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The effect of a change of gauge on the propagators is studied systemat-

ically for quantum electrodynamics. Various gauges are considered, among them 

the Coulomb, the Landau, the Feynman, and the Yennie gauges. The equivalence 

of the various formulations of the theory is demonstrated. For the relativistic 

gauges, the transformation of the wave function renormalization constant is . 

described. 
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The propagators of quantum electrodynamics are affected by ambiguities 

because the theory is invariant under gauge transformations. In this note we 

shall investigate systematically this ambiguity of the (unrenormalized) 

propagators and shall give the connection between the various gauges. 

We use the Heisenberg equations of motion in the Coulomb gauge. In 

this gauge the longitudinal part of the magnetic vector potential is a c-number. 

The relativistic covariance of this formulation of the theory (briefly discussed 

in Appendix B) has been known for a long time. It is also known that the 

relativistic S-matrix theory of Feynman can be derived directly in the Coulomb 

gauge. In this note we show how the propagators in other gauges (including 

the relativistic ones) are connected to those in the Coulomb gauge. It is 

therefore clear that the Heisenberg equations in the Coulomb gauge provide a 

complete basis for quantum electrodynamics. The present formulation has the 

desirable feature that only physical states are considered, no supplementary 

1 condition and no indefinite product in Hilbert space are necessary. 

The study of the gauge transformation of the propagators becomes 

particularly s,imple and elegant if one employs the method of functional 

2 derivatives. This method, which has been largely used by Schwinger, makes 

use of a generating functional (which we call Z) from which all propagators 

can be obtained by functional differentiation. The gauge ambiguity of the 
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propagators will be shown here to arise from the gauge ambiguity in the functional 

Z itself. In previous work this ambiguity has been ignored to a large extent, 

with a consequent lack of clarity concerning the meaning of the operations to be 

performed, as for instance the differentiations with respect to the external 

sources. 

The Heisenberg equations in the Coulomb gauge depend upon a c-number 

gauge function A • As shown in Section 2, a change in the gauge function 

induces a gauge transformation in the generating functional z. We call a 

quantity gauge-invariant if it is invariant with respect to this c-number gauge 

transformation. In Section 3 we derive the functional differential equations 

satisfied by Z and extend the definition to more general gauges, characterized 

by an operator four-vector A suitable choice of a 
ll 

gives the Coulomb 

gauge ·in ar.y Lorentz frame. Another choice of a gives a relativistic gauge 
ll 

in which the zero-order photon propagator has the form 

This gauge was widely used by Landau, 3 and we shall call it the Landau gauge. 

It is very convenient for the study of ultraviolet divergences. In Section 4, 

we proceed to a further genera.lization, introducing gauges depending in 

addition upon a function M. If we start from the Landau gauge D
11

) , we 

can obtain in this fashion all gauges where the zero-order photon propagator 

has the form4 

+ 

In particular, for M = ~ D one can cancel the 
d2 c J 

the ordinary Feynman form of the photon propagator. For M = one 
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obtains a gauge used by Fried and Yennie. 5 They have used it for the study of 

infrared divergences. Our general gauge is now characterized by the c-number 

gauge functioh A plus a and M • 
J..l 

Quantities invariant with respect to 

changes in A are automatically invariant for changes of a and M • 
J..l 

Therefore these more general gauge transformations do not correspond to new 

invariartce properties of the theory. Rather they allow to establish a connection 

between different existing formulations of it. 

The effect of changes in the function M {within the class of relativistic 

gauges) on the wave function renormalization constant z2 has been studied 

6 in particular by Johnson and the present author. They have given an exact 

transformation formula for z2 • Using it, one can easily verify that z2 

(to order 2 e ) has no ultraviolet divergence in the Landau gauge and no 

infrared divergence in the Yennie gauge. 
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2. THE GENERATING FUNCTIONAL IN THE COULOMB GAUGE 

We recall here first the equations for the Heisenberg operators of 

quantum electrodynamics in the Coulomb gauge. 

The Hamiltonian is 

J:! = fdxT 
- 00 

with 

and the commutation relations are 

[E tr(x), A (x~)] 
r - s- = 

and 

·while other commutators vanish. Here we have 7 

E 

-2 
~ \] p ' 

div Etr = 0 , 

e * P = 2 [w , wJ, e * J. = 2 [w ' ~ wJ ' 

H curl A 
' 

and 

A = Atr + \J A 

Since the~ngitudinal part of ~ commutes with all other operators, 

A(~, t) can be taken as an arbitrary c-number. 

( 1) 

( 3) 

( 4) 

(5) 

( 6) 

( 7) 

(8) 

(9) 

( 10) 
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The above Hamiltonian and commutation relations give rise to the correct 

equations of motion: 

i'if (rr$ - i~·'V- ~·~) w e 
(¢, wJ = + 2 

( 11) 

Etr curl H .tr 
= .J. ( 12) 

A_tr 
= 

_ Etr ( 13) 

so that 

E = 
_ ~tr - 'V¢ . ( 14) 

If we set 

Ao = ¢ - A ( 15) 

we can write 

E = -A - 'V Ao . ( 16) 

The set of equations presented above is invariant under the c-number 

gauge transformation: 

...... 
A -+A + 'VA 

. 
"' 1\ 

""' W .... W exp ie 1\ 

( 17) 

The choice A = 0 would fix the gauge (transverse Coulomb gauge). However, 

it is convenient to leave the gauge function arbitrary and to use the gauge 

transformation to define those operators that are gauge-invariant. 
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The operator condition (7) is consistent with the commutation relation (3). 

It is known that the formulation of quantum electrodynamics given above is 

relativistically covariant, in spite of the apparent asymmetry between space 

and time variables. The covariance is proven directly in Appendix B. An 

alternative proof results from the investigation carried out in Section 3 of 

the covariance of the equations for the propagators. 

We consider now the generating functional8 

( 0 I T exp i f dx(~ * + * ~ + J A~) I 0 ) 
~ 

l J -2 X exp -2 dx J \7 J 
0 0 

( 18) 

All vacuum expectation values of time-ordered products of Heisenberg operators 

can be constructed from Z by functional differentiation. Actually the form 

(18) is somewhat redundant, since A0 is given through Eqs. (6) and (15) in 

terms of the spinor field. One could set J = 0 and work with the resulting 
0 

functional. The form we have chosen, however, is more convenient for the 

investigation of transformation properties. We wish to emphasize here that 

it is not assumed that the various components of J satisfy a continuity 
~ 

equation like 

= 0 . 

The complete arbitrariness is necessary in order to operate on Z with 

( 19) 

functional derivatives. Only after all functional differentiations have been 

performed will one require that J 
~ 

vanishes) and also, of course, that 

T} = T} = 0 

satisfies Eq. (19) (or even that it 

( 20) 
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The gauge ambiguity of Z and of the propagators is in fact connected with the 

necessity of extending (in an arbitrary way) the definition of Z to unphysical 

values of J not satisfying E~. (19). This fact can be illustrated by 
JJ. 

exhibiting the dependence of Z upon the gauge function A. It follows 

immediately from E~. (17) that 

= z0 [~ exp(-ieA), ~ exp(ieA), J ] exp ie f J of..L A dx 
JJ. f..L 

( 21) 

where the right-hand side refers to the value A = 0. This relation can be 

cast into the differential form 

5 i 0 z = 
5 fl. + e ~ 5~ - e ~ 

5 - )Z, 
511 

( 22) 
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3. THE FUNCTIONAL EQUATIONS AND THEIR TRANSFORMATION PROPERTIES 

Using the definition (18), the equations for the Heisenberg operators 

and the commutation relations, one can show that the generating functional 

satisfies the functional differential equations: 

(dA. (?J 
f.l 

( [yf.l(?J 

( - 1 
i 

( af.l 1 
i 

1 !) 

I '5J!j\ -

ie 1 !) 

I f.l 5Jf.l 

5 
[ - yf.l(?J 

51) + 
f.l 

5 
A)Z + = 

5Jf.l 

) 

0 

5 ) 
!)Jil 

X (ie 

+ m 

1 5 ie -i 5Jf.l 

+ 

1 
i 

) 

1 8 
I ~ -

'5 
T) } z 0 = 

5i) 

+ m ] 1) }Z 

0 

= 0 

(23) 

(24) 

( 25) 

( 26) 

Equation (25) follows from the (Pauli) adjoint of Eq. (11). The source terms 

JA, 1) , and 1) arise from the time differentiation of the time-ordered products. 

The operator vector a , introduced here at first for the sake of 
f.l 

concise notation, is defined by 

a 
0 0 ' a 

r 
- 'V "i/2 

r 

in the Lorentz frame chosen to define the Coulomb gauge. The form of the 

equations suggests, however, that we consider more generally operator 

vectors a (operating on functions of the four-dimensional variable x) 
f.l 

satisfying 

(27) 
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J.l 

= - 1 0 
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A suitable choice for a will give, in particular, the Coulomb gauge in any 
J.l 

Lorentz frame. 9 Another choice of interest is the limit as € tends to zero of 

a = 
J.l 

(29) 

The different choices of a give rise to different functionals' Z which are 
J.l 

not related simply by changes in the gauge function A and yet give rise to 

physically equivalent formulations of the theory. As shown in Eq. (31) below, 

a change ~ a of a which preserves Eq. (28) 
J.l J.l 

( 30) 

can be considered as a generalized type of gauge transformation and the various 

choices of a as various possible gauges. 
J.l 

The gauge given by Eq. (29) will 

be called the Landau gauge. Let us notice that the condition (28) is required 

for the consistency of the functional equation (23), as one can see by operating 

on this equation with oJ.l • 

From our present more general point of view, the Eqs. (23) to (26) are 

obviously covariant, since we chose to treat a as a four-vector. However, 
J.l 

one must now investigate how the solution changes with an infinitesimal change 

~ a in a 
J.l J.l 

We show in the following that the corresponding change in Z 

can be written as 

~z = i J (o a ) 0 0 z 
J..L oJ · oA 

.•, f.!-
(31) 

Clearly, if a functional ·csv constructed from Z by functional differentiation 

is gauge invariant in the sense that it does not change when one changes the 
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gauge function A , then we have 

0 . ( 32) 

FromE~. (31) one then sees that such a functional also does not change in 

correspondence to a change 5 a of a 
JJ. JJ. 

We proceed now to prove our basic equation (31) by showing that the 

functional differential equations satisfied by Z remain invariant if one 

performs simultaneous changes of a and of Z • An alternative proof proceeds 
JJ. 

directly from the explicit expression for Z and is sketched in Appendix A. 

The invariance of Eqs. (24) and (25) is trivial, since they do not contain 

J or A . The invariance of Eq. (26) is also easily verified. To check the 
JJ. 

invariance of Eq. (23) one needs a simple identity satisfied by any solution of 

the functional equations. If one applies -f 0~ to Eq. (24) and 

to Eq. (25) and subtracts, one obtains10 

{ o"- ( - 1 0 1 0 ) 1 0 
OT) r,._ T) 

OT) 
+ i i oTi i 

Therefore, from Eq. (22), the terms containing 

be written as 

oz 
- i aJJ. oA - J z 

JJ. 

T) 

a 
JJ. 

The invariance of Eq. (23) is now easily verified. 

1 .E._ }Z 0 ( 33) i = 
o'T) 

and J in Eq. (23) can 
JJ. 

( 34) 

The basic transformation formula (31) allows one, at least in principle, 

to transform all propagators from one gauge a to another. 
JJ. 

The transformation 

is particularly simple in the case 11 = 11 = 0 Remembering Eq. (22), one has, 
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in this case, 

oL = f op J 5 a 
p J.1 

where we have defined 

L[ J 
J.1 

= Z[ o, O, J ] • 
J.1 

One should observe here that we have 

= 0 

-12-

( 35) 

( 36) 

( 37) 

as a consequence of Eq. (30). Therefore the operation to be performed on L 

is a pure substitution, 

with 

= L[ J I] ' 
J.1 

J 1 =J +5aO'A.J. 
J.1 J.1 J.1 A. • 

We have indicated with a prime the functional in the new gauge. The 

transformation (38), (39) is correct for finite changes o a also. 
J.1 

functionals in the two gauges coincide when Eq. (19) is satisfied. 

The change induced in 

1 1 
T i 

L 

is a simple gauge transformation. Indicating only the dependence on 

has 

CJ '[J ] 
.J lJ.l p 

A. D I 
+ o 8 a rh[J ] J.1 ,... p 

( 38) 

( 39) 

The 

(40) 

J , one 
J.1 

( 41) 
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Similarly one obtains, for the exact photon propagator 

' 
(42) 

the relation 

= ( 43) 

The relations (41) and (43) are of course also valid for finite gauge transforma-

tions. An obvious simplification occurs when Eq. (19) is satisfied. 

When differentiations with respect to ~ or ~ occur, it does not 

seem possible to obtain formulas of simplicity comparable to the above. Thus, 

for the exact electron propagator, 

G(x, y) = 
- i 
z o ~(y) o i;(x) 

one obtains from Eqs. ( 21) or ( 22~), a,fter setting ~ = ~ = 0 , 

or 

0 
i oA(z) [ L G(x, y)] = [ d~ J (z) - e o(x- z) + e o(y- z)]L G(x, y) 

~ 

Finally, from Eq. (31), we obtain 

( 44) 

( 45) 

( 46) 

:I 

L' G'[x, y; J (z)] = L G[x, y; J (z) - o a (e o(x- z) - e o(y- z) ) ) , 
~ ~. ~ 

( 47) 
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:I 

where J is given by Eq. ( 39). This formula, which was given first by 
J.l .. 

11 Schwinger and Johnson, shows clearly what an intricate connection exists 

between the electron propagators in two different gauges of the type considered 

here. In particular, set JJ.l = 0; one sees that to obtain G' 

to know G for nonvanishing values of the current equal to 

j (z) 
J.l = = e o a (o(x ~ z) 

J.l 
o(y - z)) 

Notice however that, because of Eq. (30), one has 

ol-1 J (z) = 0 . 
J.l 

it is necessary 

( 48) 

( 49) 



UCRL-8896 

-15-

4. TRANSITION TO MORE GENERAL GAUGES 

In the preceding section, we have considered the generating functional 

and the propagators in the various gauges specified by different choices of A 

and of a 
f..l. 

MOre general types of gauges can also be c0nsidered. Of particular 

interest are changes of the basic functional given by 

oz i 0 ( 0 
2 f f M oM) oA z ' (50) 

where oM(x - y) is an arbitrary infinitesimal function symmetric in x - y. 

The generating functional can be considered now as dependent upon a new (symmetric) 

function M(x - y) in such a way that the infinitesimal change oM induces in 

Z the change given by Eq. (-50). The explicit expression for Z as a function 

of A , a , and M is given in Appendix A. 
f..l. 

Clearly a functional ()v which is invariant under the original c-number 

gauge transformations (17), and which therefore satisfies Eq. (32), will also 

not be affected by the change (50). 

We can easily deduce the effect of the change (50) on the first few 

propagators. First, setting ~ = ~ = 0, we see from Eq. (22) that 

oL - 1 f f df..l. J (oM) dp J L , 
2 f..l. p 

(51) 

or, in finite form 

(52) 

From this it follows that 

+ d f (oM)dP J • 
f..l. p 

(53) 
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and 

(54) 

Similarly, for the electron propagator, we obtain 

i J J 5 5 B(L G) = 2. M (BM) Bl\. (L G) , (55) 

and, using Eqs. (46) and (52), the result in finite form, 

G'(x, y; J) = exp ( ie~:-(BM(x - y) - BM( 0) ) · 

+ ie J (BM(x - z) - BM(y - z))op J (z)dz }·G(x, y; J) . p 

(56) 

For J = o, of course, we have 

2 G'(x, y; 0) = exp ( ie (BM(x- y) - BM(O)) }G(x, y; 0) • (57) 

Finally, Eq. (56) can be used to obtain the change in the propagator 

5 
C (x, y; z) = G(x, y; J) , 
~ BJ~(z) 

which is closely related to the vertex part. 

differentiation, one has 

u 

Setting J = 0 after the 
~ 

C (x, y; z) = 
I;! 

2 exp ( ie (BM(x- y) - BM(O)) } 

0 
)([ C ( X, y; z) - ie - ( BM( X - z) - oM( y • Z) ) ] • 

~ oz~ 

As seen in Eq. (54), the gauge transformations considered in this section 

(59) 
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permit us to operate the transition from what we have called in the INTRODUCTION 

the Landau form of the photon propagator to the Feynman and the Yennie forms. 

To achieve this, one has only to chose 

oM = 2 y(- 0 -2 
i e) o(x - y) (60) 

with a suitable constant 1 . Since the choice (60) for oM gives rise to a 

rather singular function, a regularization procedure is necessary before 

evaluating consequences of the gauge transformation. This has been done by 

Johnson and Zumino.6 From the transformation formula, they have deduced 

information about the infrared structure of the electron propagator. 

If the function oM has a reasonable Fourier transform and vanishes 

at large distances in momentum space, one can use Eq. (57) to give the change 

induced in the wave-function renormalization constant z2 by going from one 

relativistic gauge to another. It is sufficient to remember that, in a 

relativistic gauge, z2 can be defined from 

for large coordinate separation. Here Gm is the zero-order, Feynman 

propagator for a Dirac particle of mass m • Comparing with Eq. (57), we 

obtain 

In conclusion the author wishes to thank Dr. Kenneth Johnson for 

many illuminating discussions on the topics treated in this note. 

(61) 

(62) 
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APPENDICES 

Appendix A: Explicit Form of the Generating Functional 

The physically interesting solution of the functional equations (23) to 

(26) can be obtained by following methods that were developed first without 

giving particular consideration to questions of gauge invariance. 2 We shall 

exhibit here the solution, so as to see its explicit dependence on the gauge. 

Consider the electron propagator in an external field B ' f.l 

G[B ; x, y] 
f.l 

= ie B ) 
f.l 

-1 
+ m - ie} o(x- y). (Al) 

The vacuum polarization (closed loops) due to the external field can be expressed 

by the functional 

F[B ] = exp ( - Tr log( G[B] (G[O]f1 ) 
IJ. 

(A2) 

where we have used an obvious notation of multiplication for integral kernels, 

and the symbol Tr means the trace taken with respect to space time as well as 

spinor indices. Notice that 

·,.., 
G(B + o A; x, y] = exp(ie(A(x) 

f.l f.l 

and therefore 

F(B + o A] = F(B ] 
IJ. f.l f.l 

A(y))]G[B; x, y] ' 
IJ. 

It can also be verified, by direct evaluation, that 

(a~" - 1 e -
i ~ (

., 

1 0 - "' 
7 -= exp ( i ~ G[B ] ~ 
~ e~ f.l 

= 

(A3) 

(A4) 

0 (A5) 
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The generating functional considered in the text is now given, in its 

dependence upon A , a 
fl 

and M , by 

= exp ( i ~ G[ ~ 0~ ] ~ } F[ ~ 5~ 
fl fl 

{ ! (J xexp 2 fl 

where D is the Feynman function, 
c 

i dp J M dr,. J . ) - 2 p ')-... 

D (x - y) c 
-1 

i€) 5(x - y) • 

(A6) 

(A7) 

The expression (A6) satisfies Eqs. (23) to (25). It does not satisfy Eq •. (26) 

unless one sets M = 0. On the other hand, the dependence on M in Eq. (A6) 

clearly agrees with Eq. (50). 

We ind~cate now briefly how one can verify that the explicit formula 

given actually satisfies the functional equations, without however going into 

the question of the boundary conditions that ensure the uniqueness of the 

solution. The only equation that is not trivially satisfied is Eq. (23). If 

we operate with 

(AS) 

on the last exponential in Eq. (A6) we obtain, after simplifications involving 

the use of Eq. (28), a factor 

(J + a <JP J ) . 
fl fl p 

(A9) 
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The terms containing A and M give no contribution. Now one must pass the 

factor to the left of the terms in Eq. (A6) which contain the functional 

1 0 
derivatives I OJ If one uses Eq. (A5), one sees that the net effect is to 

1..1. 

replace J with 
1..1. 

J 
1..1. 

- ie 

so that Eq. (23) obtains. 

1 0 
i o'Tf ' 

(AlO) 

Using the explicit form (A6), one can prove again the formulas given in 

the text for the various changes of gauge. The basic tools are now the relations 

and 

= (op J (z) - e o(x - z) 
p 

"' + e o(y - z) ) G 

which are immediate consequences of (A3) and (A4). The expression for 

L[J ] is obtained d~rectly from Eq. (A6) by setting ~ = ~ = 0 • The 
1..1. 

expression for the electron propagator (44) is then given by the equation 

L[J. ] G[x, y; J ] = 
fJ. 1..1. 

"' 1 0 G[ i oJ ; x, y ] L[J ] • 
1..1. 1..1. 

(Ali) 

(Al2) 

(Al3) 

In this form the evaluation of changes induced by a change in the function M 

becomes particularly simple. 
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Appendix B: Covariance of the Operator Formalism 

The covariance of the equations for the Heisenberg operators in the 

Coulomb gauge can be proven by exhibiting the ten fundamental generators of 

infinitesimal Lorentz transformations ·p 
!J. 

and M!J. .J and by verifying that they 

satisfy the correct structure relations. Since the covariance of the operator 

equations under space-time translations and space rotations is obvious, we shall 

restrict ourselves to a very brief discussion for the case of actual Lorentz 

transformations. 

The corresponding generators are given by 

M = X p + J X T dx or o r r oo (Bl.) 

where T is the component of the energy-momentum tensor given in Eq. (2). 
00 

The form (Bl) is obtained by analogy from the classical theory. The change 

induced by an infinitesimal Lorentz transformation in any operator ~ is 

given by 

0 ~ = i (B2) 

where the antisymmetric infinitesimal tensor characterizes the Lorentz 

transformation in question. 

The changes induced in the basic operators A and ~ are easily 

obtained. It can be shown from the commutation relations (3) and (4) that 

and 

i[M , An] or ,., 

i[M , ~] or 

= -(x d o r 

-(x d o r 

+ 0 n A r,., o (B3) 

(B4) 
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·x 
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(B5) 

Equations (B3) and (B4) show that, in going to a new Lorentz frame, not only 

do A and w transform like a four-vector and a spinor, respectively, but 
1-1 

that they also undergo an operator gauge transformation which reestablishes the 

Coulomb gauge in the new Lorentz frame. It is easy to verify that the operator 

gauge transformation leaves invariant symmetrized expressions like (8), so that 

the current and charge densities, for instance, transform like a four-vector. 

It is worth noticing that the symmetrization, necessary for charge conjugation 

invariance, also appears necessary to ensure the relativistic covariance of the 

theory. One can give a more convenient form to the gauge operator B, in which 

the transverse and the longitudinal parts of the electric field are separated. 

We give only the result 

B = 9-2 E tr 
r r 

1 
2 (B6) 

One can now proceed to verify the structure relations, the expression 

for the space components M rs and for P 
r 

being well known. Thi,s will not 

be done here. A simpler check on the covariance of the theory is the direct 

substitution of the transformed quantities obtained from Eqs. (B3) and (B4) 

!" into the differential equations. Obviously only the invariance of the Dirac 

equation under the gauge part of Eq. (B4) requires detailed examination, since 

the Lorentz covariance of the unquantized theory is well known. Both procedures 

result in proving the covariance. 11 
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FOOTNOTES 

1. The Coulomb gauge has been used recently by Schwinger and Johnson (Kenneth 

Johnson, Mas~husetts Institute of Technology, private communication, 1959). 

They have arrived independently at several of the results described in the 

present note. 

2. J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). For a more 

detailed discussion see, e.g., K. Symanzik, z. Naturforsch. ~a, 809 (1954) 

and E. s. Fradkin, Doklady Akad. Nauk. s.s.s.R. 98, 47 (1954) and 100, 897 

( 1955). 

3. L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Doklady Akad. Nauk. 

s.s.s.R. 95, 773 (1954). 

4. The M transformation has been given first by L. D. Landau and I. M. Khalatnik?v, 

J. Exptl. Theoret. Phys. (U.S.S.R.) 29, 89 (1955); English translation in 

Soviet Physics JETP g, 69 (1956). Their derivation, however, is based on 

an operator gauge transformation, the validity of which appears rather 

q_uestionable. 

5· H. M. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958). 

6. K. Johnson and B. Zumino, The Gauge Dependence of the Wave-Function 

Renormalization Constant, UCRL-8866, August 1959. 

7· The transverse part of a vector D is of course defined by 

tr -2 D = D ~ 9 9 div D • 

8. In order to avoid formal difficulties in connection with the use of the 

anticommuting spinor sources ~ and ~ , it is best not to interpret the 

bar as a relation of hermitian conjugation between ~ and ~ • Rather, 

one should consider ~(x) and ~(x) as independent anticommuting symbols 

•, 



,• 
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8. (Cont.) 

9· 

and carry out all the formal operations from this point of view. In the 

final expression one always sets ~ = ~ 0 , or, more correctly, one 

takes that part of the expression which is independent of ~ and of ~ . 

A covariant expression for a 
iJ. 

corresponding to the C9ulomb gauge in the 

Lorentz frame characterized by the unit time-like vector 

a = 
o + n (n·o) 

iJ. iJ. 
iJ. 

n 
J.l 

is 

10. For ~ = ~ = 0, Eq. (33) gives the conservation of the vacuum currents. 

11. It has been pointed out by Schwinger that the analogous covariance test 

fails if an anomalous Pauli moment is introduced into the theory. Glashow 

and Gilbert have shown how the covariance of the theory can be saved by 

the further introduction of a term describing the self-interaction of the 

magnetic-moment density. The author would like to thank Dr. Glashow for 

an illuminating correspondence on this question of covariance. 
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