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In stably stratified flows, the flux Richardson number Rif is
a measure of the ratio between buoyancy destruction and
shear production of turbulent kinetic energy (TKE). In flows
with local equilibrium between shear production, buoyancy
destruction and dissipation of TKE, the critical Rif ,c ≈ 0.21
corresponds to the limit above which Kolmogorov turbu-
lence can no longer be sustained. Analysis of the TKE and
velocity variance budget equations shows that the critical
Rif ,c is increased by the presence of positive turbulent trans-
port of TKE. This situation is observed, for example, in the
roughness sublayer above plant canopies, as demonstrated
using field data from the Amazon rainforest.
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1 | INTRUDUCTION6

In stably stratified turbulent flows, the competing effects of shear and buoyancy are traditionally characterized by7

the gradient Richardson number Rig = N 2/S2, where N =
√
(−g/ρ0)(dρ/dz ) is the Brunt-Väisälä frequency (g is8

gravitational acceleration, ρ(z ) is density, ρ0 is a reference value and z is height) and S = du/dz is the vertical shear of9

mean streamwise velocityu(z ). Using linear stability analysis on steady, two-dimensional flow,Miles (1961) andHoward10

(1961) showed that Rig (assumed constant in space) has a critical value of 0.25 above which infinitesimal perturbations11

are damped. This definition, however, does not necessarily imply that turbulence is not sustained above this limit as12

turbulence has been observed at values of Rig up to 100 (Zilitinkevich et al., 2008). As other studies report turbulence13
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decay or growth suppression at certain values of Rig (Grachev et al., 2013), the existence of critical gradient Richardson14

number remains a controversial issue.15

The flux Richardson number, on the other hand, does have a critical value observed from various laboratory16

experiment, large-eddy simulation (LES) and direct numerical simulation (DNS) (Zilitinkevich et al., 2010; Katul et al.,17

2014). Rif is defined as the ratio of buoyancy destruction (−B ) to shear production (P ) of turbulent kinetic energy (TKE).18

Although it is related to Rig by the turbulent Prandtl number (Rig /Rif = P rt = KM /KH , where KH and KM are the heat19

andmomentum eddy diffusivities), the existence of a finite asymptotic value of Rif , while Rig remains unbounded, can20

be explained by the failure of the eddy diffusivity hypothesis: as themean temperature gradient increases, the heat flux21

(and therefore −B ) remains bounded by a counter-gradient flux due to the buoyancy effect of potential temperature22

fluctuations (Zilitinkevich et al., 2007).23

From budget equations of TKE and density (or virtual temperature) variance, Ellison (1957) found Rif ,c ≈ 0.1524

whereas Townsend (1958) obtained Rif ,c ≈ 0.50, the difference being caused by different closure assumptions (Yamada,25

1975). Using velocity variance budget equations with the simplest linear Rotta closuremodel for return-to-isotropy26

terms (Rotta, 1951), and assuming isotropy for the velocity variance dissipation terms, Bou-Zeid et al. (2018) obtained27

Rif ,c = 0.21. This is exactly equal to the value obtained byMellor andYamada (1974) andYamada (1975) using analytical28

models for the full Reynolds stress tensor and temperature variance budgets, along withmore detailed redistribution29

models. In all of these analyses, the usual assumptions of the canonical atmospheric surface layer (ASL) are invoked30

(stationarity, horizontal homogeneity, and negligible turbulent transport of TKE or velocity and scalar variances).31

In the canonical ASL, the flux Richardson number is often presented in the framework ofMonin-Obukhov Similarity32

Theory (MOST), andwritten in the form Rif = ζφ−1m (ζ), where ζ = z/L is the stability parameter, z is the height above33

ground, L is the Obukhov length, and φm (ζ) is the non-dimensional vertical gradient of mean streamwise velocity.34

Experimental data show that, in the stable ASL,φm (ζ) = 1 + βζ with β ≈ 5, resulting in an asymptotic Rif → 1/β ≈ 0.235

for ζ → ∞ (increasing stability) (Wyngaard, 2010, p. 281). This result provides an upper limit for Rif which is remarkably36

close to the critical value obtained from TKE and velocity variance budgets. Note thatMOST also assumes steady-state37

and horizontally homogeneous conditions, and although it does not explicitly assume zero turbulent transport, the38

similarity functions obtained empirically correspond to a TKE budget in whichmost of the local production is balanced39

by local buoyant destruction and dissipation (Chamecki et al., 2018).40

In spite of the consensus over Rif ,c ≈ 0.20 − 0.25 from theory and observations (Zilitinkevich et al., 2010), in the41

atmosphere this value is likely related to the assumptions of the canonical ASL. For example, Grachev et al. (2013)42

observed that a well-defined inertial subrange with a −5/3 slope on the energy spectrum (i.e., “Kolmogorov turbulence”)43

was observed for Rif up to 0.20 − 0.25 in the ASL over the Arctic. Differently, Babić and Rotach (2018) observed44

“Kolmogorov turbulence” in data with Rif > 0.25 from measurements in a deciduous canopy roughness sublayer,45

speculating that the causemight be associated with surface heterogeneity. Chamecki et al. (2018) noted a large number46

of data points in the range 0.25 < Rif < 1.5 in the roughness sublayer above the Amazon forest, mostly in conditions for47

which local production was smaller than local dissipation of TKE (ε).48

In this work, we hypothesize that turbulent transport of TKE canmaintain “Kolmogorov turbulence” above Rif ≈49

0.20 − 0.25. Extending the approach presented by Bou-Zeid et al. (2018), we derive a new Rif ,c that includes the TKE50

transport term. In the reduced TKE phase-space proposed by Chamecki et al. (2018), this defines a new region of51

transport-enabled turbulence. We use the same dataset presented by Chamecki et al. (2018) to test this hypothesis and52

characterize roughness-sublayer turbulence above a forest canopy in this regime.53
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2 | CRITICAL RICHARDSON NUMBER IN THE PRESENCE OF TURBULENT54

TRANSPORT55

We start from the reduced TKE budget as defined by Chamecki et al. (2018), assuming that the turbulent transport of56

TKE is the sole responsible for the local production-dissipation imbalance (R ), i.e,57

−u′w ′
du

dz︸      ︷︷      ︸
P

+
g

θv
w ′θ′v︸     ︷︷     ︸
B

−ε = R ≈
dw ′e

dz︸︷︷︸
−Te

. (1)

Similarly, wewrite the half-variance budget equations under stationary and horizontally-homogeneous conditions as
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dz︸           ︷︷           ︸
Tw

+
p′

ρ0

∂w ′

∂z︸     ︷︷     ︸
Πw

−εw = 0, (4)

where e = (u′u′ + v ′v ′ +w ′w ′)/2 and e is the TKE, u , v andw are the streamwise, cross-stream and vertical velocity58

components, respectively, θv is virtual temperature, ρ0 is a reference density, p is pressure, and ε, εu , εv and εw are59

the dissipation rates of TKE and half-variance components, respectively. Overbar and primes represent ensemble60

mean and fluctuation, respectively. To simplify notation, hereafter we use P for shear production, B for buoyancy61

production/destruction, T for the turbulent transport and Π for pressure redistribution, as indicated in Equations62

(4)–(4).63

As proposed by Bou-Zeid et al. (2018), by summing Equations (2) and (3), assuming an approximately isotropic64

dissipation rate to write65

εu + εv = 2εw , (5)

and using Equation (4) to replace εw , all three variance equations can be combined into one equation given by66

P +Tu +Tv + Πu + Πv = 2B + 2Tw + 2Πw . (6)

Because the pressure redistribution terms add up to zero, i.e.,67

Πu + Πv = −Πw , (7)

this equation can be further reduced into68

P +Tu +Tv − 2Tw − 3Πw = 2B , (8)



4 FREIRE ET AL.

or, rewriting it,69

Πw
P

+
2Tw −Tu −Tv

3P
=
1

3
+
2

3
Rif , (9)

where Rif = −B/P is the flux Richardson number.70

Following Mellor and Yamada (1974) and Bou-Zeid et al. (2018), a linear Rotta-type closure is adopted for the71

pressure redistribution term (Rotta, 1951; Davidson, 2004), namely72

Πw = −
cε

e

(
w ′w ′ −

2

3
e

)
. (10)

This closure is used in Equation (9), which is then combinedwith Equation (4) in the form73

ε/P = 1 − Rif +Te/P , (11)

resulting in74

w ′w ′

e
= −

1

3c

[
1 + 2Rif − 3Tw /P +Te/P

1 − Rif +Te/P

]
+
2

3
. (12)

This relationship betweenw ′w ′ and Rif reveals a critical value of Rif over whichw ′w ′ would become negative, and the75

constraint ofw ′w ′ > 0 yields a constraint on Rif76

Rif <
2c − 1

2c + 2
+

3

2c + 2

Tw
P

+
2c − 1

2c + 2

Te
P
. (13)

In the absence of turbulent transport (i.e. Te = Tw = 0) and adopting c = 0.9 for the closure constant of the Rotta77

model, this equation yields a critical Richardson number Rif ,c ≈ 0.21 (Bou-Zeid et al., 2018). For positive transport, this78

critical value is enhanced by the ratiosTw /P andTe/P , allowing turbulence to be sustained under stronger stratification.79

Equation (13) can be simplified even further by assumingTw = αTe (see Figure S1 in the Supporting Information), which80

gives81

Rif <
2c − 1

2c + 2
+
3α + 2c − 1

2c + 2

Te
P
. (14)

For positive net TKE turbulent transportTe > 0 (implying its vertical gradient in Equation (4) is negative and it is thus a82

source that augments TKE), Equation (14) provides a transport-enhanced critical flux Richardson number. If the values83

c = 0.9 (Katul et al., 2013) and α = 0.28 (valid for the present data, see Figure S1) are used, this yields a critical flux84

Richardson number85

Rif ,c ≈ 0.21 + 0.43Te/P . (15)

It is important to note that Rotta’s model (Equation (10)) is the simplest closure available for the pressure redistri-86

bution term, representing only the slow part of the process (Davidson, 2004). In the presence of largemean velocity87

gradients, such as for flow above pant canopies, fast redistribution terms can also be important (e.g., see Launder et al.,88

1975). For simplicity and generality, we focus on first-order effects and use only the slow component here.89
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3 | FIELD DATA90

Data from theGoAmazon experiment (Fuentes et al., 2016) are used to test the existence of turbulence and its character-91

istics in the transport-enabled region predicted by Eqn. (14). This dataset consists of wind velocity (three components)92

and virtual temperaturemeasured at 20Hz by nine sonic anemometers (model CSAT3, Campbell Scientific Inc, Logan,93

UT)mounted on a 50m tower in the Amazon rainforest. Measurement heights correspond to z/h = 0.20, 0.39, 0.52,94

0.63, 0.70, 0.90, 1.00, 1.15 and 1.38, where h = 35m is the approximate canopy height. Datawere collected continuously95

betweenMarch 2014 and January 2015 and separated in blocks of 30-min starting at 00:00 local time. Blocks with96

more than 1 second of consecutive error flags were discarded, and the remainingmissing values were replaced by the97

previous measurement. A planar fit for the entire data set was performed to correct for instrument tilting (Wilczak98

et al., 2001), using blocks withmeanwind direction at the highest anemometer within ±90◦ of the instrument axis (the99

remaining blocks were discarded). Blocks with negative heat flux at z/h = 1were filteredwith a 3-min top-hat high-pass100

filter, to eliminate non-turbulent oscillations that can be significant under stably stratified conditions (Mahrt, 2014).101

Using the criteria proposed by Vickers andMahrt (1997), blocks with non-stationary ratios larger than or equal to 0.5102

were discarded. Blocks were further selected by the existence of an inertial subrange in the second-order longitudinal103

structure function with slope within 10% of the theoretical prediction of 2/3 (Kolmogorov, 1941), estimated in the104

range 0.5 ≤ r ≤ 2m,whichwas then used to infer TKE dissipation rates via∆u2 = C2(r ε)2/3 withC2 = 1.97 following105

Chamecki andDias (2004). A time-varying displacement height d0 was estimated frommeasurements of momentum106

flux inside the canopy (Pan and Chamecki, 2016) and blocks with d0 < 0 or d0 > h were also discarded. A total of 850107

blocks from each height remained for the present analysis.108

The data analyses focus on turbulence in the roughness sublayer above the forest, i.e. at z/h ≥ 1. Therefore, mean109

velocity gradients needed to estimate the shear productionwere determined using a second-order polynomial fit in110

ln(z ) (Högström, 1988) using data from the four upper anemometers, as they follow an approximately logarithmic111

profile (see Chamecki et al. (2018) for examples). To estimate turbulent transport of TKE, a second-order polynomial fit112

in z was adjusted to the TKE vertical fluxw ′e from the upper three anemometers, because fluxes at z/h = 0.90 did not113

always conformwith the curvature of the upper three anemometers. Although it is not possible to assess the quality of114

the fit (as these are fits of second-order polynomials to three data points), the overall agreement with the literature on115

canopy flows serves as an indirect indication that the fits are reasonable.116

4 | RESULTS117

To establish confidence in our dataset and provide a basis for comparison, we first look at results under near-neutral con-118

ditions (defined as `Rif ` < 0.04 at z/h = 1.38). In this case, the normalized shear length scale Ls/h = [u(h)/(du/dz )h ]/h119

is on average 0.47, which is typical for forest environments (Finnigan, 2000). The TKE increases monotonically with120

height, with a very large gradient in the upper half of the canopy (Figure 1-a). This produces a turbulent flux of TKE that121

is predominantly negative inside the canopy and positive above (Figure 1-b), with a positive gradient where z/h > 1.122

Thus, in agreement with current understanding of canopy flows in neutral conditions (Finnigan, 2000), we observe net123

turbulent transport of TKE into the canopy region (Te < 0 for z/h > 1, Figure 1-c). This leads to an imbalance between124

local production and dissipation above the canopy (P /ε > 1), which decreases with height reaching a nearly balanced125

state at the transition between the roughness sublayer and the surface layer above (Pan and Chamecki, 2016). Under126

stable conditions, the shear length scale is reduced, on average, to Ls/h = 0.34, suggesting less penetration of shear127

layer eddies into the canopy. However, themain feature of interest here is that the TKE profile is no longermonotonic in128
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F IGURE 1 Vertical profiles of normalized (a) TKE, (b) turbulent flux of TKE, and (c) net vertical turbulent transport
of TKE for neutral conditions (`Rif ` < 0.04 at z/h = 1.38, open, black symbols) and stable conditions (Ri ≥ 0.04 at
z/h = 1.38, closed, blue symbols). Circles represent averages over data blocks and error bars represent one standard
deviation. The TKE turbulent transport was estimated from a second-order polynomial fit to the turbulent flux of TKE
above canopy (three uppermost points).

the near-canopy region, displaying a clear maximum at canopy top. This leads to predominantly positive net turbulent129

transport of TKE far above the canopy (at z/h = 1.38, Figure 1-c), so that here (P + B)/ε < 1, as observed by Chamecki130

et al. (2018). Although this particular feature has not yet been discussed in the literature, it has also been observed131

above deciduous forests (Leclerc et al., 1990; Babić and Rotach, 2018). In the present study, the existence of this region132

with positive net transport of TKE is connected to the existence of Kolmogorov turbulence with Rif > 0.21, as discussed133

next.134

As an initial step in exploring the relationship between flux Richardson number and turbulent transport of TKE,135

Figure 2-a presents the normalized transportTe/ε and residual R/ε (Eqn. ) versus Rif , for the data measured above136

the forest (z/h ≥ 1). Despite the large scatter, it is quite remarkable how clearly the line Rif = 0.21 separates points137

with positive transport from points with negative transport, on average. It is also clear that, on average, the turbulent138

transport of TKE is responsible for a significant portion of the imbalance between local production and dissipation of139

TKE. Figure 2-b shows the increase of kurtosis of streamwise and vertical velocity with Rif in the stable case, indicating140

an increase in the importance of strong events as stability increases.141

To demonstratemore clearly the relationship between flux Richardson number and transport of TKE, the same data142

are displayed on the TKE phase space developed by Chamecki et al. (2018) in Figure 3. This two-dimensional diagram143

presents data points according to P /ε and B/ε, and the local imbalance between TKE production and dissipation is144

proportional to the distance to the local balance line (indicated in Figure 3 by the black solid line given by B + P = ε). The145

diagram also explicitly shows the value of Rif as straight lines emanating from the origin (lines of constant Rif increasing146

clockwise). The runs with Rif > 0.21 present very large normalized TKE (e/u2s , where us is the local friction velocity) and147

predominantly positive net turbulent transport of TKE (Figures 3-a and 3-b, respectively). These results suggest that the148

large TKE content in this region of the phase space is not associated with local production, but rather it is transported149

by turbulence from elsewhere (note that non-turbulent variance typically observed under stable conditions have been150

removed by the 3-min high-pass filter used for stable runs). Thus, turbulent transport seems to sustain turbulence in151

stratified environments with Rif > 0.21.152
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F IGURE 2 (a) Normalized local imbalance between production and dissipation of TKE (red squares) and turbulent
transport of TKE (black circles) displayed as a function of the flux Richardson number Rif . (b) Kurtosis of streamwise
(Kuu ) and vertical (Kuw ) velocities as a function of the flux Richardson number. Symbols represent ensemble averages
conditioned on Rif and errorbars represent one standard deviation. Dashed line indicates Rif = 0.21.

Given that transport canmaintain turbulence above Rif = 0.21, it is of interest to delineate this region in the TKE153

phase space. In order to do so, wemust assume that the local imbalance between production and dissipation is only154

caused by turbulent transport so that Eqn. (4) can be used in the formTe/ε = 1 − B/ε − P /ε to rewrite Equation (14) as155

B

ε
>

α

(1 − α)

P

ε
+
1 − 3α − 2c

3 − 3α
. (16)

Equation (16) is displayed on the diagram, marking the regionwhere turbulent transport is enough to sustain turbulence156

(Figure3-c). However, Eqn. (4) is only approximately satisfiedby theobservations, as the turbulent transport is estimated157

independently from the imbalance (other potential sources of imbalance are non-stationarity, mean advection, and158

pressure transport). Hereafter, we restrict our analysis to the runs in which turbulent transport is a significant portion159

of the total imbalance. We define the parameter160

η =
(R +Te )

2

R 2 +T 2
e

, (17)

which is a measure of the fraction of the imbalance accounted for by the turbulent transport. Note that by construction161

0 ≤ η ≤ 2, with η = 0 implying that all the imbalance is caused by transport (−Te = R ). The distribution of η for the162

GoAmazon data can be found in the Supporting Information (Figure S2). From here onwe restrict the data analysis to163

runs with η ≤ 0.2, which ensures that transport is at least 50% of the total imbalance (−Te ≥ 0.5R ).164

Most of the remaining runs (68 of the 86 runs with Rif > 0.21 ) fall in the region of transport-enabled turbulence as165

predicted by Eqn. (14) (Figure 3-c). All these points have positive net transport as expected. This result does not depend166

on the choice of c = 0.9, as the change in Rif ,c , as well as the change in the region of transport-enabled turbulence, is167

small for 0.8 ≤ c ≤ 1 (see Figure 3-c). As imposed by the data selection criterion, all points shown in Figure 3-c present a168

well-defined inertial subrangewith a 2/3 slope region in the second-order structure function of streamwise velocity169

(Figure 4). An inertial subrange is also clearly present in the vertical velocity structure function, and no appreciable170

differences are found in the structure functions for transport-enabled turbulence and other stable runs with Rif < 0.21.171

Thus, we can conclude that the turbulence maintained by turbulent transport in the yellow region of the diagram172
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F IGURE 3 Data from z/h ≥ 1 displayed on the TKE phase space, color-coded based on value of (a) TKE normalized
by local friction velocity (e/u2s ) and (b) turbulent transport of TKE normalized by local dissipation rate (Te/ε). (c) Same as
(b) but including only data for B < 0. Orange line represents Equation (16) for c = 0.9, yellow region represents the
transport-enabled region, and grey lines represent Rif ,c and Equation (16) for c = 0.8 and 1. Only points with η ≤ 0.2
are displayed in (c).



FREIRE ET AL. 9

10−1

100

101

10−2 10−1 100 101 102

(a)

10−2 10−1 100 101 102

(b)

〈∆
u
2
〉/
u
2 ∗

〈∆
w

2
〉/
u
2 ∗

r/ℓǫ r/ℓǫ

F IGURE 4 Second-order structure function of streamwise velocity (black, solid line) and vertical velocity (blue,
dashed line) normalized by the friction velocity at canopy top (u∗) and the dissipation-based length scale `ε = u3∗/ε (Pan
and Chamecki, 2016). Results are shown for (a) transport-enabled turbulence (68 runs) and (b) stable runs with
0.04 ≤ Rif ≤ 0.21 (211 runs). Thick line is the average of all points in the transport enabled region, and shaded area is
one standard deviation. Dashed straight line corresponds to the 2/3 slope. Note that the data was high-pass filtered
before calculation of structure functions, which impacts the large scales of streamwise velocity (see Figure S4 in the
Supporting information).

displays a clear “Kolmogorov” energy cascade. This is in contrast to the surface layer results reported by Grachev et al.173

(2013), where large TKE transport is likely not present. Note, however, that the value of ∆w 2/∆u2 ≈ 1 in the inertial174

subrange indicates that the portion of the inertial subrange sampled in these data deviates from local isotropy (local175

isotropy implies a ratio of 4/3 (Pope, 2000)). Ratios∆w 2/∆u2 ≈ 1 have also been observed in the ASL by Chamecki and176

Dias (2004) and Chamecki et al. (2018), and in the roughness sublayer by Babić and Rotach (2018). Even though the177

evidence for anisotropywithin the inertial subrange of atmospheric turbulence is building up, further investigation is178

needed to discard other possibilities. At this point, it is not clear if local isotropywill be reached at scales smaller than179

the ones typically sampled by sonic anemometers or if these sensors introduce distortions in the flow field that lead to180

anisotropic ratios. Finally, the remaining 18 runs, which are outside the transport-enabled region, also display a clear181

inertial subrange, and the existence of Kolmogorov turbulence in these runs cannot be explained by turbulent transport182

of TKE (as Rif > Rif ,c ).183

Although turbulence with Rif > 0.21 is sustained by transport rather than by local production alone, it does not184

present distinct characteristics from typical turbulence in the stable ABL. Visual inspection of time series of vertical185

velocity (not shown) suggest that most runs are characterized by continuous turbulence, with very few runs (both above186

and below the limit Rif ,c = 0.21) displaying mild global intermittency. Runs with stronger global intermittency, typically187

observed in strongly stratified surface layers (e.g., as shown in Sun et al., 2002, 2004), were removed from our analyses188

by the stationarity tests applied. We do not observe any trend in the nonstationarity ratios with Rif (see Figure S3189

in the Supporting information), confirming that the transport-enabled turbulence identified in the present data is an190

equilibrium state unlike the decaying turbulence observed during periods of increasing stratification by Grachev et al.191

(2013). Perhaps themost distinct feature of the turbulence at elevated values of Rif is the increase in the kurtosis of192

streamwise and vertical velocity components (Figure 2-b). This departure from gaussianity, which is expected in stably193

stratified turbulence (Chu et al., 1996; Ferrero and Anfossi, 1998), increases gradually with increasing Rif , and does not194

suggest a sharp transition in behavior at the onset of transport-enabled turbulence.195
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5 | CONCLUSION196

A simple analysis of the budgets for the TKE and variances of the velocity components, with conventional closure197

assumptions but including the turbulent transport of TKE, reveals that the critical flux Richardson number for existence198

of Kolmogorov turbulence can be increased by positive turbulent transport (as compared to the case with negligible199

transport for which Rif ,c ≈ 0.21). In the TKE phase space, this leads to a well-defined region of transport-enabled200

turbulence. Data in the canopy roughness sublayer collected over the Amazon rainforest displays a region of positive201

transport under stable conditions. We show that, for data selected based on the existence of a Kolmogorov inertial202

subrange, transport becomes positive around Rif ≈ 0.21. For the cases in which the transport corresponds to at least203

half of the imbalance between TKE local production and dissipation, the transport explains the existence of Kolmogorov204

turbulence in 79% of the 86 runs with Rif > 0.21. This result confirms our initial hypothesis that in flows where205

turbulent transport of TKE is positive, Kolmogorov turbulence can be sustained under stronger stable stratifications206

than previously assumed.207
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