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Highlights:  

• Log-conductivity (Y) is modeled as a Generalized Sub-Gaussian (GSG) field 

• Average longitudinal spreading is smaller for GSG than for Gaussian Y fields 

• Plume stretching in GSG fields is enhanced with respect to Gaussian fields 

• Local dispersion masks identification of impacts of non-Gaussianity on transport 

• The GSG nature of Y can be difficult to identify relying only on transport metrics 
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Abstract 

There are increasing evidences that probability distributions and associated 

statistical moments of a variety of hydrogeological and soil science variables and their 

spatial increments display distinctive scale-dependent features that are not captured by a 

typical Gaussian model. A Generalized Sub-Gaussian (GSG) model is able to capture key 

aspects of this pattern. We present the results of a suite of computational analyses set in 

a Monte Carlo framework and aimed at assessing the impact of a GSG structure of log 

hydraulic conductivity (𝑌) on transport of a conservative solute through a three-

dimensional bounded porous medium under steady-state saturated Darcy flow. Our 

results indicate that the longitudinal spreading of a plume is on average significantly 

smaller for Sub-Gaussian than for Gaussian Y fields. Otherwise, the velocity field arising 

from a Sub-Gaussian Y field induces enhanced plume stretching with respect to what can 

be observed in a Gaussian Y setting, this aspect potentially influencing the strength of 

solute mixing within these two types of conductivity domains. We also find that, in some 

cases, it may be difficult to identify the nature of the underlying conductivity field relying 

solely on observations of solute concentrations migrating within the system. In this 

regard, we show that the action of local dispersion tends to mask the influence of Sub-

Gaussianity on major transport metrics. 

 

Keywords: Porous media, flow and transport, heterogeneity, stochastic modeling, Sub-

Gaussian models 
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1. Introduction 

Flow and transport in porous and fractured media are strongly affected by spatial 

variability of hydraulic properties of the system. While it is virtually impossible to 

characterize all details of such heterogeneity, a large body of literature has framed the 

assessment of flow and transport processes taking place in heterogeneous porous media 

on a (geo)statistical description of continuum-scale system attributes, major emphasis 

being given on hydraulic conductivity (e.g., Dagan, 1984; Gelhar, 1993; Kitanidis, 1997; 

Rubin, 2003). Stochastic analyses of the effects of heterogeneity on flow and transport in 

porous media have been the subject of several investigations for over four decades. 

Among the variety of approaches developed in this context, studies embedded in a 

numerical Monte Carlo (MC) framework have enabled to explore subtle relationships 

between the heterogeneous features of the subsurface and salient elements characterizing 

flow and transport (e.g., Bellin et al., 1992; Naff et al., 1998a,b; Riva et al., 2008; de 

Dreuzy et al., 2012; Pedretti et al., 2017; Siena and Riva, 2018 and references therein). A 

typical Monte Carlo study comprises the analysis of a collection of outputs of interest that 

are generated from one or multiple models, given uncertainty in their inputs. In the 

context of flow and transport in heterogeneous porous media, this often involves the 

generation of a collection of realizations of random hydraulic conductivity fields.  

Several studies consider the logarithm of hydraulic conductivity (𝑌 (𝐱) = ln 𝐾(𝐱), 

vector x denoting space location) to be described through a Gaussian distribution, 

characterized by a given variogram/covariance function describing the degree of spatial 

dependence based only upon the distance between points; i.e., assuming second-order 

stationarity. Rather, there is increasing evidence documenting the occurrence of distinct 

non-Gaussian features characterizing the distributions of a variety of hydrogeological and 

soil science variables. Key documented manifestations of such a behavior include the 



4 
 

observation that the distribution of spatial increments of such variables taken between 

two points separated by a given spatial distance (lag) tend to be symmetric and to develop 

heavier tails and sharper peaks as lag decreases. Such a behavior has been displayed 

(among others) by log-hydraulic conductivity and permeability (Painter, 1996, 2001; Liu 

and Moltz, 1997; Meerschaert et al., 2004; Siena et al., 2012, 2019; Riva et al., 2013a, 

2013b; Guadagnini et al., 2018), electrical resistivity (Painter, 2001), vadose zone 

hydraulic properties (Guadagnini et al., 2012, 2013, 2014), neutron porosity (Riva et al., 

2015a), sediment transport (e.g., Ganti et al., 2009), fully developed turbulence (Boffetta 

et al., 2008), and micro-scale geochemical data (Siena et al., 2020). 

The Generalized Sub-Gaussian (GSG) model introduced in the literature in the last 

few years (Riva et al., 2015a, 2015b; Panzeri et al., 2016) has been shown to be capable 

of capturing all of these aspects. According to the GSG model, the departure of the 

distribution of a variable and its two-point increments from the Gaussian one is given by 

the action of a (spatially uncorrelated) subordinator on an otherwise spatially correlated 

Gaussian random field. This modeling strategy allows representing jointly within a 

unique framework the above-documented behavior (as described by probability 

distributions and/or moments) of a quantity and its incremental values and has been 

successfully applied to the interpretation of main features displayed by various subsurface 

attributes (Riva et al 2015a; Guadagnini et al., 2018; Siena et al., 2020, and references 

therein). 

These concepts have already been employed in preliminary analytical and 

numerical studies of flow and transport in porous media whose log-conductivity is 

characterized through a GSG model. Riva et al. (2017) present lead-order analytical flow 

and transport solutions in unbounded GSG log-conductivity fields under mean-uniform 

flow. Libera et al. (2017) rely on a numerical Monte Carlo framework to analyze the joint 
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effects of a GSG heterogeneous log-conductivity field and a temporally variable pumping 

rate on solute breakthrough curves (BTCs) detected at a pumping well operating in a two-

dimensional domain. Besides spatial dimensionality, three major limitations can be 

identified for the analytical study by Riva et al. (2017): (𝑖) macrodispersion is the only 

transport metric analyzed, (𝑖𝑖) the joint impact of local dispersivity combined with the 

heterogeneous advection driven by 𝑌 is not evaluated, and (𝑖𝑖𝑖) output uncertainty due to 

finite size of the medium is not considered.  

Starting from the above studies, here we focus on the influence of randomly 

heterogeneous GSG log-conductivity fields on transport processes taking place therein 

and address the following two questions: (1) At what extent does Sub-Gaussianity (i.e., 

the degree of departure from a Gaussian behavior) of 𝑌 impact main features and 

observables of solute transport driven by advection and local dispersion in three-

dimensional bounded heterogeneous porous media?; and (2) Would the Sub-Gaussian 

nature of 𝑌 be clearly identifiable upon relying solely on the analysis of solute 

concentration fields in these settings or could it be disguised into estimates of apparent 

structural parameters of a Gaussian model? To address these issues, here we rest on a 

suite of computational analyses framed in a Monte Carlo context and explore the effects 

of a Sub-Gaussian distribution of 𝑌 on observable transport metrics associated with a 

solute migrating within a bounded three-dimensional porous medium under the action of 

advective and dispersive mechanisms and subject to a uniform (in the mean) flow. 

The work is structured as follows. Section 2 is devoted to a synthesis of the 

theoretical framework underlying the Sub-Gaussian model and of the computational 

analyses performed. Presentation and discussion of the results are included in Section 3. 

Finally, in Section 4 we enumerate our main conclusions.  

 



6 
 

2. Theoretical framework, methodology and set-up of scenarios 

2.1 Generalized Sub-Gaussian model and stochastic generation of three-

dimensional log hydraulic conductivity fields 

We consider a three-dimensional porous medium where log-conductivity, 𝑌(𝐱) =

ln 𝐾(𝐱), is described as a stationary random function of space with constant ensemble 

mean, 〈𝑌〉, and zero-mean random fluctuation, 𝑌′(𝐱) =  𝑌(𝐱) − 〈𝑌〉. The latter forms a 

Generalized Sub-Gaussian process, GSG, defined as (Riva et al. 2015a, b) 

𝑌′(𝐱) = 𝑈(𝐱)𝐺(𝐱). (1) 

Here, 𝐱 = [𝑥, 𝑦, 𝑧]𝑇, 𝐺(𝐱) is a zero-mean Gaussian spatially correlated second-order 

stationary field, and 𝑈(𝐱) is a random non-negative spatially uncorrelated stationary field 

that is independent of 𝐺(𝐱). The statistical properties of 𝑌′(𝐱)  vary with the subordinator 

𝑈(𝐱) and with the Gaussian field 𝐺(𝐱). Details about the mathematical formulation and 

theoretical framework of the GSG model can be found in Riva et al. (2015a) and Siena et 

al. (2020), who present analytical expressions for probability density functions (pdf) and 

statistical moments of 𝑌′ and of the corresponding increments (𝑌) evaluated at various 

separation lags, including formulations for covariance and variogram functions as well as 

integral scale of 𝑌′. It is worth noting that, regardless the distributional form of U, the 

variogram of 𝑌′ is characterized by an integral scale which is always smaller than the one 

associated with the Gaussian field 𝐺 and a nugget effect, rendered by the product of the 

variance of 𝐺 and the variance of 𝑈. 

Here, we follow Riva et al. (2015a, 2017) and consider Monte Carlo realizations of 

𝑌′(𝐱) associated with a log-normal subordinator, i.e., ln(𝑈) ~𝒩[0, (2 − 𝛼)2], 𝛼 < 2. As 

such, 𝑌′(𝐱) is characterized by two constant parameters (𝛼, 𝜎𝐺
2) and a correlation function 

𝜌𝐺; 𝜎𝐺
2 and 𝜌𝐺  being variance and correlation function of 𝐺(𝐱), respectively. Note that 
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𝑌′(𝐱) becomes Gaussian and coincides with 𝐺(𝐱) when 𝛼 → 2. For completeness, 

Appendix A includes a brief summary of the key analytical formulations and properties 

of the GSG model we consider in this study. 

We generate three-dimensional realizations of 𝑌(𝐱) of size 𝐿𝑥  𝐿𝑦  𝐿𝑧 by setting 

〈𝑌〉 = 0, 𝜎𝑌
2 = 1 (where 𝜎𝑌

2 = 𝑒2(2−𝛼)2
𝜎𝐺

2) and adopting an isotropic exponential 

correlation function for 𝐺(𝐱), i.e. 𝜌𝐺 = 𝑒−𝑠/𝐼𝐺; 𝑠 and 𝐼𝐺  being the separation distance 

(lag) between two locations and the integral scale of 𝐺(𝐱), respectively. We set 𝐿𝑥 =

𝐿𝑦 = 5𝐼𝑌 and 𝐿𝑧 = 40𝐼𝑌 in all realizations (𝑧 being the dominant direction of flow, see 

Section 2.2), and 𝐼𝑌 = 𝑒−(2−𝛼)2
𝐼𝐺  denoting the integral scale of 𝑌 (see also Appendix A). 

The spatial grid employed for the generation involves 125,000 cubic blocks of size 𝐼𝑌/5. 

Figure 1 depicts examples of 𝑌(𝐱) realizations obtained for differing values of 𝛼. To 

appreciate the nature of the random log-conductivity fields considered, we illustrate in 

Appendix A the main features of the probability density functions associated with 𝑌′ and 

its spatial increments 𝑌 evaluated at various separation lags for the fields depicted in 

Figure 1. Figure A1 depicts the probability density function of 𝑌′, 𝑓𝑌′, for the three values 

of 𝛼 considered in Figure 1 together with the Gaussian (𝛼 → 2) distribution. 

Corresponding pdfs of spatial increments, 𝑓𝑌, evaluated at short, intermediate and large 

(with respect to 𝐼𝑌) separation lags are depicted in Figure A2. The pattern associated with 

the behavior of peaks and tails of these pdfs can be described quantitatively by analyzing 

deviations from Gaussianity, clearly revealed by the excess standardized kurtosis, 

reported in Figure A3. It is clear that the peak of the pdf of 𝑌′ or 𝑌 grows sharper and 

the associated tails become heavier as 𝛼 decreases, thus evidencing the deviations of the 

fields we consider from a Gaussian behavior. 
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Figure 1: Example of 𝑌(𝒙) individual realizations for various degrees of Sub-Gaussianity 
(𝛼 → 2 being equivalent to a Gaussian distribution). 

 

As a remark, we note that the variance of 𝑌 in geologic porous media has sometimes 

been reported to attain markedly high values, e.g., 𝜎𝑌
2 ≥ 4 (Fogg & Zhang, 2016). It is 

well recognized that this stems from a homogenization of conductivity values within a 

unique population, while they actually pertain to diverse geological facies. One may 

alternatively represent the system as a composite medium, whose internal architecture is 

characterized by the presence of distinct facies, within which hydraulic conductivity can 

be spatially heterogeneous. As such, conductivity variance within a given geomaterial 

can be mild (Winter & Tartakovsky, 2000, 2002). Hence, the selected mild value of the 

log-conductivity variance in this work (𝜎𝑌
2 = 1) is deemed as representative of the natural 

variability contained within a geological unit, which can potentially be depicted through 

statistically stationary heterogeneity models (Winter et al., 2003) like the one we consider. 

The relative size of the cross-section (i.e., 𝐿𝑥 = 𝐿𝑦 = 5𝐼𝑌) is set to be large enough to 

capture the main features of the log-conductivity distributions, while being small enough 
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to generate variability in the results between realizations with identical configuration, 

similar to what one would expect from a collection of finite-sized samples belonging to 

the same geological material or unit. 

We further remark that here we focus on the analysis of the joint effects on transport 

of the strength of (i) the departure of 𝑌 from a Gaussian model (as rendered by the 

parameter 𝛼 related to the subordinator 𝑈), and (ii) the relative importance of advective 

and dispersive processes in Sub-Gaussian 𝑌 fields. Future studies can tackle also the 

potential influence of the degree of heterogeneity, as expressed in terms of 𝜎𝑌
2, or consider 

representing a log-conductivity field involving multiple subdomains, with diverse 

geomaterials through a multimodal distribution, such as a mixture of Sub-Gaussian pdfs. 

2.2 Flow and transport model 

Steady-state single phase flow is described through mass balance and Darcy’s 

equations within the heterogeneous 𝐾(𝐱) fields generated as described in Section 2.1. 

∇ · 𝐪(𝐱) = 0, 𝐪(𝐱) = −𝐾(𝐱)∇𝐻(𝐱). (2) 

Here, 𝐻(𝐱) is hydraulic head and 𝐪(𝐱) is Darcy flux. We set impermeable boundary 

conditions on the lateral sides of the domain (x = 0, 𝐿𝑥; y = 0, 𝐿𝑦). Flow is forced along 

direction z by setting a constant mean flow, �̅�, at the bottom of the sample, and by setting 

a prescribed head at the top boundary. A homogeneous buffer zone of length 2𝐼𝑌 and with 

𝑌 = 〈𝑌〉 is placed at both ends of the system (Figure 2) to stabilize the inflow condition. 

These boundary conditions correspond to what one would typically impose in an 

experimental set-up, head at the inlet being practically uniform in the transverse direction 

due to the presence of the homogeneous buffer region. Imposing a fixed mean 

longitudinal flow �̅� for all realizations enables us to study transport phenomena which are 

driven by relative spatial fluctuations of 𝑞(𝐱) around the same mean value. 
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At the initial time (𝑡 = 0) a flux-averaged pulse injection of solute takes place 

across the bottom of the heterogeneous region, i.e., along the horizontal plane 𝑧 = 0. 

Solute transport is described by the Advection Dispersion Equation (ADE) 

𝜕𝑐

𝜕𝑡
(𝐱, 𝑡) = 𝛁 · (𝐃(𝐱)𝛁𝑐(𝐱, 𝑡)) − 𝛁 · (𝐯(𝐱)𝑐(𝐱, 𝑡)), (3) 

where 𝑐(𝐱, 𝑡) is resident solute concentration (i.e., solute per unit volume of the porous 

medium), and 𝐯(𝐱) = 𝐪(𝐱)/𝜙, 𝜙 being porosity which we consider constant in this study. 

In the context of modeling transport in porous media, local dispersion is an upscaled 

apparent process that accounts for the combined effect of unresolved pore-scale velocity 

variations and molecular diffusion (e.g., Bear, 1972). At high pore-scale Péclet numbers, 

it is often considered to be proportional to the fluid velocity. To simplify the problem, we 

assumed an isotropic local dispersion tensor 𝐃(𝐱),  

𝐃(𝐱) = 𝐷(𝐱)𝟏3, 𝐷(𝐱) = 𝑎|𝐯(𝐱)|, (4) 

where 𝟏3 is the 33 identity matrix, 𝑎 is a constant dispersivity, and | · | denotes the norm 

of a vector. The advection and dispersion timescales for a characteristic distance 𝐼𝑌 can 

be compared through the Péclet number, Pe = 𝐼𝑌/𝑎, higher values of Pe corresponding 

to a lower relative significance of the local dispersion process. In this study we explore 

settings associated with values of Pe ranging from Pe = 10 to Pe → ∞. 

The steady-state flow problem (2) is solved by the widely tested finite difference 

code MODFLOW 2005 (Harabaugh, 2005) using the Preconditioned Conjugate Gradient 

method (PCG). The output cell-interface fluxes are then used to solve the ADE by means 

of the Random Walk Particle Tracking method suggested by LaBolle et al. (2000). The 

latter solves the so-called Generalized Stochastic Differential Equations (GSDE) and is 

based on the following particle movement 
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𝐗𝑝(𝑡 + d𝑡) = 𝐗𝑝(𝑡) + 𝐯 (𝐗𝑝(𝑡)) d𝑡 + √2𝐷 (𝐗𝑝(𝑡) + 𝚲𝑝(𝑡)) d𝑡 𝛏𝑝(𝑡), (5) 

𝚲𝑝(𝑡) = √2𝐷 (𝐗𝑝(𝑡)) d𝑡 𝛏𝑝(𝑡), (6) 

where 𝐗𝑝(𝑡) is the position of particle 𝑝 at time 𝑡, and 𝛏𝑝(𝑡) is a vector of 3 (the number 

of spatial dimensions) independent uncorrelated standard normal random numbers. 

Velocities at any point inside a numerical cell Ω are evaluated by linear interpolation 

𝐯(𝐱 ∈ Ω) = (1 − �̂�) ⊙ 𝐯Ω
− + �̂� ⊙ 𝐯Ω

+, (7) 

where �̂� = (𝐱 − 𝐱Ω
−) ⊘ (𝐱Ω

+ − 𝐱Ω
−); operators “⊙” and “⊘” correspond to the 

elementwise Hadamard product and division, respectively; 𝐱Ω
− and 𝐱Ω

+ are vectors 

containing the lower and upper cell interface location (for each direction); and 𝐯Ω
− and 𝐯Ω

+ 

are vectors whose entries are the corresponding cross-interface flow velocities. 

The GSDE method (5) is particularly accurate and efficient when representing 

isotropic local dispersion characterized by strong local variations. Therefore, this method 

is suitable for reproducing transport features even within porous media characterized by 

local highly non-uniform flow conditions. We refer to Salamon et al. (2006) for a 

comprehensive review of random-walk methods for solving the advection-dispersion 

equation in spatially heterogeneous settings. 

Solution of the flow problem (2) may require using a spatial grid finer than that 

introduced in Section 2.1 and according to which log-conductivity is generated. The grid 

block size, Δ, as well as the number of particles, n, and the time step, ∆𝑡, considered for 

the implementation of the GSDE (5) have been selected as detailed in the following. The 

spatial grid resolution (i.e., 1/Δ) and the number of particles 𝑛 are increased until 

convergence is attained, i.e., until no significant changes are observed in the numerical 

solution (as quantified through the metrics/indicators detailed in Section 3). The time step 
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∆𝑡 is adapted dynamically, to fulfill the condition which is most restrictive between ∆𝑡 ≤

𝒞Δ/|𝐯| and ∆𝑡 ≤ 𝒫2Δ2/2𝐷, 𝒞 and 𝒫 being numerical discretization parameters which 

are adjusted in the same fashion as Δ and 𝑛. The numerical model has been found to give 

an accurate solution of the flow and transport problem by setting 𝑛 = 218 (= 262,144), 

𝒞 = 𝒫 = 0.125, and subdividing each conductivity block into 64 elements, i.e., Δ =

𝐼𝑌/20, giving rise to a computational grid formed by 8 million cells. 

All particles are assigned an identical mass 𝑀/𝑛 and are injected according to a 

flux-weighting scheme on the horizontal plane at 𝑧 = 0. Flow and transport are simulated 

across 𝑁 = 5,000 Monte Carlo realizations of 𝑌(𝐱) (see Section 2.1) for 𝛼= 1.2, 1.5, 1.8, 

and 𝛼→ 2.0 (i.e., Gaussian field), and for Pe = 10, 100, 1000, and Pe→∞ (i.e., pure 

advection), for a total of 80,000 simulations. The latter have been performed using 180 

cores from the Marconi A1 partition of the high-performance computer center CINECA 

(https://www.cineca.it/en). The total computational time required for our study is about 

100,000 core hours. 

In Section 3, we analyze the spatial and temporal moments, as well as additional 

key metrics (see also Appendix B for details), of 

𝐶𝑟(𝑧, 𝑡) =
𝜙

𝑀
∫ ∫ 𝑐𝑟(𝐱, 𝑡)

𝐿𝑦

0

𝐿𝑥

0

d𝑦 d𝑥, (8) 

𝐽𝑟(𝑧, 𝑡) =
𝜙

𝑀
∫ ∫ 𝐧T · [𝐯𝑟(𝐱)𝑐𝑟(𝐱, 𝑡) − 𝐷𝑟(𝐱)∇𝑐𝑟(𝐱)]

𝐿𝑦

0

𝐿𝑥

0

d𝑦 d𝑥, (9) 

where 𝐧T = [0,0,1], and subscript 𝑟 refers to the realization number, i.e., 𝑟 = 1, … , 𝑁. 

The quantity 𝐶𝑟(𝑧, 𝑡) is the longitudinal density of solute mass normalized by the total 

mass injected (hence it integrates to 1 along 𝑧). The quantity 𝐽𝑟(𝑧, 𝑡) is the net temporal 

flux of mass through a horizontal plane, also normalized by the total mass (hence it 

https://www.cineca.it/en
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integrates to 1 with 𝑡). Hereafter, we refer to 𝐶𝑟(𝑧, 𝑡) as the section-integral 

concentrations, and to 𝐽𝑟(𝑧, 𝑡) as the breakthrough curve (BTC). 

Results shown in Section 3 are illustrated in terms of dimensionless times, 𝑡∗, and 

longitudinal positions, 𝑧∗, defined as 

𝑡∗ =
�̅�

𝐼𝑌
𝑡, 𝑧∗ =

𝑧

𝐼𝑌
, (10) 

where 𝑣 = 𝑞/𝜙. Note that 𝑡∗ corresponds to the number of integral scales of 𝑌 traversed 

by the center of mass of the plume. The evolution of the solute plume is monitored by 

recording particle positions at 20 increasing dimensionless times 𝑡𝑖
∗, 𝑖 ∈ {1 , 2 , … , 20}, 

with 𝑡1
∗ = 0.1, 𝑡20

∗ = 15, and 𝑡𝑖
∗ = 𝑡1

∗ 𝑖log20(𝑡20
∗ /𝑡1

∗). It has been verified that all particles 

are still located inside the heterogeneous domain in all MC realizations at 𝑡20
∗ . We record 

particle passage times through selected planes perpendicular to the mean flow direction 

at distance 𝑧𝑗
∗ (𝑗 ∈ {1 , 2 , … , 20}, with 𝑧1

∗ = 0.2, 𝑧20
∗ = 30, and 𝑧𝑗

∗ = 𝑧1
∗ 𝑗log20(𝑧20

∗ /𝑧1
∗)) 

from the origin. The design of the setup is depicted in Figure 2. 
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Figure 2: Design of the three-dimensional numerical simulations and scheme for 
recording the results. The control times are shown graphically in terms of the 

corresponding mean displacement of the fluid. Empty non-shaded regions at both ends 
correspond to the homogeneous buffers. 

 

Our simulations yield a collection (obtained by sampling across MC realizations) 

of (i) solute concentration profiles at a given observation time, 𝐶𝑟(𝑧, 𝑡𝑖), or (ii) solute 

breakthrough curves (BTCs) at a given transverse section, 𝐽𝑟(𝑧𝑗 , 𝑡). We follow Liu and 

Müller (2004) and Lu and Stauffer (2012) and note that, in this context, a point-wise 

average is not a proper estimate of the mean concentration profile (or curve). For instance, 

such an average tends to overestimate the spread of the tails and may also underestimate 

the peak. This issue is addressed by employing a percentile average over the cumulative 

forms of all curves (see Lu and Stauffer (2012) for details). The shape of the ensuing 

average curves is generally more similar than the point-wise average to the one of curves 
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corresponding to individual realizations. Here, we evaluate percentile averages 𝐶̅(𝑧, 𝑡𝑖) 

and 𝐽(̅𝑧𝑗 , 𝑡) upon organizing simulation results (given in terms of particle positions and 

arrival times, respectively) in increasing order, and then averaging across realizations, to 

finally reconstruct the density of data by Kernel Density Estimation (KDE). Details on 

this procedure are offered in Appendix B.1 (see also Appendix D for details on KDE). 

For brevity, hereafter we refer to 𝐶̅(𝑧, 𝑡𝑖) and 𝐽(̅𝑧𝑗 , 𝑡) as the average longitudinal 

concentration profile and the average BTC, respectively. Note that these percentile-

averaged ensemble quantities are denoted with an overline, as opposed to angular brackets 

(i.e., 〈 〉) indicating arithmetic ensemble average, which we employ for the scalar metrics 

analyzed (see eq. (11) in Section 3). 

3. Results and discussion 

We start by analyzing our results in terms of average spatial and temporal dynamics 

of the solute on the basis of the numerical Monte Carlo framework described in Section 

2. We do so by considering the setting corresponding to pure advective mechanisms, i.e., 

Pe → ∞ (Section 3.1.1), to then include the assessment of the impact of considering a 

finite value for Pe (Section 3.1.2). Section 3.2 illustrates the analysis related to the 

complete set of statistical distributions of the modeling goals of interest. 

3.1. Average space-time dynamics of the solute 

Hereafter, we resort to the notation 〈𝑏〉 to indicate the arithmetic average of a metric 

𝑏 of interest, as obtained across the collection of N Monte Carlo realizations, i.e., 

〈𝑏〉 =
1

𝑁
∑ 𝑏𝑟

𝑁

𝑟=1

, (11) 

𝑏𝑟 being the value of metric 𝑏 in the 𝑟th realization.  

3.1.1. Average spatial and temporal behavior under pure advection 
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We start by considering a fully advective transport scenario (Pe → ∞). 

 

Figure 3: Average temporal evolution of the solute distribution in the longitudinal 
direction: (a-c) Longitudinal concentration profile at various times (dashed gray line 

corresponds to 𝑧 = 𝑣𝑡), (d) spatial variance, (e) spatial skewness, (f) spatial kurtosis, (g) 
spatial variance normalized by the Gaussian case, (h) macrodispersion coefficient, and 

(i) advective stretching. 

 

Figures 3(a-c) depict the average longitudinal concentration profile, 𝐶̅, evaluated as 

detailed in Section 2.2 and Appendix B.1, for various values of 𝛼 at increasing values of 

𝑡∗ (the vertical dashed gray lines correspond to the average fluid displacement, 𝑧 = 𝑣𝑡). 

In the following, we discuss the effect of 𝛼 on the temporal evolution of the plume by 
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analyzing these concentration profiles in combination with various metrics of interest 

depicted within Figures 3(d-i). 

The longitudinal extent of the region where one can find (on average) significant 

concentration values tends to decrease with departure of 𝑌 from Gaussianity (i.e., 

decreasing 𝛼). A quantification of this qualitative behavior can be offered through the 

average centered second moment of the longitudinal profile of section-integral 

concentrations, 〈𝜇2
S〉, which is an effective measure of longitudinal dispersion (the latter 

being different from the local dispersion, as quantified by 𝐃 in (3)), and whose temporal 

evolution is depicted in Figure 3(d). Details on the definition and computation of spatial 

and temporal moments in each MC realization are provided in Appendix B.2. Stronger 

degrees of Sub-Gaussianity (i.e., lower values of 𝛼) are associated with decreased values 

of 〈𝜇2
S〉. Figure 3(g) also reveals that the ratio between any of the 〈𝜇2

S〉 curves and the one 

corresponding to the Gaussian case 〈𝜇2
S〉𝛼→2 tends to become constant after a few 

characteristic times (i.e., for 𝑡∗ > 1). Quantities 1 − 〈𝜇2
S〉/〈𝜇2

S〉𝛼→2 and (2 − 𝛼)2 display 

a nearly perfect linear correlation at late times (with a slope of  0.78, details not shown). 

We note that dispersion in Gaussian Y fields is, under some assumptions, proportional to 

𝜎𝑌
2 (Dagan, 1984). As such, our results imply that, at long times, relying solely on an 

analysis of the macrodispersive behavior of a solute transported by pure advection within 

a saturated porous formation may not allow to distinguish whether the underlying log 

hydraulic conductivity distribution is (i) Sub-Gaussian (𝛼 < 2) with variance 𝜎𝑌
2, or (ii) 

Gaussian with some variance 𝜎𝑌
∗2 being lower than 𝜎𝑌

2. Yet, as shown in the following, 

these two models lead to quite different estimates in a number of observables. 

Figure 3(h) depicts the evolution of the average longitudinal (macro)dispersion 

coefficient, 〈𝐷M〉, computed for each realization as 
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𝐷M,𝑟(𝑡𝑖) =
1

2

𝜕𝜇2,𝑟
S

𝜕𝑡
|

𝑡𝑖

≅
𝜇2,𝑟

S (𝑡𝑖) − 𝜇2,𝑟
S (𝑡𝑖−1)

2(𝑡𝑖 − 𝑡𝑖−1)
. (12) 

This quantity is normalized by 𝜎𝑌
2𝐼𝑌�̅�, which is the long-time asymptotic value of 𝐷M in 

an infinite medium with Gaussian log-conductivities characterized by low spatial 

heterogeneity. Note that an asymptotic dispersion regime is not fully reached by 𝑡∗ = 15. 

Riva et al. (2017) show that 𝐷M/𝜎𝑌
2𝐼𝑌�̅� → 1 (at a rate which depends on 𝛼) in two-

dimensional Sub-Gaussian  𝑌 fields and in the long-time limit, this result corresponding 

to analytical findings by Dagan (1982, 1984, 1989) and Rubin (1990a,b) for Gaussian 𝑌 

fields under the same assumptions on flow. Assuming that a corresponding long-time 

limit holds also in three-dimensional unbounded systems, the results depicted in Figure 

3(h) suggest that the impact of the presence of boundaries on the dynamics of 𝐷M (i.e., 

on the departure of 𝐷M/𝜎𝑌
2𝐼𝑌�̅� from 1) tends to increase with decreasing 𝛼. 

Further inspection of Figures 3(a-c) reveals that low values of 𝛼 yield a more 

pronounced peak for longitudinal concentration profiles. Additionally, the standardized 

distribution of vertical locations of the solute exhibits longer tails as 𝛼 decreases (not 

shown). These features are markedly more evident at early times (𝑡∗ = 0.63). This result 

may be related to the observation that distributions of 𝑌 increments (which are related to 

spatial variations of velocities, that ultimately control longitudinal solute spreading) in 

Sub-Gaussian fields display heavy tails and sharp peaks at short distances (Riva et al., 

2015a). Differences between curves associated with differing values of 𝛼 become less 

apparent at late times (𝑡∗ = 15). One can also detect an increasing degree of asymmetry 

of the plume as 𝛼 decreases, both at early and late times. 

All of these qualitative observations are quantified by the analysis of the temporal 

evolutions of the normalized spatial moments of the plume, namely the spatial skewness 

𝜇3
S (Figure 3(e)) and kurtosis 𝜇4

S (Figure 3(f)) (see Appendix B.2 for details about their 
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evaluation). We note that low 𝛼 values tend to promote more skewed (i.e., asymmetric) 

plumes, being positively skewed at early times (a behavior mainly driven by high 

velocities) and (slightly) negatively skewed at late times (mainly driven by low 

velocities). Figure 3(f) suggests that lower values of 𝛼 are associated (on average) with 

more kurtotic plumes. Differences between (average) spatial skewness and kurtosis of 

plumes evolving in Gaussian and Sub-Gaussian cases are substantial at early times and 

tend to become mild as time increases, consistent with the observation that the distribution 

of 𝑌 spatial increments in a Sub-Gaussian field tends to approach the Gaussian one as lag 

increases. 

Figure 3(i) depicts the temporal evolution of the average advective stretching, i.e., 

〈𝑆〉/𝑆0. This metric quantifies hydrodynamic deformation through the evaluation of the 

aggregated temporal growth of a fluid surface, 𝑆, represented by a collection of particles 

displaced by advection and originally arranged on the horizontal plane 𝑧 = 0 (i.e., 

corresponding to 𝑆0 = 𝐿𝑥𝐿𝑦). All details are provided in Appendix B.4. On average, the 

velocity field associated with a Sub-Gaussian Y field induces more stretched plumes than 

those evolving through a Gaussian setting. It is worth noting that this takes place despite 

the longitudinal spreading (represented by 𝜇2
S) being (sometimes significantly) smaller 

for Sub-Gaussian than for Gaussian fields. One may compare these results with those 

reported by Le Borgne et al. (2013, 2015) in two-dimensional Gaussian 𝑌 fields. 

Numerical simulations performed by these authors document that the mean elongation of 

a solute line displays a power-law temporal behavior with an exponent ranging between 

0.65 and 1.25 for 𝜎𝑌
2 increasing from 0.25 to 4.0. Interpreting the temporal evolution of 

〈𝑆〉/𝑆0 through a power-law behavior (as in the above-mentioned Gaussian 𝑌 settings), 

its (best-fit) exponent increases for decreasing values of 𝛼 (while 𝜎𝑌
2 = 1 is kept 

constant), from 0.85 in the Gaussian case to 0.95 for 𝛼 ≤ 1.5. These results are probably 
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related to the observation that low values of 𝛼 promote marked changes in longitudinal 

velocity values at very short transverse distances (details not shown here for brevity), thus 

inducing enhanced degrees of short-range fluid stretching. This effect seems to be capped 

at strong degrees of Sub-Gaussianity (i.e., 𝛼 = 1.2), for which the average surface 

increase is almost identical to the case of moderate-to-high Sub-Gaussian behavior (i.e., 

𝛼 = 1.5). 

The stark differences observed between the effects of a Sub-Gaussian 𝑌 field on the 

longitudinal dispersion (Figure 3(d)) and on advective stretching (Figure 3(i)) could 

indicate that the increased longitudinal dispersion associated with Gaussian 𝑌 fields with 

respect to a Sub-Gaussian setting may not necessarily translate into enhanced mixing, the 

latter being strongly linked to stretching (see, e.g., Dentz et al., 2011; Le Borgne et al., 

2013, 2015). 
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Figure 4: Average spatial evolution of the solute BTCs across planes orthogonal to the 
mean flow direction: (a-c) BTCs at various distances from the inlet (dashed gray line 
corresponds to 𝑡 = 𝑧/𝑣), (d) temporal variance, (e) temporal skewness, (f) temporal 
kurtosis, (g) first arrival, (h) arrival of the peak, and (i) arrival of the 99% of the total 

mass. 

 

Figures 4(a-c) depict the average temporal evolution of the solute mass flux, 

representing the solute breakthrough curve (BTC), for various values of 𝛼 and at 

increasing distances from the inlet. The average BTCs are visibly narrower for lower 

values of 𝛼. This is related to the observation that the spatial evolution of the centered 

second temporal moment, depicted in Figure 4(d), has been found to be qualitatively very 
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similar to its temporal evolution counterpart (Figure 3(d)) in all cases analyzed, a feature 

which was also noted by Fernàndez-Garcia et al. (2005) for transport in three-

dimensional, Gaussian 𝑌 fields. The average BTC is also visibly more symmetric for 

lower values of 𝛼, the arrival of the peak being less advanced in time with respect to the 

mean arrival time 𝑧/𝑣 (marked on Figures 4(a-c) by a gray vertical dashed line) than its 

counterpart based on Gaussian 𝑌 fields. This latter feature is particularly evident at short 

distances from the inlet (𝑧∗ = 1.26). 

For all values of 𝛼, the BTCs become more symmetric as 𝑧∗ increases. This 

behavior can be quantified through the (average) skewness of the BTCs, i.e., 〈�̂�3
T〉, whose 

spatial evolution along the column (Figure 4(e)) denotes a decreasing trend of the 

temporal skewness (i) with increasing distance from the inlet and (ii) with departure from 

Gaussian behavior of the underlying 𝑌 field. A similar feature is observed in Figure 4(f) 

for the average temporal kurtosis, 〈�̂�4
T〉.  

Figures 4(g), 4(h) and 4(i) complement the description by depicting the average 

longitudinal distribution of key arrival times, corresponding to the time of arrival of the 

first particle, 𝑇1, the BTC peak, 𝑇peak, and the 99th percentile, 𝑇p99, respectively. These 

quantities are normalized by the mean arrival time (i.e., 𝑧/𝑣) for ease of interpretation. It 

is generally recognized that first arrival times are strongly linked to connectivity metrics, 

such as, e.g., the least resistance path, which is the path connecting two points or surfaces 

with the largest associated effective hydraulic conductivity (e.g., Gómez-Hernández and 

Wen, 1998; Rizzo and De Barros, 2017). In this context, Figure 4(g) suggests that Sub-

Gaussian 𝑌 fields are more connected than their Gaussian counterparts at short distances 

(𝑧∗ ≤ 1), the trend being reversed at longer distances (𝑧∗ ≫ 1). This finding could be 

related to the aforementioned nugget effect displayed by the longitudinal velocity 

covariances associated with low 𝛼 values, which would increase the likelihood of 
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velocities changing abruptly at very short distances, and possibly decrease the likelihood 

of occurrence of persistent high velocity paths.  

As 𝛼 decreases, the peak of the BTC (Figure 4(h)) is on average closer to the mean 

arrival time, a finding in agreement with the aforementioned reduced temporal skewness. 

This implies that in Sub-Gaussian fields the largest concentrations tend to be observed 

(on average) appreciably later than in Gaussian fields, especially for short distances (i.e., 

𝑧∗ ≈ 1). The average longitudinal distribution of the 99th percentile of arrival times, 𝑇p99 

(Figure 4(i)), shows that the BTC tends to be more compacted for lower values of 𝛼. All 

of these findings suggest that, as compared to a Gaussian distribution of log-

conductivities, in the presence of a Sub-Gaussian 𝑌 field one can (on average) expect (i) 

a generally delayed arrival of the mass of a flux-injected solute to crossing planes located 

a few integral scales away from the injection plane (i.e., for 𝑧∗ > 5), as expressed in terms 

of both the first arrival and the arrival of the peak; (ii) more pronounced peaks; and (iii) 

an earlier breakthrough of the majority (99%) of the solute mass. 

3.1.2. Analysis of the impact of local dispersion 
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Figure 5: Effect of local dispersion (𝑃𝑒 = 10) compared to pure advection (𝑃𝑒 → ∞) on 
the results with Gaussian and Sub-Gaussian (𝛼 = 1.2) Y fields, for (a) spatial variance 
(macrodispersion), (b) spatial skewness, (c) spatial kurtosis, (d) temporal variance, (e) 

temporal skewness, (f) temporal kurtosis, (g) first arrival, (h) arrival of the peak, and (i) 
arrival of the 99% of the solute mass. 

 

Here, we concentrate on the scenario corresponding to the lowest value of 𝛼 

considered (i.e., 𝛼 = 1.2; strongly non-Gaussian 𝑌), compared to the Gaussian 𝑌 scenario 

(i.e., 𝛼 → 2), to clearly illustrate the effects of local dispersion (i.e., finite values of Pe) 

on transport. In Figure 5 we compare the spatial and temporal variance, skewness and 

kurtosis as well as the longitudinal distribution of key arrival times (defined in Section 
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3.1.1) obtained for Pe → ∞ (dotted curves) with those corresponding to Pe = 10  (solid 

curves). 

As one could expect, local dispersion typically reduces the difference between the 

results for Gaussian and Sub-Gaussian settings. In the Gaussian case (green curves), one 

can see that 〈𝜇2
S〉 (Figure 5a) decreases due to the effect of local dispersion. This effect is 

increasingly evident for decreasing values of Pe (not shown). Such a behavior has been 

documented (analytically, numerically, and experimentally) in previous studies (e.g., 

Dentz et al., 2000, 2002, 2003; Dartois et al., 2018; Gist et al., 1990) and is related to the 

observation that local dispersion favors particles to sample a wider range of velocities, 

thus reducing the likelihood of sampling only extreme (low or high) velocity paths. 

Conversely, this effect is not apparent in the strongly Sub-Gaussian fields we examine. 

However, the aforementioned similarity between the temporal evolution of 〈𝜇2
S〉 and the 

spatial evolution of 〈𝜇2
T〉 and the results of Figure 5(d) suggest that the reduction in 

longitudinal dispersion observed for Pe = 10 with respect to Pe → ∞ will eventually take 

place in time also for 𝛼 = 1.2. 

While it was noted that the average longitudinal skewness of the plume, 〈𝜇3
S〉, tends 

to deviate more strongly from zero both at early and late times as 𝛼 decreases when Pe →

∞, Figure 5(b) clearly documents that this trend is reversed at early times in the presence 

of local dispersion. A similar behavior is documented in Figure 5(c) for the average spatial 

kurtosis, 〈𝜇4
S〉, the results corresponding to Gaussian and Sub-Gaussian settings tending 

to become very similar under the action of local dispersion. 

The average higher-order moments of the BTC, i.e., 〈𝜇3
T〉 (Figure 5(e)) and 〈𝜇4

T〉 

(Figure 5(f)), are highly influenced by local dispersion at early times. At later times, local 

dispersion appears to induce a (downward) shift in the results, with a pattern that is similar 
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for 𝛼 → 2 and 𝛼 = 1.2. This feature is also observed for the first arrival time, 〈𝑇1〉. 

Otherwise, the mass flux peak (Figure 5(h)) is delayed in time (on average) by the action 

of a finite Pe, which also reduces the difference between the cases corresponding to 𝛼 →

2 and 𝛼 = 1.2. The effect of dispersion on the (average) 99th percentile arrival time, 

〈𝑇p99〉, is analogous to that on 〈𝜇2
T〉. As such, one can see that these two metrics and 〈𝜇2

S〉 

appear to contain very similar information about the effects of 𝛼 and Pe on the processes 

analyzed. 

3.2. Monte Carlo-based statistical distributions of metrics characterizing transport 

Here, we discuss the results obtained in terms of the full distributions of quantities 

of interest across the collection of Monte Carlo realizations analyzed. We focus on the 

system behavior at early and late stages of the plume deformation and confine the 

discussion to the scenarios corresponding to Pe → ∞ and Pe = 10. As a first result, we 

observe that the empirical MC-based distributions associated with most of the analyzed 

metrics are not well differentiated for the various values of 𝛼 considered (i.e., there is 

some overlap between distributions). As such, we investigate the significance of relying 

on the metrics considered to discriminate the extent at which the log-conductivity field 

deviates from the Gaussian behavior (as reflected by the value of 𝛼) when only results 

from a single realization of 𝑌 are available. In other words, we analyze how significantly 

each metric of solute transport is impacted by the value of 𝛼 characterizing a given  𝑌 

realization. We do so upon relying on the Bayes classifier (e.g., James et al., 2013) 

combined with Kernel Density Estimation.  

Following the developments detailed in Appendix C, we quantify the degree of 

overlap between sample distributions of a given metric by means of the index 𝑃𝑘ℓ ≔

𝑃(𝛼 = 𝛼𝑘|�̂� = 𝛼ℓ), which represents the likelihood of the actual value of 𝛼 being equal 
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to 𝛼𝑘, given that the classification method infers an estimate �̂� = 𝛼ℓ (from comparing the 

result of a realization to the corresponding Monte Carlo collection of results). We 

consider the discrete set of 𝛼 values corresponding to 𝛼𝑘, 𝛼ℓ ∈ {1.2 , 1.5 , 1.8 , → 2}. The 

values of index 𝑃𝑘ℓ are then seen as the entries of a (4 × 4) matrix, which we refer to as 

overlap matrix. Note that one can obtain an overlap matrix for each of the transport 

metrics analyzed. Values on the diagonal (i.e., 𝑃𝑘ℓ with 𝑘 = ℓ) of this matrix indicate the 

extent to which we can rely on the distribution of results for a given metric to identify the 

actual value of 𝛼 associated with the underlying Y field. High values of the index 

concentrated on the diagonal of the overlap matrix indicate mild overlap (i.e., strong 

differentiation) of population densities, values evenly distributed across columns 

suggesting strong overlap (i.e., poor differentiation). The strongest overlaps are observed 

for high-order moments, whereas advective stretching is the best-differentiable metric. 

For most metrics, overlap is strengthened at later times and for lower values of Pe. A 

detailed analysis follows below. 
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Figure 6: Box plot of (a)-(b) 𝜇2
𝑆 for 𝑃𝑒 → ∞ and Pe = 10; and (d)-(e) 𝑆/𝑆0 for 𝑃𝑒 → ∞ at 

an early and at a late time. The corresponding overlap quantification, 𝑃𝑘ℓ, is also 
included (c, f). 

 

Figure 6 depicts boxplots related to the populations of centered second moment of 

the section-integral concentrations 𝜇2
S (Figure 6(a-b)) and advective stretching 𝑆/𝑆0 

(Figure 6(d-e)) for the various settings examined. These results are complemented by the 

graphical depiction of results stemming from the overlap analysis (see implementation 

details in Appendix C) for the two combinations of Pe (except for 𝑆/𝑆0, where Pe → ∞ 
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only) and various stages of plume development. Corresponding depictions related to other 

selected transport metrics are presented in Figures 7 and 8. 

Figure 6(a) suggests that the early-time (𝑡∗ = 0.63) distributions of values of 𝜇2
S 

obtained for the analyzed values of 𝛼 strongly differ for the two values of Pe considered. 

This difference decreases as time increases. Otherwise, the degree of overlap between 

distributions for diverse values of 𝛼, as quantified by the results in Figure 6(c), is not 

significantly modified by local dispersion. The degree of overlap between the results for 

Gaussian (𝛼 → 2) and slightly Sub-Gaussian (𝛼 = 1.8) 𝑌 fields is markedly significant, 

implying that the results of single realizations with 𝛼 → 2 or 𝛼 = 1.8 are essentially 

indistinguishable in terms of longitudinal dispersion. This tendency is documented for 

most of the metrics analyzed. Results very similar to those corresponding to 𝜇2
S are 

obtained in the analysis of the populations and overlaps of 𝜇2
T and 𝑇p99 (not shown here 

for brevity). Figures 6(d) and 6(e) show that the range of values undertaken by the surface 

growth due to hydrodynamic deformation, 𝑆/𝑆0, increases with the departure of 𝑌 from 

Gaussianity, this metric being the most affected by slight differences in 𝛼. This is also 

evidenced by the value of 𝑃𝑘ℓ in Figure 6(f). At late times (𝑡∗ = 15), there is only a slight 

overlap between the moderately-to-strongly Sub-Gaussian cases (𝛼 ≤ 1.5) and the 

Gaussian / slightly Sub-Gaussian cases (𝛼 ≥ 1.8). 
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Figure 7: Box plot of (a)-(b) 𝜇3
𝑆 and (d)-(e) 𝜇4

𝑆 for 𝑃𝑒 → ∞ and Pe = 10 at an early and at 
a late time. The corresponding overlap quantification, 𝑃𝑘ℓ, is also included (c, f). 

 

Similar to what is observed for the centered second moment of the longitudinal 

concentration profile, a finite value of Pe narrows the range of values undertaken by the 

higher-order spatial moments across the collection of MC realizations (Figure 7). One 

can see that the distribution overlaps are significant (even for strongly Sub-Gaussian 

fields) for both skewness and kurtosis, especially at late times (𝑡∗ = 15) and for Pe = 10. 

These results lead us to conclude that the average behavior of the higher-order moments 
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associated with diverse values of 𝛼 which we document in Section 3.1.1 would most 

probably be undetectable from the analysis of the evolution of solute concentrations 

across individual realizations of the Y field. Similar conclusions are drawn from the 

analysis of the populations of higher-order temporal moments (not shown). 

 

Figure 8: Box plot of (a)-(b) 𝑇1  and (d)-(e) 𝑇𝑝𝑒𝑎𝑘 for 𝑃𝑒 → ∞ and Pe = 10 at a close and 

at a far distance from the inlet. The corresponding overlap quantification, 𝑃𝑘ℓ, is also 
included (c, f). 

Figure 8 depicts the boxplots and overlap quantification corresponding to the first 

arrival time (𝑇1) and the peak arrival time (𝑇peak). At close distance from the inlet (𝑧∗ =
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1.26), the range of values of 𝑇1 (i) narrows due to the effect of a finite Pe and (ii) is 

virtually insensitive to the value of 𝛼. These results suggest that the behavior of 𝑇1 is 

chiefly dominated by local dispersion, this impact somewhat persisting for long travel 

distances (i.e., 𝑧∗ = 30). These results support the conjecture that, even as the overlap 

with respect to the Gaussian case is not very high at long distances for moderate to strong 

Sub-Gaussian 𝑌 fields, it would be hard to discriminate the effect of 𝛼 from that of Pe if 

both parameters are not known a priori. It is also worth noting that, while the time at 

which the BTC peak occurs is (on average) closer to the mean travel time as 𝛼 decreases 

(Section 3.1), this tendency can hardly be detected at long distances from single 

realizations. This is clearly seen in Figure 8(f), which shows that the overlap is nearly 

total at 𝑧∗ = 30. 

 

Figure 9: Overall overlap quantification, 𝑃𝑘ℓ, between the distributions of the results 
corresponding to various values of 𝛼 and for three selected Péclet numbers. The 

overlap is defined as 𝑃𝑘ℓ ≔ 𝑃(𝛼 = 𝛼𝑘|�̂� = 𝛼ℓ), where �̂� in this case is the result of a 
Quadratic Discriminant Analysis (see Appendix C) combining the information embedded 

in the evolution of all spatial and temporal moments as well as 𝑇1, 𝑇𝑝𝑒𝑎𝑘, and 𝑇𝑝99. 

 

Our analyses suggest that metrics that would typically be measurable in a real 

setting, such as the (spatial or temporal) moments describing the evolution of the plume, 

or the key arrival times, would not be able by themselves (i.e., without relying on 

additional observations about the 𝑌 field) to reflect with certainty the Sub-Gaussian (or 
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Gaussian) nature of the heterogeneous porous medium across which solute migrates. This 

is evidenced even assuming that 𝜎𝑌
2, 𝐼𝑌, and Pe are known. 

We further explore this aspect by analyzing the distributions of the results obtained 

for all of these metrics jointly. We do so by relying on the classification technique known 

as Quadratic Discriminant Analysis (QDA) to obtain an overall quantification of the 

degree of differentiation of the sample distributions of the multiple metrics considered. 

Details about the theoretical elements underpinning the approach are illustrated in 

Appendix C. We ground QDA on the overall collections of results pertaining to spatial 

and temporal moments (𝜇2
S, 𝜇3

S, 𝜇4
S, 𝜇2

T, 𝜇3
T, 𝜇4

T), as well as the arrival times 𝑇1, 𝑇peak and 

𝑇p99, and jointly considering results for 𝑡∗ = 0.63, 3.24, 15 and 𝑧∗ = 1.26, 6.48, 30, for 

a total of 27 sample populations. We exclude 𝑆/𝑆0 from the analysis, as we focus on 

solute transport metrics that could be detected directly in a real setting. This type of 

analysis yields a global appraisal of our ability to discriminate results associated with a 

unique realization through the assessment of an overlap matrix whose entries 𝑃𝑘ℓ 

represent the likelihood of the actual value of 𝛼 being equal to 𝛼𝑘 when the QDA 

classification yields a value equal to 𝛼ℓ. To broaden the range of scenarios, we perform 

this analysis for Pe = 10, 100, and Pe → ∞. The results are depicted in Figure 9. The 

degree of differentiation between the overall behavior of individual realizations is visibly 

higher than what one could infer by considering each of the metrics separately (Figures 

6-8). Nevertheless, incorrect classifications are still abundant, especially for low values 

of Pe. The results of our joint analysis of spatial moments, temporal moments and key 

arrival times at multiple stages further support the observation that relying solely on 

observations of concentrations and/or travel times for the considered sample size does not 

allow to clearly and uniquely discriminate between values of 𝛼. 
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These results reinforce the conclusions drawn by Riva et al. (2017) and Libera et 

al. (2017), who found that manifestations of 𝑌-field Sub-Gaussianity on moments/metrics 

associated with flow and transport tend to become virtually undetectable for 𝛼 ≥ 1.8. 

This implies that (i) the Gaussian model may suffice to reproduce some observable 

transport features even when the nature of the underlying 𝑌 field is actually Sub-Gaussian, 

and (ii) it may be difficult in some cases to discern between non-Gaussian and Gaussian 

𝑌 fields based solely on transport metrics. These conclusions are also in line with results 

obtained by Jankovic et al. (2017), who analyzed breakthrough curves resulting from 

transport of solute plumes through porous media with spatial distributions of log-

conductivities relying on Gaussian and on various non-Gaussian statistical models. These 

authors concluded that the overall pattern of solute transport was relatively insensitive to 

the stochastic model employed, and that BTCs could be reasonably interpreted by relying 

solely on the knowledge of the mean, variance and integral scale of 𝑌. As a consequence, 

we strengthen the concept that one is required to include a joint analysis of 𝑌 data and 

their increments (as suggested by Riva et al. (2015a) or Guadagnini et al. (2018)) in efforts 

aimed at heterogeneity characterization to detect possible signatures supporting an 

appropriate stochastic model representing the nature of the underlying 𝑌 field. 

4. Conclusions 

With reference to the assessment of the extent at which Sub-Gaussianity (i.e., the 

degree of departure from a Gaussian behavior) of 𝑌 can impact main features and 

observables of solute transport driven by advection and local dispersion in three-

dimensional bounded heterogeneous porous media, we observe the following major 

elements. 
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• As compared to a Gaussian distribution of log-conductivities, a Generalized Sub-

Gaussian (GSG) field of 𝑌 yields (on average) (i) a delayed first time of arrival of 

the solute mass to crossing planes located at a distance of a few integral scales 

from the solute injection plane; (ii) enhanced and delayed concentration peaks; 

and (iii) a reduced breakthrough time associated with the majority of the solute 

mass migrating in the system. 

• On average, we document (i) an increasing degree of asymmetry and (ii) an 

enhanced kurtosis (resulting in heavier tails) of the plume with log-conductivity 

departing from a Gaussian behavior. Differences between the effects imprinted by 

Gaussian and strongly Sub-Gaussian (𝛼 ≤ 1.5) 𝑌 domains on spatial skewness 

and kurtosis of evolving plumes are marked at early times and tend to become 

mild as time increases. 

• The velocity field associated with a GSG Y field promotes plume stretching while 

reducing longitudinal plume spreading compared to its Gaussian counterpart. 

Therefore, the increased longitudinal dispersion associated with Gaussian 𝑌 fields 

with respect to a GSG setting may not necessarily translate into enhanced solute 

mixing. This finding can have important implications on reactive transport; for 

example, in the context of mixing-limited reactive transport, it might imply that a 

higher mixing rate and reactivity can take place in Sub-Gaussian fields as 

compared to their Gaussian counterparts. Detailed analyses of this aspect will be 

subject of future research. 

Concerning one’s ability to clearly identify a possible underlying Sub-Gaussian 

nature of 𝑌 upon relying solely on the analysis of solute concentration fields in the 

settings analyzed, our study leads to the following major conclusions. 
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• Even as one has information about the values of variance and integral scale of 𝑌, 

the effects of a Sub-Gaussian nature of 𝑌 on hydrodynamic dispersion might 

hardly be detectable in a (finite) heterogeneous setting, especially if characterized 

by a low degree of Sub-Gaussianity (i.e., corresponding to 1.8 ≤ 𝛼 < 2.0 for the 

type of subordinator considered). The action of local dispersion (i.e., finite values 

of Pe) can then contribute to further mask the influence of Sub-Gaussianity on 

major transport metrics, as also seen from a Quadratic Discriminant Analysis 

performed on spatial and temporal moments and arrival times at various evolution 

stages of the plume. 

• While a GSG-based model can be consistent with scaling patterns of the 

probability distribution of log-conductivity and its spatial increments at various 

lags, relying solely on observations of solute concentrations migrating within the 

system can in some cases hamper our ability to discern the nature of the 

underlying conductivity field. To characterize the latter, one would need to 

consider also a joint analysis of 𝑌 data and their increments. 

We note that the present study focuses on mildly heterogeneous bounded domains 

(representing a spatially heterogeneous single geological unit) and is mostly based on 

spatially or temporally aggregated transport metrics. Additional studies are required to 

fully assess the extent to which the emergence of strictly local features associated with 

transport behavior (such as those related to strong channeling effects within highly 

heterogeneous, virtually unbounded media) might contribute to distinguish GSG log-

conductivity domains from their Gaussian counterparts. 
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Appendix A: Analytical formulation of the GSG model and key properties 

Riva et al. (2015a,b) introduce the Generalized Sub-Gaussian (GSG) model 

according to which the random function 𝑌′(𝐱) defined by (1) is described considering the 
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subordinator 𝑈(𝐱) to be lognormally distributed according to ln(𝑈) ~𝒩[0, (2 − 𝛼)2], 

i.e., 

𝑓𝑈(𝑢)   =  
𝑒

− 
(ln 𝑢)2

2 (2−𝛼)2

√2𝜋𝑢(2 − 𝛼)
, (A1) 

with 𝛼 < 2. Here, we include a brief summary of the key analytical formulations and 

scaling properties of the isotropic GSG model introduced by Riva et al (2015a). 

Corresponding formulations for anisotropic fields have been derived by Riva et al 

(2015b). 

The marginal pdf of 𝑌′(𝐱), 𝑓𝑌′(𝑦′), is fully defined by  and the standard deviation 

of 𝐺(𝐱), G , as 

𝑓𝑌′(𝑦′) =
1

2𝜋𝜎𝐺(2 − 𝛼)
∫ 𝑒

− 
1
2

[(
𝑙𝑛 𝑢
2−𝛼

)
2

+ (
𝑦

𝜎𝐺𝑢
)

2
]∞

0

 
𝑑𝑢

𝑢2
. (A2) 

 

The latter corresponds to a normal-lognormal (NLN) distribution whose variance, 𝜎𝑌
2, and 

standardized kurtosis, 
Y 

, of 𝑌′(𝐱) are given by 

𝜎𝑌
2 = 𝜎𝐺

2𝑒2(2−𝛼)2
, 𝜅𝑌′   = 3𝑒4(2−𝛼)2

. (A3) 

It is noted that the lognormal distribution (A1) tends to a delta function when  → 

2 and (A2) reduces to the Gaussian distribution. Figure A1 depicts 
'Yf  for the three values 

of  examined in our study and by setting 𝜎𝑌
2 = 1. The Gaussian pdf having the same 

mean and variance as 𝑌′(𝐱) and corresponding to  → 2 is also depicted for 

completeness. While 
'Yf  is close to the Gaussian pdf for  = 1.8, one can observe that 

'Yf  

exhibits peaks and tails which become sharp and long, respectively, as  decreases. These 

features, which represent a clear deviation from a Gaussian distribution, is also quantified 

by the excess kurtosis, 3Y YEK  = − , whose value increases (deviating from zero, which 

corresponds to the scenario for which  → 2) as  decreases. 

The pdf of incremental values of 𝑌′(𝐱), ( ) ( )' 'Y Y Y = − +x x s , is given by 
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𝑓Δ𝑌(Δ𝑦) =
1

2𝜋𝜎𝐺(2 − 𝛼)2√2𝜋
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2
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∞

0

. (A4) 

Here, 2 2

1 2 1 22 Gr u u u u= + −  and ( )G s  is the correlation function of 𝐺(𝐱) evaluated at 

separation distance (or lag) s = s . The standardized kurtosis of Y  is rendered as 

𝜅Δ𝑌 = 3e2(2−𝛼)2
[1 +

1

2
(

𝑒2(2−𝛼)2
− 1

𝑒(2−𝛼)2
− 𝜌𝐺

)

2

]  . (A5) 

It is remarked that the dependence of ( )G s  on lag induces a corresponding 

dependence of the shape of 
Yf . For example, Y 3→  and the distribution of Y  

tends to the Gaussian one as  → 2. Otherwise, the shape of Yf  scales with lag (or, 

equivalently, with G ) with peak which tends to sharpen and tails to become heavier (i.e., 

corresponding to increased Y ) as a function of G . Figure A2 depicts 
Yf  for three 

exemplary lags and  = 1.8 (Fig. A2a), 1.5 (Fig. A2b), and 1.2 (Fig. A2c). All GSG fields 

are characterized by the same variance (𝜎𝑌
2 = 1) and integral scale (𝐼𝑌 = 𝐼𝐺𝑒−(2−𝛼)2

, 
GI  

being the integral scale of 𝐺(𝐱)), and lags are normalized with respect to 
YI . Also shown 

for comparison are Gaussian distributions having the same variance as Y . In all cases, 

Yf  exhibits sharp peaks and heavy tails at small lags. Increasing lag, 
Yf  tends to 

become Gaussian when  is large (i.e.,  = 1.8), otherwise remaining heavy tailed for 

smaller values of . This feature is also illustrated in Figure A3, depicting excess kurtosis 

of Y   and Y  versus lag for the three values of   considered in our study. The excess 

kurtosis of Y , 3Y YEK  = − , decreases as lag increases, rendering the peak of 
Yf  

less sharp and its tails lighter. When  = 1.8, 
YEK

 is seen to tend to an asymptotic value 

which is << 1, so that 
Yf  becomes virtually Gaussian. Included in Figure A3 are 

horizontal lines depicting the excess of kurtosis of 𝑌′, 
YEK 

. In all investigated cases, 

YEK 
 > 

YEK 
 at small lags, i.e. 

Yf  has sharper peaks and heavier tails than does 
'Yf , 

the opposite being true at large lags. 

The variogram, Y , of Y', is given by 

𝛾𝑌 = 𝜎𝐺
2𝑒(2−𝛼)2

(𝑒(2−𝛼)2
− 1) + 𝑒(2−𝛼)2

𝛾𝐺 , (A6) 
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G  being the variogram of 𝐺(𝐱). Note that according to (A6) Y  is discontinuous at the 

origin, i.e., at s = 0, thus exhibiting a nugget effect. Figure A4 compares (on arithmetric 

and logarithm scales) Y  computed with three values of  (= 1.2, 1.5, and 1.8) and setting 

𝜎𝑌
2 = 1 and 1YI = . Also shown for comparison is the variogram obtained within a 

Gaussian field (i.e., corresponding to  → 2) characterized by the same variance and 

integral scale as Y' and by an exponential correlation function. The variogram associated 

with  = 1.8 virtually coincides with its counterpart associated with a Gaussian field 

everywhere, with the exception of small lags where the GSG variogram is characterized 

by a nugget (clearly visible on logarithm scale). 

 

 

Figure A1: Probability density function of 𝑌′ for 𝜎𝑌
2 = 1 and three values of 𝛼 

(solid curves). Also shown is the Gaussian pdf having the same mean and variance as 𝑌′ 

(dashed curve). 
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Figure A2: Probability density function of Δ𝑌 for 𝜎𝑌
2 = 1, three lags and (a) 𝛼 = 1.8, (b) 

1.5, and (c) 1.2 (solid curves). Also shown are Gaussian pdfs having the same variance 

as Δ𝑌 (dashed curves). Lags are normalized with respect to 𝐼𝑌. 

 

 

Figure A3: Excess kurtosis of 𝑌′ (dashed horizontal lines) and Δ𝑌 (solid curves) versus 

normalized lag for 𝛼 = 1.2, 1.5, and 1.8. 
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Figure A4: Variogram of 𝑌′ obtained for   = 1.2, 1.5, and 1.8 on (a) arithmetic and (b) 

logarithmic scales (solid curves). Also shown for comparison the variogram associated 

with a Gaussian field (and corresponding to  → 2) characterized by the same variance 

and integral scale as Y' (dashed curve). 

 

Appendix B: Transport Metrics 

B.1. Percentile average of concentration curves 

We obtain percentile-averaged curves over all MC realizations of (i) section-

integral longitudinal profiles of concentration at a given observation time and (ii) 

temporal distributions of mass flux through a given horizontal plane (or BTCs), here 

denoted as 𝐶̅ and 𝐽,̅ respectively. Following the terminology used by Lu and Stauffer 

(2012) for BTCs, the percentile average results from averaging over the times of the 

cumulative distribution of 𝐽 ̅ at fixed percentiles. By analogy, here we also extend this 

technique to longitudinal concentration profiles. 

The first step of the procedure is to rearrange in ascending order the collection of 

particle positions / arrival times corresponding to each realization, i.e., 

  𝑍𝑝,𝑟(𝑡𝑖) < 𝑍𝑝+1,𝑟(𝑡𝑖), ∀𝑝 ∈ {1,2, … , (𝑛 − 1)}, (B1) 

  𝑇𝑝,𝑟(𝑧𝑗) < 𝑇𝑝+1,𝑟(𝑧𝑗), ∀𝑝 ∈ {1,2, … , (𝑛 − 1)}, (B2) 
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By computing the arithmetic average of these quantities across MC realizations as 

in (11), each particle index 𝑝 is associated with a value of 〈𝑍𝑝(𝑡𝑖)〉 or 〈𝑇𝑝(𝑧𝑗)〉. According 

to the above-mentioned definition of percentile average, these values correspond to 

regular increments in the cumulative (i.e., integral) forms of 𝐶̅(𝑧, 𝑡𝑖) and 𝐽(̅𝑧𝑗 , 𝑡), i.e., 

∫ 𝐶̅(𝜁, 𝑡𝑖)d𝜁
𝑧

0

=
1

𝑛
∑ ℋ(〈𝑍𝑝(𝑡𝑖)〉 − 𝑧)

𝑛

𝑝=1

, (B3) 

∫ 𝐽(̅𝑧𝑗 , 𝜏)d𝜏
𝑡

0

=
1

𝑛
∑ ℋ(〈𝑇𝑝(𝑧𝑗)〉 − 𝑡)

𝑛

𝑝=1

, (B4) 

where ℋ is the Heaviside function. Differentiation of (B3) and (B4) yields 

𝐶̅(𝑧, 𝑡𝑖) =
1

𝑛
∑ δ(〈𝑍𝑝(𝑡𝑖)〉 − 𝑧)

𝑛

𝑝=1

, (B5) 

𝐽(̅𝑧𝑗 , 𝑡) =
1

𝑛
∑ δ(〈𝑇𝑝(𝑧𝑗)〉 − 𝑡)

𝑛

𝑝=1

, (B6) 

where δ is the Dirac delta. Since 𝑛 is a finite number, these expressions need to be 

smoothed to produce adequate estimates. This is accomplished by replacing δ in (B5) - 

(B6) with a smoothing kernel 𝑊 characterized by a smoothing bandwidth ℎ. This 

constitutes the basis of Kernel Density Estimation (KDE), which is summarized in 

Appendix D. 

B.2. Moments 

We study the evolution of the spatial and temporal moments of the section-integral 

concentrations (𝐶𝑟) and the breakthrough curves (𝐽𝑟), respectively, in each realization 𝑟, 

as rendered through 
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𝜇1,𝑟
S (𝑡𝑖) = ∫ 𝑧

𝐿𝑧

0

𝐶𝑟(𝑧, 𝑡𝑖)d𝑧, 𝜇𝜅,𝑟
S (𝑡) = ∫ (𝑧 − 𝜇1

S(𝑡𝑖))
𝜅

𝐿𝑧

0

𝐶𝑟(𝑧, 𝑡𝑖)d𝑧, 𝜅 ≥ 2, (B7) 

𝜇1,𝑟
T (𝑧𝑗) = ∫ 𝑡

∞

0

𝐽𝑟(𝑧𝑗 , 𝑡)d𝑡, 𝜇𝜅,𝑟
T (𝑧) = ∫ (𝑡 − 𝜇1

T(𝑧𝑗))
𝜅

∞

0

𝐽𝑟(𝑧𝑗 , 𝑡)d𝑡, 𝜅 ≥ 2, (B8) 

where 𝜅 is the moment order, and superscripts S and T stand for spatial and temporal, 

respectively. In practice, integrals in (B7) and (B8) are estimated directly from the 

discrete particle positions and arrival times, respectively, as 

𝜇1,𝑟
S (𝑡𝑖) =

1

𝑛
∑ 𝑍𝑝,𝑟(𝑡𝑖)

𝑛

𝑝=1

, 𝜇𝜅,𝑟
S (𝑡𝑖) =

1

𝑛
∑[𝑍𝑝,𝑟(𝑡𝑖) − 𝜇1,𝑟

S (𝑡𝑖)]
𝜅

𝑛

𝑝=1

, 𝜅 ≥ 2, (B9) 

𝜇1,𝑟
T (𝑧𝑗) =

1

𝑛
∑ 𝑇𝑝,𝑟(𝑧𝑗)

𝑛

𝑝=1

, 𝜇𝜅,𝑟
T (𝑧𝑗) =

1

𝑛
∑[𝑇𝑝,𝑟(𝑧𝑗) − 𝜇1,𝑟

T (𝑧𝑗)]
𝜅

𝑛

𝑝=1

, 𝜅 ≥ 2. (B10) 

We also define the standardized moments (i.e., skewness for 𝜅 = 3, kurtosis for 

𝜅 = 4) 

𝜇𝜅,𝑟
S (𝑡𝑖) =

𝜇𝜅,𝑟
S (𝑡𝑖)

[𝜇2,𝑟
S (𝑡𝑖)]

𝜅
2

, 𝜇𝑘,𝑟
T (𝑧𝑗) =

𝜇𝜅,𝑟
T (𝑧𝑗)

[𝜇2,𝑟
T (𝑧𝑗)]

𝜅
2

, 𝜅 ≥ 3. (B11) 

We noted that temporal moments computed in our study from the full set of particle 

arrival times (see (B10)) were mainly controlled by the tails of the associated 

distributions. BTCs in heterogeneous porous media often display heavy tails that decay 

slowly with a power-law behavior (e.g., Pedretti et al., 2013). Even truncated power laws 

may have very high values of higher-order moments that would hardly be accurately 

inferred from simulations with a reasonable number of particles. To overcome this issue, 

temporal moments were computed by excluding the 1% highest arrival times. 
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All realizations were checked to fulfill the following expressions, corresponding to 

a flux-weighted injection, for the spatial and temporal first moments at all evaluation 

times 𝑡𝑖 and all evaluation positions 𝑧𝑗, respectively: 

𝜕𝜇1,𝑟
S

𝜕𝑡
(𝑡𝑖) ≥ �̅�, 𝜇1,𝑟

T (𝑧𝑗) =
𝑧𝑗

�̅�
. (B12) 

B.3. Key arrival times 

As a complement to temporal moments, we evaluate some additional BTC features 

that may provide further insight on transport behavior. Namely, we compute: the first 

arrival time (𝑇1,𝑟), the arrival time corresponding to the peak of the corresponding 

concentration curve (𝑇peak,𝑟) and the 99th percentile arrival time (𝑇p99,𝑟). The peak is 

identified in each realization 𝑟 from the KDE reconstruction of the BTC (see Appendix 

D), whereas the two other measures are obtained directly from particle arrival times. 

B.4. Advective stretching 

 

Figure B1. Graphical depiction of the evolving shape of a material plane under 
heterogeneous advection, and mapping of the local surface growth. 
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We quantify hydrodynamic deformation (advective stretching) by tracking a mesh 

of triangular surfaces defined by the initial relative position of particles in the scenario 

corresponding to Pe → ∞. Figure B1 illustrates the local growth of the individual 

triangular surfaces d𝑆 at three observation times in a selected realization of 𝑌. In Section 

3 we focus on the ratio 𝑆/𝑆0, where 𝑆 is the sum of all triangular d𝑆, and 𝑆0 = 𝐿𝑥𝐿𝑦. 

Appendix C: Quantification of Distribution Overlaps 

Here, we provide a synthesis of the basic concepts of Bayesian classification, 

focusing on the methods we employ in our study. 

C.1. The Bayes classifier 

The Bayes classifier assigns observations of a (multi-dimensional random) vector 

𝐑, with values 𝐫, to a class 𝐾 (which has a finite number 𝑁k of possible values 𝑘) 

according to data-driven estimates of the conditional probability density functions 

𝑓𝑘(𝐫) = 𝑝(𝐑 = 𝐫|𝐾 = 𝑘). Ideally, it is the classification method with the least associated 

error provided that the true pdfs, 𝑓𝑘, are known or reproduced correctly. Given an 

observation with a value 𝐫, this method assigns it to the category 𝑘 for which 𝑔𝑘(𝐫) =

𝑃(𝐾 = 𝑘|𝐑 = 𝐫) is highest among all possible 𝑘. According to Bayes theorem 

𝑔𝑘(𝐫) =
𝑝𝑘𝑓𝑘(𝐫)

∑ 𝑝ℓ𝑓ℓ(𝐫)𝑁k
ℓ=1

, (C1) 

where 𝑝𝑘 = 𝑃(𝐾 = 𝑘) is the prior probability of any observation to belong to class 𝑘. If 

no prior information is available, all 𝑝ℓ = 𝑝𝑘 (∀ℓ ≠ 𝑘), and the classifier will assign the 

observation 𝐫 to the class 𝑘 for which 𝑓𝑘 is highest. If we assume that all 𝑓𝑘 are Gaussian, 

with mean �̂�𝑘 and covariance matrix �̂�𝑘 estimated from data, then the classification is 

equivalent to assigning observation 𝐫 to the class 𝑘 for which 

𝛿𝑘(𝐫) = −(𝐫 − �̂�𝑘)T�̂�𝑘
−1(𝐫 − �̂�𝑘) − log|�̂�𝑘| + 2 log 𝑝𝑘 (C2) 
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is highest. This approach is known as Quadratic Discriminant Analysis (QDA).  

For one-dimensional variables, 𝑅, it may in some cases be feasible to reconstruct 

𝑓𝑘(𝑟) from data, instead of assuming that it is Gaussian. We do so in our study upon 

relying on Kernel Density Estimation (see Appendix D). Each observation 𝑟 is then 

assigned to the class 𝑘 with the highest 𝑔𝑘(𝑟) (see (C1)). We term this approach as KDE 

discriminant. 

C.2. Confusion matrix and Overlap matrix 

In discriminant analysis, the Confusion Matrix compares the obtained classification 

(rows) with the actual classes (columns) of a number of random observations, so that the 

entries on the diagonal of the matrix correspond to correct classifications. Normalization 

of the columns by the total number of observations of each class yields a normalized 

confusion matrix. The latter informs us on the likelihood of correct (diagonal) and 

incorrect (outside diagonal) classification. In other words, if we define variable �̂� as the 

estimated class (and 𝐾 as the true class), the entries of the normalized confusion matrix 

are 𝑃ℓ𝑘
′ = 𝑃(�̂� = ℓ|𝐾 = 𝑘).  

We define the overlap of a pdf, 𝑓𝑘, (conditioned to 𝐾 = 𝑘) with 𝑓ℓ (conditioned to 

𝐾 = ℓ) as the likelihood that, if the class given by the discriminant analysis, �̂�, is ℓ, the 

actual class, 𝐾, is 𝑘; i.e., 𝑃𝑘ℓ = 𝑃(𝐾 = 𝑘|�̂� = ℓ). The quantity 𝑃𝑘ℓ (and in particular, its 

values for 𝑘 = ℓ) indicates the level of reliability associated with relying on the pdfs to 

estimate the actual class of an individual realization. Mapping 𝑃ℓ𝑘
′  onto 𝑃𝑘ℓ is 

accomplished through Bayes theorem 

𝑃𝑘ℓ =
𝑝𝑘𝑃ℓ𝑘

′

∑ 𝑝𝑚𝑃ℓ𝑚
′𝑁k

𝑚=1

(C3) 
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C.3. Implementation 

 

Figure C1: Graphical depiction exemplifying the integration procedure for the 
evaluation of the 𝑃ℓ𝑘

′  entries of the normalized confusion matrix using the KDE classifier 
for the early-time spatial kurtosis. 

 

In our study, the classes are the four studied values of 𝛼, and the random 

observations are the selected metrics evaluated from the solute transport results. We use 

the KDE discriminant for the analysis of each of these metrics, whereas we apply QDA 

for the joint analysis of several metrics. In both cases, the final result of interest is the 

overlap matrix defined in Section C.2, obtained from the normalized confusion matrix by 

(C3). In the case of the KDE discriminant, the entries of the normalized confusion matrix 

can be obtained by numerical integration of the relevant parts of the pdfs (see Figure C1 

as a graphical example), whereas the confusion matrix for the QDA is obtained by 

explicitly classifying all observations. 

Note that the KDE approach and the QDA approach require a training dataset (for 

the KDE reconstruction of the pdf in the former and for the estimation of the mean and 
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covariance in the latter). Relying on the same dataset for training and for testing (i.e., for 

building the confusion matrix) could slightly bias the results towards correct classification 

(that is, towards a non-overlap result). However, we expect this effect to be negligible 

given the rather large size of the dataset (i.e., 5000 observations of each class). 

Appendix D: Kernel Density Estimation 

Here, we provide a brief introduction to univariate Kernel Density Estimation 

(KDE), which we use to reconstruct curves, 𝑓(𝑥), which are (or can be treated as) 

probability density functions, relying on a limited number of samples 𝑋𝑝, 𝑝 = 1, … , 𝑛. 

The KDE is formulated as 

𝑓(𝑥) ≅ 𝑓(𝑥) =
1

𝑛
∑ 𝑊(𝑋𝑝 − 𝑥; ℎ)

𝑛

𝑝=1

, (D1) 

where 𝑊 is a kernel or smoothing function, which we choose to be Gaussian, i.e., 

𝑊(𝑢; ℎ) =
1

√2𝜋ℎ
exp (−

𝑢2

2ℎ2
) , (D2) 

ℎ being the kernel bandwidth. 

When 𝑋𝑝 are particle longitudinal positions or arrival times, 𝑓(𝑥) is the longitudinal 

density of solute mass (8) or the breakthrough curve (9), respectively (Fernàndez-Garcia 

and Sànchez-Vila, 2011; Sole-Mari et al., 2017, 2019; Sole-Mari and Fernàndez-Garcia, 

2018; Pedretti and Fernàndez-Garcia, 2013). Alternatively, the collection of samples 𝑋𝑝 

can be formed by evaluations of a scalar metric that varies across MC realizations and in 

this case 𝑓(𝑥) is the probability density function of the metric 𝑥 (see Appendix C). 

A key aspect of the accuracy of KDE is to select an optimal value for the bandwidth 

ℎ. A widely popular technique employed for this aim relies on minimizing the Asymptotic 



55 
 

Mean Integrated Squared Error (AMISE). It can be shown that, for a Gaussian 𝑊, in the 

limit when 𝑛ℎ → ∞ and ℎ → 0 (e.g. Silverman, 1986) 

AMISE ≈ (2√𝜋𝑛ℎ)
−1

+
ℎ4

4
∫ (

𝜕2𝑓

𝜕𝑥2
)

2

𝑑𝑥
ℝ

. (D3) 

By setting 
𝜕AMISE

𝜕ℎ
= 0, the absolute minimum AMISE can be shown to be obtained for the 

following choice of bandwidth 

ℎ = [2√𝜋 𝑛 ∫ (
𝜕2𝑓

𝜕𝑥2
)

2

d𝑥
ℝ

]

−
1
5

. (D4) 

Since ∫ (
𝜕2𝑓

𝜕𝑥2)
2

d𝑥
ℝ

 is a priori unknown, several iterative methodologies have been 

developed to estimate it from the data and solve equation (D4). Here, we apply one such 

methodology, namely the Improved Sheater-Jones (ISJ) algorithm developed by Botev et 

al. (2010). 




