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Abstract

The Role of Exploratory Data Analysis and Pre-processing in Omics Studies.

by

Courtney Schiffman

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Sandrine Dudoit, Co-chair

Professor Haiyan Huang, Co-chair

Beginning with microarray data in the 90’s, omics technologies have exploded in the
last three decades. Proteomic, metabolomic, genomic and epigenomic data are used to
understand disease etiology, to detect diseases early on and to identify novel disease therapies.
Almost every omics dataset is the result of a complicated experiment and data collection
process. The unwanted variation introduced during the experimental process, along with
biological complexity and heterogeneity, requires extensive exploratory data analysis and
pre-processing to understand the variability within the data.

The goal throughout this dissertation is to demonstrate the need for appropriate ex-
ploratory data analysis and pre-processing in various omics data types, and to provide exam-
ples of such. Exploratory data analysis refers to extensive visualization and summarization
of omics data in order to understand distributional properties of samples and features, to
identify unwanted variation, to determine biological patterns, etc. Work done during ex-
ploratory data analysis informs subsequent data pre-processing, or a series of steps taken to
filter samples and features, to impute missing values, to normalize or transform the data,
etc., prior to performing formal statistical analyses.

Here, we first demonstrate exploratory data analysis and pre-processing within the con-
text of single-cell RNA-sequencing data. One goal of single cell RNA-sequencing (scRNA-
seq) is to expose possible heterogeneity within cell populations due to meaningful, biological
variation. Examining cell-to-cell heterogeneity, and further, identifying subpopulations of
cells based on scRNA-seq data has been of common interest in life science research. A
key component to successfully identifying cell subpopulations (or clustering cells) is the
(dis)similarity measure used to group the cells. We introduce a novel measure, named
SIDEseq, to assess cell-to-cell similarity using scRNA-seq data. SIDEseq first identifies a list
of putative differentially expressed (DE) genes for each pair of cells. SIDEseq then integrates
the information from all the DE gene lists (corresponding to all pairs of cells) to build a sim-
ilarity measure between two cells. SIDEseq can be implemented in any clustering algorithm
that requires a (dis)similarity matrix. This new measure incorporates information from all
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cells when evaluating the similarity between any two cells, a characteristic not commonly
found in existing (dis)similarity measures. This property is advantageous for two reasons:
(a) borrowing information from cells of different subpopulations allows for the investigation
of pair-wise cell relationships from a global perspective, and (b) information from other cells
of the same subpopulation could help to ensure a robust relationship assessment. We applied
SIDEseq to a newly generated human ovarian cancer scRNA-seq dataset, a public human
embryo scRNA-seq dataset and several simulated data sets. The clustering results suggest
that the SIDEseq measure is capable of uncovering important relationships between cells,
and outperforms or at least does as well as several popular (dis)similarity measures when
used on these datasets.

We then focus on exploratory data analysis and pre-processing in the context of adduc-
tomics data. Metabolism of chemicals from the diet, exposures to xenobiotics, the micro-
biome, and lifestyle factors (e.g., smoking, alcohol intake) produce reactive electrophiles that
react with nucleophilic sites in DNA and proteins. Since many of these reactive intermedi-
ates are unknown, we reported an untargeted adductomics method to detect Cys34 modi-
fications of human serum albumin (HSA) in human serum and plasma. Here, we extended
that assay to investigate HSA-Cys34 adducts in archived newborn dried blood spots (DBS).
As proof-of-principle, we applied the method to 49 archived DBS collected from newborns
whose mothers either actively smoked during pregnancy or were nonsmokers. Twenty-six
HSA-Cys34 adducts were detected, including Cys34 oxidation products, mixed disulfides
with low-molecular-weight thiols (e.g., cysteine, homocysteine, glutathione, cysteinylglycine,
etc.), and other modifications. We used careful exploratory data analysis and data pre-
processing methods to uncover biological signal in this relatively new omics data type. With
an ensemble of statistical approaches, the Cys34 adduct of cyanide was found to consistently
discriminate between newborns with smoking versus nonsmoking mothers with a mean fold
change (smoking/nonsmoking) of 1.31. Our DBS-based adductomics method is currently
being applied to discover in utero exposures to reactive chemicals and metabolites that may
influence disease risks later in life.

Finally, we show how exploratory data analysis and pre-processing is essential for the suc-
cessful analysis of untargeted metabolomics data. Untargeted metabolomics datasets contain
large proportions of uninformative features that can impede subsequent statistical analysis
such as biomarker discovery and metabolic pathway analysis. Thus, there is a need for
versatile and data-adaptive methods for filtering data prior to investigating the underlying
biological phenomena. Here, we propose a data-adaptive pipeline for filtering metabolomics
data that are generated by liquid chromatography-mass spectrometry (LC-MS) platforms.
Our data-adaptive pipeline includes novel methods for filtering features based on blank
samples, proportions of missing values, and estimated intra-class correlation coefficients.
Using metabolomics datasets that were generated in our laboratory from samples of human
blood serum, as well as two public LC-MS datasets, we compared our data-adaptive filtering
method with traditional methods that rely on non-method specific thresholds. The data-
adaptive approach outperformed traditional approaches in terms of removing noisy features
and retaining high quality, biologically informative ones. Our proposed data-adaptive fil-
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tering pipeline is intuitive and effectively removes uninformative features from untargeted
metabolomics datasets. It is particularly relevant for interrogation of biological phenomena
in data derived from complex matrices associated with biospecimens.
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Chapter 1

Introduction

1.1 Why is exploratory data analysis and

pre-processing necessary for omics data?

Omics data characterize the genetic or molecular profiles of biospecimens in a comprehensive
manner, and are often high dimensional [11, 55]. Examples of omics data include genomic,
metabolomic, proteomic and lipidomic data. Since the 90’s, many high-throughput technolo-
gies allowing researchers to study a wide number of omics data types have been developed
[11]. Availability of omics data makes it possible to gain a more coherent understanding
of biological functions [55]. However, since this explosion of available omics data, numer-
ous researchers have pointed out the inherent noise and heterogeneity present in these large
datasets [11, 63, 113, 96, 6]. Therefore, data- and method-dependent exploratory data anal-
ysis and pre-processing need to be done in any omics study.

Exploratory data analysis refers to a thorough investigation (often visual) and summary
of data that is done before and during data-preprocessing and prior to the primary statis-
tical analysis. This investigation can uncover unwanted and wanted variability, errors in
data collection, uninformative features (e.g. genes, metabolites), relationships among co-
variates/quality control metrics, etc. Exploratory data analysis also demonstrates to the
researcher what pre-processing methods are necessary and appropriate for the data set at
hand. An example of exploratory data analysis is using box plots of background variability
to determine which method of background correction to use for microarray data [104]. Other
examples of exploratory data analysis include using principal component analysis (PCA) to
determine sources of variation or using box plots of technical replicate samples to visualize
batch effects [122].

Data pre-processing is a broad term that can refer to a variety of tasks depending on the
omics data type. In general, data pre-processing refers to processing of raw data, quality
control analysis, data filtering and data normalization. Data normalization refers to the
process of removing unwanted variability and bias in the data to uncover meaningful bio-
logical information. Often, researchers refer to data pre-processing as the set of steps done
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to transform raw data into a data matrix of features by samples with which to do statisti-
cal inference [96, 15, 123, 100]. Examples of pre-processing of omics data include filtering
features in RNA-sequencing experiments based on quality scores supplied by software like
FastQC, normalizing data using methods such as RUV or global sample scaling to adjust for
unwanted variation, removing poor quality methylation assays based on the abundance of
hypermethylated and unmethylated regions, and identifying poor quality samples possibly
resulting from sample collection errors [55, 11, 96, 22, 15, 123, 100]. These pre-processing
examples demonstrate how exploratory data analysis and data pre-processing go hand-in-
hand; it is not enough to simply investigate the data without acting on the information
gained, and blind pre-processing without exploratory data analysis will not be data- and
method-specific.

It is tempting to put little thought into exploratory data analysis and pre-processing
in order to proceed more quickly to the statistical analysis. However, the methods used
to pre-process omics data can have a considerable impact on statistical analysis results,
as was first pointed out with microarray data [13, 20, 104, 48, 123]. With the advent
of microarray data, the topics of exploratory data analysis and data pre-processing began
to receive more attention. Numerous researchers demonstrated the effect of the choice of
background correction, of normalization procedures and of duplicate spot aggregation on
differential expression analysis using microarray data [13, 20, 104]. While true differential
expression should be detectable with any appropriate pre-processing method, inadequate or
incorrect data pre-processing can result in an abundance of false positives and negatives
[104].

Data pre-processing can also have a considerable impact on end results in metabolomics,
proteomics and genomics experiments, to name a few [96, 60, 59, 15, 123]. The reason for
this is that most omics data suffer from at least one of the following problems: technical vari-
ation within and between assays, missing values/data sparsity, abundance of uninformative
features, and poor experimental design. An abundance of technical noise can affect measures
of association such as p-values and thus mask biological heterogeneity, or make comparisons
across assays challenging [104]. Missing values are common in microarray, metabolomics
and single-cell RNA-sequencing and epigenomic data [96, 60, 104]. The challenge in pre-
processing such data is differentiating between true missing values (i.e. a transcript is not
present in a cell or a metabolite abundance is below the limit of detection) and errors in
data collection. Incorrectly imputing values during pre-processing of the data can have a
considerable effect on subsequent analyses [104, 97].

Most omics data contain vastly more features than samples, and in many cases a substan-
tial portion of the feature are uninformative [48, 122, 60]. While many statistical methods
have been developed to analyze high dimensional data, often the success of such methods
is limited by the considerable number of uninformative features [55]. Furthermore, due to
the complexity of the experiments used to collect omics data, there is ample opportunity
for errors in experimental design, such as confounding batch with the biology of interest,
failing to randomize samples in an LC-MS run, or arranging samples on a chip by pheno-
type. The above list of problems encountered in analyzing omics data is incomplete and each
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omics dataset is unique in its pre-processing requirements. Thus, even the most experienced
researcher must explore and scrutinize their data prior to statistical analysis.

1.2 Managing unwanted variation introduced during

data collection

Most omics data suffer from unwanted variation, often introduced during data collection.
Examples of unwanted variation include variation due to sample preparation, batch, sam-
ple contamination, machine performance, or even within platform biological variation (e.g.
GC-content, blood hematocrit levels, etc.) [24, 22, 99]. In order to focus on the biological
phenomena of interest, this unwanted variation must be adjusted for. Data normalization,
one of the most complex steps within data pre-processing, helps to reduce the unwanted
variation present in omics data, and to make samples and features comparable during sta-
tistical analysis [24, 22]. Exploratory data analysis prior to data normalization is crucial for
identifying the sources of unwanted variation within the data.

For example, PCA, sample box plots and relative log abundance plots are common ex-
ploratory data analysis methods used to identify unwanted variation due to batch and ma-
chine performance in gene expression and metabolomics studies [24, 22]. Instead of plotting
logged abundances of all features for each sample, relative log abundance plots show the
logged ratio of each feature to the median abundance of the feature across all samples, for
all features. Extensive exploratory data analysis in RNA-sequencing experiments has also
shown unwanted variation due to GC-content, transcript size and sequencing depth that is
adjusted for with normalization [22]. An increase in exploratory data analysis of untargeted
metabolomics data in the recent years has lead to an explosion of normalization techniques
developed for this areas of omics research [24, 81, 71]. One of the more complex normaliza-
tion tasks in untargeted metabolomics is the removal of unwanted variation in untargeted
LC-MS metabolomics of neonatal blood spots [89, 88]. Exploratory analysis of such data
revealed multiple sources of unwanted variation, including blood volume, LC-MS machine
performance, batch effects and age of the neonatal blood spots [89, 88]. Blood hematocrit
levels, indicators of blood volume, were verified as a source of unwanted variation by using
exploratory analysis. Plotting total feature abundances of samples and estimated factors
of unwanted variation against blood hematocrit levels uncovered a striking correlation in
several untargeted metabolomics studies [89, 88].

New areas of omics research, such as investigating chromatin interactions, continue to
emerge and require their own normalization procedures [16]. One of the most commonly
used techniques for investigating chromatin interactions is Hi-C. However, the Hi-C data
collection procedure is highly complex and introduces several sources of technical variation,
including spurious ligation products, and fragment length and GC-content [16]. Heatmaps
are common exploratory data analysis tools used to visualize Hi-C contact matrices, matrices
that demonstrate the degree of contact between loci throughout the genome. However, given
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the complexity of the technical and biological biases, software has recently been developed
to thoroughly visualize and explore Hi-C data with methods that go beyond heatmaps prior
to and following normalization for technical artifacts [16]. Open source software such as
GITAR [16] allows non-computational scientists to visualize their Hi-C data with histograms,
heatmaps and bar plots to understand the sources of unwanted variation. Ideally, such
software would be available and easily accessible for all kinds of omics data in order for
researchers to identify and remove unwanted variation introduced in their experiments.

1.3 Challenges with high dimensional data

Exploratory data analysis and pre-processing is especially important for omics data that con-
tain large proportions of uninformative features, such as untargeted metabolomics, ChIP-Seq,
DNA methylation and single-cell epigenomic data [48, 96, 60, 6]. Analysis of these omics
data types without proper feature filtering will likely result in an abundance of false posi-
tives and negatives in subsequent statistical analysis. For example, due to errors in feature
detection, feature matching, retention time alignment and feature integration, untargeted
metabolomics data can have large proportions of uninformative features. Some argue that
visualizing peak morphology and integration of a few quality control features and then fil-
tering features based on coefficient of variation estimates is sufficient for handling the issue
of uninformative features [122, 96]. However, in high throughput settings, these steps often
do not sufficiently reduce the number of uninformative features.

Similar to untargeted metabolomics, generating ChIP-seq data involves the challenge of
peak calling. A variety of different peak calling methods are available, and each will result
in considerably different peak lists [6]. As with metabolomics, visualization of raw data
can help with parameter selection within the peak calling algorithms, but is not enough to
sufficiently reduce the number of poor quality features in the data [6]. Further exploratory
data analysis and pre-processing work is needed for ChIP-seq data in order to better un-
derstand background signal and signal profile distributions. One of the highest dimensional
omics data types, DNA methylation data, is a perfect example of how large proportions of
noisy features can obscure biological variation of interest and also lead to false positives [48,
4]. Researchers have shown that somewhat arbitrary and inflexible feature filtering cutoffs
in DNA methylation data can lead to false positives, such as apparent methylation calls in
female samples for probes in the Y-chromosome [48]. Non-specific background fluorescence
can instead be used to remove uninformative probes from methylation data and uncover
strong biological relationships that would otherwise be hidden [48].

Like single-cell RNA-sequencing data, single-cell epigenetic data (e.g. single-cell DNA
methylation and single-cell ATAC-seq data) are extremely high dimensional and sparse. For
this reason, extensive exploratory data analysis and pre-processing is necessary for this omics
data type. For example, similar to untargeted metabolomics, only a small fraction of reads in
single-cell ATAC-seq data are used for subsequent analysis [60]. Instead of filtering features
to reduce the size of the data, often single-cell epigenetic data are combined across loci
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[60, 6]. To decide how to aggregate epigenetic data, researchers use visualization tools like
the Integrative Genomics Viewer to view single-cell data [102], and consider the biological
motivations behind different aggregation approaches. By doing so, researchers can focus on
epigenetic data at the level of promoters/enhancers, repetitive regions, etc.

1.4 Integrating different omics data types

Researchers have recently been looking to the integration of various omics data to gain a
comprehensive understanding of disease causes and etiology. Integration of omics data could
mean integrating data with shared samples but different feature sets, for example, integrating
two datasets with the same n samples, but with one measuring the proteome and the other
measuring the transcriptome of the samples [76]. Integration of omics data could also mean
combining data with the same feature sets but measured on different samples [76].

Exploratory data analysis and visualization has been used in tools such as Functional
Heatmap to integrate and identify patterns within omics time-series experiments [130]. Func-
tional Heatmap allows researchers to visualize correlations and patterns with heatmaps and
line plots (across time) in order to generate hypotheses about relationships between gene ex-
pression data and experimental observations. Exploratory data analysis and visualization is
especially important when you are trying to understand the relationship between omics data
and experimental or clinical data, since the interactions or relationships between exposure
and omics data are complex. In fact, many would argue that generation of hypotheses and
understanding of variation should begin with the visual identification of patterns and rela-
tionships. Although statistical validation is of course needed, if relationships among omics
and experimental data cannot be visualized then perhaps progression to statistical validation
is futile. Indeed, one sees an emphasis on visualization techniques in the form of dimension
reduction methods when integrating omics data [76]. Dimension reduction techniques allow
for the simultaneous exploration of multiple omics datasets, and is often the first step in
such studies.

Many researchers utilize the abundance of publicly available data when integrating vari-
ous omics data types. However, with all of the publicly available omics data and interest in
data integration, it is becoming more and more important to document how data in public
databases are pre-processed. Lakiotaki et al. argue that uniform pre-processing and anno-
tation of omics data in databases is necessary to make omics data comparable [59]. They
focus on pre-processing and integration of gene expression and DNA methylation data. They
pre-process each of the omics data types in their database in the same way. For example,
they use the same normalization method on all microarray datasets to correct for background
signal and normalize within array. This uniform pre-processing has several advantages, one
being that users of the database do not have the burden of pre-processing each public omics
dataset or of documenting their pre-processing methods since they are already clearly doc-
umented within the database. Uniform pre-processing of the datasets also makes it easy
to perform additional pre-processing and normalization across datasets if desired prior to
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integrating the various omics data types.

1.5 The impact of pre-processing on reproducibility

and replicability of results.

As previously discussed, exploratory data analysis and pre-processing can have considerable
impact on results of omics studies. It is no surprise, then, that researchers have been focusing
on how data pre-processing impacts reproducibility and replicability of results in omics
research. Analysis results for omics data may fail to reproduce if researchers use different pre-
processing methods. Furthermore, results are often not reproducible because studies fail to
clearly report the data pre-processing steps used. There is an effort in omics research to more
clearly and thoroughly report data pre-processing steps in order to make results reproducible
[122, 59, 48]. For example, omics data in public databases are now often uniformly pre-
processed and annotated to help with reproducibility and replicability of results [59]. In
metabolomics, workflows like Workflow4Metabolomics are being created so that researchers
can document their own pre-processing workflows for others to use and cite in their own
research [36].

Many have argued that uniform data pre-processing will help with replicability in omics
studies because uniformly removing spurious values and unwanted variation within studies
helps to uncover true, shared biological variability across studies [33, 48]. However, uniform
pre-processing will likely only improve replicability if the uniform pre-processing is appropri-
ate across all studies. For example, a filtering cutoff may be appropriate for one metabolomics
dataset, but that same cutoff may not sufficiently remove uninformative features in another
because of differences in sample preparation, sample size, machine performance, etc. As
discussed previously, using the wrong, albeit uniform, pre-processing method can lead to an
abundance of uninformative features that mask the biological variability of interest. There-
fore, performing uniform pre-processing with a single inflexible filtering threshold could cause
the results to fail to replicate across studies. Indeed, widely used inflexible and imprecise
pre-processing techniques may be contributing to the challenge of replication in untargeted
metabolomics, about which there is growing concern [121, 10].

Exploratory data analysis and data pre-processing can be both data-adaptive and uni-
form. The same set of exploratory and pre-processing tools can be used across studies,
but with data-dependent thresholds and parameters. In this way, uninformative features,
unwanted variation, missing values and experimental design challenges within each omics
dataset can be appropriately handled, but all under the same framework. It is easier to
replicate results if data are correctly explored and pre-processed, which is not always the
case with uniform, inflexible methods. Normalization is a perfect example of the replication
advantages of using a uniform framework for pre-processing that is also data-dependent. A
given normalization framework can be used across multiple datasets, but making adjustments
for different factors of unwanted variation, both technical and biological [33, 23, 24]. For



7

example, using the functional normalization framework in DNA methylation pre-processing,
which uses control probes to explore and identify sources of unwanted variation within each
dataset, has helped with replication in this field [33].

1.6 Benefits and disadvantages of pre-processing

platforms.

There has been an effort in recent years to make comprehensive pre-processing of omics
data easily accessible, so that scientists do not have to rely on computational biologists,
statisticians, or bioinformaticians to properly pre-process data. Web-based pre-processing
platforms have been developed for many of the most popular omics data types [1, 36, 21, 75],
with the goal of offering a comprehensive set of exploratory data analysis and pre-processing
tools to all audiences. For example, the motivation behind developing eUTOPIA, an R shiny
application for pre-processing and visualizing microarray data, was to allow users with little
experience in computer programming to successfully analyze their data. eUTOPIA allows
users to visualize the effect of the choice of each pre-processing parameter on their microarray
data [75].

Platforms that encourage visualization and exploratory data analysis in conjunction with
pre-processing allow users to learn about their data and understand the pre-processing
steps. Thus, in many cases, comprehensive pre-processing platforms increase reproducibility,
replicability and awareness around the importance of pre-processing. However, many pre-
processing platforms do not give sufficient guidance on how to appropriately pre-process the
data at hand [21, 36]. Users with little or no experience with their omics data may rely too
heavily on the platforms without doing enough research into their experiment, and thus may
choose methods that are inappropriate for their data. For example, millions of researchers
each year utilize the MetaboAnalyst server to pre-process their untargeted metabolomics data
[21]. However, [21] gives minimal guidance on how to select row- and column-wise normaliza-
tion, or how to choose the methods or thresholds for feature filtering [21]. Therefore, when
using modern, convenient, semi-automated pre-processing platforms, users should be careful
to chose those that offer comprehensive exploratory data analysis and data visualization
tools.
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Chapter 2

Uncovering biological variation with
single-cell RNA-sequencing data

2.1 Introduction

RNA-sequencing technologies have allowed researchers to explore the genetic processes un-
derlying many biological phenomena. Typical bulk RNA-sequencing data, by pooling cells
together, measures average gene expression. Since many studies require a deeper exami-
nation of genetic activities due to the complex and mysterious nature of certain diseases,
single-cell experiments quickly became a technological standard in life science research [29,
113]. Focusing in on the single-cell level allows researchers to investigate the meaningful and
illuminating heterogeneity among cells of interest and to discover cell-based biologics, e.g., to
identify cellular subpopulations and rare cell types, to identify genes differentially expressed
within subpopulations, and to examine genetic regulation networks [135].

Numerous clustering methods with varying degrees of complexity have been introduced
to study scRNA-seq data [98, 131, 53, 47]. For example, a new algorithm, named GiniClust,
was developed to cluster cells using genes with the top normalized Gini indices [53]. SNN-Cliq
is a method to identify cell subpopulations by first building a list of the k-nearest-neighbors
(k-NN) for each cell using Euclidean distance, and then assessing the similarity between any
two cells by examining their k-NN lists [131]. The RaceID (Rare Cell Type Identification)
algorithm was designed to differentiate rare, tissue or disease-specific cells among complex
populations of cells through two iterations of k-means clustering [47]. The first k-means
clustering is done with various specified similarity measures (the default measure is Pearson
correlation) in order to identify the measure which results in the most robust clusters. Out-
lier cells are then identified and clustered separately. In the second k-means clustering, the
centers of the original clusters are redefined, and cells are reassigned to the nearest cluster
center. The PhenoGraph algorithm focuses on identifying the phenotypes of cells based on
signaling proteins, whose expressions are used to construct a k-nearest-neighbor graph (as
defined by Euclidean distance) [62]. The Louvain community detection method is then used
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to partition the graph in order to find communities of phenotypically similar cells. BackSPIN,
a bi-clustering method which seeks to identify subpopulations of cells while simultaneously
finding genetic markers of the clusters, has a correlation matrix at the foundation of its
complex sorting and splitting algorithm [135]. There are many clustering methods to add
to this list, and there are surely more to come. We see that most clustering algorithms rely
on some (dis)similarity measure as a basis for clustering regardless of subsequent compu-
tational or mathematical complexity. For instance, a key component in the SNN-Cliq or
PhenoGraph algorithms is the use of k-NN, derived from Euclidean distances between cells.
However, if Euclidean distance was not an appropriate measure to use due to the nature of
the data or the study goal, then the k-NN lists as well as the final clustering results would
be misleading. Similarly, in other methods, if the employed (dis)similarity measures are
not appropriate measures of cell similarity, clustering results from the algorithms may be
unreliable. Therefore, the performance and accuracy of many clustering algorithms in the
scRNA-seq setting depend on the ability of the used (dis)similarity measures to summarize
true, subtle relationships between cells.

In this paper, we focus on introducing a novel measure, named SIDEseq (defined by
shared identified differentially expressed genes), to evaluate pair-wise similarities between
cells using scRNA-seq data. There are several intriguing and unique ideas behind SIDEseq.
Most importantly, the SIDEseq measure incorporates information from all cells in the data
set when defining the similarity between just two cells. What kind of information is important
to incorporate from all cells when defining cellular relationships? In scRNA-seq data sets,
differentially expressed (DE) genes between cells/subpopulations often represent the kinds of
relationships and information researchers care about. The SIDEseq measure first identifies
the lists of putative DE genes for all pairs of cells and then quantifies the similarity between
two cells by examining how much the two cells share in common among their resulting
lists of DE genes when they are compared against every other individual cell in the data
set. Note that we attempt to evaluate differential expression for a gene based on only two
expression values (or between just two cells). This may seem unreasonable at first glance.
However, we consider that the DE genes would likely have vague subpopulation-specific
information if they were identified across all cells from multiple subpopulations. It is likely
that these DE genes would not be as effective at distinguishing between subpopulations as the
genes that carry more explicit subpopulation information. SIDEseq attempts to extract and
integrate subpopulation-specific information from all cells. Furthermore, since it considers
all possible pairwise comparisons of cells, SIDEseq is expected to be robust against noise in
any individual list of identified DE genes. The calculation of the SIDEseq measure involves
two key quantifications: how to quantify differential expression for a gene between just two
cells and how to evaluate consistency among multiple lists of DE genes. To make SIDEseq
computationally feasible, we have introduced two simple yet effective statistics to achieve
these quantifications.

The development of SIDEseq was motivated in part by our investigation of a scRNA-seq
data set consisting of 96 cells from the human epithelial ovarian cancer cell line, CAOV-
3. Half of the cells were treated with factors that are hypothesized to be epithelial-to-
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mesenchymal (EMT) inducers. There were several motivations behind studying the sub-
populations of these cells using their expression profiles. First, such a study could reveal
the genetic markers of any subpopulations within the untreated (also referred to as control)
or treated cells which could then offer an improved understanding as to why and how they
transition to a mesenchymal phenotype. Second, by attempting to cluster cells by treatment
status, we could verify whether such treatments could actually induce the cells to transition
from epithelial to mesenchymal [42, 136]. Furthermore, the heterogeneous nature of human
ovarian cancer cells presented a challenging clustering task which is not only statistically
interesting but also biologically interesting in its own right. The cells do not differ by tissue
type, cancer type, or other forms of strong biological variation, but they are, by nature,
quite heterogeneous. The source of biological variation, which may be the most prominent
and noticeable among the cells overall, is their treatment with the two factors. However,
when the differences due to treatment are subtle (e.g., when a treatment has only a marginal
effect on cells), they could be easily overwhelmed by the cell heterogeneity. This would
bring challenges to clustering treated (by different factors) and untreated cells. We explored
the human ovarian cancer cell data set using hierarchical clustering paired with Euclidean
distance, Pearson and Spearman correlation and the SIDEseq similarity measure, for com-
parison. The traditional similarity measures were unable to clearly cluster the treated and
untreated cells. Hierarchical clustering with the SIDEseq measure was able to cluster the
cells by treatment status to a greater extent. Clustering of cells by treatment status was
especially challenging for one of the two batches/treatment factors. Therefore, our clus-
tering analysis of the human ovarian cancer cells not only allowed for a useful comparison
of measures within a challenging clustering context, but also helped to shed light on the
effectiveness (or ineffectiveness) of the two treatment factors in inducing EMT.

For further evaluation of the SIDEseq measure, we studied a public scRNA-seq data set
involving human embryo cells [131]. We focused on this public data set because, unlike our
human ovarian cancer cell data set, this data set consists of cells from different develop-
mental stages. Therefore, we believed that the cells from this data set could be clustered
more successfully and would provide a good comparison of the performance of our proposed
measure with current, popular measures. We use both hierarchical clustering and spectral
clustering of the data set to compare the similarity measures. The public data set also allows
for a comparison of clustering with SIDEseq to a more recent clustering algorithm, called
SNN-Cliq, which was originally used to cluster the embryo cells [131].

To further explore the benefits of the SIDEseq similarity measure and its ability to exploit
the information found in DE genes to define cell similarity, we also simulated several scRNA-
seq data sets. The subpopulations of cells in each data set varied in size, probability of DE
genes, mean expression of differentially and non-DE genes, etc. For each simulation, we
used the SIDEseq similarity measure with hierarchical clustering to study the measure’s
ability to react to the various simulation parameters which make clustering of cells into
true subpopulations more challenging. We also used the simulation studies to compare the
SIDEseq similarity measure with the methods used in the GiniClust algorithm [53]. In the
GiniClust algorithm, genes with the top normalized Gini indices are used for clustering [53].
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This is similar to how the SIDEseq measure uses largely the top DE genes to define the
similarity between two cells, but different in a significant way in that the GiniClust method
does not do pairwise comparisons of all cells in the data when defining the similarity between
just two cells. To test the importance of this difference, we used the top Gini index genes
as identified by the GiniClust algorithm to perform hierarchical clustering with Pearson and
Spearman correlation and Euclidean distance and compared the clustering results with those
resulting from SIDEseq. In all simulations, SIDEseq outperformed the other measures. For a
final comparison, we used the full GiniClust algorithm on the simulated data sets, but found
that this algorithm was significantly outperformed by the hierarchical clustering methods
described above.

This paper is organized as follows: First, we give a more detailed description of our
human ovarian cancer cell data set, and the preprocessing steps we took prior to analysis.
We then define our proposed similarity measure, SIDEseq. We use various simulations to
compare the methods found in the GiniClust algorithm with the SIDEseq similarity measure
and their ability to accurately identify sub-populations. Next, we compare the performance
of the SIDEseq measure with common (dis)similarities when used for hierarchical clustering
of the human ovarian cancer cell data set. Finally, we compare the performance of the
SIDEseq measure with other common measures when used for the clustering of two public,
scRNA-seq data sets.

2.2 Methods and materials

The Single-cell RNA-seq data

The novel data set of interest in this study consists of 96 cells from the human epithelial
ovarian cancer cells line, CAOV-3 (ATCC, Manassas, VA, USA). CAOV-3 cells were plated
on 100 mm tissue culture dishes at a sub-cultivation ratio of 1:5, incubated overnight in
supplemented DMEM medium, and then incubated with either thrombin (2.0 U/mL) or
TGFβ-1 (5ng/mL) (both from R&D Systems, Minneapolis, MN, USA) for 48 hours. The
samples were then prepared per the established protocol for the C1 Single-Cell Auto Prep
System (Fluidigm, San Francisco, CA, USA). To prepare the sequencing-ready library for the
Bioanalyzer QC and qPCR step, a Nextera XT DNA Sample Preparation Kit was utilized.

The ovarian cancer cells were sequenced in two batches of 48 cells each. Twenty-four of
the cells in one batch were treated with TGFβ-1, and 24 of the cells in the second batch
were treated with thrombin. The remaining cells in both batches were untreated, control
cells. Throughout the paper, the batch containing the 24 cells treated with TGFβ-1 and their
corresponding control cells will be referred to as the TGFβ-1 group, and the batch containing
the 24 cells treated with thrombin along with their control cells will be referred to as the
thrombin group. While TGFβ-1 is a well-established inducer of EMT, there is less evidence to
support thrombin’s role in EMT [42, 136]. Within the context of cancer, EMT is a process in
which cell-cell adhesion and basoapical polarity are lost, EpCAM is down-regulated, and the
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(a) No normalization (b) RUVg normalization

Figure 2.1: Principal component plot of ovarian cancer cell dataset.

expression of mesenchymal-associated genes is induced [41, 40]. There is growing evidence
that EMT is activated during, and plays a critical role in, cancer invasion and metastasis
formation [41, 40, 54, 73, 7, 84]. The heterogeneity of the cellular phenotypes resulting from
EMT in ovarian cancer cells is thought to likewise lead to an increased ability to evade early
detection [136]. There are several motivations behind studying this data set. Examining
the treated ovarian cancer cells and studying whether cells cluster by treatment status can
shed light on the effectiveness of the two treatments as EMT inducers, which in turn would
lead to a better understanding of the EMT process in ovarian cancer. As previously stated,
the TGFβ-1 treatment is a more well-studied inducer of EMT than the thrombin treatment,
which requires additional experimental validation [42, 136]. Furthermore, the possibility of
a variety of subtle subpopulations within the ovarian cancer cells as a result of EMT brings
a statistical challenge of developing sensitive measures for assessing (dis)similarities between
cells. If such subpopulations and their associated DE genes could be identified, this would
aid in the research of this dangerous, often undetected, gynecologic cancer.

An important source of unwanted biological noise in scRNA-seq experiments, especially
pertinent to our human ovarian cancer cell data set, is the variability introduced when cells to
be sequenced have different passage numbers [8]. Passage number is defined as the number of
times a cell culture was subcultured to maintain continued growth [8]. Passage number has
a non-negligible effect on gene expression and regulatory pathways within cell lines [83, 67].
Thus, when cells are sequenced in different batches and the passage numbers are different,
cells that were supposed to be biological replicates may become biologically different. This
was the case for the human ovarian cancer cell data set, where a difference in passage number
(i.e. differed by three) resulted in biologically different cells in the two batches. With a lack
of true biological replicates between the two batches, this source of unwanted variation makes
normalization across batches very challenging and suggests that within-batch normalization
is more appropriate.
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(a) Spearman correlation (b) SIDEseq similarity

Figure 2.2: Dendrograms of hierarchical clustering of RUVg normalized ovarian cancer cell
data with Spearman correlation and SIDEseq similarity.

Indeed, exploratory data analysis reveals that the cells in the two batches vary signifi-
cantly from each other. Plotting the cells according to their first two principal components
through a PCA analysis shows a clear clustering of cells by batch (Fig. 2.1 (a)), especially
along the first principal component, which explains roughly ten percent of the variance. Of
course, differences between the treated cells in the two batches is expected since the two
inducers, TGFβ-1 and thrombin, are different. However, the untreated control cells in both
batches should not have significantly different expression profiles. The apparent differences
observed between the control cells in the two batches is likely due to technical noise or un-
wanted biological variability. From this exploratory analysis we see that normalization is
needed, though this normalization may ultimately be within-batch.

To demonstrate the challenges behind normalizing across batches, we used a popular nor-
malization method and viewed the resulting data. We used the remove-unwanted-variation
technique, RUVg, from the RUVSeq R package [100]. The RUVSeq package provides a few
functions to remove unwanted factors of variation from RNA-seq data by using control genes
or replicate samples, which are independent of the biological variability of interest, to es-
timate the factors of unwanted variation using factor analysis. In this case, we try using
the RUVg method to normalize across batches because we have a set of control genes with
which to estimate the hidden factors of unwanted variation in data. In order to do the
remove-unwanted-variation normalizations, we used raw read counts, as opposed to TPM or
RPKM expression values, following the package instructions.

After RUVg normalization of the ovarian cancer cell data across batches, a scatter plot of
the first two principal components showed that cells no longer clustered by batch, but they
also failed to cluster by treatment status (Fig. 2.1 (b)). It is likely that RUVg normalization
removed too much variation in this instance, when batches were normalized together and
batch and passage number are confounded. As mentioned previously, the different passage
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Figure 2.3: Immunostaining image of TGFβ-1 treated (top panels) and thrombin treated
(bottom panels) cells.

numbers of the batches likely introduced a large amount of unexpected, biological variation
across batches, which the RUVg method would determine to be unwanted technical noise
[83]. After RUVg normalization across batches, we performed hierarchical clustering using
Pearson and Spearman correlation, resulting in no apparent clustering of cells by batch or
by treatment status (Fig. 2.2 (a)). This agrees with the principal component plot and the
concern that RUVg normalization might have removed too much variation when used to
normalize across batches. However, when we used the SIDEseq measure for clustering, it
was interesting to see that cells still clustered almost perfectly by batch, even after RUVg
normalization across batches (Fig. 2.2 (b)). This suggests that the SIDEseq measure was
able to explore the data at a deeper level and brought remaining, subtle differences between
batches to the surface.

Since normalizing across batches would always be confounded with the passage number
effects, we have focused our analysis within batches. Preliminary clustering of cells within
batches 1 and 2 (results not shown) revealed that the thrombin group (batch 2) had much
noisier clustering results than what we obtained from the TGFβ-1 group (batch 1). This sug-
gests that the thrombin treatment cells did not differentiate significantly from the untreated
cells. Furthermore, this observation is supported by immunostaining images, which show
that the thrombin treated cells (top panels of Fig. 2.3, left is untreated, right is treated)
have a smaller proportion of cells that have transitioned. This discovery about the thrombin
treatment in the data set is an important biological observation and merits further investi-
gation. Due to the apparent ineffectiveness of thrombin as an EMT inducer, we focused on
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the TGFβ-1 treated cells in batch 1 for the remainder of the study.
For normalization of the TGFβ-1 treated cells in batch 1, we used the RUVs normal-

ization method from the RUVSeq package [100], which uses replicate samples that are inde-
pendent of the biological variability of interest to estimate the factors of unwanted variation
using factor analysis. We chose RUVs over RUVg because we believed a subset of the control
cells would act as appropriate replicate samples. Although the remove unwanted variation
methods used for normalization were originally developed for bulk RNA-seq data [100], we
believe they are still appropriate for removing unwanted factors of variation in scRNA-seq
experiments. While it is true that RUVs normalization does not take into account the
dropout effect in scRNA-seq data, we believe it is still capable of removing unwanted varia-
tion from the data set and thus will allow for a meaningful clustering of cells. Furthermore,
for the purposes of our clustering task, it may not be necessary to take the dropout effect
into account when performing normalization.

We briefly discuss some normalization methods specific to scRNA-seq data. Several
scRNA-seq normalization methods require ERCC spike-ins, which are not present in our
study. Therefore, we do not apply these normalization techniques [12]. We then explored a
normalization method proposed by Lun et al., implemented in the scran package in R, who
normalize scRNA-seq data by pooling information across cells to create scaling factors that
correct for cell-specific biases [70]. We first tried normalizing both batches of cells together
using this technique, and then clustered the cells using the normalized data with hierarchical
clustering (Spearman correlation). The clustering resulted in almost perfect separation of
cells by batch, revealing that the normalization method of Lun et al. did not remove the
significant batch effect. When this competing normalization method was used to normalize
cells within batch 1 separately, clustering of cells by treatment and control status did not
improve over RUVs normalization. To quantify this observed difference in normalization
methods, we first performed hierarchical clustering with the SIDEseq measure on both the
RUVs normalized data and on the data normalized by scran. We then cut the resulting
two dendrograms into four clusters each (four clusters gave the best results) and calculated
the Rand Index on all four clusters for each normalization method. We then compared the
best two clusters (clusters with the highest Rand Index) from each normalization method,
and found that RUVs normalization resulted in two clusters each with maximum Rand
Index of 1, while the best two clusters from the competing normalization method had Rand
Indices of 0.71 and 0.64. Therefore, we concluded that RUVs normalization is the preferred
normalization method for our human ovarian cancer cell data set.

A new cell similarity measure, SIDEseq

We propose a novel measure, SIDEseq, which is defined by shared identified differentially ex-
pressed genes for single-cell RNA-seq data. Introductory work surrounding the SIDEseq mea-
sure is explained in ”Single Cell RNA-Seq: A Study on Normalization and Sub-Population
Identification Techniques” by Courtney Schiffman. The aim of this current work is to fully
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explore the statistical properties of the SIDEseq measure and to thoroughly compare it to
existing similarity measures.

Method Overview

SIDEseq first chooses DE genes for every cell-pair by only comparing the expression levels
of the two cells to produce N(N − 1)/2 lists of DE genes (one list for one pair of cells;
assuming there are N cells in total). Next, SIDEseq assesses the similarity between any two
cells by comparing the level of consistency among the relevant lists of DE genes (i.e., to
compare cells i and j, SIDEseq evaluates to what level the list of DE genes between cell i
and cell t overlaps with the list of DE genes between cell j and cell t, and then integrates
such overlapping information across all cells t 6= i, j to define the similarity between cells
i and j). The involved integration of multiple DE-gene lists in SIDEseq makes it a quite
robust measure against noise in any single list of DE genes.

The ideas behind SIDEseq stem from the belief that various subpopulations likely exist
within the data and each has a unique gene activity profile. If two cells come from the same
subpopulation, it may be easier to cluster them together by comparing their relationships
with other cells in different subpopulations than by comparing their expression profiles in
isolation. This might be the case, for example, if the noise in some expression profiles strongly
affects the similarity assessment by their expression profiles alone. Another advantage of
the SIDEseq measure is that, instead of using all genes, it uses mainly genes evaluated as
differentially expressed to build the dissimilarities between cells. This should improve the
efficiency of the measure by eliminating noise from uninformative genes.

Method Details

The SIDEseq measure involves two main calculations: the quantification of differential ex-
pression for a gene between two cells, and the evaluation of the consistency between multiple
lists of DE genes (Fig. 4.1).

The building block for the first calculation in the SIDEseq measure is a simple statistic
which is used for a rough evaluation of differential expression between two cells. Suppose
one has a matrix of gene expressions of J genes by N cells. We define

T k
i,j =

|xki − xkj |√
xki + xkj

(2.1)

where xki is the expression of gene k in cell i and xkj is the expression of gene k in cell j. The
result of calculating this statistic over all J genes between cell i and cell j is a vector, Vi,j, of
size J . This vector of statistics is computed for all distinct pairs of the N cells in the data,
and roughly indicates the difference in gene expressions between each pair. Each vector is
then sorted in decreasing order and truncated to the same length n ≤ J , so that only the
top n genes identified as DE are kept in each vector. As a result, each cell is associated
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Figure 2.4: Flowchart demonstrating creation of the SIDEseq dissimilarity measure.
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with an n× (N − 1) differential expression (DE) matrix, where each column in the matrix is
a truncated and sorted vector of statistics comparing the cell’s expressions with one of the
other N − 1 cells.

The above procedure to derive lists of DE genes for all pairs of two cells is a key component
of SIDEseq, allowing SIDEseq to evaluate the similarity between two cells through examining
their relationships with other cells. This is the novel and promising part of the SIDEseq
technique which distinguishes it from other methods. We do not consider our statistic T in
equation 2.1 to be the best or the only choice to define differential expression using only two
expression values. Rather, we consider it a simple yet practical statistic that achieves our
analysis goal. Furthermore, it generates satisfactory results. If a better statistic was found,
we could replace T by it to further improve the performance of SIDEseq.

The second key calculation in SIDEseq, which produces the final similarity measure, is
the evaluation of the consistency among the derived vectors or lists of DE genes that are
relevant to every pair of cells (Fig. 4.1). In more detail, for each t = 1, . . . , N, t 6= i, j ,
the number of genes in the intersection of cell i and cell t’s DE gene list and cell j and
cell t’s DE gene list is found. These numbers are summed across all values of t to get the
final SIDEseq measure of similarity between the two cells, which is expected to quantify
the level of consistency between the cells’ associated differential expression matrices. This
measure is the element Si,j (and Sj,i) of the SIDEseq similarity matrix S. To convert the
similarity matrix into a dissimilarity matrix, we take the maximum value in the similarity
matrix and subtract every value in the similarity matrix from the maximum value. The
diagonal elements of the dissimilarity matrix are set to zero.

Note that an alternative to step four in Fig. 4.1 is to divide the number of genes in
the intersection by the number of genes in the union (Eq. 2.2). This alternative similarity
measure is related monotonically to the original measure used in SIDEseq, and the two
statistics generate almost equivalent results based on what we have observed.

Si,j =
∑
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Selecting n

To determine n for a given data set, one has to determine a number of genes which is large
enough to capture the important biological relationships in the data, but small enough so
that uninformative, noisy genes are not included. Plotting the values for several vectors of
differential statistics is recommended to get an idea of an appropriate range for n in the data
set of interest. We found that in all three of the scRNA-seq data sets focused on in this study,
there was a range of genes which worked to give optimal clustering results. For the two data
sets with RPKM expressions and relatively strong biological signals, anywhere from 150 to
500 genes could be used to get optimal clustering results, corresponding roughly to genes
with differential statistics greater than two. More genes may be necessary for data sets with
weaker biological variation of interest, such as with the human ovarian cancer cell data set,
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where n from 600 to 3000 genes were appropriate. It should be noted that clustering results
were stable within a range of genes, providing some flexibility when it comes to selecting
this parameter.

It might be suggested that SIDEseq should allow the value of n to change between
subpopulations. For example, consider the case where there are three subpopulations of
cells: S1, S2, and S3. Also, suppose there are n12 DE genes between S1 and S2 and n23 DE
genes between S2 and S3. Let us consider the case when n12 is a lot smaller than n23, and
how this would affect the performance of SIDEseq. Suppose that n12 << n << n23. Since
n12 << n, a list of size n of DE-genes between S1 and S2 cells would be very noisy (i.e.
would contain a lot of non-DE, random genes). However, we wish to point out that no matter
if the lists are noisy or not, as long as there is a reasonable mix of noisy and informative DE
genes lists (this usually can be achieved with n not too far from the median), all the lists
together will provide useful information to help distinguish cells from S1, S2 and S3. To
see this point, let us further assume that there are n13 true DE genes between S1 and S3.
Without loss of generality, let us assume n13 is also very small, that is, both n12 and n13 are
small. Arguments will be similar when n13 is large or of reasonable size.

In the above situation, we expect:

• The cells from S1 would have the property that all their associated DE gene lists are
noisy because n12 and n13 are both small. Thus, the SIDEseq values between an S1
cell and any other cell would be small, because it is unlikely to observe a considerable
overlap between DE gene lists if at least one list is noisy.

• The cells from S2 would have the property that they have informative DE gene lists
against S3 cells but noisy DE gene lists against S1 cells. Thus, the SIDEseq values
between two S2 cells would be reasonably large since their associated informative DE
gene lists against S3 cells would significantly overlap. However, the SIDEseq values
between an S2 cell and an S3 cell would be small since their associated informative
DE gene lists are always against different cells (i.e., when compared with S2 cells, S3
cells will have informative DE gene lists while S2 cells will have noisy DE gene lists;
When compared with S3 cells, S2 cells will have informative DE gene lists while S3
cells will have noisy DE gene lists).

• The properties of S3 cells can be similarly argued as above. In brief, the SIDEseq
values between two S3 cells would be reasonably large.

In summary, S2 and S3 subpopulations can be well identified. Cells from S1 show dif-
ferent properties from S2 and S3 cells but it is hard to claim that the S1 cells form their
own cluster since they have small SIDEseq values among themselves. This however does not
seem that unreasonable to us since exceptionally small n12 and n13 may mean that the sub-
population S1 does not possess “convincing characteristics” to form its own subpopulation.
Moreover, S2 cells and S3 cells have stronger subpopulation-specific functional homogeneity
compared to the S1 cells and thus the smaller SIDEseq measures between S1 cells do seem
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to make sense to us. Of course this point is debatable. We also note that as n12 and n13

increase, the SIDEseq values between cells within S1 would increase too. Also if there is
another subpopulation under consideration, and there is a long list of DE genes between
S1 and this subpopulation, then the SIDEseq values between cells within S1 would become
large (that is, SIDEseq would be able to identify S1).

Although we have been largely happy with using DE gene lists of the same length, we
admit that SIDEseq would be further improved if we could effectively take into account
the varied lengths of different DE gene lists. We consider achieving this by adapting the
Irreproducible Discovery Rate (IDR) method [63]. The original work on IDR concerns the
reproducibility of findings (e.g. identified peaks from ChIP-sep experiments) from replicate
experiments. Particularly, the IDR method defines reproducibility as the extent to which
the ranks of measures of significance of the findings are consistent across replicates. By
jointly modeling the ranks of findings from replicate experiments using a copula mixture
model, a score called the IDR (analogous to a false discovery rate) was derived to measure
reproducibility. To apply IDR to our analysis, for any two cells, we will first compute our
differential statistic, T , for all genes. In this way, we obtain a T -profile for each pair of
cells. In the context of our study, we are interested in comparing two T -profiles rather than
two lists of findings from replicate experiments. Genes associated with high T -values are
likely DE genes, and if there are a lot of common genes with high T -values in both profiles,
the two profiles then share a lot of common DE genes. There would also be a stronger
dependence among high T -values in the two profiles. Accordingly, we now consider that the
bivariate data (X1, . . . , Xn, Y1, . . . , Yn) from two T -profiles consisting of genuine signals (i.e.,
overlapping DE genes or positively correlated high Xi’s and Yi’s) and spurious signals (i.e.,
non-overlapping DE genes and other random genes or uncorrelated Xi’s and Yi’s). Let π1
and π0 = 1− π1 denote the proportion of overlapping DE genes (Zi = 1) and the rest of the
genes (Zi = 0), respectively. We further assume Xi and Yi are from a continuous bivariate
distribution with density h1 given Zi = 1 (respectively, h0 given Zi = 0). The mixture copula
model can then be expressed as

ψ
(
T1(x), T2(y), θ0, θ1

)
=

(
π0h0

(
T1(x), T2(y), θ0

)
+ π1h1

(
T1(x), T2(y), θ1

))
T ′1(x)T ′2(y) (2.3)

with h1 and h0 describing different dependence levels between X and Y . T1(x) and T2(y) are
the unknown scales, which can be estimated empirically. After fitting the copula mixture
model, based on the estimates of π1 and π0 and the two fitted distributions h1 and h0, we
can then estimate the chance that a gene is a common DE gene between the two lists (i.e.,
P (Zi = 1|Xi, Yi)) by

z(gx, gy, i) =
π̂1ĥ1(T̂1(xi), T̂2(yi))

π̂0ĥ0(T̂1(xi), T̂2(yi)) + π̂1ĥ1(T̂1(xi), T̂2(yi))
(2.4)

There are two ways to use the estimated parameters from the above model:
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• Since h1 describes the “dependent” component between X and Y , we can use the
estimated dependence parameter associated with h1 directly to reflect the level of
consistency in terms of DE genes between two T -profiles. A SIDEseq measure can
then be defined accordingly by replacing the number of intersected DE genes, denoted
by Si,k in Fig. 4.1, by the estimated dependence parameter.

• We can classify the genes based on the estimated z(gx, gy, i) to obtain a set of common
DE genes between two T -profiles. A SIDEseq measure can then be defined accordingly
by replacing the number of intersected DE genes, denoted by Si,k in Fig. 4.1, by the
size of the inferred set of common DE genes.

Since IDR has an associated R package, a Gaussian copula version of the above method can
be easily implemented. However, we note that this approach can be quite time consuming if
there are many cells to study, in which case, the simple method based on DE gene lists with
the same size would likely be more favorable.

Exploring SIDEseq properties with small simulation studies

In order to better understand the benefits of the SIDEseq measure for sequencing data,
we simulated small scRNA-seq data sets and evaluated the ability of the SIDEseq measure,
Euclidean distance and Pearson and Spearman correlation to accurately capture the relation-
ships between cells. The simulated data sets consist of 1,000 gene expression measurements
for four cells, where two of the cells come from one subpopulation and the other two cells
come from another. Each subpopulation is defined by a subset of 10 differentially expressed
genes.

Subpopulation 1: Cells a and b, 10 genes ∼ Normal(µ = 6, σ2 = 0.012),

990 genes ∼ Normal(µ = 2, σ2 = 1.72)

Subpopulation 2: Cells c and d, 10 genes ∼ Normal(µ = 0, σ2 = 0.012),

990 genes ∼ Normal(µ = 2, σ2 = 1.72)

The above data set was generated several times to ensure the robustness of the results. Eu-
clidean distance frequently failed to identify the correct relative similarities between cells
and to cluster them correctly by subpopulation. This is because only a small set of genes are
differentially expressed between the subpopulations (1%), and the variability in the expres-
sions for the non-differentially expressed genes overwhelmed the difference in expressions for
the differentially expressed genes. Pearson correlation (and similarly Spearman correlation)
performed worse than Euclidean distance on this data set, for similar reasons. When the
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(a) Cells a and c (b) Cells a and b

Figure 2.5: Sorted SIDEseq DE statistics for cells in different and the same subpopulations.

SIDEseq measure is used, however, it almost always correctly clusters the cells by subpopu-
lation. The SIDEseq measure works because if two cells come from the same subpopulation,
they will share many genes in common identified as top differentially expressed genes with
the cells in the other subpopulation. A high level of consistency in the top genes identified
as differentially expressed with other cells implies a high SIDEseq similarity measure. For
example, it is likely that the ten genes which are differentially expressed between cells A and
D will be among the top differentially expressed genes as identified by the differential ex-
pression statistic in the SIDEseq measure. Many of the genes which are in the top identified
differentially expressed genes between cells A and D will also be in the top genes identified
as differentially expressed between cells B and D, since cell D is in a different subpopulation.
This causes the SIDEseq similarity measure between cells A and B to be high (Fig. 2.5
(b)). Cells from different subpopulations, like cells A and C, will not share a lot of genes
which are identified as differentially expressed with the other cells, and will therefore have
low SIDEseq similarity measures (Fig. 2.5 (a)).

A suggestion for a similarity measure for scRNA-seq data, which is similar to SIDEseq but
may improve upon it, could be the following: to find the similarity between cell i and cell j,
separate cell i and j from the population of cells. Call this remaining group of cells which does
not include cells i and j the “subpopulation”. Find the mean expression level for each gene
within the subpopulation. Next, identify the set of genes which are positively and negatively
differentially expressed between cell i and the mean expressions of the subpopulation. Do
the same for cell j. Then, the similarity between cell i and cell j is the number of genes
which they have in common which are positively differentially expressed with the average
expression of the subpopulation plus the number of negatively differentially expressed genes
they have in common with the mean expressions of the subpopulation. This is similar to the
SIDEseq measure with the exception of two big differences: differentially expressed genes
are separated by direction of differential expression, and differentially expressed genes are
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(a) SIDEseq (b) Alternative

Figure 2.6: Dendrograms of hierarchical clustering of small simulation studies with two
subpopulations, cells a and b and cells c and d.

found with respect to the average expression levels within the subpopulation.
We used the same simulated data set described previously to compare the performance

of SIDEseq with this proposed measure. The data set was generated repeatedly, each time
calculating two dissimilarity matrices from each of the two measures and using them to
perform hierarchical clustering. The SIDEseq measure outperformed the proposed measure
each time, since it was able to group cells A and B together and cells C and D together
(Fig. 2.6 (a)). The proposed measure sometimes grouped cells A and B, but failed to group
cells C and D or failed altogether to capture the correct relationships (Fig. 2.6 (b)). These
results suggest two ideas. One is that splitting differentially expressed genes by sign does
not necessarily improve the performance of similarity measures. The other idea for why
SIDEseq performs better is because the proposed measure treats the remaining cells as one
population and averages their expression levels. In highly heterogeneous data sets with a lot
of variability, such as the simulation data set or the human ovarian cancer cell data set, this
may cause the similarity measure to perform poorly.

We also provide a small example to help with the intuition behind some of the benefits
of the SIDEseq similarity measure over common similarity measures. This small example
shows how SIDEseq is able to bypass noise in the expression levels of cells to get at true
subpopulations. In the small example, gene 1 and gene 2 are differentially expressed between
the two subpopulations of the example, while the other genes are uninformative and simply
provide noise (Fig. 2.7). SIDEseq is able to identify the subpopulations, even though there
is noise, while the other similarity measures cannot. For example, cells A and C are very
similar according to both Pearson and Spearman correlation, even though their expressions
for gene 1 and 2 are very different, due to the high proportion of uninformative genes.
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Figure 2.7: Properties and advantages of the SIDEseq similarity measure.

2.3 Results and discussion

All of the hierarchical clustering performed in this work uses the hclust function in R, spec-
ifying the ward.D2 method [91]. We found that the ward.D2 method generally resulted in
clear clusters for all dissimilarity measures when used on the scRNA-seq datasets, as opposed
to the default complete linkage method.

Simulated Data

We used simulation studies to compare the performance of the SIDEseq measure with meth-
ods found in the GiniClust algorithm which was designed to detect rare cell types using
scRNA-seq data [53]. This is an important comparison because both methods rely on sets
of identified DE genes to detect subpopulations or rare cell types, but the ways in which the
two methods identify these genes are quite different. The GiniClust algorithm calculates a
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normalized Gini index for each gene by looking at the gene’s expression across all cells, and
then selects the top Gini index genes for clustering and rare cell type identification. The
SIDEseq measure, however, identifies DE genes between every cell pair, and then uses the
lists of DE genes from all pairwise comparisons to quantify cell similarity. The similarity
between two cells is calculated by looking at how consistent the lists of DE genes are that
result from their pairwise comparisons with all other cells in the data set. This integration
of multiple lists of DE genes into the SIDEseq measure makes this novel similarity measure
quite robust to the noise present in any single list of DE genes.

To simulate various single-cell data sets, we used the R package splatter [134], with a
variety of parameters designed to make the identification of subpopulations more challenging.
Each simulated data set consisted of several subpopulations, with different numbers of cells,
probabilities of containing DE genes, mean expression of DE genes, etc. We then ran the
GiniClust algorithm on each simulated data set, with several variations on the parameters
specifying minimum cell number, minimum point number and epsilon. However, regardless of
the specified parameters, the GiniClust algorithm only detected “rare cell types,” and failed
to identify the correct subpopulations of cells, each time clustering all cells not deemed as
rare cell types into one large cluster. We believe this is because a relatively small number of
genes passed the Gini index cutoff specified in the algorithm, and so there were not enough
genes to accurately cluster the cells.

To further compare the GiniClust algorithm with the SIDEseq measure, specifically the
way in which they identify and use DE genes, we selected the top Gini index genes (around
150) for each simulation and performed hierarchical clustering of the simulated data with
Euclidean distance and Pearson and Spearman correlation. We then used the same number of
genes to perform hierarchical clustering with the SIDEseq similarity measure, and compared
the clustering results using the Adjusted Rand Index (ARI). Each dendrogram was cut
according to the correct number of clusters, and the Adjusted Rand Index was used to
compare the resulting clusters with the true subpopulations, with an ARI of one being
perfect agreement with the truth and an ARI of zero corresponding to random assignment
of cells to clusters. Results are shown in Table 2.1. In simulations 1 through 3, which all
contain the same number of cells, genes and subpopulations but vary in the degree and
probability of differential expression, the SIDEseq measure outperforms all three common
similarity measures. Simulations 4 and 5 increase the number of subpopulations, yet the
SIDEseq measure still outperforms all others. In simulation 6, where each sub-population
has a different probability for DE genes and is arguably the most realistic model for a
scRNA-seq data set, SIDEseq again outperforms all three common similarity measures. The
results of the simulation studies suggest several points about the SIDEseq measure: (1.)
The method used by the SIDEseq measure of identifying and exploiting DE genes often
outperforms methods like those found in GiniClust, where genes are identified as DE based
on their expressions over all cells, and (2.) The SIDEseq similarity measure is able to uncover
true subpopulations of cells in a variety of scRNA-seq data sets, including those in which
subpopulations have different probabilities of their genes being DE or have varying degrees
of differential expression.
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(a) Spearman Correlation (b) SIDEseq similarity

Figure 2.8: Hierarchical clustering of ovarian cancer cell dataset after RUVg normalization,
with (a) Spearman correlation and (b) SIDEseq similarity.

Human Ovarian Cancer Cells

The human ovarian cancer cell data set presents more of a challenging clustering task than
the simulated data set, due to the uncertain nature of the treatment factors, the passage
number effects, the heterogeneous nature of ovarian cancer cells, etc. However, this challeng-
ing clustering task is useful for assessing the performance of the SIDEseq similarity measure.
We clustered the ‘RUVs’ normalized counts in the TGFβ-1 group using hierarchical clus-
tering with Spearman correlation and the SIDEseq similarity measure (Fig. 2.8). Since the
cells did not cluster well according to treatment status, using the Adjusted Rand Index to
compare clustering results from the various similarity measures is not meaningful. Instead,
for this data set we rely on visual inspection of the resulting dendrograms. When Spearman
correlation is used for hierarchical clustering of the human ovarian cancer cell data set, there
are one or two resulting clusters of treatment cells, but cells largely fail to cluster by treat-
ment status (Fig. 2.8 (a)). When the SIDEseq measure is used, three loose clusters of interest
can be recognized (Fig. 2.8 (b)). One is a large cluster consisting of only untreated cells.
Actually most untreated cells are in this cluster. Another cluster consists of a mix of treated
and untreated cells. The third is a large cluster of mostly all treated cells. This cluster is on
the outside of the sub-dendrogram formed by the other two clusters. In addition to clearer
clusters of cells, the organization of the clusters within the dendrogram is also biologically
interesting. The cluster that contains a mix of treated and untreated cells may correspond
to a group of cells in the beginning stages of EMT or that have not entirely transitioned to
the mesenchymal phenotype. The treated cells within the mixed cluster would then be more
biologically similar to the untreated cells.
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Figure 2.9: Hierarchical clustering of human embryo dataset using Spearman correlation.

Human Embryo Cells

In order to further compare the SIDEseq measure with the common similarity measures,
we did hierarchical clustering with different measures on an additional scRNA-seq data set
from Yan et al. (2012) [132]. They used a highly sensitive sequencing technique to obtain
gene expressions from 124 human embryo cells in various stages of development. The data
set covers seven early developmental stages: metaphase II ooocyte (3 cells), zygote (3 cells),
2-cell-stage (6 cells), 4-cell stage (12 cells), 8-cell-stage (20 cells), morula (16 cells) and
late blastocyst at hatching stage (30 cells). The data set also includes an eighth stage of
development of primary outgrowth during human embryonic stem cell (hESC) derivation
(34 cells). Following the filtering method of Xu et al. (2015) for this data set, we used only
RefSeq genes with at least one cell with RPKM expression greater than 0.1, resulting in
roughly 21 thousand genes [131]. However, while Xu et al. (2015) only used cells from the
first seven early developmental stages, we used all 124 cells for the clustering analysis.

Hierarchical clustering using Spearman correlation grouped most cells by developmen-
tal stage, with the clusters of cells in the dendrogram following the natural progression of
embryonic development (Fig. 2.9). Cells in later developmental stages (late blastocyst and
hESC) clustered together on one side of the dendrogram, while cells in the earlier develop-
mental stages (oocyte to morula) clustered on the other. However, Spearman correlation
grouped four 8-cell stage cells with the earlier stages. Furthermore, Spearman correlation
incorrectly clustered the 2-cell stage cells, separating them into two groups and clustering
some of the 2-cell stage cells with the zygote cells. Two morula cells were clustered outside of
the 8-cell and morula stage cells. It is interesting to note that simple hierarchical clustering
using Spearman and Pearson correlation outperformed or matched the performance of more
complex clustering methods for this data set explored by Xu et al. (2015) [131]. They used
their proposed clustering algorithm, SNN-Cliq, to cluster 90 cells from this data set (all cells
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Figure 2.10: Hierarchical clustering of human embryo dataset using SIDEseq similarity.

except the hESC cells) [131]. They also used the k-means and DBSCAN algorithms with
Euclidean distance [131]. All methods were matched in performance or outperformed by
hierarchical clustering using Spearman correlation.

When we used the SIDEseq measure for hierarchical clustering, it showed a slight im-
provement over the common similarity measures when clustering the cells in early develop-
mental stages (Fig. 2.10). There was again a split between the early and later developmental
stages, but with the SIDEseq measure, all of the 8-cell stage cells were clustered together.
Two morula cells broke off from the morula cluster to cluster closer to the 8-cell stage cells,
indicating that these may be cells in transition. These are the same two morula cells that
were separated by Spearman correlation, but with a different position in the dendrogram.
Unlike the traditional similarity measures, the SIDEseq measure successfully clustered all
cells in the 8-cell stage together. Furthermore, the SIDEseq measure perfectly clustered the
very early stages of oocyte, zygote and 2-cell stage cells. To provide a more quantitative com-
parison of the similarity measures, we cut each dendrogram into seven, eight (corresponding
to the number of cell types) and nine clusters and calculated the ARI for each similarity
measure. See Table 2.2 for a full comparison of the Spearman and SIDEseq measures, as
well as Pearson correlation and Euclidean distance. SIDEseq outperforms most similarity
measures for most cluster number values, except in one case where it is outperformed by
Euclidean distance. Here, we note that while the ARI values are informative, they should
also be analyzed in the context of the original dendrograms. For example, while Euclidean
distance has a higher ARI value than SIDEseq when eight clusters are used, SIDEseq out-
performs Euclidean distance in terms of correctly classifying the early developmental stages.
These subtle, yet important, clustering details are not taken into account by the ARI when
the dendrograms are cut at seven, eight, nine, etc. clusters.

To further explore the subtleties in the clustering of this embryo data set and compare the
performance of the different similarity measures, we also used spectral clustering. For each
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Dataset # sub- # cells, DE Probability Pearson w/ Spearman w/ Euclidean w/ SIDEseq
index populations # genes factor of DE Gini genes Gini genes Gini genes

1 5 240,104 4 0.1 0.806 0.502 0.148 1
2 5 240,104 4 0.05 0.471 0.653 0.404 1
3 5 240,104 3 0.1 0.36 0.741 0.198 1
4 7 240,104 4 0.05 0.462 0.367 0.222 1
5 7 240,104 3 0.05 0.616 0.405 0.064 0.729
6 5 240,104 4 (0.15,0.1,0.12,0.05,0.8) 0.446 0.5 0.007 0.552

Table 2.1: ARI values for various similarity measures used to perform hierarchical clustering
of simulated datasets.

Public # Clusters Pearson Spearman Euclidean SIDEseq
Dataset Correlation Correlation Distance Similarity

Embryo Cells, Xu et al. 7 0.740 0.880 0.812 0.880
Embryo Cells, Xu et al. 8 0.659 0.770 0.823 0.770
Embryo Cells, Xu et al. 9 0.740 0.774 0.740 0.828

Table 2.2: ARI values for various similarity measures used to perform hierarchical clustering
of the human embryo dataset.

Public # Clusters Pearson Spearman Euclidean SIDEseq
Dataset Correlation Correlation Distance Similarity

Embryo Cells, Xu et al. 8 0.472 (0.006) 0.718 (0.065) 0.681 (0.069) 0.757 (0.1)
Embryo Cells, Xu et al. 9 0.635 (0.056) 0.745 (0.079) 0.670 (0.073) 0.804 (0.12)
Embryo Cells, Xu et al. 10 0.694 (0.052) 0.747 (0.038) 0.670 (0.035) 0.785 (0.082)

Table 2.3: ARI values for various similarity measures used to perform spectral clustering of
the human embryo dataset.

similarity measure, we specified eight, nine and ten clusters, performed spectral clustering
100 times and recorded the average ARI values and their standard deviations (Table 2.3). We
chose the number of clusters based on the distributions of the eigenvalues and corresponding
eigen-gaps when different values of epsilon where used to build the epsilon graph. The
SIDEseq measure outperformed all three traditional similarity measures for all three cluster
values, with Spearman correlation being the second best measure. These results suggest that
the SIDEseq similarity measure continues to outperform the common similarity measures
when used with other clustering algorithms besides hierarchical clustering. Furthermore,
when a more principled method is used to choose the number of clusters by using spectral
clustering, SIDEseq’s performance remains strong, if not improves.
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Discussion

Exploratory data analysis is often necessary in scRNA-seq experiments in order to uncover
biological heterogeneity. In this work, we demonstrate that the choice of similarity measure
used in clustering can have a considerable effect on the success of such exploratory analysis.
Exploratory data analysis may also reveal the need for normalization to remove unwanted
sources of variation. This was undoubtedly the case for the human ovarian cancer cell data
set in this study. There was a clear difference between the cells in the two batches, likely
due to both technical variation and induced biological variation as a result of a difference in
passage number between batches. We see that in studies where passage number effects are
present, the normalization task becomes very challenging. In fact, across-batch normalization
may become impossible since this variation can be completely confounded with batch effects.
The choice of normalization technique within batch proved to have an effect on the ability
of cells to cluster by treatment status. Technical effects such as those observed in this study
need to be kept in mind when performing scRNA-seq analysis.

In our study, deriving and integrating lists of DE genes for all pairs of two cells stands
as the key component to the proposed similarity measure. This is the novel and promising
part of the SIDEseq technique which distinguishes it from other methods. Through studying
simulated and real data sets with varying degrees of complexity, we observed the benefits of
using the SIDEseq measure. In data sets where there are subtle but important differences
between small subpopulations of cells, such as the cells in the early developmental stages of
the embryo data set, SIDEseq is able to very accurately identify subpopulations. Further-
more, in data sets where each subpopulation of cells has a different differential expression
probability for its genes, SIDEseq seems to outperform traditional similarity measures. Even
with data sets where the biological factor of interest is relatively weak, and may be masked by
other sources of variability, the SIDEseq measure performs well compared to the commonly
used similarity measures. Furthermore, SIDEseq can be utilized in many different clustering
methods, like hierarchical clustering and spectral clustering, to accurately identify subpop-
ulations. The success of SIDEseq is due to the novel way in which it uses the consistency
among two cells’ lists of DE genes (with all other cells) to define their similarity. In this way,
SIDEseq is robust to noise in any single list of DE genes, and can investigate the data set at
a deeper level than other common similarity measures or clustering algorithms. These novel
features of SIDEseq allow it to perform as well as or to outperform more complex clustering
methods such as the GiniClust and SNN-Cliq algorithms, even when the measure is paired
with a simple method such as hierarchical clustering.

As another interesting observation resulting from the study of the human ovarian cancer
cell data, it seems clear that the thrombin treated cells did not differentiate from the un-
treated cells in their batch as well as the TGFβ-1 treated cells diverged from their respective
control cells. The findings from this study support the numerous experimental findings that
TGFβ-1 is an inducer of EMT, but they do not provide evidence that thrombin is an EMT
inducer. The ability of thrombin to induce EMT merits further investigation.
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Chapter 3

Data pre-processing and statistical
analysis of untargeted adductomics
data

3.1 Introduction

The previous chapter focused on using exploratory data analysis to uncover heterogeneity
among cell populations, such as among cancerous and healthy cells. The noise present in the
single-cell data had to be understood and managed in order to uncover meaningful biologi-
cal variability. As discussed previously, many different omics data types exist for exploring
biological heterogeneity among human populations. Each data type requires its own set of
exploratory data analysis, preprocessing and statistical analysis methods to uncover the biol-
ogy of interest. In this chapter, another omics data type, adductomics, is discussed. Because
this type of data has not been extensively studied by a variety of researchers, meticulous
and thorough exploratory data analysis and preprocessing is essential to discovering true
differences between phenotypes of interest. Furthermore, the novel application of adduc-
tomics to neonatal dried blood spots discussed here provides extra challenges to properly
pre-processing and analyzing the data. Like the single-cell ovarian cancer cell dataset, ad-
ductomics data suffers from various sources of technical noise. Yet, when proper care is
taken to address such noise, the phenotypes of interest can still be studied.

A comparison that is often made using omics data is the difference in exposure to carcino-
gens between cancer cases and healthy controls [88, 86, 82, 108, 44]. Many carcinogens are
reactive electrophiles that are generated through metabolism of chemicals from: the diet and
nutrients, exposures to xenobiotics, the microbiome, and lifestyle factors such as smoking
and alcohol consumption. Although these reactive intermediates are short-lived in vivo, they
can be quantified by measuring their reaction products (adducts) with circulating proteins,
such as hemoglobin (Hb) and human serum albumin (HSA) [105, 118]. We have focused on
HSA adducts bound to the highly nucleophilic sulfhydryl group at Cys34, which is a power-
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ful antioxidant and scavenger of reactive electrophiles in the interstitial space [2]. Whereas
targeted assays are limited to measurement of particular HSA-Cys34 adducts known a pri-
ori, our adductomics methodology motivates discovery and quantitation of unknown HSA
modifications of potential health significance [94].

In our Cys34 adductomics pipeline, HSA is isolated from plasma/serum, digested with
trypsin, and analyzed via nanoflow liquid chromatography-high resolution mass spectrometry
(nLC-HRMS) to pinpoint and quantitate modifications at the third largest tryptic peptide
(T3) [45]. In four previous studies, we applied this adductomics pipeline to plasma/serum
from healthy smokers and nonsmokers in the U.S. [45], nonsmoking women in China exposed
to indoor combustion products and local controls [69], nonsmoking British patients with
lung and heart disease and local controls [68], and nonsmoking Chinese workers exposed to
benzene and local controls [44]. Here, we modified the adductomics assay to measure Cys34
adducts in newborn dried blood spots (DBS).

Because newborn DBS have been routinely collected at birth to screen for inborn errors
of metabolism in the U.S. and worldwide [115], analysis of archived newborn DBS provides
an avenue for investigating the etiologies of diseases initiated in utero. Retrospective inves-
tigations of chromosomal translocations in DNA from newborn DBS provide direct evidence
of the prenatal origin of childhood leukemia, the most common childhood cancer [35, 43,
129]. Chronic diseases in adult life, such as type 2 diabetes mellitus, cardiovascular disease,
and the metabolic syndrome, can also have fetal origins [37]. Since HSA has a residence
time of 28 days [94], measuring Cys34 adducts in newborn DBS would allow us to investi-
gate exposures to reactive and potentially carcinogenic electrophiles during the last month
of gestation.

Here, we describe an untargeted adductomics method to measure HSA-Cys34 adducts in
newborn DBS. A major challenge to extending the Cys34 adductomics pipeline to newborn
DBS involves the sample matrix, which consists of cellulose and debris from lysed red blood
cells and associated proteins, particularly Hb, which are not abundant in serum or plasma
[18, 74]. Indeed, Hb is present at a 7-fold higher concentration than HSA in whole blood
[18] and interferes with tryptic digestion that releases the T3 peptide and its modifications
for analysis [51]. We modified the method to remove Hb and other interfering proteins from
DBS extracts prior to digestion. The workflow includes: extracting proteins from DBS,
measuring Hb to normalize for blood volume, isolating HSA in solution by precipitating
Hb and other proteins, digesting with trypsin, and detecting HSA-Cys34 adducts via nLC-
HRMS. As proof-of-principle, we examined HSA-Cys34 adducts in archived DBS collected
from 49 newborns with mothers who either actively smoked during pregnancy or did not
smoke.
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3.2 Methods and materials

Chemicals and Reagents

Acetonitrile (Ultra Chromasolv, LCMS grade), triethylammonium bicarbonate (TEAB)
buffer (1 M), ethylenediamine-tetraacetic acid (EDTA, anhydrous), HSA (lyophilized pow-
der, 97-99%), and porcine trypsin were from Sigma-Aldrich (St. Louis, MO). Methanol
(Optima, LCMS grade), formic acid (Optima, LCMS grade), and iodoacetamide (IAA) were
from Fisher Scientific (Pittsburgh, PA). Purified human Hb was purchased from MP Biomed-
icals, LLC (Santa Ana, CA). Isotopically labeled T3 (iT3) with sequence AL− [15N,13C −
V al]−LIAFAQY LQQCPFEDH−[15N,13C−V al]−K was custom-made (> 95%, BioMer
Technology, Pleasanton, CA), and the carbamidomethylated iT3 (IAA-iT3)18 was used as
an internal standard to monitor retention time and mass drifts. Water was prepared with a
PureLab purification system (18.2 mΩ cm resistivity at 25 ◦C ; Elga LabWater, Woodridge,
IL).

Preparation of capillary DBS for method development

For method development, capillary DBS were collected with informed consent from adult
volunteers by finger prick with a sterile safety lancet (Fisher HealthCare, Houston, TX).
The first drop of blood was discarded and subsequent drops were collected on Whatman 903
Protein Saver cards (GE Healthcare, Cardiff, UK). Blood spots were air dried for a minimum
of 4 days and stored at −20 ◦C in glassine envelopes (GE Healthcare, Cardiff, UK) prior to
use. Punches of 5 and 6-mm diameter were obtained from these DBS with a Biopunch (Ted
Pella Inc., Redding, CA).

Archived newborn DBS

Newborn DBS were obtained for 49 healthy control children from the California Childhood
Leukemia Study (CCLS) [79]. These newborn DBS had been archived by the California De-
partment of Public Health [26] at −20 ◦C for 14 to 32 years prior to analysis in the current
investigation. Twenty-three of these participants had mothers who actively smoked during
pregnancy and the remaining 26 had nonsmoking mothers. Interviews with the biological
mother were conducted to collect data on the child’s sex, race, and mother’s smoking status
during pregnancy. A total of 23 smoking/nonsmoking pairs were matched on sex and child’s
birth year. Smoking/nonsmoking pairs of newborn samples were randomized and then ana-
lyzed together to minimize technical variation. Our methodology was developed for 4.7-mm
punches from DBS. Because the archived newborn DBS for the present investigation were
remnants from previous analyses, they consisted of areas of filter media equivalent to 4.7-mm
punches based on size and weight.
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Extraction of protein and measurements of Hb and total protein

DBS punches were placed in microcentrifuge tubes and extracted with 55 µL of water at
room temperature for 15 min with constant agitation at 1400 rpm (Thermomixer, Eppendorf,
Hamburg, Germany). Samples were then centrifuged for 10 s and 5 µL aliquots were diluted
with 45 µL of water to measure Hb concentrations (for normalization of blood volumes) with
a Cytation 5 microplate spectrophotometer (BioTek Instruments, Winooski, VT) at room
temperature. The absorbance of duplicate 2.5 µL sample aliquots was measured at 407 nm,
which was the experimentally-determined absorbance maximum corresponding to heme in
the ex vivo oxidation state of Hb [127, 77]. Absorbance readings were converted into Hb
concentrations with five-point linear calibration curves using Hb standard solutions ranging
from 0.5 to 5.0 mg/mL.

Absorbance measurements at 280 nm were used to calculate total protein concentrations
in DBS extracts. Total protein was quantified with correction for nucleic acid interferences
at 260 nm and background correction at 320 nm.

Sample preparation for adductomics

Various extraction protocols were tested and the method described below was found to be
optimal for isolating HSA from DBS while removing Hb and other proteins from the extract
(Results and Discussion provides further details). After Hb measurement, 41 µL of methanol
was added to the remaining 50 µL of DBS extract (resulting in 45% methanol), vortexed, and
mixed at 37 ◦C for 30 min with agitation at 1400 rpm (Thermomixer, Eppendorf, Hamburg,
Germany). Samples were then stored at 4 ◦C for 30 min and centrifuged at 14,000×g for
10 min to remove precipitates and cellulose fibers. A 55 µL aliquot of the supernatant was
diluted with 95 µL of digestion buffer (50 mM TEAB, 1 mM EDTA, pH 8.0), and the solution
was loaded into a Costar Spin-X centrifuge tube filter (0.22 micrometer cellulose acetate,
Corning Incorporated, Corning, NY) and centrifuged at 10,000×g for 10 min. A 130 µL
aliquot of the filtered solution (containing around 17% methanol to enhance trypsin activity)
was transferred into BaroFlex 8-well strips (Pressure Biosciences Inc., South Easton, MA) to
which 1 µL of 10 µg/µL trypsin was added ( around 1:10 enzyme-to-protein ratio). Pressure-
assisted proteolytic digestion was performed with a Barozyme HT48 (Pressure Biosciences
Inc., South Easton, MA) instrument, which cycled between ambient pressure (30 s) and
1,380 bar (20 kpsi, 90 s) for 32 min. After digestion, 3 µL of 10% formic acid was added
to denature trypsin. Digests were transferred to new tubes and centrifuged for 2 min at
10,000×g. A 100-µL aliquot of the digest was transferred to a 300-µL silanized glass vial
(Micosolv Technology Corporation, Leland, NC), and 1 µL of the isotopically labeled internal
standard (IAA-iT3, 20 pmol/µL) was added. Samples were stored in liquid nitrogen prior to
nLC-HRMS. The 49 newborn DBS were processed daily in four batches of 12 or 13 samples.
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nLC-HRMS analysis

Digests were analyzed by an Orbitrap Elite HRMS coupled to a Dionex Ultimate 3000
nanoflow LC system via a Flex Ion nanoelectrospray ionization source (Thermo Fisher Sci-
entific, Waltham, MA), as described previously [45]. Each sample was injected in duplicate,
and samples were separated on a Dionex PepSwitft monolithic column (100 µm i.d. × 25
cm) (Thermo Scientific, Sunnyvale, CA). The mobile phase consisted of 0.1% formic acid in
water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). Peptides were separated
by gradient elution (2-35 % B, 26 min) at a flow rate of 750 nL/min. Full scan mass spectra
were acquired in the positive ion mode with a resolution of 120,000 at m/z 400 in the m/z =
350 – 1500 mass range using the Orbitrap. The MS was operated in data-dependent mode
to collect tandem MS (MS2) spectra in the linear ion trap.

Identification, quantitation, and annotation of putative adducts

HSA adducts were identified using the adductomics pipeline with sample preparation modi-
fied for DBS as described above [45]. Cys34 adducts are represented by modifications to the
triply charged T3 peptide (m/z = 811.7594), and the b+-series ions prior to b+14 are shared by
all T3 peptides, despite differences in modifications at Cys34. We used in-house R software
to screen for this characteristic pattern in MS2 spectra and thereby pinpoint putative T3
adducts when 5 of the 7 most prominent b+-series fragment ions (i.e., b+3 - b+6 and b+11 - b+13
ions) were detected along with at least 3 of the 5 y+2 -series ions (y+142 - y+182). Adducts were
grouped by monoisotopic mass (MIM) within 10 ppm and retention time (RT) within 1.5
min. The means of MIMs and RTs were calculated for each adduct across all samples. Pu-
tative adducts were annotated based on the added mass as described previously [45]. Peak
picking and integration were performed using the Xcalibur Processing Method (version 3.0,
Thermo Fisher Scientific, Waltham, MA) based on the average MIMs (5 ppm mass accuracy)
and RTs of the putative adducts. Peaks were integrated with the Genesis algorithm after
normalizing the RTs using the internal standard (iT3-IAA) and using a RT window of 60 s.

Exploratory data analysis and pre-processing

Peak areas were log-transformed prior to all exploratory data analysis, pre-processing and
statistical analysis. Relative log abundance (RLA) plots [24], which were obtained by stan-
dardizing each adduct by the median abundance across samples and logging the resulting
ratio, were used to visually inspect the reproducibility of replicate measurements (Fig. 3.1).
Two subjects (of nonsmoking mothers) were removed from the analysis and only one mea-
surement was used for one subject due to high variation in adduct abundances based on the
RLA plot of duplicate measurements (Fig. 3.1). We also used boxplots of the difference
in abundances between injection 1 and 2 for each adduct across all samples to assess the
variability of the differences and whether they were centered around zero (Fig. 3.2). With
the exception of one adduct (m/z 811.0915), all adducts appear to be relatively reproducible
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Figure 3.1: Relative log abundance plot of duplicate injections.

Figure 3.2: Boxplot of difference in duplicate injections for each adduct.
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Figure 3.3: Percent missing values across subjects.

across duplicate injections, and no adducts are filtered based on this criterion. However,
three adducts were removed from the analysis since they were missing in over half of the
samples (including duplicate injections, Fig. 3.3). The means of the duplicate injections
were then taken for each subject, ignoring missing values. This resulted in 47 subjects and
26 putative Cys34 adducts for analysis.

Missing values were imputed using a variation of k-nearest-neighbor imputation (k-NN),
where the adducts are the neighbors and k = 4 [119]. k-NN imputation is a simple and
intuitive approach, that was shown to perform well for similar high-dimensional data settings
[120]. Pairwise distances between adducts were calculated using the Euclidean distance
based on all non-missing values. When an adduct is not detected in a blood spot sample,
the abundances of the k nearest adduct neighbors in that sample are averaged to impute
the missing value. If, when imputing a missing value for a certain adduct in a certain
sample, a nearest adduct neighbor is also missing in the sample, then the next nearest
adduct neighbor is found and its value is used, and so on, until all k nearest neighbors have
non-missing values in the sample. Adducts with non-detected values, have, on average, lower
abundances. Therefore, to choose a suitable value of k for the imputation, low abundance
adducts were randomly chosen to be made missing in certain samples, their values were
imputed using several values of the k parameter, and the mean squared error was calculated
for each k. The k with the smallest mean squared error, k = 4, was chosen (Fig. 3.4). Since
the lower abundance adducts are the molecules prone to missing values, it is possible that
the k-NN imputation method is causing an upward bias in the imputed values. However,
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Figure 3.4: Plot of mean squared error values for different k.

there is no known limit of detection to use for imputation. Furthermore, since the nearest
neighbors are very likely to have lower abundances, the upward bias should be small.

Adductomics data are complex and often suffer from various sources of unwanted varia-
tion. This unwanted variation, known or unknown, can bias subsequent statistical analysis.
In the adductomic dataset of interest, there are several known sources of unwanted vari-
ation: batch, DBS age, digested HSA, blood volume, instrument performance, etc. (Fig.
3.5). Therefore, normalization is necessary to adjust for the systematic biases in adduct
abundances introduced by a variety of sources of unwanted variation. Given the multitude
of normalization schemes now available for ’omics’ datasets, the task then becomes to assess
the impact of each procedure and eventually select an appropriate procedure for the data
at hand. To help answer this question, the Bioconductor R package scone was used to per-
form and evaluate a variety of normalization schemes on the dataset of interest [23]. While
originally developed for single-cell RNA-Seq, scone implements the following normalization
procedures that are immediately applicable to adductomic data:

• global-scaling normalization, e.g., upper-quartile, DESeq [3], TMM [103];

• full-quantile normalization;

• regression of scaled and logged feature abundances on

– biological covariates of interest (e.g., disease status),

– known factors of unwanted variation (e.g., batch),
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Figure 3.5: Matplot of various quality control metrics.

– estimated unknown factors of unwanted variation, as in RUV [101].

The scone package then evaluates each candidate scheme with metrics that gauge the re-
moval of unwanted variation and retention of wanted variation. For example, one basis for
evaluation in scone is the correlation between the first few principle components of the result-
ing normalized abundances with unwanted factors of variation and the tendency of samples
to cluster by batch and the biology of interest after normalization.

For this dataset, the top ranking normalization scheme according to scone used DESeq
scaling and removed unwanted variation due to the following factors: digested HSA, blood
volume, DBS age, instrument performance, and batch effects. Here, digested HSA was quan-
tified by the abundance of the tryptic housekeeping peptide adjacent to T3 with sequence
42LVNEVTEFAK51 (doubly charged precursor ion at m/z = 575.3111) [45] (black line in
Fig. 3.5). Blood volume was indicated by measurement of Hb in DBS extracts (green line
in Fig. 3.5). DBS age (i.e., 2017 – child birth year) was used to adjust for differences in the
extraction efficiency due to the age of the DBS [89]. Instrument performance was indicated
by the drift in the abundance of the internal standard over time (red line in Fig. 3.5). Batch
effect was used to adjust for differences in the four subsets of samples that were prepared on
different days (Fig. 3.8 (a)). To help verify the choice of normalization scheme, we examined
the relationship between some of the suspected, known sources of unwanted variation and
the estimated ones. There was a relatively strong negative correlation (Pearson’s r = -0.56,
Fig. 3.6) between Hb concentrations and the second estimated factor of unwanted variation
using the RUVg method [101]. This further suggests that Hb is indeed a factor of unwanted
variation in DBS analysis and should be included in the final normalization scheme. Fur-
thermore, the weights of the DBS and Hb concentrations were highly correlated (Pearson’s
r = 0.93), suggesting that Hb is a good predictor of blood volume in newborn DBS.
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Figure 3.6: Correlation between Hb and second factor of unwanted variation.

Statistical analysis

Variable selection, as referred to here, is the process of identifying features which are associ-
ated to an outcome of interest. In this study, we want to identify adducts that are associated
with mothers’ smoking. A typical approach to variable selection in untargeted omics studies
is through multiple hypothesis testing, where the importance of a feature is measured by a
(possibly adjusted) p-value for the test of the null hypothesis that the feature is not associ-
ated with the outcome and where only the features whose p-values are below some predefined
significance threshold are retained [90, 58]. However, commonly-used multiple testing ap-
proaches often lead to overly stringent filtering criteria for the features, because features can
be highly correlated, etc. Additionally, such testing approaches only consider the marginal
association of a feature with the phenotype of interest, rather than the joint effect of sets
of features. As an alternative to the traditional multiple hypothesis testing paradigm, we
favor variable selection strategies that assess variable importance based on prediction ac-
curacy. We propose branching out from the commonly-used variable selection methods to
explore other modern methods, including regularized logistic regression and regression trees
and resampling-based aggregates of such methods.

We developed a variable selection procedure which combines three different data-adaptive
regression methods, in order to obtain robust variable importance measures that account for
both univariate and group-wise associations. Specifically, our variable selection approach
relies on three measures of variable importance for the adducts: a p-value for each adduct
based on the linear regression of that adduct’s abundance measure on mothers’ smoking
status, a percentage of times each adduct is included in regularized logistic regression of
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smoking status on the abundance measures for all adducts for bootstrapped datasets, and a
random forest variable importance measure for each adduct when regressing smoking status
on the abundance measures for all adducts. Adducts are then ranked by each of the above
variable importance measures and the rankings combined to produce a final set of selected
adducts. The final step of the variable selection procedure is to estimate the strength of
the association of the selected features with the outcome of interest and to quantify the
uncertainty of this estimate. A measure of prediction accuracy is found by calculating a
cross-validated area under the receiver operating curve (AUC) estimate for smoking status
prediction using the set of selected features, as well as a corresponding 95% confidence
interval [61]. This cross-validated AUC estimate is likely optimistic, since the data were
already used to perform the variable selection. However, given the limited size of the dataset,
it was not feasible to split the data into an independent learning set for variable selection
and testing set for prediction error estimation, i.e., perform a nested cross-validation.

Variable selection was performed on the logged, normalized peak areas and with the
design matrix supplied by scone. First, the following multivariate regression model, corre-
sponding to the top ranking normalization in scone, was used to find associations between
each adduct’s abundance and the mothers’ smoking status:

Yi = β0 + β1XSmoke + β2XSex + β3XRace + β4XBatch + β5XHK + β6XIS + β7XHb + β8XDBSAge + εi (3.1)

where Yi is a vector of logged, DESeq scaled abundances of the ith adduct, XSex (0 = male, 1 =
female) and XRace (0 = other, 1 = white) are binary vectors, XBatch is a four-level categorical
variable indicating batch, XHK is the vector of housekeeping peptide abundances, XIS is the
vector of internal standard abundances, XHb is the vector of Hb measurements, and XDBSAge

is a vector of DBS sample ages. The coefficients β1 and estimated p-values were used to rank
adducts by their univariate, linear associations with mothers’ smoking status. The mean
fold change (smoking/nonsmoking) in adduct intensities between newborns of smoking and
nonsmoking mothers was calculated as exp(β1).

Next, a logistic least absolute shrinkage and selection operator (lasso) [117] model was
fitted to the logged and normalized adduct abundances, along with the matching variables
(i.e., sex, birth year), to select a subset of adducts that best predicted the mothers’ smoking
status. To increase stability, the logistic lasso regression was performed on 500 bootstrapped
data sets [9]. The percentage of times each adduct was selected by the lasso model out of the
500 iterations was used as a measure of variable importance. This process was performed
for a range of values of the lasso penalty parameter (lambda range: 0.12-0.20) to ensure that
the final variable selections were robust to this choice. Adducts were also ranked in terms of
their associations with the mothers’ smoking status using random forest variable importance
[65]. A random forest with 500 trees was used to predict mothers’ smoking status with the
normalized, logged adduct abundances and matching variables. Adducts were ranked by
the mean decrease in Gini index, which indicates the total decrease in node impurity (as
measured by the Gini index when splitting on the adducts within the decision tree averaged
over all trees) [17].
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Figure 3.7: Concordance between linear model variable importances.

To select adducts, we first combine the rankings from the two linear models by taking the
intersection of the corresponding top J1 features. To choose the parameter J1, it is helpful to
consider the concordance or agreement between the two rankings. In theory, the two rankings
should be in relative agreement for the top ranking features and then eventually begin to
disagree more as uninformative features are incorporated into the rankings. To visualize this
transition, we suggest using a concordance plot (Figure 3.7). A concordance plot shows, for
each j = 1, . . . , J , where J is the total number of features, the size of the intersection of
the top j features in each ranking, divided by j, the number of features considered in each
list. A cutoff should be selected where the concordance between the two linear methods
peaks and/or stabilizes, before decreasing (Figure 3.7). After selecting adducts with a linear
association with smoking status, we combine these adducts with those that have strong, non-
linear associations as defined by random forest. Adducts that stand out in importance for
classifying mothers’ smoking status (e.g. have a 25-50% increase in importance) are added
to the list of selected variables.

3.3 Results

Measurement of Hb in archived DBS

Our analysis was performed exclusively with newborn DBS that had been maintained in
freezers at −20 ◦C for 14 to 32 y prior to analysis. Quantitative analysis of Hb in DBS stored
at room temperature can be problematic because of oxidation of Hb [14]. Indeed, when DBS
were stored at room temperature for several months compared to storage at −20 ◦C, we
observed that the color changed from deep red to dark brown indicating oxidation of Hb
[14], and decreased water solubility of Hb (data not shown). The absorption spectra in
the 250 – 750 nm range for the Hb calibration curve and Hb measured from extracts of



43

10 randomly selected 4.7-mm punches from archived newborn DBS both showed maximum
absorbance at 407 nm. The Hb calibration curves measured for each of the four batches of
newborn DBS showed a strong linear relationship between Hb concentrations and absorbance
measurements at 407 nm ( r2 > 0.99).

Adductomics analysis of DBS

In preparing DBS for adductomics, HSA must first be extracted from the filter paper and
isolated from whole blood. Previous analyses of proteins extracted from DBS have used
mixed aqueous-organic solutions to selectively precipitate proteins in solution [34, 27]. Since
Hb is one of the most prominent interfering proteins in whole blood, we tested various
mixtures of organic solvents (ethanol, methanol, acetonitrile, and 1-propanol) to precipitate
Hb while retaining HSA in solution (data not shown), and found ethanol and methanol to be
most effective. When the concentration of ethanol and methanol were gradually increased
from 30 to 60% (v/v), HSA remained in solution at concentrations less than 40% ethanol or
45% methanol and increasingly precipitated at concentrations up to 60% for both ethanol
and methanol. Methanol was more effective at precipitating Hb with a 95% decrease in
concentration at 45% methanol when compared to DBS extracted with water.

The recovery of HSA was also influenced by the total protein concentration of the DBS
extract, where higher total protein concentrations led to a lower recovery of HSA after
precipitation. Based on preliminary analysis of ten 4.7-mm punches from archived newborn
DBS, we found that the average total protein concentration for newborns (4.98 mg/mL) was
approximately equivalent to a 6-mm punch from an adult DBS. The observed higher total
protein concentration of newborn blood reflects the higher Hb concentrations in newborns
compared to adults [5]. Therefore, we used 6-mm punches from adult DBS to find the
optimal concentration of methanol in the extraction mixture to isolate HSA. In addition,
the isoelectric points (pI) of fetal and adult Hb differ (fetal Hb: pI 6.98, adult Hb: pI 6.87),41
and fetal Hb precipitates more readily at neutral pH. When comparing 40, 45, 48, and 50%
methanol, we observed that Hb did not precipitate with 40% methanol and that there was
a 40% loss of HSA when the methanol concentration was increased to 50%. Based on
this result, we chose 45% methanol to isolate HSA in the DBS extract. We also found that
incubating the samples at 37 ◦C (as opposed to room temperature) after addition of methanol
to the aqueous DBS extract was essential for denaturing and precipitating Hb. When we
tested extraction with 45% methanol on four 4.7-mm punches from archived newborn DBS,
there was no loss of HSA and the residual Hb concentration was 0.02 mg/mL (1.2% of the
initial concentration).

Digestion of HSA was optimized by testing various digestion programs using the pressure-
cycling technology and by adjusting the proteolytic enzyme-to-protein ratio (E:P). While
conventional proteomics approaches perform reduction and alkylation of proteins prior to
digestion[52], we did not apply these techniques in order to preserve Cys34 disulfides and
to prevent the formation of artifacts. The digestion time was tested at 16, 32 and 64 min
to determine the optimal time needed for a high yield of digestion. Both the total ion
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(a) Before normalization (b) After normalization

Figure 3.8: Relative log abundance plot of samples before and after normalization, colored
by batch.

chromatogram and base peak chromatogram were examined for the presence of undigested
proteins and yield of peptides [51]. While chromatograms from 32 and 64 min digests were
comparable, there were fewer peptides and a more prominent peak for undigested proteins
with the 16 min digestion, suggesting that 32 min was sufficient. Undigested protein was ob-
served despite longer digestions, and probably reflects the lack of denaturation and reduction
of disulfide bonds. It may also be due to the presence of residual non-HSA proteins, includ-
ing Hb, which increase competition for trypsin cleavage sites and thereby interfere with the
digestion of HSA [52]. We tested various 30 min digestion programs consisting of shorter and
longer cycles at high pressure, but there was little difference in the resulting chromatograms
(data not shown). The E:P was optimized to ensure an amount of trypsin that was sufficient
for digestion while preventing autolysis [56]. When the E:P was increased from 1:18 to 1:3,
trypsin activity showed a plateau at about 1:10, after which a further increase in trypsin
did not improve the digestion. Increasing trypsin to a ratio of 1:5 resulted in incomplete
digestion and more trypsin autolysis products, which could lead to ion suppression during
MS detection.

Analysis of archived newborn DBS

The distribution of adduct peak areas in each sample before and after normalization for
unwanted factors of variation (i.e., Hb concentration, DBS age, housekeeping peptide, inter-
nal standard, and batch effects) is shown in Figure 3.8. By comparing the RLA plots from
before (Fig. 3.8 (a)) and after (Fig. 3.8 (b)) normalization, it can be seen that this scheme
effectively removed unwanted variation.

Nineteen of the 26 adducts have been previously reported, including truncations, unmodi-
fied T3, methylated T3, Cys34 sulfoxidation products (e.g., sulfinic and sulfonic acids), a
cyanide adduct, and Cys34 disulfides of low-molecular-weight thiols [45, 69, 44]. Only three
of the remaining 7 adducts had putative annotations, i.e., the Cys34 sulfenamide (811.09),
a CH2 crosslink (815.76), and the sodium adduct (819.09). Aside from the unmodified T3
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Figure 3.9: Reaction pathways proposed for the formation of Cys34 oxidation products.

peptide (811.76), the Cys34 sulfinic acid (822.42) and the S-glutathione (GSH) disulfide
(913.45) were the most abundant adducts across all samples.

In studying reaction pathways leading to Cys34 sulfoxidation products, Grigoryan et
al. reported an intramolecular cyclic sulfinamide adduct (816.42) with the added mass
(+O,−H2), which results from the formation of a cross-link between Cys34 and the amide
group of the adjacent Gln33 [46]. Two different pathways were proposed for the formation
of the sulfinamide adduct: (1) from dehydration of Cys34 sulfenic acid (Cys34-SOH) re-
sulting in the sul-fenamide adduct (mass difference [−H2]) with the Cys34-Gln33 cross-link,
which is then oxidized to the sulfinamide adduct; (2) from oxidation of the sulfenic acid
to the sulfin-ic acid (822.42, Cys34-SO2H), from which loss of water results in the sulfi-
namide adduct (Fig. 3.9). The second reaction pathway appeared to be more likely because
the intermediate sulfenamide adduct had not been detected in plasma/serum samples [45,
69, 46]. However, in newborn DBS we detected both the sulfenamide (811.09) and sulfi-
namide (816.42) adducts, suggesting that formation of the sulfina-mide adduct is possible
via both pathways. In addition, we detected the sulfonamide adduct (821.75, added mass
[+O2,−H2]), which results from oxidation of the sulfinamide adduct (Fig. 3.9) [38]. The for-
mation of these intramolecular cyclic adducts may have been promoted by the drying of DBS
which could have led to the dehydration of sulfenic, sulfinic, and sulfonic acids to produce
the sulfenamide, sulfinamide, and sulfonamide adducts, respectively (Fig. 3.9). It is also
possible that these intramolecular cyclic adducts (particularly sulfenamide) were detected
in the present analysis due to an increased stability of these analytes in DBS compared to
plasma and serum. Analytes in DBS are typically less reactive than in liquid blood because
they are stabilized through adsorption onto a solid cellulose matrix (i.e., the filter paper)
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(a) Volcano plot (b) Lasso (c) Random Forest

Figure 3.10: Variable selection results for mothers’ smoking status.

[125]. Proteins commonly degrade in aqueous solutions due to aggregation, oxidation, and
hydrolysis48 that appear to be minimized during long-term storage of DBS in a freezer. In
fact, we did not observe the T3 dimer in our analysis of newborn DBS although this dimer is
routinely detected in plasma/serum samples [45, 69, 68, 44]. Furthermore, adducts in DBS
may be less susceptible to formation of artifacts because HSA is immobilized by the filter
paper and less likely to interact with other molecules during storage.

Adducts that discriminated newborns of smoking and nonsmoking
mothers

We had anticipated that Cys34 adducts of two toxic contaminants of cigarette smoke, i.e.,
ethylene oxide and acrylonitrile, might be more abundant in newborns of smoking moth-
ers given our previous detection of these adducts in plasma from adult smokers and their
absence in plasma from nonsmokers [45]. However, these adducts were not detected in the
newborn DBS, possibly due to low concentrations of the precursor molecules in newborn
blood. Mothers may have stopped smoking during the third trimester or before the last
month of pregnancy, and this may explain why we did not see all of the expected adducts
in the present analysis.

One adduct, the Cys34 adduct of cyanide (820.09), was selected by the ensemble method
as predictive of mothers’ smoking status (Fig. 3.7 and Fig. 3.10). Of the 26 adducts that were
tested, the Cys34 adduct of cyanide (820.09) was ranked the highest by all three statistical
methods. Although a feature does not have to be top-ranking for all three methods in order to
be selected, the relationship between cyanide and mothers’ smoking status is strong enough
that this adduct is top ranking for all three methods. As seen from the volcano plot, which
shows the relationship between the smoker/nonsmoker fold change of a given adduct and the
statistical significance of the difference in adduct abundance obtained from Equation 3.1, the
cyanide adduct showed a marked difference between newborns of smoking and nonsmoking
mothers, with a smoker/nonsmoker mean fold change of 1.31 (nominal p-value = 0.0017,
Fig. 3.10 (a)). The cyanide adduct was also top-ranked by both the lasso model (Fig. 3.10
(b)) and random forest (Fig. 3.10 (c)).
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To test whether the cyanide adduct could be used to distinguish between newborns based
on maternal smoking status, we performed a ROC analysis using logistic regression with the
cyanide adduct as the predictor. The cyanide adduct alone provided a cross-validated AUC
of 0.79 (95% CI: 0.65, 0.93). Although the AUC estimate is likely to be optimistic since we
did not have an independent test set for the ROC analysis, this indicates good discrimination
between newborns of smoking and nonsmoking mothers. The elevated levels of the cyanide
adduct among newborns of smoking mothers are consistent with inhalation of hydrogen
cyanide from tobacco smoke [114]. The half-life of cyanide in blood is less than one hour,
which makes it difficult to obtain accurate measurements of cyanide exposure from the direct
analysis of blood from smokers [124]. While more stable metabolites of cyanide, such as
thiocyanate, are often used as surrogate measures of cyanide exposure, pairwise correlations
are small between such metabolites and cyanide exposures [124, 31]. Since the residence
time of HSA is about 1 month [94], the cyanide adduct of Cys34 arguably represents a more
accurate measure of chronic low-level exposure to cyanide.

Using adductomics to discover biomarkers of in utero exposures

Adducts of HSA represent biomarkers of in utero exposures during the last month of gesta-
tion. A good example of such exposures is maternal smoking during pregnancy, which has
been consistently associated with increased risks of adverse birth outcomes (e.g., low birth
weight, preterm birth) [28] and has also been suggested to increase the risk of diseases later
in life, including various types of cancer [57, 108, 78, 39]. However, the long term effects
of in utero tobacco-smoke exposures on the risk of childhood cancer have been inconsistent,
with many studies reporting null associations [82]. One limitation of these epidemiological
investigations has been reliance on maternal self-reports to retrospectively characterize fetal
exposures to tobacco smoke [82, 128]. Exposure misclassification due to recall and reporting
bias is a particular concern among pregnant women, who may feel uncomfortable discussing
their smoking histories during pregnancy, and can result in underestimation of fetal health
effects from smoking mothers [32]. Biomarkers complement interview-based exposure assess-
ment by providing objective measures of exposure that are not susceptible to recall bias.
Nicotine and its metabolite cotinine are commonly measured in biological fluids (e.g., urine,
blood, saliva) to assess tobacco smoke exposures [32]. For retrospective analyses of fetal ex-
posures, archived newborn DBS are particularly attractive because they are readily available
in California’s repository that is maintained at −20 ◦C. In addition, newborn DBS enable
direct measurement of fetal exposures that can accumulate in the placenta and exceed those
of the mother [50]. Metabolites of nicotine, mainly cotinine, have been measured in newborn
DBS to improve smoking surveillance among pregnant women [111, 133]. However, the half-
life of cotinine is only about 28 h in infants, and cotinine may only be detected in newborns
of heavy smokers who smoke throughout pregnancy [110]. Since the residence time of HSA
is 28 days [94], Cys34 adducts detected in newborn DBS represent exposures received during
the last month of gestation and are only marginally affected by the day-to-day variability
in exposure [93]. In the present study, the Cys34 cyanide adduct discriminated between



48

mothers who reported smoking during pregnancy vs. those who did not, suggesting that
maternal self-reported smoking was reliable in the 47 subjects tested.

3.4 Discussion

With careful data exploration and visualization, various sources of technical noise were iden-
tified and managed in this study. Extensive plotting of sample and adduct characteristics,
as well as quality control metrics, uncovered then challenges (and their respective solutions)
behind analyzing DBS adductomics data. This study helped to lay the groundwork for
future analysis of DBS adductomics data. For example, it proved the utility of the scone
framework for normalizing adductomic data, and discovered sources of unwanted variation to
be aware of in future work. Indeed, the scone framework has also been successfully applied
to untargeted metabolomics data for normalization of considerably higher dimensional data
[88, 86]. Proper data pre-processing of the adductomics dataset allowed for discovery of a
biomarker of mothers’ smoking status that has considerable predictive ability for a single
molecule. The technical noise present in the data was reduced sufficiently to uncover this
relationship in all three measures of variable importance.
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Chapter 4

Data-adaptive Filtering in Untargeted
Metabolomics

Many of the exploratory and pre-processing data analysis methods for adductomics are
also applicable to untargeted metabolomics studies. For example, the ensemble variable
selection method discussed in the previous section has also been used to identify metabo-
lites that discriminate between incident childhood Leukemia cases and controls [88]. The
scone normalization framework has also been used to remove unwanted variation due to
sample contaminants, batch effects, machine performance, blood volume, etc. in untar-
geted metabolomics [86, 88, 89]. Here, we focus on a pre-processing issue in untargeted
metabolomics that is not present in adductomics, feature filtering.

4.1 Background

Metabolomics represents the small-molecule phenotype that can be objectively and quanti-
tatively measured in biofluids such as blood serum/plasma, urine, saliva, or tissue/cellular
extracts [95, 126, 19, 30]. Untargeted metabolomics studies allow researchers to character-
ize the totality of small molecules in a set of biospecimens and thereby discover metabolites
that discriminate across phenotypes [19, 95, 106]. Among the techniques employed for untar-
geted metabolomics, liquid chromatography-high-resolution mass spectrometry (LC-HRMS)
has become the analytical tool of choice due to its high sensitivity, simple sample prepara-
tion, and broad coverage of small molecules [126, 112]. However, many of the thousands of
features detected by untargeted metabolomics are not biologically interesting because they
represent background signals from sample processing or multiple signals arising from the
same analyte (adducts, isotopes, in-source fragmentation) [72]. Furthermore, feature de-
tection and integration with software such as XCMS [109] is imperfect, in that noise can
erroneously be identified as a peak group, the domain of integration can be incorrect, etc.
Thus, large metabolomics datasets can contain thousands of falsely identified features or
features with imperfect integration (e.g., incorrect integration regions and missing values).
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Inadequate feature filtering can affect subsequent statistical analysis. For example, if high
quality features are erroneously filtered, they will not be considered as candidate biomarkers
in univariate tests of significance for association with biological factors of interest or in
metabolic pathway analysis. Furthermore, if one performs univariate tests of significance
and ranks features based on p-values, biologically meaningful features could be lost in an
abundance of noise without adequate feature filtering. Failure to filter noise could also result
in false positives when assessing the significance of metabolic pathways with software such
as Mummichog, which relies on sampling features from the entire dataset to create null
distributions of pathway statistics [64].

Therefore, untargeted metabolomic data require a set of filtering methods to remove
noise prior to investigating the biological phenomena of interest. Data normalization has
received a lot of recent attention in untargeted metabolomics [36, 25, 21, 81, 71]. Feature
filtering, however, remains a fairly automated, indelicate, and brief step in the preprocessing
of untargeted metabolomic data. Many studies rely on valuable preprocessing pipelines
offered from programs like Metaboanalyst and Workflow4Metabolomics to process their raw
data. Such programs have greatly advanced the field of untargeted metabolomics and have
improved data pre-processing and analysis and replication of results. However, many users
of these programs rely heavily on the provided, default cutoffs for feature filtering that are
largely independent of their data, and do not attempt to identify appropriate, data-specific
filtering cutoffs. Thus, improper feature filtering in untargeted metabolomics is in part due
to user error in pre-processing pipelines.

For example, MetaboAnalyst allows users to filter features based on mean/median value
across samples, as wells as variability across biological samples and quality control (QC)
samples. While these are indeed useful filtering metrics, most users do not determine the
filtering thresholds appropriate for their specific data. Metaboanalyst suggests removing the
lowest k percent of features based on the size of the dataset (e.g., lowest 40% of features for
a dataset with more than one thousand features based on mean/median abundance across
samples), and a relative standard deviation (RSD, the same as a coefficient of variation
or CV) cutoff of 25% for LC-MS data [21]. While these are helpful guidelines for select-
ing cutoffs, users often fail to investigate if they are appropriate for their data. Similarly,
Workflow4Metabolomics, for good reasons, allows users to filter features based on variability
across replicates and sample mean vs. blank mean ratios, but many users select default or
commonly used cutoffs. We recognize that it is tempting for users to rely on default filtering
cutoffs without consulting their data, and we aim to assist researchers in selecting more
appropriate cutoffs.

We argue that filtering methods should be data-adaptive. A data-adaptive pipeline is
one which tailors filtering to the specific characteristics of a given dataset, rather than using
predefined methods. In what follows, we present a series of steps (Fig. 4.1) represent-
ing a data-adaptive pipeline for filtering untargeted metabolomics data prior to discovering
metabolites and metabolic pathways of interest. Our data-adaptive filtering approach con-
tains novel methods for removing features based on blank sample abundances, proportions
of missing values, and estimated intra-class correlation coefficients (ICC). To create data-
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Figure 4.1: Flowchart of a data-adaptive filtering pipeline for untargeted metabolomics data.

dependent thresholds for the above three feature characteristics, we propose visualizing the
differences in the characteristics between known high and low quality features. By examining
such differences for each dataset, one can minimize noise without compromising biological
signal. Once this is done for several datasets generated from a given laboratory, the deter-
mined filtering cutoffs can likely be applied to all such similar datasets. Properly filtered
untargeted metabolomic data can then be used as input into valuable processing pipelines
such as MetaboAnalyst and Workflow4Metabolomics for further preprocessing such as data
normalization. We compare our data-adaptive filtering method to common filtering meth-
ods using an untargeted LC-HRMS dataset that was generated in our laboratory and two
public LC-MS datasets. To compare the methods, we identified hundreds of high and low
quality peaks in each dataset. We then showed how our data-adaptive pipeline surpasses
workflows that use default cutoffs at removing the low quality features and retaining high
quality features.

4.2 Methods

Visualizing high and low quality features

When working with untargeted LC-MS data, visualization of extracted ion chromatograms
(EIC) of features can be used to optimize peak detection, peak quantification, and biomarker
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(a) High Quality Feature (b) Low Quality Feature

Figure 4.2: Example of a high and low quality peak group.

discovery [88, 86, 109]. We propose randomly sampling several hundred EICs after peak
detection and quantification to visualize peak morphology and integration. The EICs can
then be classified by the user as “high” or “low” quality (see Fig. 4.2). A high quality
peak has good morphology (e.g. bell-shaped), the correct region of integration across all
samples, and proper retention time alignment. Such visualization is made easy with plotting
functions from peak detection software such as the ’highlightChromPeaks’ function within
XCMS [109]. In almost all cases, we find the distinction between high and low quality peaks
to be clear, and classify any ambiguous peaks as low quality to be conservative. Once features
are classified as high or low quality across samples, their characteristics such as average blank
and biological sample abundance, percent missing, and ICC can be compared and used to
perform feature filtering. We recognize that the identification of high and low quality peaks is
the most time intensive step of the proposed filtering pipeline. However, with parallelization
of the plotting task, we have found that visualization and quality inspection of hundreds
of features takes between 1-2 hours. Moreover, after feature visualization, executing the
remaining steps of the filtering pipeline should take no more than 1 hour. Compared to the
time spent struggling to uncover biological signal with improperly filtered data, we find this
step well worth the added work.

Data-adaptive feature filtering

Example datasets

To help present and visualize our data-adaptive feature filtering methods, we introduce an
untargeted LC-HRMS dataset generated in our laboratory on a platform consisting of an
Agilent 1100 series LC coupled to an Agilent 6550 QToF mass spectrometer. The dataset
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contains the metabolomes of 36 serum samples from incident colorectal cancer (CRC) case-
control pairs as described in [86, 87]. Over 21,000 features were detected in the 36 serum
samples that were analyzed in only one batch [86, 87]. We randomly sampled over 900
features from the dataset and classified these as “high” or “low” quality according to their
peak morphology and integration quality. To demonstrate the performance of our data-
adaptive pipeline, we split the known high and low quality features into a training set (60%)
and a test set (40%). Features in the training set are used to visualize appropriate, data-
dependent cutoffs, whereas features in the test set will be used to evaluate the effectiveness
of the selected cutoffs. At each stage of the data-adaptive filtering, we compared our method
to more traditional filtering methods by examining what proportion of high and low quality
features in the test set were removed.

We also visualized and classified over 200 features in each of two public LC-MS datasets.
One of the public datasets was generated on a platform consisting of an Accela liquid
chromatographic system (Thermo Fisher Scientific, Villebon-sur-Yvette, France) coupled to
an LTQ-Orbitrap Discovery (Thermo Fisher Scientific, Villebon-sur-Yvette, France). This
dataset contains the metabolomes of 189 human urine samples. We took a subset of 45 of the
urine samples in the first batch, along with 14 pooled QC samples and 5 blank samples. We
processed this dataset using the original xcms functions and parameters used by the authors
(W4M00002 Sacurine-comprehensive) [36, 116]. The second public dataset was generated
on a platform consisting of an Accela II HPLC system (Thermo Fisher Scientific, Bremen,
Germany) coupled to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific)
[92]. This dataset contains the metabolomes of epithelial cell lines treated with low and
high concentrations of chloroacetaldehyde. We used all 27 cell line samples in negative mode
treated with low concentrations, as well as 6 pooled QC and 11 blank samples. The original
work did not use xcms to process the raw data, so we used the R package IPO to determine
the xcms parameters [66].

Filtering features based on blank samples

Blank control samples, which are obtained from the solvents and media used to prepare
biological samples, can help to pinpoint background features that contribute to technical
variation [85, 19, 126, 49, 36]. A common filtering method is to use a fold-change (biological
signal/blank signal) cutoff to remove features that are not sufficiently abundant in biological
samples [19, 36, 21]. Rarely does the user examine the data to determine a suitable cutoff. We
employ a data-adaptive procedure that takes into account the mean abundance of features in
blank and biological samples, the difference between mean abundances in blank and biological
samples, and the number of blank samples in which each feature is detected. Our method
then assigns cutoffs according to the background noise and average level of abundance. If
the dataset contains several batches, filtering is performed batch-wise.

We use a mean-difference plot (MD-plot) to visualize the relationship between feature
abundances in the blank and biological samples and assess background noise (Fig. 4.3). First,
abundances are log transformed prior to all data pre-processing and visualization. The mean
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(a) All Features (b) Features Detected in 3 Blanks

Figure 4.3: MD-plot for the CRC dataset.

log abundances of each feature in the biological and blank samples are then calculated and
the average of and difference between these two means are then plotted on the x- and y-axes,
respectively. The horizontal zero-difference line (blue lines in Fig. 4.3) represents the cutoff
between features having higher mean abundances in the blank samples and those having
higher mean abundances in the biological samples. If there are n blank samples in a batch,
then n + 1 clusters of features will typically be visually identifiable in the MD-plot, where
cluster i = 0, . . . , n is composed of features that are detected in i blank samples. For example,
because three blank samples per batch were used in the example dataset, four clusters are
identifiable in Fig. 4.3 (a). Similar clusters can be identified in all datasets generated from
our laboratory and in the public datasets. Filtering is then performed separately for each
cluster. If a cluster contains no high quality features, as is often the case with clusters that
contain lower abundance features, that cluster can be removed entirely.

The cluster corresponding to features detected in all n blank samples tends to have the
highest number of features (around 95% of the total number of features), features with higher
average abundances, and the highest number of high quality features. Therefore, careful,
data-dependent filtering of this cluster is crucial for the success of subsequent analyses. This
cluster also has a non-uniform distribution of mean feature abundances (Fig. 4.3 (b)). This
cluster is thus partitioned based on quantiles (20th, 40th, 60th, and 80th percentiles) of the
empirical distribution of mean abundances (x-axis). This ensures that each partition has
the same number of features and that the features are uniformly distributed throughout the
dynamic range. Within each partition, the empirical distribution of abundances below the
zero-difference line is used to estimate the technical variation above that line. The absolute
value (green lines in Fig. 4.3 (b)) of an appropriately identified percentile of the negative
mean differences (purple lines in Fig. 4.3 (b)) is used as a cutoff to remove uninformative
features. Users may identify appropriate percentiles of the negative mean differences (purple
lines) based on how many high quality features would be removed if the absolute values of
those percentiles (green lines) were used as cutoffs. We find percentiles between the lower
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(a) Average Value Cutoff (b) Blank Sample Cutoff

Figure 4.4: Two traditional filtering cutoffs.

quartile and median to be appropriate for this cluster of features, because they remove as
many low quality features as possible without removing high quality ones. Feature filtering
in the remaining clusters can be performed in a similar manner, but without the need to
partition features based on average abundance.

Using MD-plots to filter features allows for the simultaneous filtering of features by both
the difference in abundance in blank and biological samples (y-axis) and average abundance
(x-axis). Average abundance of features across biological samples is a commonly used filter-
ing characteristic, but the filtering is often done using pre-specified cutoffs (e.g., lowest forty
percent for datasets with more than one thousand features) (Fig. 4.4 (a)) [21, 36]. Although
we advocate for the filtering approach described previously, if users prefer to filter by just
average abundance, the MD-plot allows for easy visualization of a data-dependent cutoff that
removes as many low quality features as possible without removing high quality ones. The
same can be said for identifying a data-adaptive fold-change (biological signal/blank signal)
cutoff, rather than using default cutoffs provided in preprocessing workflows (Fig. 4.4 (b))
[36]. We note that, although it is possible for background signal to modify biological signal
(e.g., via ion suppression), we do not consider this source of variability.

Filtering features by percent missing

As mentioned above, low-abundance metabolomic features tend to have a high proportion
of undetected values across samples. In addition, when using software such as XCMS for
peak detection and quantification, oftentimes peaks can be missed by the first round of peak
detection and integration. Functions such as ’fillChromPeaks’ in XCMS are often used to
integrate signals for samples for which no chromatographic peak was initially detected [109,
21]. Low quality peaks tend to have higher proportions of missing values on average after
initial peak identification and integration (Fig 4.5).

To determine the appropriate filtering cutoff for percent missing, we create side-by-side
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(a) (b)

Figure 4.5: Distributions of percent missing for high and how quality peaks in the training
set

boxplots of percent missing values for the high and low quality features classified as such
by EIC (Fig. 4.5 (a)). The boxplots help to compare the percentiles of the distributions of
percent missing values for the high and low quality features, and to select an appropriate
cutoff based on these percentiles. Density plots of percent missing values can also be used
to visualize the modes and percentiles of the distributions for high and low quality features
(Fig. 4.5 (b)), and cutoffs can be determined based on these distributional properties. For
example, appropriate cutoffs would be those that discriminate between the modes of the two
distributions, that remove long tails of distributions of low quality features, that correspond
to extreme percentiles of one distribution but intermediate percentiles of another, etc. To
ensure that we do not remove features that are differentially missing between biological
groups of interest (e.g., mostly missing in cases but not controls), we perform a Fisher exact
test for each feature, comparing the number of missing and non-missing values against the
biological groups of interest. A small p-value for a given feature would indicate that there
is a significant dependence between the phenotype of interest and missing values. Features
with a percent missing below the identified threshold or with a Fisher exact p-value less than
some threshold (we recommend a small value such as the one hundredth percentile of the
p-value distribution) are retained. This test of association between the phenotype of interest
and missing values can easily be extended to studies where the biological factor of interest is
a multilevel categorical variable or a continuous variable by using, for example, a Chi-Square
test or a Wilcoxon rank-sum test, respectively.

Filtering features by ICC

High quality and informative features have relatively high variability across subjects (bio-
logical samples) and low variability across replicate samples [36, 21] (Fig. 4.7). Typically,
the coefficient of variation (CV) is calculated across pooled QC samples for each feature and
those with a CV above a predetermined cutoff (e.g., 20–30%) are removed [95, 126, 85, 21,
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Figure 4.6: Box plot of CV values in the CRC dataset.

36]. However, we find that the CV is often a poor predictor of feature quality (Fig. 4.6)
because it only assesses variability across technical replicates, without considering biologi-
cally meaningful variability across subjects. Instead, we propose examining the proportion
of between-subject variation to total variation, otherwise known as the intra-class correla-
tion coefficient (ICC) [107], as a characteristic for filtering. Since the ICC simultaneously
considers both technical and biological variability, a large ICC for a given feature indicates
that much of the total variation is due to biological variability regardless of the magnitude
of the CV.

Our method for estimation of the ICC employs the following random effects model:

Yi,j = µj + bi,j + εi,j,k, (4.1)

where Yi,j is the abundance of feature j in subject i, µj is the overall mean abundance
of feature j, bi,j is a random effect for feature j in subject i, and εi,j,k is a random error
for replicate measurement k for feature j in subject i. The ICC is estimated by taking the
ratio of the estimated variance of bi,j (between-subject variance) to the estimated variance of
bi,j + εi,j,k (total variance). If replicate specimens or LC-MS injections are analyzed for each
subject, then application of Equation (4.1) is straightforward. However, since metabolomics
data are often collected with single measurements of each biospecimen and employ repeated
measurements of pooled QC samples to estimate precision, then Equation (4.1) can be fit
by treating the pooled QC samples as repeated measures from a ’pseudo-subject’. As with
percent missing, density plots and boxplots of the estimated ICC values for high and low
quality features can be compared to determine a data-specific filtering cutoff (Fig. 4.7).
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(a) (b)

Figure 4.7: Distributions of estimated ICC values for high and low quality peaks in the
training set

Again, we look to the modes and percentiles of the distributions of the high and low quality
features to select an appropriate cutoff that strikes a balance between removing low quality
peaks and retaining high quality ones. If multiple batches are involved, the final feature list
represents the intersection of features from all batches.

4.3 Results and discussion

The MD-plot shows that all high quality features in the training set are in the same cluster
corresponding to features detected in all three blank samples (Fig. 4.3). Because features
in this cluster have higher average abundances and lower percent missing than those in the
other three clusters, it is not surprising that this cluster is comprised of many high quality
peaks. We therefore remove features in the other three clusters for this dataset, and focus
on the data-adaptive filtering of the cluster containing the high quality features (Fig. 4.3
(b)). We use the lower-quartile of noisy features below the zero difference line to estimate
the noise above the zero difference line because this cutoff removes a considerable number
of low quality features without removing many of the high quality features (Fig. 4.3 (b)).
In fact, this filtering step removes 68% of the 21,000 features, and 41% of the identified low
quality features in the test set (Fig. 4.8). Almost all (95%) of the high quality features in
the test set are retained (Fig. 4.8). A common approach to filtering would be to remove
features based on their mean abundance, such as removing the lowest 40% [21]. If this
threshold was used to filter the CRC dataset, only 31% of the identified low quality features
in the test set would be removed, and many remaining features would have higher average
abundance in the blank samples (Fig 4.4). Another traditional approach is to arbitrarily
select a cutoff (2–5) for the ratio between average biological and blank sample abundances.
A similar cutoff applied to the CRC dataset (a cutoff of two for the difference between
average log abundances in biological and blank samples) would remove only 36% of the low
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Figure 4.8: Percent of high and low quality features in the test set remaining after each
filtering step.

quality features in the test set and 10% of the high quality features in the test set, and fails
to remove many of the low quality features in the clusters removed by our data-adaptive
filtering. Utilizing blank samples in filtering certainly helps to reduce the number of low
quality features. Furthermore, utilizing data visualization helps to ensure that filtering is
done appropriately, i.e. that an appropriate balance is struck between removing low quality
features and retaining high quality ones.

The next step in the data-adaptive filtering is to visualize differences in percent missing
among the remaining high and low quality features (Fig. 4.5). Using the information on
distribution modes and percentiles provided by boxplots and density plots of the data in
the training set, we chose to remove features with more than 68% missing values (median
of percent missing for low quality features). When a Fisher exact test was used for each
feature to detect significant associations between missing values and the biological factor of
interest (CRC), 68 features had p-values less than 0.027 (the one hundredth percentile of
the p-values) and were retained regardless of their percent missing values. Combining these
two filtering criteria removed 47% of the remaining low quality features and only 11% of the
remaining high quality features in the test set (Fig. 4.8).

We used the 12 QC samples from the CRC dataset to calculate ICC values for each of
the remaining features. Using the information provided by the density and boxplots, we
chose to remove features with ICC values less than 0.43 (the lower hinge of the box plot for
low quality features in the training set) (Fig. 4.7). This removed 23% of the remaining low
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quality features in the test set and only 15% of the remaining high quality ones (Fig. 4.8).
Compare this to using CV values to perform filtering, where a typical CV cutoff of 30% or
even 20% (Fig. 4.6) [36] results in no further filtering of the remaining low quality features
in the test set. With all steps of the data-adaptive pipeline, the CRC dataset was reduced
to just 3, 009 features. The data-adaptive filtering removed 76% of features identified as low
quality and retained 72% of those identified as high quality in the test set (Fig. 4.8).

When the data-adaptive pipeline was applied to the public urine dataset [116], 83% of the
high quality features in the test set were retained and 74% of the low quality features in the
test set were removed. We used a percent missing cutoff of 69% (median of percent missing
in the low quality feature training set) and an ICC cutoff of 0.35 (lower whisker of the box
plot of ICC values for low quality features in the training set). When the data-adaptive
pipeline was applied to the public cell line dataset [92], 79% of the high quality features in
the test set were retained and 76% of the low quality features in the test set were removed.
We used a percent missing cutoff of 27% (median of percent missing values in the low quality
feature training set) and an ICC cutoff of 3.8× 10−9 (median of ICC values for low quality
features in the training set).

We recognize that our data-adaptive pipeline involves several steps of manual work, such
as the visual identification of high and low quality features and the selection of filtering
cutoffs. Such methods do present the opportunity for user error, but we argue that such
error will not effect the end results of a study. To our knowledge, xcms does not provide peak
quality scores for an automated identification of high and low quality peaks. Furthermore,
as stated previously, in the vast majority of cases the contrast between images of high
and low quality features is striking. Occasional miss-classification of features as high or
low quality will not considerably affect the distributions of the feature characteristics used
to select the cutoffs, and therefore will not have a large impact on final filtering results.
We see the manual selection of filtering cutoffs based on thorough data visualization as an
advantage of our proposed pipeline. Researchers may likely have specific requirements for
the balance between removing low quality and retaining high quality features depending on
their scientific question of interest, their analysis plan or the size of their data. Manual
selection of filtering cutoffs, as opposed to using pre-determined cutoffs, allows researchers
to adjust the stringency of their feature filtering to fit the needs of their study.

4.4 Conclusions

Pipelines such as Workflow4Metabolomics and MetaboAnalyst have been crucial for advanc-
ing LC-MS based untargeted metabolomics. However, we find that users of these pipelines
often rely heavily on default filtering parameters that are less than optimal for all analyt-
ical platforms and methods. The aim of our work was to assist users in understanding
appropriate filtering methods for their specific data. Given the inherent heterogeneity of
metabolomic studies, we argue that feature filtering of such data should be data-adaptive.
Here, we provide filtering criteria for each step in a metabolomic pipeline and discuss how
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to choose cutoffs based on data visualization and distributional properties of high and low
quality features. Because of the random noise present in untargeted LC-MS data, we also
encourage investigators to visually inspect features of interest for peak morphology and in-
tegration prior to inclusion in reports of biomarker discovery and pathway analysis results.
We appreciate that our data-adaptive filtering method requires more effort than selecting
default or common cutoffs, but argue that the improved data quality will greatly improve
statistical analyses performed in applications involving biomarker discovery and pathway
characterization.
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Chapter 5

Conclusion and future directions

As omics technologies continue to grow and develop, it is becoming increasingly important
to not lose sight of the importance of appropriate exploratory data analysis and data-pre-
processing. While it is true that omics technologies provide a more in-depth investigation
of health and disease, in many cases this is only possible once exploratory data analysis and
pre-processing have sufficiently reduced the variability and bias within the resulting data.
Because of the considerable amount of bias, noise and variability sometimes present in omics
data, exploratory analysis and pre-processing can often be time intensive. However, the
effort spent in these initial stages of analyses will increase the success and reliability of the
ultimate findings.

The general goal of the work presented here was to demonstrate the importance of ex-
ploratory data analysis and data preprocessing on different kinds of omics data. We began
with a popular area of omics research, single-cell RNA-sequencing, and demonstrated how
early exploratory analysis and pre-processing allowed us to better understand the variability
in the data. Careful investigation of the experimental design, data collection and sources of
unwanted variability lead us to understand how the two batches of cells should ultimately
be analyzed. Exploratory analysis of the single-cell RNA-sequencing dataset revealed to us
that we needed to focus on developing a single-cell similarity measure that could effectively
uncover cellular relationships amid considerable noise.

Adductomics is a relatively new area of research and thus requires thorough exploratory
data analysis in order to understand the behavior of the data. Due to the lower dimension-
ality of adductomics data, there is less of a need to utilize more complex feature filtering
methods, especially because the integration of each adduct can usually be manually ver-
ified. However, the complexity of the experimental protocol in adductomics makes data
normalization all the more necessary. In the adductomics dataset discussed here, and in all
adductomics datasets generated in our laboratory, we have found that including an internal
standard and running duplicate injections for each subject are useful for reducing variability
in adductomics. However, including duplicate injections may cause more harm than good
when hundreds of subjects are included in a study, since doubling the amount of samples
considerably increases the run time of the data collection and thus affects the machine per-
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formance. It is an interesting experimental design question to consider the variability trade
off between running duplicate injections and minimizing machine performance issues. How-
ever, running duplicate injections was not an issue with the adductomics dataset discussed
here, which contained only a small number of samples.

The final aspect of this work was to consider the challenging task of filtering features
from untargeted LC-MS data. We discussed visualization and filtering techniques that con-
siderably reduced the number of low quality features in metabolomics data, regardless of
the sample collection/extraction techniques, chromatography, mass spectrometry, etc. In
our own lab, we have found that using the proposed data-adaptive filtering pipeline, has
considerably increased the efficiency and accuracy of our subsequent statistical analysis. Af-
ter data-adaptive feature filtering, we observe fewer false positives and false negatives in
biomarker discovery and pathway analysis. In the beginning of this work, we posed that
data-adaptive pre-processing may help with result replication. For example, it could be that
data-adaptive feature filtering in metabolomics would help biomarker and pathway analysis
results to replicate across studies. This idea could be studied in future work with several
independent datasets. Both data adaptive and traditional filtering methods that rely on
pre-determined/common filtering thresholds could be used on the datasets. Then, one could
determine whether results are replicated with only one or both of the filtering techniques.

A very challenging direction of future work that was discussed briefly in the introduction
is the integration of various omics data types. An interesting example of data integration is
combining metabolomic, adductomic, genetic and epigenetic data from the archived neonatal
blood spots (NBS) that are part of the California Childhood Leukemia Study [80]. Multiple
punches have been taken from the Guthrie cards on which the NBS are stored and used for
these different omics studies. Integrating this data is an example of combining measurements
of a variety of omics features (e.g. genes, metabolites, etc.) that are all taken on the
same set of subjects. Extensive exploratory data analysis and data pre-processing would
most certainly be required before attempting to integrate such data. However, due to the
complexity and heterogeneity of childhood leukemia, and the relative mystery behind its
causes, many would argue that an integrative omics approach is necessary for studying this
disease.
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