.

Case Study: GCD
I focus on the task of finding the greatest common divisor
(GCD) of two natural numbers as a representative case study
in computational math cognition. There are several merits
to choosing this task. Finding the GCD is an “intermediate-
level” problem for a cognitive agent. Its solution requires the

simpler arithmetic concepts and operations (or else the geo-
metric analog of arithmetic) and thus can be a showcase for
these concepts and operations. However, a solution to the
GCD problem need not include the advanced conceptualiza-
tions of algebra or calculus. Also, there are many ways to find
the GCD of two numbers (perhaps a characteristic of all in-
termediate level problems). Intuitiveness, efficiency, and ap-
plicability will vary greatly from one GCD algorithm to the
next.

When asked to find the GCD of two natural numbersx and
y I have found that most non-mathematicians who learned
GCD at some point come up with a “back-of-the-envelope”
algorithm similar to the following:

1. List the divisors of x
2. List the divisors of y
3. List the divisors common to the two lists
above
4. Circle the greatest number from the list of
common divisors

This “common-sense” algorithm isolates the semantics of
“greatest” and “common” (terms which occur frequently in
natural language) from divisor-finding. I would speculate that
most non-mathematicians would respond with a similar algo-
rithm (although I have not subjected this hypothesis to a for-
mal trial) and it would be more surprising to see a non-expert
using a recursive version of the Euclidean GCD algorithm:

gcd(x,y)
if y=0 return x
else return gcd(y, x mod y)
end if

This more efficient and optimized algorithm lacks the intu-
itive semantics of the common-sense algorithm.

To probe the understanding of a cognitive agent who
believes that the GCD of 8 and 6 is 2, we can imagine the
following idealized question and answer dialogue unfolding:

Q1: Why is 2 the greatest common divisor of 8 and 6?
A1: 2 is the greatest of the common divisors of 8 and 6.
Q2: Why is 2 a common divisor of 8 and 6?
A2: 2 is a divisor of 8 and 2 is a divisor of 6.
Q3: Why is 2 a divisor of 6?
A3: There is a number that, when multiplied by 2, gives 6, and that
number is 3.
Q4: Why is 2 times 3 = 6?
A4: Multiplication is repeated addition: 2 plus 2 is 4; 4 plus 2 is 6
Q5: Why is 2 plus 2 = 4?
A5: When I count from 2 for two numbers I end up at 4
Q6: How do you know that you will end up at 4?
A6: I counted two groups of apples, with 2 apples in each, ending
up with 4 total apples.
Q7: What is 2?
A7: It is a number and the greatest common divisor of 8 and 6.
Q8: What is a number?
A8: Some examples are 2,4,6 and 8 . . . It is something that can be

294



counted, added, multiplied . . . and something that can be the result
of finding a greatest common divisor

This Turing-Test style idealization is often not repro-
duced by humans. Again informally, I have found that most
people will stop somewhere along the line of explaining a
complex act in terms of simpler acts and give “It just is”
answers (especially when asked things like “Why is 2 times
3 = 6?”). Nevertheless, I think such a dialogue is what we
should strive for from a computational agent because at each
point a result is justified in terms of simpler, antecedently
understood procedures. Humans tend to pack away the
procedural knowledge after an arithmetic operation has been
understood at a higher level of abstraction. For example,
once the multicolumn addition is learned, it seems unnatural
to cite counting as a method of addition (see Sfard (1991) for
a discussion of this sort of reification).

The dialogue shows the different sources of meaning used
in a mathematical justification. Natural language semantics
can be used to address Q1 and Q2. A technique of decom-
position into simpler procedures is used for Q3, Q4, and
Q5. An empirical embodied activity is cited for Q6. Finally,
conceptual-role semantics are applied to answer Q7 and Q8
(for a further discussion of these semantic sources, see (Gold-
fain, 2006a)).

I now consider a how a SNePS-based computational agent
might be designed with the ability to compute GCDs and
enough understanding (in my sense of the word) to carry out
such a question and answer dialogue.

SNePS

SNePS is a knowledge-representation, reasoning, and act-
ing system implemented in Lisp (Shapiro & Rapaport, 1987,
1995). As an agent design platform, SNePS has been used
for computational theories of natural-language competence,
belief revision, cognitive robotics, and contextual vocabulary
acquisition (among many other applications; see (Shapiro,
2007) for a more complete list). As such, SNePS has not been
built specifically for mathematical representations or acts, but
rather as a general tool for cognitive modeling.

SNePS can function as a frame system, a logical rule-based
system, or a propositional semantic network. Correspond-
ing to these representational facets of SNePS are two inter-
face languages for the agent designer: SNePSUL (a Lisp-like
language for using SNePS as a semantic network or frame
system) and SNePSLOG (a Prolog-like language for using
SNePS as a logical rule-based system). For the rest of this
paper, I will be expressing SNePS interactions using SNeP-
SLOG, but occasionally showing the semantic network when
the relational structure of terms is illustrative. In either inter-
face language, the well-formed formulas (wffs) of the SNePS
interface languages represent the intensional beliefs of a cog-
nitive agent named Cassie. A proposition can either be as-
serted or unasserted in Cassie’s belief space. Cassie believes
asserted propositions to be true and makes no commitment to

the truth value of unasserted propositions. SNePS ispropo-
sitional in that all propositions are represented as first-class
terms in the logic. Thus, in the representation of the proposi-
tion “3 is the successor of 2”, Cassie explicitly represents “3”,
“2”, and the belief “3 is the successor of 2”. This an is impor-
tant feature of SNePS because the agent’s beliefs may be the
theobjectof further beliefs in the context of an explanation.

The SNePS system includes an inference package (SNIP)
that allows Cassie to infer new beliefs through rule-based rea-
soning (by following explicit rules that she is given) and path-
based reasoning (by using relations holding between nodes in
her network to infer new relations). SNIP also allows a user to
ask Cassie a question by triggering inference. Cassie can han-
dle both true/false/don’t know questions and wh-questions
(represented by variables to be filled in open propositions). If,
in the course of reasoning, Cassie encounters a contradiction
between propositions, SNePS has a belief-revision package
(SNeBR) that prompts the user to remove one of the contra-
dictory beliefs.

SNePSLOG allows a knowledge engineer to select the re-
lations that structure Cassie’s concepts. This is done by defin-
ing case-frames with thedefine-framecommand. For exam-
ple, the commanddefine-frame P(rel0 rel1 rel2) will
make the following case-frame available:

GFED@ABCm!

rel0
~~

~

~~~~
~~

rel1

��
rel2
@@

@

��@
@@

@

P x y

Here, x and y are place-holders. Whenever an assertion is
made involving this frame, for exampleP(a,b), the network
structure is built (witha andb filling in the place-holder slots)
andP(a,b) becomes an asserted wff in Cassie’s belief space.

SNeRE
SNeRE, the SNePS Rational Engine, is Cassie’s subsystem
for acting. SNeRE provides a set of dedicated case frames
for representing acts. There is a distinction made between
primitive acts and composite acts. Primitive acts are Cassie’s
basic repertoire of actions and cannot be further decomposed.
Primitive acts are implemented in Lisp. Composite acts are
built up out of primitive acts and other acts (both compos-
ite and primitive) using SNeRE primitive acts for sequence,
conditional, and iteration. I will make use of the following
SNeRE primitive acts:

• ActPlan(a1,a2): Act a1 can be performed by performing
plana2. In other words,a2 is a plan for doinga1.

• believe(p): A mental act. The propositionp is asserted
and added to the list of asserted wffs.

• disbelieve(p): A mental act. The propositionp is
unasserted and removed from the list of asserted wffs.

• snsequence(a1,a2): The act of first performinga1 and
then performinga2

295



• withsome(v,p(v),a,d): For somev such thatp(v)
holds,a is performed; if no suchv can be found, thend
is performed.

For a complete list of the SNeRE constructs along with their
syntax and semantics, see (Shapiro, 2004).

What is most important for our current purposes is that
Cassie reasonswhile acting and she leaves a trail of beliefs
as an act unfolds. This trail of propositions represents an
episodic memory of the particular act that was performed.

GLAIR
GLAIR, the Grounded Layered Architecture with Inte-
grated Reasoning, is an architecture for embodied SNePS
agents (Hexmoor & Shapiro, 1997; Shapiro & Ismail, 2003).
This architecture has been implemented in various physically
embodied agents (robots) and agents with simulated embodi-
ments (softbots). GLAIR is composed of three layers:

• Knowledge Layer (KL): Implemented in SNePSLOG. Con-
tains Cassie’s beliefs, plans, and policies.

• Perceptuo-Motor Layer (PML): Implemented in Lisp.
Contains Cassie’s primitive actions and low-level functions
for controlling her embodiment and perception as well as
synchronizing percepts with the KL.

• Sensori-Actuator Layer (SAL): Implemented in the partic-
ular device implementation language(s) of the selected em-
bodiment. Lowest-level routines for sensing and affecting
the outside world. This layer is sometimes omitted or sim-
ulated in softbots.

Using GLAIR makes Cassie an agent that can be situated
in the real-world or any number of simulated virtual worlds.
This allows her to perform concrete embodied activities that
will impact her abstract KL beliefs.

Number and Quantity Semantics in SNePS
Numbers for Cassie are positions in a structure exemplifying
the natural number progression. All that is required of this
structure is a first element and an arbitrary number of unique
successive elements ordered by a successor relation. A finite
initial segment of this structure must be generated by Cassie
during a counting act. The Lispgensym function is used in the
PML to produce arbitrarily named unique symbols that be-
come base nodes in the KL (in Figure 1 they are listed as N1,
N2, N3 for readability). During counting, each number base
node is inserted into the natural-number progression and as-
sociated with a numeral. This act of counting numbers differs
from counting somethingwith numbers. Numbers must par-
ticipate in quantities, which I take to be a number associated
with a sortal. I make an ontological distinction between non-
unit sortals like “three apples” and unit sortals “three inches”.
Non-unit sortals like apples are to be found in object collec-
tion activities whereas unit sortals are more useful for ob-
ject construction and measurement acts. Quantities are repre-
sented in SNePSLOG using theCollection or Measure and
NumSort case-frames with the following semantics:

GFED@ABCm2!

pred
xxx

x

{{xxx
x succ

FF
FF

##FFFF

GFED@ABCm4!

pred
xxx

x

{{xxx
x succ

FF
FF

##FFFF

N1 N2 N3

GFED@ABCm1!

ob ject

OO

numeral

��

GFED@ABCm3!

ob ject

OO

numeral

��

GFED@ABCm5!

ob ject

OO

numeral

��
1 2 3

Figure 1: Associating numbers with a syntactic public lan-
guage (e.g., numerals).Jm1K = numeral 1 representsJN1K.
Jm2K = N2 is the successor ofN1. Jm3K = numeral 2 rep-
resentsJN2K. Jm4K = N3 is the successor ofN2. Jm5K =
numeral 3 representsJN3K.

• Collection(B,NumSort(N,P)): B is a collection of N Ps.

• Measure(B,NumSort(N,P)): B is an object that measures
N Ps.

B is a KL base node associated with a perceptual value in the
PML alignment table (see Figure 2). While not a complete
solution to the symbol-grounding problem, this is a form of
anchoring (Shapiro & Ismail, 2001; Goldfain, 2006b) that al-
lows Cassie to reason about external quantities.

Figure 2: Anchoring of quantities in GLAIR. KL symbols
(such asb6) are aligned to perceptual values (such as top-
left-object pixels) in the PML alignment table

Numbers must also play various roles in abstract arith-
metic. For example, the number expressed by the numeral
2 can be considered as the successor of 1, the quotient of 8

296



and 4, or the difference of 3 and 1. Thinking of 2 in these var-
ious roles will be dictated by the acts Cassie has performed.
This is captured in SNePSLOG using result frames with the
following semantics (e.g., for a binary operation):

• R(arg1 arg2 result): The result namedR of arg1 and
arg2 is result.

So, for example,Sum(N2,N3,N5) expresses that the result ex-
pressed by “sum” of N2 and N3 is N5. The result name must
also be abstracted, because the result namedSum may also be
expressed by words likeTotal or Accumulation.

Embodied Arithmetic
One of the immediate benefits of the GLAIR architecture for
embodied arithmetic is that abstract mathematical entities like
numbers can be associated with real world objects (like col-
lections) in the form of anchored quantities. This allows var-
ious implementations of perceptual routines in the PML to
remain independent of the KL logic and reasoning. For ex-
ample, there is some debate in mathematical cognition as to
whether enumeration is performed through the visual modal-
ity using object recognition along with a counting routine
or whether pattern recognition is used through a subitization
routine (e.g., as in the automatic recognition of what is rolled
on a die without having to count the dots). Using GLAIR,
either perceptual routine could be implemented to work with
the vision modality without impacting the “conscious” (i.e.,
agent-aware) KL reasoning used in a justification. An object-
collection implementation is described in detail in (Goldfain,
2006b). This activity is sufficient for answering questions like
Q6 in the dialogue above.

Recursive (Disembodied) Arithmetic
The recursive notion of understanding demonstrated in the
idealized interrogation above suggests that a new act is un-
derstood in terms of previously understood acts. Mathematics
in general and arithmetic in particular are very prerequisite-
dependent subjects of thought. This creates a continuum
of understanding (Rapaport, 1995) that links up procedural
knowledge (how can I do this with things I already know how
to do?) and conceptual knowledge (how do the results of my
actions relate to one another?).

Figure 3 shows how multiplication as iterated (strictly
speaking recursive) addition can be expressed in SNePSLOG,
a procedure I am calling add-multiplication. The procedural
link between addition and multiplication is also augmented
by two important rules:

all(x,y)({Number(x),Number(y)} &=>
ActPlan(Multiply(x,y),AddMultiply(x,y))).

all(x,y,z)(SumProduct(x,y,z) => Product(x,y,z)).

The first rule says that one way of multiplying two numbers
is add-multiplication. In fact Cassie might know several ways
of performing the actMultiply(x,y) and may decide to use
another procedure for multiplication outside the context of

explanation (see (Shapiroet al. (2007))) for further discus-
sion). The second rule ties together the result frames from
the specific act of multiplication and the general act of multi-
plication by saying that a summed-product is a productsim-
pliciter. The general act result frame allows Cassie to pull
together results obtained from different sources under a com-
mon representation. Thus, arithmetic can be expressed recur-
sively for Cassie with a basis of the counting act. Addition is
counting from the first addend for the-second-addend-many-
numbers (a sort of metacounting). Subtraction is inverted ad-
dition (i.e., finding a number that, when added to the num-
ber being subtracted, will yield the number being subtracted
from). Multiplication is iterated addition as shown. Division
is inverted multiplication.

GCD-Specific Acts
What remains is to account for how the arithmetic acts are
linked to the GCD specific acts of building divisor lists, build-
ing a common list, and picking out the greatest element of a
list.

The building of the divisor lists is done by repeatedly try-
ing successive “candidate” divisors along the number line for
each input argument to GCD. Cassie does not need a notion
of a remainder for division since she only knows about the
natural numbers (and thus she will only infer whole number
answers to division problems). A list of common divisors is
constructed by using the logicaland connective provided by
SNePSLOG to have Cassie pick out elements that are in both
lists. These lists are built in the KL but represented in a Lisp
“scratch pad”, a form of extended cognition so that Cassie
does not have to keep the lists “in her head”. The semantics
from “greatest” are given by path-based reasoning. If a num-
bery can be reached using a path consisting of inversepred
arcs and forwardsucc arcs (see Figure 1) from a numberx, it
must be the case thatx< y. Basically, this represents Cassie’s
implicit knowledge that the numbers said later in the counting
act are greater than those said earlier.

Conclusion
I have shown how a series of mathematical acts can be imple-
mented in a computational cognitive agent. In principle, the
effects of these acts (represented by result-frames in SNePS)
are all that an agent would require to carry out a Turing-test
style demonstration of understanding. I believe that those
who, like Lakoff and Ńuñez, maintain that computational
agents cannot attain mathematical understanding must spec-
ify some empirical test by which a feature of mathematical
understanding can be measured in humans and demonstrate
why a computational agent would fail such a test.

Acknowledgments
I am grateful to William J. Rapaport, Stuart C. Shapiro, four
anonymous reviewers and the members of the SNePS Re-
search Group for commenting on previous versions of this
work.

297



all(x)(ProductResultSoFar(x) =>
ActPlan(AddFromFor(x,0),believe(SumProduct(x,1,x)))).

all(w,x,y,z)({NumToAdd(w), Successor(y,z),ProductResultSoFar(x)} &=>
{ActPlan(AddFromFor(x,y),

snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,w),

withsome(?p,
Sum(x,w,?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,z)),
Say(‘‘I don’t know the sum’’)))))}).

all(x,y)({Number(x),Number(y)} &=>
ActPlan(AddMultiply(x,y),

snsequence(believe(ProductResultSoFar(x)),
snsequence(believe(NumToAdd(x)),
snsequence(withsome(?p,Successor(?p,y),AddFromFor(x,?p),AddFromFor(x,0)),
snsequence(withsome(?z,ProductResultSoFar(?z),

snsequence(believe(SumProduct(x,y,?z)),
disbelieve(ProductResultSoFar(?z))),

SayLine("I could not determine the product.")),
disbelieve(NumToAdd(x)))))))).

Figure 3: Add Multiplication in SNePS. The recursive and base cases of the actAddFromFor and the plan forAddMultiply

References
Dehaene, S. (1997).The Number Sense. Oxford, UK: Oxford

University Press.
Gelman, R., & Gallistel, C. R. (1978).The Child’s Under-

standing of Number. Cambridge: Harvard University Press.
Goldfain, A. (2006a). A Computational Theory of Inference

for Arithmetic Explanation.Proceedings of ICoS-5, 145–
150.

Goldfain, A. (2006b). Embodied Enumeration: Appealing to
Activities for Mathematical Explanation.Cognitive Robot-
ics: Papers from CogRob2006, 69–76.

Hexmoor, H., & Shapiro, S. C. (1997). Integrating Skill and
Knowledge in Expert Agents. In P. J. Feltovich and K.
M. Ford and R. R. Hoffman (Ed.),Expertise in Context(p.
383-404). Menlo Park, CA / Cambridge, MA: AAAI/MIT.

Hutchins, E. (1995).Cognition in the Wild. Cambridge, MA:
MIT Press.

Lakoff, G., & Núñez, R. (2000).Where Mathematics Comes
From. New York: Basic Books.

Mac Lane, S. (1981). Mathematical Models.American Math-
ematical Monthly, 88, 462–472.

Piaget, J. (1965).The Child’s Conception of Number. New
York, NY: Norton.

Rapaport, W. J. (1995). Understanding Understanding. In
J. Tomberlin (Ed.),AI, Connectionism, and Philosophical
Psychology(p. 49-88). Atascadero: Ridgeview.

Sfard, A. (1991). On the Dual Nature of Mathematical Con-
ceptions.Educational Studies in Mathematics, 22, 1–36.

Shapiro, S. C. (2004).SNePS 2.6.1 User’s Manual.http:
//www.cse.buffalo.edu/sneps/.

Shapiro, S. C. (2007). The SNePS Research Group
Bibliography. http://www.cse.buffalo.edu/sneps/
Bibliography/.

Shapiro, S. C., & Ismail, H. O. (2001). Symbol-Anchoring
in Cassie. In S. Coradeschi & A. Saffioti (Eds.),Anchor-
ing Symbols to Sensor Data in Single and Multiple Robot
Systems(p. 2-8). AAAI Press.

Shapiro, S. C., & Ismail, H. O. (2003). Anchoring in a
Grounded Layered Architecture with Integrated Reason-
ing. Robotics and Autonomous Systems, 43, 97–108.

Shapiro, S. C., & Rapaport, W. J. (1987). SNePS Considered
as a Fully Intensional Propositional Semantic Network. In
N. Cercone & G. McCalla (Eds.),The Knowledge Frontier
(p. 262-315). New York, NY: Springer Verlag.

Shapiro, S. C., & Rapaport, W. J. (1995). An Introduction
to a Computational Reader of Narrative. In J. F. Duchan,
G. A. Bruder, & L. E. Hewitt (Eds.),Deixis in Narrative(p.
79-105). Hillsdale, NJ: Lawrence Erlbaum.

Shapiro, S. C., Rapaport, W. J., Kandefer, M., Johnson, F. L.,
& Goldfain, A. (2007). Metacognition in SNePS.AI Mag-
azine, 28(1), 17–31.

Wiese, H. (2003).Numbers, Language, and the Human Mind.
Cambridge, UK: Cambridge University Press.

298




