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Summary

Single-index models have gained increased popularity in time-to-event analysis owing to their 

model flexibility and advantage in dimension reduction. We propose a semiparametric framework 

for the rate function of a recurrent event counting process by modelling its size and shape 

components with single-index models. With additional monotone constraints on the two link 

functions for the size and shape components, the proposed model possesses the desired directional 

interpretability of covariate effects and encompasses many commonly used models as special 

cases. To tackle the analytical challenges arising from leaving the two link functions unspecified, 

we develop a two-step rank-based estimation procedure to estimate the regression parameters 

with or without informative censoring. The proposed estimators are asymptotically normal, with a 

root-n convergence rate. To guide model selection, we develop hypothesis testing procedures for 

checking shape and size independence. Simulation studies and a data example on a hematopoietic 

stem cell transplantation study are presented to illustrate the proposed methodology.

Keywords

Dimension reduction; Informative censoring; Kernel smoothing; Rate function; Recurrent event

For permissions, please email: journals.permissions@oup.com

ys3072@cumc.columbia.edu . 

Supplementary material
Supplementary Material available at Biometrika online includes the proofs of Theorems 1 and 2 as well as additional simulation 
results and discussions.

HHS Public Access
Author manuscript
Biometrika. Author manuscript; available in PMC 2023 October 03.

Published in final edited form as:
Biometrika. 2022 March ; 109(1): 195–208. doi:10.1093/biomet/asab008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Recurrent event data have a wide application in various fields, including medicine, 

reliability, economics and social sciences. Compared with the conventional time-to-first-

event analysis, the analysis of recurrent events better utilizes the complete event trajectory 

and often leads to improved statistical power and precision. However, the stochastic nature 

of recurrent events is more complex than a single event time, creating additional analytical 

challenges. Despite various regression models having been studied in the literature (see, for 

example, Pepe & Cai, 1993; Lawless & Nadeau, 1995; Lin et al., 1998, 2000, 2001; Ghosh, 

2004; Schaubel et al., 2006; Cook & Lawless, 2007), there has been an increasing demand 

for flexible modelling strategies to better characterize heterogeneity across subjects. As an 

example, the commonly used proportional rate model assumes that all study subjects share 

the same baseline rate function, and thus fails to account for covariate effects in applications 

where the pattern of time-varying risk profile varies across subjects.

Single-index models are popular regression models because they enjoy great flexibility 

yet possess more structures than nonparametric methods (Härdle & Stoker, 1989; Powell 

et al., 1989; Härdle et al., 1993; Ichimura, 1993; Hristache et al., 2001; Xia, 2006; 

Cui et al., 2011; Kuchibhotla et al., 2020). In general, the models assume that a linear 

combination of covariates influences the outcome via an unspecified link function. Such a 

model structure has an attractive dimension reduction feature in that the multi-dimensional 

covariate information is succinctly summarized in a single index, and thus avoids the curse 

of dimensionality in nonparametric estimation. More recently, Balabdaoui et al. (2019) and 

Groeneboom & Hendrickx (2019) considered parameter estimation under a monotonicity 

constraint on the link function. For time-to-first-event analysis, researchers have considered 

Cox-type single-index hazard models, where the link function for covariate effects is left 

unspecified and estimated using cubic splines (Huang & Liu, 2006) or kernel smoothing 

(Lu et al., 2006; Wang et al., 2009); a more general setting without the proportional hazards 

assumption has been considered in Chiang et al. (2018).

To allow flexible modelling of the counting process, we propose a new semiparametric 

framework of shape- and size-index models. Our approach is formulated by decomposing 

the rate function into shape and size functions (Wang & Huang, 2014). We assume that the 

shape and size components depend on linear combinations of covariates via unknown link 

functions, and impose monotone constraints on the link functions to facilitate interpretation 

of the covariate effects. The methodological contribution of this paper is three-fold: first, 

existing single-index model approaches usually involve only one unspecified link function, 

and thus the estimation procedures are not readily applicable to our model with two 

unknown link functions. We develop a two-step rank-based procedure by first estimating 

the shape component of the rate function, and then estimating the size component by 

maximizing a size-targeted objective function. Second, to determine if the covariate effects 

modify the shape and size components of the rate function, we develop novel testing 

procedures to test the shape or size independence of the covariates. Third, although we 

derive the estimators under noninformative censoring, we show that the estimators remain 

valid when the counting process and the censoring time are allowed to be correlated through 

a latent variable.
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2. Size- and shape-index models

Denote by N* t  the number of events occurring at or before time t, and by X a 

p-dimensional vector of baseline covariates. Let λ t ∣ X  be the conditional rate function 

of N* ⋅  given X, that is, λ t ∣ X dt = E dN* t ∣ X . The cumulative rate function is defined 

as Λ t ∣ X = ∫0
t λ u ∣ X du. Let 0, τ  be the study period of interest. Following Wang & Huang 

(2014), we consider decomposing the conditional rate function into the product of a shape 

function and a size function. The size function is the expected number of events over the 

entire study period, that is, E N* τ ∣ X = Λ τ ∣ X ; on the other hand, the shape function, 

defined by λ t ∣ X /Λ τ ∣ X , characterizes the time-varying profile of the occurrence rate 

standardized by its magnitude and gives a proper probability density function on 0, τ . We 

consider semiparametric modelling of the size and shape components using single-index 

models,

λ t ∣ X = f t, β0
TX

shape 
g γ0

TX
size 

, 0 ⩽ t ⩽ τ, (1)

where β0 and γ0 are p-dimensional vectors of regression parameters, f ⋅ , a  is an unspecified 

density function for a ∈ ℝ, and g ⋅  is an unspecified function. The linear combinations β0
TX

and γ0
TX are termed the shape index and the size index, respectively. Under the proposed 

recurrent-event modelling framework, the size index γ0
TX affects the ordinate scale of the 

rate function, while the shape index β0
TX affects the shape of the rate function, but does not 

stretch or shrink it along the vertical axis.

With recurrent adverse events, reducing the total event counts and postponing the occurrence 

of events are favourable directions. However, the single-index model does not provide 

directional interpretation of the regression parameters because the link function is left 

unspecified. To tackle this problem, we additionally impose monotone constraints on the 

link functions. Specifically, we impose the following monotonicity condition on the size 

function.

Assumption 1. We have that g γ0
TX  is increasing with the size index γ0

TX.

Under Assumption 1, a larger value of the size index γ0
TX indicates a larger expected 

number of events on 0, τ . To introduce the constraints on the shape function, we define 

F t, a = ∫0
t f u, a du, r t, a = f t, a /F t, a  and μ a = ∫0

τ 1 − F u, a du. Since f ⋅ , a  gives a 

proper density function on 0, τ , F ⋅ , a , r ⋅ , a  and μ a  can be viewed as the cumulative 

distribution, the reversed hazard function (Lagakos et al., 1988; Finkelstein, 2002) and the 

mean corresponding to f ⋅ , a , respectively. We then impose the following condition.

Assumption 2. For any t ∈ 0, τ , r t, β0
TX  is decreasing with the shape index β0

TX.

Assumption 2 corresponds to the reversed hazard rate order (Shaked & Shanthikumar, 

2007), which is stronger than the stochastic order in the sense that Assumption 2 implies 

F t, β0
TX  is increasing in β0

TX. See the Supplementary Material for a diagram illustrating the 
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reversed hazard rate order. Under Assumption 2, a larger value of β0
TX indicates that the 

events are likely to occur earlier.

Remark 1. Let m be the total event count on 0, τ  and T j be the time to the jth event. It can 

be verified that μ β0
TX = E ∑j = 1

m T j ∣ X /E m ∣ X , and that μ β0
TX  gives the average time to 

recurrent events. Moreover, in the special case where N* ⋅  is a Poisson process, it can be 

shown that μ β0
TX = E ∑j = 1

m T j ∣ X, m /m. Under Assumption 2, μ β0
TX  is decreasing in β0

TX.

As illustrated in the following examples, model (1) with Assumptions 1 and 2 encompasses 

commonly used models for single-event and recurrent-event data while providing more 

insight into the covariate effects.

Example 1. The Cox proportional hazards model assumes ℎ t ∣ X = ℎ0 t exp b0
TX , 

where ℎ t ∣ X  and ℎ0 t  are the conditional and baseline hazard functions, 

respectively. The size function for the single-event counting process is given by 

E N* τ ∣ X = 1 − s0 τ exp b0
TX , with s0 t = exp −∫0

t ℎ0 u du . The size function is increasing 

in b0
TX when s0 τ < 1 and independent of X when s0 τ = 1. The shape function is given by 

s0 t
exp b0

TX
ℎ0 t exp b0

TX / 1 − s0 τ exp b0
TX . It can be verified that the corresponding reversed 

hazard is decreasing in b0
TX. Hence, Assumption 2 is satisfied.

Example 2. The semiparametric transformation model Λ t ∣ X = v Λ0 t exp c0
TX  is a 

popular approach for recurrent events analysis (Lin et al., 2001), where Λ0 t  is an 

unspecified baseline cumulative rate function. A natural choice of the transformation 

function is the Box–Cox transformation with v t = t + 1 ρ − 1 /ρ for ρ > 0 and 

v t = log t + 1  for ρ = 0. In this case, the size function is increasing in c0
TX and Assumption 

1 is satisfied. Moreover, Assumption 2 is satisfied when ρ ≠ 1. The reversed hazard is 

decreasing in c0
TX when 0 ⩽ ρ < 1 and is decreasing in −c0

TX when ρ > 1.

For any k > 0, the pair kβ0, f t, a/k  gives the same shape component as β0, f t, a , 

leading to an identifiability problem. For convenience, we take the restricted parameter 

spaces ℬ = β = β1, …, βp
T ∈ ℝp: ∥ β ∥ = 1, βp > 0  to ensure model identifiability, where ∥⋅∥ 

denotes the Euclidean norm. Similarly, for the size parameters, we focus on the restricted 

parameter space C = γ = γ1, …, γp
T ∈ ℝp: ∥ γ ∥ = 1, γp > 0 . Simultaneously estimating the 

two sets of parameters and link functions could be computationally challenging. In what 

follows, we propose a two-step procedure to obtain robust and computationally stable 

estimators of these parameters.

3. Estimation

3.1. Estimation of the shape index

The estimation for β0 is based on the fact that, under Assumption 2, events from subjects 

with a larger value of the shape index are more likely to occur earlier. We first consider 

the ideal case where the recurrent-event counting process can be completely observed on 

SUN et al. Page 4

Biometrika. Author manuscript; available in PMC 2023 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0, τ . For subjects i and j, we compare each pair of event times from the two subjects. 

When subject i has a larger shape index than subject j, there tend to be more pairs in which 

the event time from subject i is shorter than that of subject j. It can be shown that, when 

β0
TXi ⩾ β0

TXj, we have

0

τ

0

τ
E I u < t dNi

* u dNj
* t ∣ Xi, Xj ⩾

0

τ

0

τ
E I u > t dNi

* u dNj
* t ∣ Xi, Xj ,

where ∫0
τ ∫0

τ I u < t dNi
* u dNj

* t  gives the number of event time pairs in which the event from 

the ith subject occurs earlier than the event time from the jth subject. In the same spirit 

as the maximum rank correlation estimator (Han, 1987; Sherman, 1993), we propose to 

estimate β0 by maximizing the following shape-targeted objective function:

U1
* β = 1

n n − 1 i ≠ j
I βTXi > βTXj

0

τ

0

τ

I u < t dNi
* u dNj

* t .

Denote the maximizer by β̂* = arg maxβ ∈ ℬU1
* β . The estimator β̂* can be viewed as an 

extension of the maximum rank correlation estimator, and it reduces to the maximum rank 

correlation estimator when all the subjects encounter exactly one event on 0, τ . Applying a 

similar argument to Han (1987), it can be shown that the true β0 maximizes E U1
* β .

In practice, the observation of the recurrent-event process is usually subject to right 

censoring. Let C be the time to the end of follow-up; then the process Ni
* ⋅  can only be 

observed up to Ci. Define the observed counting process N t = N* min t, C . The observed 

data Ni t , Xi, Ci , 0 ⩽ t ⩽ Ci, i = 1, …, n  are assumed to be independent and identically 

distributed replicates of N t , X, C , 0 ⩽ t ⩽ C . We first assume that C is independent of 

N* ⋅  given X. An extension to account for informative censoring is presented in § 3.4.

To estimate β0 in the presence of right censoring, we restrict the comparison of event times 

from subjects i and j to the comparable regions defined by 0, Cij , where Cij = min Ci, Cj . 

As pointed out in Huang et al. (2010) and Wang & Huang (2014), the comparison of an 

event time pair that involves an event time outside of the comparable region does not provide 

information about the model parameters. It can be shown that, when β0
TXi ⩾ β0

TXj, we have

0

τ

0

τ

E I Cij > t > u dNi
* u dNj

* t ∣ Xi, Xj ⩾
0

τ

0

τ

E
I Cij > u > t dNi

* u dNj
* t ∣ Xi, Xj .

(2)

In other words, given β0
TXi > β0

TXj, the number of concordant pairs in the comparable region 

is expected to be larger than the number of nonconcordant pairs. To estimate β0, we propose 

to maximize the following shape-targeted objective function:

U1 β = 1
n n − 1 i ≠ j

I βTXi > βTXj
0

Cij

0

Cij

I u < t dNi u dNj t .
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Denote the maximizer by β̂ = arg maxβ ∈ ℬ U1 β . The construction of the objective function 

U1 β  does not require knowing the size component, because the pairwise comparison 

removes the impact of size. The large-sample property of β̂ is established in Theorem 

1, with the proof given in the Supplementary Material. In this paper we use V −

to denote the Moore–Penrose inverse of a matrix V . Denote by f1 the density 

function of β0
TX and by ṙ t, a  the partial derivative of r t, a  with respect to a. 

Define Qk t, a = E X ⊗ kI C ⩾ t g γ0
TX ∣ β0

TX = a  for k = 0,1, 2, where v ⊗ 0 = 1, v ⊗ 1 = v

and v ⊗ 2 = vvT.

THEOREM 1. Under Conditions (C1)–(C6) in the Supplementary 

Material, n1/2 β̂ − β0  converges in distribution to a zero-mean 

normal distribution N 0, V 1
−Σ1V 1

−  as n ∞, where Σ1 = E ϕϕT

with ϕ = ∫0
τ XQ0 t, β0

TX − Q1 t, β0
TX I C ⩾ t N t f t, β0

TX dt − F t, β0
TX dN t f1 β0

TX , and 

V 1 = E f1 β0
TX ∫0

τ Q2 t, β0
TX Q0 t, β0

TX − Q1 t, β0
TX Q1 t, β0

TX T ṙ t, β0
TX F t, β0

TX 2dt .

Remark 2. The estimator β̂ is related to the maximum rank correlation estimation for 

truncated data (Abrevaya, 1999; Wang & Chiang, 2019). Consider a special case where each 

subject experiences one event on 0, τ . Since the events occurring after C are not observed, 

the observed event times can be viewed as right-truncated data, where the event time is 

truncated by C. Then, maximizing U1 β  is mathematically equivalent to the maximum rank 

correlation estimation for truncated data.

3.2. Estimation of the shape function

We next consider the estimation of the link function F t, a = ∫0
t f u, a du. It can be shown 

that the cumulative shape function F t, a  and the reversed hazard function r t, a  have 

a one-to-one correspondence relationship: F t, a = exp −∫t
τ r u, a du . As pointed out in 

Wang et al. (2001) and Xu et al. (2020), shape estimation can be reformulated as a right 

truncation problem. Motivated by the estimating equation proposed in Xu et al. (2020), 

we define the stochastic process ℳ t, a = N t − ∫0
t I C ⩾ u N u r u, a du. Under (1), we have 

E ℳ t, β0
TX ∣ X = 0 for all t ⩾ 0. Define Kℎ ⋅ = K ⋅ /ℎ /ℎ, where K ⋅  is a second-order 

kernel function with bounded support on [−1, 1] and ℎ is the bandwidth parameter. As 

ℎ 0, the expected value of Kℎ a − β0
TX ℳ t, a  tends to zero. When β0 is known, for any 

given a, one can construct a local estimating equation, n−1∑i = 1
n Kℎ a − β0

TXi ℳi dt, a = 0, 

using subjects whose shape index is in a small neighbourhood of a. Solving the local 

estimating equation for r t, a  yields

r t, a dt = i = 1
n Kℎ β0

TXi − a dNi t

i = 1
n Kℎ β0

TXi − a Ni t I Ci ⩾ t
.

Therefore, if β0 is known, one can estimate F t, a  by the kernel-type estimator F̂ ℎ t, a; β0 , 

where
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F̂ ℎ t, a; β = exp −
t

τ

i = 1
n Kℎ a − βTXi dNi u

i = 1
n Kℎ a − βTXi Ni u I Ci ⩾ u

.

Let f1 a  denote the density function of the shape index β0
TX. As n ∞, ℎ 0 and 

nℎ2 ∞, the kernel-type estimator n−1∑i = 1
n Kℎ a − β0 TXi Ni u  converges in probability 

to ∫0
u E I C ⩾ s g γ0

TX ∣ β0
TX = a f s, a ds ⋅ f1 a , while n−1∑i = 1

n Kℎ a − βTXi Ni u I Ci ⩾ u

converges in probability to F u, a E I C ⩾ u g γ0
TX ∣ β0

TX = a ⋅ f1 a . By applying the 

continuous mapping theorem, F̂ ℎ t, a; β0  converges in probability to F t, a . The proof is 

given in the Supplementary Material. Since β0 is unknown, one can plug in the estimator β̂
and estimate F t, a  by F̂ ℎ t, a; β̂ .

3.3. Estimation of the size index

To facilitate discussion, we begin with the ideal case where N* ⋅  can be completely 

observed on 0, τ . The estimation procedure is motivated by the fact that γ0
TXi > γ0

TXj implies

E Ni
* τ ∣ Xi, Xj ⩾ E Nj

* τ ∣ Xi, Xj .

In other words, a larger size index is associated with a larger number of events on 0, τ . In 

the same spirit as monotone rank estimation (Cavanagh & Sherman, 1998), we propose to 

estimate γ0 by maximizing a size-targeted objective function,

U2
* γ = 1

n n − 1 i ≠ j
I γTXi > γTXj Ni

* τ .

Maximum rank correlation estimation is not used here because monotonicity on the 

conditional expectation is weaker than monotonicity on the reversed hazard function. Based 

on the fact that E N* τ ∣ X = g γ0
TX , one may also consider other estimators for monotone 

single-index models, for example, Xia (2006) and Balabdaoui et al. (2019). The results of 

a numerical simulation study comparing different methods in estimating γ0 under complete 

follow-up are reported in the Supplementary Material. The numerical study shows that 

monotone rank estimation performs well and is computationally stable.

In the presence of censoring, the value of N* τ  is unknown and the objective function U2
* γ

cannot be maximized directly. Heuristically, if we can estimate the projected number of 

events on 0, τ  based on what is observed before C, then Ni
* τ  in U2

* γ  can be replaced with 

the projected event number. Based on (1), a natural attempt is to divide the observed event 

count by the cumulative shape function evaluated at the follow-up time C. Specifically, we 

consider the ratio Ni Ci /F Ci, β0
TXi , which projects the observed event number onto 0, τ . It 

can be shown that E Ni Ci /F Ci, β0
TXi ∣ Xi = g γ0

TXi . Therefore, for γ0
TXi > γ0

TXj, we have
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E Ni Ci

F Ci, β0
TXi

∣ Xi, Xj ⩾ E Nj Cj

F Cj, β0
TXj

∣ Xi, Xj . (3)

When F t, β0
TX  is known, we can estimate γ0 by maximizing

1
n n − 1 i ≠ j

I γTXi > γTXj
Ni Ci

F Ci, β0 TXi
. (4)

In practice, we can replace the unknown quantities in (4) with the corresponding estimates. 

Thus, we estimate γ0 by γ̂ = arg maxγ ∈ C U2 γ , where

U2 γ = 1
n n − 1 i ≠ j

I γTXi > γTXj
Ni Ci

F̂ ℎ Ci, β̂TXi; β̂
.

The large-sample property of the proposed estimator is stated in Theorem 2, with the proof 

given in the Supplementary Material. Denote by f2 the density function of γ0
TX and by ġ the 

derivative of g. Define δ X = f2 γ0
TX X − E X ∣ γ0

TX  and N = N C /F C, β0
TX .

THEOREM 2. Under Conditions (C1)-(C9) in the Supplementary Material, n1/2 γ̂ − γ0

converges in distribution to a zero-mean normal distribution N 0, V 2
−Σ2V 2

−  as 

n ∞, where Σ2 = E ψψT , V 2 = − E X − E X ∣ γ0
TX X − E X ∣ γ0

TX Tġ γ0X f2 γ0
TX  and 

ψ = δ X N − g γ0
TX + E ∫C

τ ṙ t, β0
TX dt ⋅ δ X N X − E X ∣ β0

TX T V 1
−ϕ + ∫0

τ E
δ X NI C ⩽ t ∣ β0

TX Q0 t, β0
TX F t, β0

TX −1ℳ dt, β0
TX f1 β0

TX
.

3.4. Extensions to informative censoring

In many applications, a correlated failure event such as death can terminate the observation 

of recurrent events. For example, the censoring time C can be written as C = min D, C* , 

where D is the time to death and C* is the time to dropout or the end of the study. Failing 

to account for the correlation between the failure event and the underlying recurrent-event 

process can lead to substantial bias and invalid conclusions. In the literature, frailty models 

have been used to deal with informative censoring. Let Z be an unobserved, nonnegative 

variable that is independent of the observed covariates X. We relax the independent 

censoring assumption in § 3.1 by assuming that C is independent of N* ⋅  conditioning 

on both the observed covariate X and the unobserved frailty Z, so that N* ⋅  and C are 

allowed to be correlated through Z. Consider the model

λ t ∣ Z, X = f t, β0
TX ℎ γ0

TX, Z , (5)

where the link function ℎ a, z  is monotonically increasing in a and f t, a  satisfies 

Assumption 2. As argued in Ghosh & Lin (2003) and Huang & Wang (2004), the process 

after death can be considered latent and modelled as if they could have occurred after 

death. After integrating out the frailty Z, we have λ t ∣ X = f t, β0
TX ∫0

∞ ℎ γ0
TX, z FZ dz , 
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where FZ is the cumulative distribution function of Z, and the marginalized size function 

∫0
∞ ℎ γ0

TX, z FZ dz  is increasing in γ0
TX.

Under (5), the frailty variable Z affects the rate function only through its size component. In 

fact, this structural assumption has been adopted in many existing works for recurrent-event 

data with informative censoring (Wang et al., 2001; Huang & Wang, 2004; Liu et al., 

2004; Ye et al., 2007), where the occurrence rate is inflated by a multiplicative factor 

Z. In this case, we have ℎ γ0
TX, Z ∝ Zexp γ0

TX  and the marginalized size function is the 

product of E Z  and a monotone transformation of the linear predictor of X. Under (5), 

the key inequalities in (2) and (3) that motivate the rank-based estimation still hold. Hence, 

applying the same estimation procedure as § 3.1–§ 3.3 yields consistent and asymptotically 

normal estimators for β0 and γ0 under (5). The asymptotic distributions are given in the 

Supplementary Material.

4. Testing shape and rate independence

Existing methods for recurrent-event data postulate different assumptions on the association 

between the shape component and the covariates X. To guide model selection, it is essential 

to check whether the covariates modify the shape or size function. Following the definitions 

given in Wang & Huang (2014), a rate function is said to be rate independent of X if the rate 

function does not depend on X, and is shape/size independent of X if its shape/size function 

does not depend on X. Rate independence holds if and only if both shape independence and 

size independence hold. When shape independence holds, the Cox-type models for recurrent 

events are an appropriate choice for regression models, as they are shape independent. Wang 

& Huang (2014) developed nonparametric tests for checking shape and size independence 

with a single variable; however, it is not clear how their testing procedures can be extended 

to handle multiple covariates. In what follows, we consider nonparametric tests for shape 

and rate independence in the general setting.

For testing shape independence, we consider Kendall’s tau-type rank correlation coefficient

κ b = 2
n n − 1 i < j 0

Cij

0

Cij

sgn bTXi − bTXj sgn u − t dNi u dNj t ,

where b is a p-dimensional vector in ℬ and sgn a  is −1,0 or 1 if a is negative, 

zero or positive, respectively. As before, the statistic κ b  removes the impact of size 

by applying pairwise comparison, and thus can work without additional assumptions 

on size. Moreover, the comparison of recurrent event times is restricted to the 

comparable region 0, Cij  to account for censoring. When p = 1, κ b  reduces to the 

shape-independence test proposed in Wang & Huang (2014). Under shape independence, 

for any given b, κ b  converges in probability to 0 as n ∞. Naturally, one can 

construct a Kolmogorov–Smirnov-type test statistic supb ∈ ℬ n1/2κ b . We note that κ b  is 

a nonsmooth function in b, and the optimization on ℬ is numerically challenging. To 

overcome the computational challenge, we consider the numerical approximation and 
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evaluate the supremum on a finite, uniform grid on the unit sphere, denoted by ℬ*. 

Under the null hypothesis, supb ∈ ℬ* n1/2κ b  converges in distribution to a random variable 

supb ∈ ℬ* G b  as n ∞, where G b  is a zero-mean Gaussian process with covariance 

cov G b1 , G b2 = 4E ξ O1, O2, b1 ξ O1, O3, b2 , ξ Oi, Oj, b = ∫0
Cij ∫0

Cij sgn bTXi − bTXj sgn u − t dNi

u dNj t
, 

with Oi representing the observed data of subject i. In practice, one can approximate the null 

distribution supb ∈ ℬ* G b  using bootstrap methods. Specifically, for the mth bootstrap sample 

1 ⩽ m ⩽ M , we calculate the statistic κm b  for b ∈ ℬ*. Given a nominal level α, the critical 

value cκ is the 100 × 1 − α  percentile of supb ∈ ℬ* n1/2 κm b − κ b , m = 1, …, M . Thus, we 

reject the null hypothesis when n1/2supb ∈ ℬ* κ b > cκ.

Next, we consider an extension of the size-independence test in Wang & Huang (2014),

κ2 b = 2
n n − 1 i < j

sgn bTXi − bTXj Ni Cij − Nj Cij .

When both shape and size independence hold, κ2 b  converges in probability to 0 as n ∞
for each b. Moreover, the Kolmogorov–Smirnov-type test statistic supb ∈ ℬ* κ2 b  converges 

in distribution to supb ∈ ℬ* G2 b  as n ∞, where G2 b  is a zero-mean Gaussian process. As 

before, bootstrap methods can be applied to construct the rejection region. Similar to the 

two-step testing procedure proposed in Wang & Huang (2014), the size-independence test is 

performed only when shape independence holds. The shape-independence test can be used 

alone or in combination with the size-independence test for rate independence. Bonferroni 

correction can be applied to maintain the overall Type I error rate when both tests are 

applied for testing rate independence.

5. Simulation studies

Simulations studies were conducted to evaluate the finite-sample performance of the 

proposed estimation and test procedures. The recurrent event process was generated from 

a non-homogeneous Poisson process, of which the rate function can depend on a subject-

specific latent variable, Z. Specifically, we generated the recurrent events from the following 

rate functions:

λ t ∣ X, Z = Z 1 + t −1 + 0.5Zexp bTX , β0 = − b, γ0 = b; (M1)

λ t ∣ X, Z = Zexp −0.5texp −bTX , β0 = b, γ0 = − b; (M2)

λ t ∣ X, Z = 0.5Zlog exp bTX + 1 1 + 0.5t log exp bTX + 1 − 1 , β0 = − b,
γ0 = b;

(M3)
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λ t ∣ X, Z = ZfB t, β0
TX exp γ0

TX , for t ∈ 0,1 , wherefB ⋅ , a ∝ x 1
− x exp a isaBetadensityfunction, β0 = 0.6,0.8 T, andγ0 = 0.28,0.96 T . (M4)

It can be shown that Assumptions 1 and 2 are satisfied under (M1)–(M4). We set b = 0.6,0.8
in (M1)–(M3). For each setting, we consider two covariates and X = X1, X2

T, where X1 and 

X2 are independent standard normal random variables. The censoring time was generated 

from an exponential distribution with mean 10 1 + X1 /Z, where the subject-specific latent 

variable Z was either set as Z ≡ 1 or generated from an exponential distribution with mean 

1 . Thus, in the latter case, the censoring time is correlated with the recurrent-event process 

through both X and Z. The average number of observed recurrent events ranges from two 

to eight with these settings. For each configuration, we simulated 1000 datasets with sample 

sizes of 200 and 400.

We considered a spherical parameterization of the shape and size parameters to account for 

the unit norm restriction (see, for example, Balabdaoui et al., 2019). The objective functions 

are not smooth functions of the parameters, and thus we applied the Nelder–Mead method 

to maximize the objective function. The initial values were obtained using the induced 

smoothing technique (Brown & Wang, 2005). More details are given in the Supplementary 

Material. Nonparametric bootstrap with 200 iterations was used to obtain the standard error 

of the proposed estimators. The resulting summary statistics are reported in Table 1, with the 

induced smoothing counterparts given in the Supplementary Material.

For all settings, our estimators exhibit small absolute values of bias. The average standard 

errors obtained from nonparametric bootstrap are in close agreement with the empirical 

standard errors. The associated 95% confidence intervals based on the bootstrap standard 

errors had empirical coverage percentages reasonably close to the nominal level. In 

general, the absolute values of bias and standard errors decrease as n increases. The 

proposed estimators yield slightly smaller absolute values of bias and standard errors under 

the independent censoring scheme, but compatible coverage probabilities across the two 

censoring schemes. Overall, these findings indicate that the proposed estimators exhibit 

good performance for a broad range of rate functions, and remain satisfactory when the 

correlation between recurrent events and the censoring time is characterized by a frailty 

variable in the size component.

We next generated data from (M4) with different magnitudes of β0 and γ0 to evaluate the 

Type I error rates and powers of the proposed tests in § 4. The test statistics were computed 

based on 300 equally spaced points on the unit sphere. Rejection proportions based on 1000 

replications at 0.05 significance level are reported in Table 2; the powers for more β0 and γ0

values are given in the Supplementary Material. Under rate independence, the Type I error 

rates of the shape, size and combined tests are close to the nominal level of 0.05. For the 

shape-/size-dependent scenarios, the powers increase as the sample size increases.
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6. Data example

Infectious complications are one of the major challenges after hematopoietic stem cell 

transplantation, HSCT, and cause significant morbidity. We evaluated morbidity risks among 

HSCT recipients in a prospective cohort study conducted at the Johns Hopkins Hospital. The 

cohort consists of 164 recipients who were contacted every 3 months until death or loss to 

follow-up to obtain information on serious infection episodes. The median follow-up time 

was 12.2 months, and a total of 290 infection episodes and 36 deaths were observed during 

the study. The average age at the time of transplantation was 52.2 years and ranged from 

19.2 to 75.4 years. In our analysis, we standardize age to have zero mean and unit variance. 

Among all the HSCT recipients, 78% had an allogeneic HSCT, 58% had cytomegalovirus 

positive, 57% were female, and 77% were white. In our analysis, we focus on the first 500 

days after transplant, and N* t  counts the underlying recurrent infections in the absence of 

censoring. Based on 1000 bootstrap samples, the p-values for the shape test and the size test 

are 0.048 and < 0.001, respectively.

We applied the proposed estimating procedures to obtain the shape and size indexes. 

To accommodate the potential nonlinear effect of age, we include a hinge function 

x+ = max x, 0  of the standardized age as covariates, and the knot was set as zero. In 

addition, we also included transplant type, recipient cytomegalovirus status, gender and race 

for a total of six covariates. A summary of the parameter estimates and their standard errors 

obtained from the nonparametric bootstrap with 1000 bootstrap samples are presented in 

Table 3. The results show that allogeneic transplant and age have a significant effect on 

shape; allogeneic transplant has a significant effect on size. To provide more substantive 

interpretation, one can report the effect sizes, defined as expected changes in the average 

time to events μ β0
TX  and the expected number of events g γ0

TX  resulting from changing the 

covariate values. The effect sizes generally depend on the original values of the indexes. 

The average time to infections in a subgroup of 45-year-old, nonwhite, female patients who 

were free of cytomegalovirus and received allogeneic transplants was 84.6 days longer than 

their counterparts who received autologous transplants; meanwhile, the expected number 

of events in the allogeneic group is 0.4 more than that in the autologous group. This is 

because autologous patients tended to experience infections earlier, while allogenic patients 

are susceptible to infections throughout the time interval of interest. In the above autologous 

subgroup, a ten-year increase in age is associated with an increase of 27.4 days in average 

time to infections. The link functions g and μ were estimated using kernel smoothing, with 

details given in the Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Summary of simulation results based on 1000 replications. The estimates were obtained by maximizing the 

unsmoothed rank objective functions with the induced smoothing estimators as the initial value. The bootstrap 

size is 200 for each replication. Of the 1000 replications, the average numbers of observed recurrent events are 

8.2 (6.9), 2.1 (1.9), 2.5 (2.3), 6.3 (6.2) for the four scenarios under independent censoring (informative 

censoring) ∣Bias∣, the absolute value of the empirical bias (×1000); ESE, the empirical standard error (× 1000); 

ASE, the average bootstrap standard error (× 1000); CP, the 95% empirical coverage probability (%).

Independent censoring Informative censoring

Scenario |Bias| ESE ASE CP |Bias| ESE ASE CP

n = 200
(M1) β1 25 218 222 92.2 24 207 205 94.2

β2 29 165 160 92.7 39 162 167 94.6

γ1 1 49 54 96.3 14 111 114 96.3

γ2 1 37 42 96.7 1 82 86 95.5

(M2) β1 3 95 99 94.3 2 105 112 96.1

β2 7 73 77 95.1 9 80 81 96.0

γ1 1 67 72 96.0 3 115 125 95.4

γ2 5 50 53 95.9 11 86 91 94.6

(M3) β1 1 142 151 95.8 10 170 207 96.4

β2 19 111 129 95.6 21 126 171 96.5

γ1 1 55 61 96.4 3 91 106 95.5

γ2 2 41 47 96.0 6 69 83 95.4

(M4) β1 0 39 46 95.7 3 44 51 95.2

β2 2 30 33 95.3 4 34 40 95.7

γ1 1 37 44 96.6 2 94 102 95.7

γ2 1 11 13 96.4 4 28 32 95.5

n = 400
(M1) β1 18 150 153 94.6 3 166 171 95.2

β2 11 115 116 94.2 20 131 136 95.8

γ1 1 35 39 95.9 2 76 83 95.9

γ2 0 26 29 95.8 4 57 63 95.4

(M2) β1 2 63 68 95.5 2 71 79 95.7

β2 2 48 52 95.6 3 53 58 96.0

γ1 1 46 51 95.5 2 83 87 94.9

γ2 2 35 39 95.3 5 63 67 94.3

(M3) β1 3 98 104 95.5 5 118 134 95.0

β2 7 73 85 95.4 10 90 100 95.4

γ1 1 39 44 95.8 2 65 67 95.4
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Independent censoring Informative censoring

Scenario |Bias| ESE ASE CP |Bias| ESE ASE CP

γ2 2 29 32 95.3 3 48 53 95.6

(M4) β1 1 26 30 95.8 1 31 34 95.6

β2 0 19 23 96.4 1 23 26 95.5

γ1 1 26 31 95.7 6 69 73 95.6

γ2 0 8 9 95.5 1 20 21 95.6
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Table 2.

Summary of rejection proportions of the shape- and size-independence tests, and the combined test for rate 

independence, based on 1000 replications at the 0.05 nominal level. When the test statistics for shape and size 

independence are combined to test rate independence, the significance levels of individual tests were set as 

0.025. In all settings where β0 or γ0 are nonzero, we have β0/∥ β0 ∥ = 0.6,0.8 T and γ0/∥ γ0 ∥ = 0.28,0.96 T

n = 200 n = 400
β0 γ0 Shape Size Rate Shape Size Rate

Independent censoring

0 0 0.044 0.052 0.053 0.044 0.056 0.050

0 0.2 0.038 0.999 0.997 0.043 1.000 1.000

0.2 0.2 0.745 0.997 0.998 0.955 1.000 1.000

Informative censoring

0 0 0.044 0.051 0.040 0.053 0.051 0.051

0 0.2 0.042 0.490 0.559 0.051 0.803 0.854

0.2 0.2 0.598 0.531 0.659 0.946 0.861 0.987
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Table 3.

Summary of the infection data

β SE(β ) γ SE(γ )

Age 0.209 0.081 −0.143 0.224

Age+ −0.537 0.114 0.539 0.350

Allogeneic −0.768 0.105 0.683 0.158

Cytomegalovirus positive −0.087 0.099 0.312 0.285

Male −0.102 0.105 0.348 0.182

Nonwhite 0.246 0.153 0.068 0.270

β̂ and γ̂ are the point estimators obtained from optimizing the rank-based objective functions; SE β̂  and SE γ̂  are the corresponding standard 

errors obtained from 1000 bootstrap samples; Age is standardized to have zero mean and unit variance; Age+ is the positive part of the standardized 
age.
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