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Maximum likelihood estimation of the mixture of
log-concave densities

Hao Hua,∗, Yichao Wua, Weixin Yaob

aDepartment of Statistics, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.
bDepartment of Statistics, University of California, Riverside, California 92521, U.S.A.

Abstract

Finite mixture models are useful tools and can be estimated via the EM algorithm.

A main drawback is the strong parametric assumption about the component densities.

In this paper, a much more flexible mixture model is considered, which assumes each

component density to be log-concave. Under fairly general conditions, the log-concave

maximum likelihood estimator (LCMLE) exists and is consistent. Numeric compar-

isons are also made to demonstrate that the LCMLE improves the clustering results

while comparing with the traditional MLE for parametric mixture models.

Keywords: Consistency, Log-concave maximum likelihood estimator (LCMLE),

Mixture model.

1. Introduction

The finite mixture model (McLachlan & Peel, 2000; Mcnicholas & Murphy, 2008)

provides a flexible methodology for both theoretical and practical analysis. It has the

density of the form

f(x) =

K∑
j=1

λjgj(x; θj) x ∈ Rp, (1.1)

where λ1, . . . , λK are the mixing proportions and gj(x; θj)’s are component densities.5

The unknown parameters in the mixture model (1.1) can be estimated by the EM algo-

rithm, see e.g. Dempster et al. (1977) and McLachlan & Krishnan (2007). One major
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drawback of the traditional mixture model (1.1) is the strong parametric assumption

about the component density gj . It is often too restrictive and the density estimation

may be inaccurate due to the model misspecification. Another drawback is that each10

model requires a specific EM algorithm based on the parametric assumption.

To relax the parametric assumption, nonparametric shape constraints are becoming

increasingly popular. In this paper, we make one fairly general shape constraint for our

mixture model. We assume that each component density is log-concave. A density g

is log-concave if log g is concave. Examples of log-concave densities include normal,15

Laplace, logistic, as well as gamma and beta with certain parameter constraints. Log-

concave densities have lots of nice properties as described by Balabdaoui et al. (2009).

Their nonparametric maximum likelihood estimators were studied by Dümbgen & Ru-

fibach (2009), Cule et al. (2010), Cule & Samworth (2010), Chen & Samworth (2013),

Pal et al. (2007) and Dümbgen et al. (2011) (referred as [DSS 2011] thereafter). The20

convergence rates of these estimators for log-concave densities were studied by Doss &

Wellner (2013) and Kim & Samworth (2014). Such estimators provide more generality

and flexibility without any tuning parameters.

In our model, we assume that X1, . . . , Xn are independent d-dimensional random

variables with distribution Q0 and the mixture density f0. The mixture density f025

belongs to a given class

F = {f : f(x) =

K∑
j=1

fj(x) =

K∑
j=1

λj exp{φj(x)},λ ∈ Λ,φ ∈ Φ}, (1.2)

where λ = (λ1, . . . , λK), Λ = {(λ1, . . . , λK) : 0 < λj < 1,
∑K
j=1 λj = 1},

φ = (φ1, . . . , φK), and Φ = {(φ1, . . . , φK) : φj is concave}. We assume that each

φj is continuous and is coercive in the sense that φj(x) → −∞ as ||x|| → ∞ (j =

1, . . . ,K).30

Note that, similar to traditional normal mixture models with unequal variance, the

likelihood functions for mixture of log-concave densities are unbounded as well (e.g.

a normal mixture with x = µ1 and σ2
1 → 0, see Section 3.10 of McLachlan & Peel

(2000) for detail discussions). Many methods have been proposed to solve the un-

boundedness issue of mixture likelihood, see for example, Hathaway (1985), Chen35
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et al. (2008), and Yao (2010). Similar to Hathaway (1985), we will define LCMLE

on a constrained parameter space. Let Mj(φ) = maxx∈Rd{φj(x)}, M(1)(φ) =

minj{Mj(φ)}, and M(K)(φ) = maxj{Mj(φ)}. We further define the ratio S(φ) =

M(1)(φ)/M(K)(φ). Here, we borrow the idea of Hathaway (1985) by restricting our

interest to a constrained subspace Φη such that Φη = {φ ∈ Φ : |S(φ)| ≥ η > 0} for40

some η ∈ (0, 1]. This restriction avoids estimating the case that the modes of different

components differ a lot. By restricting on Φη , we focus our interest on f ∈ Fη , where

Fη = {f : f(x) =

K∑
j=1

fj(x) =

K∑
j=1

λj exp{φj(x)},λ ∈ Λ,φ ∈ Φη}. (1.3)

Let Qn be the empirical distribution of X1, . . . , Xn. The (restricted) log-concave

maximum likelihood estimator (LCMLE) is

fn = f(·|Qn) = argmax
f∈Fη

∫
log(f)dQn. (1.4)

In practice, similar to Hathaway (1985), picking η can be tricky for some extreme45

case. If η is too small, there might be a chance that some boundary point |S(φ)| = η

maximizes the log-likelihood and the solution depends on the choice of η. In this paper,

we do not focus on the issue of choosing η. The constrained subspace Φη is mainly

used for theoretical development. Based on our empirical experience, if we start the

algorithm from a reasonable initial value, such as the maximum likelihood estimate50

assuming all components are normal with equal variance, the unboundedness issue is

very rare.

Many methods have been proposed to rexlax the parametric assumption of (1.1).

Hunter et al. (2007), Bordes et al. (2006a), Butucea & Vandekerkhove (2014), and

Chee & Wang (2013) considered the extension of (1.1) by assuming all component55

densities are symmetric but unknown. Bordes et al. (2006b), Bordes & Vandekerkhove

(2010), Hohmann & Holzmann (2013), Xiang et al. (2014), and Ma & Yao (2015)

considered the extension of (1.1) when K = 2 and one of the component densities

is symmetric but unknown. Mixtures of log-concave densities have been studied by

Chang & Walther (2007), Cule et al. (2010) and Balabdaoui & Doss (2014). Chang60

& Walther (2007) provided an EM-type algorithm and demonstrated sound numerical
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results in the simulation study. Cule et al. (2010) applied the mixture of log-concave

model to Wisconsin breast cancer data set. Balabdaoui & Doss (2014) considered a

special case when all components have the same symmetric log-concave densities but

with different location parameters, and proved the
√
n-consistency of their proposed65

M-estimators for mixing proportion as well as location parameters. Note that these

models are special cases from the family of F . Therefore, their estimators and asymp-

totic results cannot be applied here. For example, the mixtures of normal distributions

with different component means and variances belongs to F but do not belong to the

model family considered by Balabdaoui & Doss (2014).70

To the best of our knowledge, none of existing works has studied the theoretical

properties of the estimator for the log-concave mixture model (1.2) under such gen-

eral conditions. This paper aims to fill in this gap. We show that theoretically, the

LCMLE (in the restricted subset Fη) exists, and is consistent under fairly general con-

ditions. However, we want to point out that the extension of the properties of the75

log-concave density to mixtures of log-concave densities is not trivial. The log-density

ln = l(·|Qn) = log fn is no longer guaranteed to be a concave function. Consequently,

many nice theoretical properties that stated in DSS 2011 no longer hold for our mixture

model.

The rest of the paper is organized as follows. Section 2 introduces the basic setup,80

model details, and notations. Section 3 states the theoretical properties. We review the

EM-type algorithm for log-concave mixture models in Section 4. Simulation studies

are conducted in Section 5. We end the article with a short conclusion in Section 6.

The proofs and lemmas are presented in the appendix.

2. Log-concave maximum likelihood estimator85

Let Q be a distribution on Rd. Our goal is to maximize a log-likelihood-type func-

tional:

L(φ,λ,π, Q) =

∫
log[

K∑
j=1

λj exp{φj(x)}]dQ(x)−
K∑
j=1

πj(

∫
exp{φj(x)}dx− 1),

(2.1)

4



where πj’s are Lagrange multipliers to incorporate the constraint
∫

exp{φj(x)}dx =

1 (j = 1, . . . ,K). We define a profile log-likelihood:

L(Q) = sup
φ∈Φη,λ∈Λ,π

L(φ,λ,π, Q). (2.2)

If, for fixed Q, (ψ,λ∗,π∗) maximizes L(φ,λ,π, Q), it will automatically satisfy

that:

π∗j = E(π(j|x)) =

∫
λ∗j exp{ψj(x)}

(
∑K
h=1 λ

∗
h exp{ψh(x)})

dQ(x); (2.3)∫
exp{ψj(x)}dx = 1 (j = 1, 2, . . . ,K). (2.4)

Note that differing from the non-mixture setting in DSS 2011, π∗j is not equal to 1.90

To verify this, note that φ + c ∈ Φ for any fixed vector of functions φ ∈ Φ and

arbitrary c = (c1, . . . , cK) ∈ RK , and

∂L(ψ + c,λ,π, Q)

∂ch
|c=0 = (

∫
λh exp{ψh(x)}∑K
j=1 λj exp{ψj(x)}

dQ(x)− πh
∫
eψh(x)dx) = 0,

∂L(ψ,λ,π, Q)

∂πh
= 1−

∫
exp{ψh(x)}dx = 0.

The maximizer (ψ,λ∗) forms the log-likelihood maximizer l∗(x) = log
∑K
j=1 λ

∗
je
ψj(x).

3. Theoretical Properties

Before we state the main theories, we first define the convex support of a distribu-

tion.

Definition For any distribution Q, let Q(C) be the probability measure of the set C.

The convex support of Q is the set such that:

csupp(Q) =
⋂
{C : C ⊆ Rd closed and convex, Q(C) = 1}.

The convex support is itself closed and convex with Q(csupp(Q)) = 1.95

We first show the existence of the maximizer of (2.1) based on the following general

assumptions:

(A1)
∫
||x||dQ <∞ (We define ||x|| as Euclidean norm in our paper).

(A2) interior(csupp(Q)) 6= ∅.
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Theorem 1. For anyQ that satisfies (A1) and (A2), the value of L(Q) is real and, with100

probability 1, there exists a maximizer:

(ψ,λ∗,π∗) = argmax
φ∈Φη,λ∈Λ,π

L(φ,λ,π, Q) such that
∫
eψj(x)dx = 1 for j = 1, . . . ,K.

Next, we establish the consistency of the estimated mixture density. In the fol-

lowing text, we refer the concept of convergence of distribution as converging with

respect to Mallows distance D1: D1(Q,Q
′
) = inf(X,X′ )E||X − X

′ ||, where Q

and Q
′

are two distributions and the infimum is taken over all pairs of (X,X
′
) such105

that X ∼ Q and X
′ ∼ Q

′
. The convergence with respect to Mallows distance,

i.e. limn→∞D1(Qn, Q) = 0, is equivalent with Qn →w Q and
∫
‖x‖dQn(x) →∫

‖x‖dQ(x) as n→∞.

Theorem 2. Let a sequence Qn and the true distribution Q0 satisfy (A1) and (A2).

Moreover, if the following condition holds:

(A3) lim
n→∞

D1(Qn, Q0) = 0.

Then, with probability 1,

lim
n→∞

L(Qn) = L(Q0).

Let φnj’s and λnj’s be the maximizer corresponding to profile log-likelihood L(Qn),

i.e, fn(x) =
∑
λnj exp{φnj(x)} = f(·|Qn) ∈ Fη . For f0(x) = f(·|Q0) ∈ Fη , we

have:

lim
n→∞,x→y

fn(x) = f0(y) for all y /∈ ∂{f0 ≥ 0}, (3.1)

lim
n→∞,x→y

fn(x) ≤ f0(y) for all y ∈ Rd, (3.2)

lim
n→∞

∫
|fn(x)− f0(x)|dx = 0. (3.3)

The above theorem showed the consistency of the estimated mixture density. If we

further assume that the true mixture density f0(x) is identifiable, then each estimated110

component densities and mixing proportions are also consistent. We will discuss more

about the identifiability issue in Section 6.
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4. EM-type algorithm

The EM algorithm of estimating log-concave mixture densities has already been

developed by Chang & Walther (2007). Here we just briefly summarize it. First we115

run the EM algorithm for Gaussian mixture until convergence, which will provide a

good initial value. Then we use the outcome as the starting values for our EM-type

algorithm. We assume the observed data x = (x1, . . . , xn) to be incomplete and define

the missing value z = (zT1 , ..., z
T
n ), where zi is a K-dimension vector:

zij =

1 if xi belongs to jth group

0 otherwise
.

So the complete log-likelihood is:

log f(φ,λ; x, z, ) = log

n∏
i=1

K∏
j=1

[λje
φj(xi)]zij =

n∑
i=1

K∑
j=1

zij [log λj + φj(xi)],

where x = (x1, . . . , xn). In E-step, we replace zij by120

z
(t+1)
ij =

λ
(t)
j eφ̂

(t)
j (xi)∑K

h=1 λ
(t)
h eφ̂

(t)
h (xi)

.

In M-step, first we update λ by λ(t+1)
j = 1

n

∑n
i=1 z

(t+1)
ij , j = 1, . . . ,K. Then we

update φj by maximizing
∑n
i=1 z

(t+1)
ij φj(xi) with respect to φj through the function

called mlelcd in the R package LogConcDEAD (Cule et al. (2009)) and get estimator

φ̂
(t+1)
j for j = 1, . . . ,K. The estimation of φ̂j has been studied by Walther (2002)

and Rufibach (2007). Given i.i.d. data X1, . . . , Xn which follow distribution f , the125

Log-concave Maximum Likelihood Estimator (LCMLE) f̂n exists uniquely and has

support on the convex hull of the data (by Theorem 2 of Cule et al. (2010)). The

log-likelihood estimator log f̂n is a piecewise linear function with knots which are a

subset of {X1, . . . , Xn}. Walther (2002) and Rufibach (2007) provided algorithms

for computing f̂n(Xi), i = 1, . . . , n. The entire log-density log f̂n can be computed130

by linear interpolating between between log f̂n(X(i)) and log f̂n(X(i+1)). Walther

(2002) and Rufibach (2007) also pointed out that it is natural to apply weights for EM-

type algorithm. The z(t+1)
1j , . . . , z

(t+1)
nj can be viewed as weights for x1, . . . , xn when

estimating the log-concave density φj in our algorithm for j = 1, . . . ,K.
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To avoid the local maximum, we restart the algorithm 20 times and choose the result135

with the highest log-likelihood. The algorithm stops once the increasing increment is

below 10−7.

5. Numeric Results

We first show an example of density estimation for univariate case. 200 observa-

tions are generated from a mixture model of 0.3Logistic(0, 1) + 0.7Laplace(5, 1).140

This setup is at a more general form of Chang & Walther (2007), as Chang & Walther

(2007) only considered the case that one component is a location shift of the other. The

theoretical values of the component densities and the estimated values of the compo-

nent densities are shown in Figure 1.

Figure 1: EM-type algorithm estimation for log-concave mixtures. Solid line repre-

sents the truth and dashed line represents the estimation results (LCD).

As we don’t have tuning issue for LCMLE, the most attractive application of LCMLE

is density estimation with dimensionality higher than 1. For a d-dimensional log-

concave mixture density, we observe n = 200 observations X1, . . . ,Xn, where Xi =

(Xi1, . . . , Xid) ∈ Rd. To simplify our simulation, we focus on the model whose uni-

variate marginal distributions are log-concave. We model the dependence structure
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with a normal copula. Suppose (N1, . . . , Nd) be multivariate normal with mean 0 and

covariance matrix Σ. Let F1, . . . , Fd be the CDFs of desired univariate log-concave

distributions. Then,

(Xi1, . . . , Xid) = (F−1
1 (Φ(N1)), . . . , F−1

d (Φ(Nd))).

Here, we generate 200 observations for the case d = 3, which is a higher dimension145

case compared with Chang & Walther (2007). The first component (with probability

0.4) is a 3-dimensional normal with mean 0 and Σ = [1, 0.5, 0.5; 0.5, 1, 0.5; 0.5, 0.5, 1].

The second component (with probability 0.6): x-y-z coordinates are independent.

The x-coordinate is N(0,1), the y-coordinate is Gamma(2, 1) shifted by 1, and the

z-coordinate is Beta(1,4) shifted by 1. The results are replicated 100 times. In Fig-150

ure (2a), each point represents a single replicate. The x-axis represents the number of

misclassification by Normal mixture EM-algorithm. The y-axis represents the number

of misclassification by our log-concave mixture EM-algorithm. We observe significant

improvement in the sense of misclassification rates.

We are also interested in the price which we have to pay for the flexibility while the155

data actually are from normal mixtures. We generate 200 observations from a Gaussian

mixture, in which the first component (with probability 0.4) is a 3-dimensional normal

with mean 0 and covariance matrix [1, 0.5, 0.5; 0.5, 1, 0.5; 0.5, 0.5, 1], and the second

component (with probability 0.6) is shifted by (1, 1, 2) with same covariance matrix.

We also replicate the results 100 times. From Figure (2b), we observe no significant160

penalty in this case.

6. Conclusion

The log-concave maximum likelihood estimator (LCMLE) provides more flexibil-

ity to estimate mixture densities, when compared to the traditional parametric mixture

models. The estimation of LCMLE for log-concave mixtures can be achieved by an165

EM-type algorithm. The LCMLE is not sensitive to the model mis-specification and

consequently, only one implementation of EM algorithm is necessary. Through simu-

lation studies, we observed significant improvements in the sense of classification and

no significant penalties when the parametric assumption is indeed correct.
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(a) Log-concave mixtures (b) Gaussian Mixtures

Figure 2: Three-dimensional clustering result: normal mixture EM-algorithm vs log-

concave mixture EM-algorithm in the sense of number of misclassification. The solid

lines represents the identity.

In this paper, we proved the existence of the LCMLE for log-concave mixture mod-170

els. The consistency is also proved for the estimated mixture density. If the true mix-

ture density is identifiable, then the estimated component densities are also identifiable.

However, it is not an easy task to prove the overall identifiability for the most general

family of mixtures of log-concave distributions in (1.2) from a nonparametric point

of view. Some restrictive conditions, such as symmetry, are needed to ensure identi-175

fiability. Hunter et al. (2007) and Bordes et al. (2006a) proved the identifiability of

(1.1) if K = 2 and both component densities are symmetric but with different location

parameters. Balabdaoui & Doss (2014) has considered a special case of (1.2), when

φj(x; θj) = φ(x − θj) and φ is a symmetric concave function about 0, and the iden-

tifiability of (1.2) follows from Hunter et al. (2007) and Bordes et al. (2006a) when180

K = 2.
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Appendix A: Lemmas

Lemma 1 is taken from Cule & Samworth (2010). Lemma 2 to Lemma 5 are taken190

from DSS 2011. Lemma 6 is the extension of Lemma 2.13 of DSS 2011.

Lemma 1. For any log-concave distribution Q with density f , there exist finite con-

stants B1 = B1(Q) > 0 and B2 = B2(Q) > 0 such that f(x) ≤ B1 exp(−B2||x||)

for all x ∈ Rd.

Lemma 2. The following properties of Q are equivalent:

(a) csupp(Q) has non-empty interior.

(b) Q(H) < 1 for any hyperplane H ⊂ Rd.

(c) With Leb denoting Lebesgue measure on Rd,

lim
δ↓0

sup{Q(A) : A ⊂ Rd closed and convex,Leb(A) ≤ δ} < 1.

Lemma 3. Let φ be the function such that for any x, y ∈ interior(dom(φ)) and t ∈

(0, 1), if tx+ (1− t)y ∈ interior(dom(φ)), φ(tx+ (1− t)y) ≥ tφ(x) + (1− t)φ(y)

and for C ⊆ Rd,
∫
C
eφ(x)dx ≤ 1. We define Dq = {x ∈ C : φ(x) ≥ q}. For any

r < M ≤ maxx∈Rd φ(x),

Leb(Dr) ≤ (M − r)de−M/
∫ M−r

0

tde−tdt.

Lemma 4. Let φ, φ1, φ2, . . . be concave functions and φn ≤ φ. Further we assume

the set H = {x : lim infn→∞ φn(x) > −∞} is not empty. Then there exist a subse-

quence (φn(k))k of (φn)n and a function φ such that H ⊂ dom(φ)
d
= {φ > −∞}:

lim
k→∞,x→y

φn(k)(x) = φ(y) for all y ∈ interior(dom(φ)),

lim
k→∞,x→y

φn(k)(x) ≤ φ(y) for all y ∈ Rd.

11



Lemma 5. Suppose Qn is a sequence converged to some distribution Q and h be a

nonnegative and continuous function, then

lim inf
n→∞

∫
hdQn ≥

∫
hdQ.

If the stronger statement lim infn→∞
∫
hdQn =

∫
hdQ < ∞ holds, then for any

function f such that |f |/(1 + h) is bounded,

lim
n→∞

∫
fdQn =

∫
fdQ.

Lemma 6. A point x ∈ Rd is an interior point of C if and only if

h(Q, x) = sup{Q(E) : E ⊂ C,E closed and convex, x /∈ interior(E)}/Q(C) < 1.

Proof For x /∈ interior(E) and closed and convex E, there exits a unit vector uj ∈

Rd such that E is contained in the closed set HC which is a subset of C:

C ⊇ HC(x) = {y ∈ C : uT y ≤ uTx} ⊇ E.

By the definition of h(Q, x) we conclude h(Q, x) ≤ Q(HC)/Q(C) ≤ 1. There195

are two cases: E ⊂ HC and E = HC(x). For the case E ⊂ HC , by definition

h(Q, x) < 1 strictly. For the case E = HC(x), as we have x /∈ interior(E) but

x ∈ HC(x), we conclude x ∈ ∂HC(x). Now if x /∈ interior(C), by definition,

h(Q, x) = 1. On the other hand, if h(Q, x) = 1, then Q(HC(x)) = Q(C), which

leads to C = HC(x) = E. Combined with x /∈ interior(HC(x)) we can conclude200

that x /∈ interior(C). Consequently, x /∈ interior(C) ⇐⇒ h(Q, x) = 1. Thus,

x ∈ interior(C) ⇐⇒ h(Q, x) < 1.

Appendix B: Proof of Theorem 1

The first thing is to prove the finiteness of the log-likelihood type function.

L(Q) is the supreme of L(φ,λ,π, Q) over all φ ∈ Φ,λ ∈ Λ,λ ∈ RK . If we take205

a special case that φ∗j (x) = −(log λ∗j )−||x||, L(φ∗,λ∗,π, Q) = logK−
∫
||x||dQ >

−∞. Consequently, L(Q) > −∞.

Now we show L(Q) < ∞. As discussed at the end of Section 2, we do restrict

our interest to the φ such that
∫
eφj(x)dx = 1 for j = 1, . . . ,K. Consequently, we

12



define the log-density as l(x) = log
∑K
j=1 λje

φj(x) and rewrite the log-likelihood-210

type function as L(l, Q) = L(φ,λ,π, Q). For the convenience of the proof, we define

an envelope function φ(x) = maxj{φj(x)}, i.e. φ(x) ≥ l(x) for every x ∈ Rd.

This function is continuous but not smooth on d − 1 dimensional boundaries. These

boundaries divide the csupp(Q) into K sets: C1, . . . , CK . Each set Cj is defined as

Cj = {x ∈ Rd : φ(x) = φj(x)}. The sets C1, . . . , CK are disjoint except on the215

boundaries and Leb(Ci ∩ Cj) = 0 for every i 6= j. For any x, y ∈ Cj and t ∈ (0, 1),

φ(tx + (1 − t)y) ≥ tφ(x) + (1 − t)φ(y) and
∫
Cj
eφ(x)dx ≤ 1. We define Mj(φ)

and S(φ) as stated in Section 1. As L(l, Q) ≤
∑K
j=1Q(Cj)Mj , Mj > −∞, and the

restriction |S(φ)| ≥ η > 0, we focus our interest on Mj > 0 and the only case which

we have to worry about is all Mj’s increasing to infinity. We define Dq = {x ∈ Rd :220

φ(x) ≥ q}. For any c > 0,

L(l, Q) ≤
∫
φ(x)dQ =

∫
csupp(Q)\D−cM(1)

φ(x)dQ+

∫
D−cM(1)

φ(x)dQ

≤ −cM(1)(1−Q(D−cM(1)
)) +M(K)Q(D−cM(1)

)

≤ (1 + cη)
(
Q(D−cM(1)

)− cη

cη + 1

)
M(K).

We can always find sufficient large c such that the set D−cM(1)
is a closed and

convex subset of Rd. We define the set Dj,q = {x ∈ Cj : φ(x) ≥ q} ⊂ Cj . Obviously

Leb(D−cM(1)
) =

∑K
j=1 Leb(Dj,−cM(1)

). For any c > 0, applying Lemma 3 to set

Dj,−cM(1)
and letting M = M(1) yield Leb(Dj,−cM(1)

) ≤ (1 + c)Md
(1)e
−M(1)/(d! +

o(1)) → 0 as M(1) → ∞ for every j = 1, . . . ,K. Consequently, Leb(D−cM(1)
) →

0 as M(1) → ∞. By our definition, η ∈ (0, 1]. Thus, by Lemma 2, we can find

sufficiently large c and small δ such that

sup{Q(D) : D ⊂ Rd, Leb(D) ≤ δ} < cη

cη + 1
.

Thus, L(l, Q) → −∞ as M(1) → ∞, which indicates that when all modes of log-

concave densities increase to infinity, the log-likelihood is poorly characterized. On

the other hand, L(l, Q) ≤ M(K). These considerations show that L(Q) is finite and

equals the supremum of L(l, Q) for suitable finite Mj’s such that Mj ∈ [M∗j ,M
∗
j ]225

(j = 1, . . . ,K).
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Let φm,j’s and λm,j’s form a sequence lm(x) = log
∑
λm,j exp{φm,j(x)} such

that −∞ < L(lm, Q) ↑ L(Q) as m → ∞. Next, we will prove that for every

j ∈ {1, . . . ,K}, there exists a point, say, x0,j ∈ interior(csupp(Q)), such that

lim infm→∞ φm,j(x0,j) > −∞ .230

We define φm(x) = maxj{φm,j(x)}, Cm,j = {x ∈ Rd : φm(x) = φm,j(x)}, and

Mm,j = maxx∈Rd φm,j(x). For any j∗ ∈ {1, . . . ,K}, by picking any x0,j∗ ∈ Cm,j∗

such that φm,j∗(x0,j∗) ∈ [M
′

m,j∗ ,Mm,j∗), whereM
′

m,j∗ = maxx∈∂{Cm,j∗} φm,j∗(x),

there exists a sufficient small ε ≥ 0 such that the set Em,j∗ = {x ∈ Cm,j∗ :

φm,j∗(x) ≥ φm,j∗(x0,j∗) + ε} is a closed and convex subset of Cm,j∗ and x0,j∗ is235

not an interior point of Em,j∗ . Thus,

L(lm, Q) =

∫
lmdQ ≤

∫
φm(x)dQ =

∑
j 6=j∗

∫
Cm,j

φm,j(x)dQ+

∫
Cm,j∗

φm,j∗dQ

≤
∑

j 6=j∗
Mm,jQ(Cm,j) + φm,j∗(x0,j∗)Q(Cm,j∗) + (Mm,j∗ − φm,j∗(x0,j∗))Q(Em,j∗)

≤
∑K

j=1
max(Mm,j , 0) + φm,j∗(x0,j∗)Q(Cm,j∗)(1− hj∗(Q, x0,j∗)).

These inequalities hold for the case of φm,j∗(x0,j∗) = Mm,j∗ as well (ε = 0

accordingly). By Lemma 6, hj∗(Q, x0,j∗) < 1. Due to the fact that Mm,j∗ is fi-

nite, interior(Cm,j∗) is not empty. Consequently, lim infm→∞Q(Cm,j∗) > 0, which

yields

φm,j∗(x0,j∗) ≥ −
∑K
j=1 max(Mm,j , 0)− L(lm, Q)

Q(Cm,j∗)(1− hj∗(Q, x0,j∗))

> −
∑K
j=1 max(M∗j , 0)− L(l1, Q)

Q(Cm,j∗)(1− hj∗(Q, x0,j∗))
> −∞.

Hence, the set Hj = {x : lim infm→∞ φm,j(x) > −∞} is not empty for every

j ∈ {1, . . . ,K}. From Lemma 1 we conclude that for each φj , we can find suitable

finite positive constants aj , bj > 0 such that φj(x) ≤ aj − bj ||x|| ≤ a− b||x||, where

a = maxj aj > 0 and b = minj bj > 0. Then by Lemma 4, there exist a subsequence

(φ1,m(k1))k1 of (φ1,m)m and a concave function φ1 such that:

lim
k1→∞,x→y

φ1,m(k1)(x) = φ1(y) for all y ∈ interior(dom(φ1)),
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lim
k1→∞,x→y

φ1,m(k1)(x) ≤ φ1(y) for all y ∈ Rd.

If we define φ1 = −∞ on Rd \ dom(φ1), then we can rewrite them as:

lim sup
k1→∞

φ1,m(k1)(x) ≤ φ1(x) for all x ∈ ∂{dom(φ1)},

lim
k1→∞

φ1,m(k1)(x) = φ1(x) for all x ∈ Rd \ ∂{dom(φ1)}.

We can find a sub-subsequence in the original subsequence, which has the similar

property for φ2,m(k2). Keeping doing this sequentially for all φm,j’s and λm,j’s will

yield the common subsequence lm(k) and a function l∗(x) = log
∑
λj exp{φj(x)}

such that:

lim sup
k→∞

lm(k)(x) ≤ l∗(x) for all x ∈ P,

lim
k→∞

lm(k)(x) = l∗(x) for all x ∈ Rd \ P,

where P = ∪Kj=1

(
∂{dom(φj)}

)
and Leb(P) = 0. The next step is to prove that l∗(x)

is the maximizer. Applying Fatou’s lemma to the subsequence function lm(k)(x) ≤

a− b||x|| yields

lim sup
k→∞

∫
lm(k)dQ ≤

∫
l∗dQ.

Hence,

L(Q) ≥ l(l∗, Q) ≥ lim sup
k→∞

L(lm(k), Q) = L(Q),

from which we conclude L(l∗, Q) = L(Q). The first inequality follows by the defini-

tion of L(Q). The last equality follows by the definition that lm(k) is a sequence that

maximizes L(lm(k), Q) to L(Q) as k → ∞. Thus, it concludes the existence of the

maximizer l∗, which indicates the existence of λ∗j ’s and φ∗j ’s.240

Appendix C: Proof of Theorem 2

We proof the theorem for a subsequence of Qn. Let L(Qn) → Γ. As in the

proof of Theorem 1, ln(x) ≤ a − b||x|| and inf φn,j(x0) > −∞ for some x0 ∈

interior(csupp(Q)). Therefore, for a subsequence of (Qn)n, there exists a function
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l∗ such that ln(y), l∗(y) ≤ a− b||y||, and

lim sup
k→∞

ln(k)(x) ≤ l∗(x) for all x ∈ P,

lim
k→∞

ln(k)(x) = l∗(x) for all x ∈ Rd \ P.

By Skorohod’s theorem, there exists a probability space with random variables

Xn ∼ Qn, X ∼ Q such that Xn → X almost surely. We define a random variable

Hn = a− b||Xn|| − ln(Xn) ≥ 0. Applying Fatou’s lemma to Hn yields,

Γ = lim
n→∞

∫
lndQn = lim

n→∞

∫
(a− b||x||)dQn − E(Hn) = a− bγ − lim inf

n→∞
E(Hn)

≤ a− bγ − E
(

lim inf
n→∞

(Hn)
)
≤ a− bγ − E (a− b||X|| − l∗(X))

= b

(∫
||x||dQ0 − γ

)
+

∫
l∗(X)dQ0 = L(l∗, Q0) ≤ L(Q0).

Let l0(x) = log
∑
λjφj(x), i.e. λj’s and φj’s are the results corresponding with

l0. In the following proof we utilize a special approximation scheme. Let l(ε)(x) =

log
∑
λ

(ε)
j φ

(ε)
j (x), λ(ε)

j = λj and φ(ε)
j = infv,c(v

T
j x + cj) such that ||vj || ≤ ε−1

and φj(y) ≤ vTj y + cj . DSS 2011 shows that the approximation φ(ε)
j is real valued

and Lipschitz continuous with constant ε−1. Consequently, l(ε)(x) is also Lipschitz-

continuous with constant ε−1. Moreover, φ(ε)
j ≥ φj and φ(ε)

j ↓ φj pointwise as ε ↓ 0.

Thus, l(ε) ↓ l0 pointwise as ε ↓ 0 and l(1) ≥ l(ε) ≥ l0 for ε ∈ (0, 1). With this

approximation, it follows from Lipschitz-continuity,
∫
||x||dQ0 = γ < ∞, and the

stronger version of Lemma 5 that

Γ = lim
n→∞

∫
lndQn ≥ lim

n→∞
L(l(ε), Qn) = lim

n→∞

∫
l(ε)dQn −

∑
πj

∫
eφ

(ε)
j (x)dx+ 1

=

∫
l(ε)dQ0 −

∑
πj

∫
exp(φ

(ε)
j (x))dx+ 1.

Applying monotone convergence theorem to function l(1) − l(ε) and dominated

convergence theorem to exp{φ(ε)
j }’s yields, limε→0+ L(l(ε), Q0) = L(l0, Q0). Hence,

Γ ≥ L(Q0). Combining with Γ ≤ L(l∗, Q0) ≤ L(Q0) yields Γ = L(Q0) =

L(l∗, Q0), which indicates that l∗ equals the maximizer l0 = l(·|Q0) that corresponds245

to L(Q0).
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Applying to density fn = exp{ln} and f0 = exp{l0} yields,

lim
n→∞,x→y

fn(x) = f0(y) for all x ∈ Rd \ P,

lim
n→∞,x→y

fn(x) ≤ f0(y) for all y ∈ P,

where P = ∪Kj=1

(
∂{f0j > 0}

)
and Leb(P) = 0. Consequently, (fn)n → f0 almost

everywhere with respect to Lebesgue measure. In addition, |fn(x)| ≤ ea−b||x||, and∫
ea−b||x||dx is finite. Applying Lebesgue’s dominated convergence theorem yields,

lim
n→∞

∫
|fn(x)− f0(x)|dx = 0.

Consequently, we claim Theorem 2 to be true for a subsequence of the original

sequence (Qn)n. It remains to show it is true for the entire sequence.

Suppose any assertion about fn is false, then one could replace the initial sequence

(Qn)n from the start with a subsequence such that one of the following three conditions250

is satisfied:

(i)limn→∞ fn(xn) > f0(y) for some sequence (xn)n converge to point y;

(ii)limn→∞ fn(xn) < f0(y) for some sequence (xn)n converge to point y;

(iii)limn→∞
∫
|fn(x)− f0(x)|dx > 0.

Any of these three properties are transmitted to subsequence of (Qn)n, which255

would lead to a contradiction.
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