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ABSTRACT OF THE DISSERTATION 

 

Mechanisms for Adenovirus E1A Evasion of Innate Immunity and Promotion of Cellular De-

differentiation 

 

By 

 

Nathan Robert Zemke 

 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles 2019 

Professor Arnold J. Berk, Chair 

 

Viruses are ancient pathogens that evolved to exploit cellular processes through 

sophisticated mechanisms that promote viral replication. Human adenovirus type 2 (Ad2) and the 

closely related adenovirus 5 (Ad5) are small DNA tumor viruses that infect the exposed, 

terminally differentiated epithelial cells that line the upper respiratory tract. Normally, these 

terminally differentiated cells are suboptimal for DNA virus replication since they have low rates 

of deoxynucleotide synthesis due to their cell cycle arrest in G0. Ad2 overcomes this obstacle 

through expression of early region genes immediately after infection that establish a cellular 

environment suitable for efficient viral replication. The first Ad2 gene expressed upon infection, 

early-region 1A (E1A). The N-terminal half of adenovirus E1A assembles multimeric complexes 

with host proteins that repress differentiated cell functions and force host cells into S-phase. In 
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contrast, the functions of E1A’s C-terminal interactions with FOXK, DCAF7 and CtBP are 

unknown. We found that these interactions modulate RAS signaling, and that a single E1A 

molecule must bind all three of these host proteins to suppress activation of a subset of IFN-

stimulated genes (ISGs). These ISGs were otherwise induced in primary respiratory epithelial 

cells at 12h p.i. This delayed activation of ISGs required IRF3 and coincided with an ~10-fold 

increase in IRF3 from protein stabilization. The induced IRF3 bound to chromatin and localized 

to the promoters of activated ISGs. While IRF3, STAT1/2 and IRF9 all greatly increased in 

concentration, there were no corresponding mRNA increases, suggesting that E1A regulates the 

stabilities of these key activators of innate immune responses, as shown directly for IRF3. 

As a viral oncogene E1A promotes oncogenic transformation of primary mammalian 

cells. In cancer differentiated cells are reprogrammed leading to loss of their cell identity. 

Likewise, expression of E1A suppresses cellular differentiation. We find that eliminating E1A in 

Ad5-transformed human embryonic kidney cells induces their re-differentiation into cells with 

characteristics of mesenchymal stem cells (MSC). De-repression of ~1500 genes and a dramatic 

change in morphology requires chromatin association of Hippo pathway-regulated co-activators 

YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, 

YAP/TAZ are transported into the nucleus where they associate with poised enhancers with 

DNA-bound TEAD4 and H3K4me1. These complexes induce histone H3 acetylation, chromatin 

remodeling, and cohesin loading to establish enhancers and eventually super-enhancers. 

Activation of YAP/TAZ following E1A elimination requires signaling from the actin 

cytoskeleton. These results together with earlier studies suggest that YAP/TAZ are master 

regulators of MSC differentiation that function in a developmental check-point controlled by 
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signaling from the actin cytoskeleton informing the cell if it is in the correct cellular and tissue 

environment before initiating terminal differentiation. 
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INTRODUCTION 
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Human adenoviruses are a family of small DNA tumor viruses consisting of more than 50 

unique serotypes classified into seven species/groups based on nucleic acid homology. Since 

1962, when it was found that adenovirus serotype 12 (Ad12) caused tumors in inoculated 

hamsters (Trentin et al., 1962), the oncogenic potential of adenoviruses have been extensively 

investigated. Others quickly confirmed the tumorigenicity of Ad12 (Huebner et al., 1962), and 

additionally found that Ad18 and Ad31 also induced tumors in inoculated hamsters (Stich and 

Yohn, 1967). This observation classified adenoviruses as either oncogenic, if belonging to 

species A (Ad12, Ad18 and Ad31), while other serotypes were classified as non-oncogenic, 

except for serotypes belonging to species B (Ad3 and Ad7), which were found to cause slow and 

infrequent tumor growth (Williams et al., 1995). 

In the same decade, adenoviruses were shown to immortalize cultured rodent cells 

through stable transformation regardless of the serotype’s tumorigenic capacity in animals 

(Freeman et al., 1967; McBride and Wiener, 1964). Furthermore, cultured transformed cells by 

non-oncogenic Ad2 could induce tumors when introduced into immunosuppressed rats 

(Gallimore, 1972), and cells transformed by the closely related Ad5 were found to induce tumors 

in immunodeficient nude mice (Bernards et al., 1983). After it was discovered that adenoviral 

DNA was retained in the transformed cell (Fujinaga and Green, 1970), researchers looked for 

which viral genes are required for transformation. It was soon shown that the left end of the 

adenoviral genome (the first ~15%) was common to Ad2-transformants in independent 

experiments and is necessary for the transformation phenotype (Gallimore, 1974; Graham et al., 

1974). Viral RNA mapping of transcripts expressed from this region became known as early 

region transcripts (Flint et al., 1975; Sharp et al., 1974), later called early region 1 A and B (E1A 

and E1B). The first reported isolation of adenovirus transformed human cells came in 1977 by 
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Graham and colleagues, where they established the commonly used HEK293 cell line by 

introducing fragmented Ad5 DNA into cells from human embryonic kidney tissue (Graham et 

al., 1977). It was clear that the cells retained ~4.5% of the left end of the Ad5 genome when the 

authors performed hybridization of labeled cellular RNA with restriction fragments of Ad5 

DNA. Indeed, HEK293 express E1 transforming proteins encoded by E1A and E1B. 

More extensive analysis on the transformative properties of E1 genes revealed that E1A 

alone could induce partial transformation, but both E1A and E1B are necessary for stable 

transformation (Barker and Berk, 1987; van den Elsen et al., 1983; Houweling et al., 1980). This 

observation was explained when it was shown that E1B’s main function is to block premature 

lytic phase by inhibiting p53-mediated apoptosis (Sarnow et al., 1982; Yew and Berk, 1992). 

However, the complementation necessity of E1B for transformation is replaceable by oncogenic 

Ras (EJ bladder carcinoma Ha-ras-1) (Jochemsen et al., 1986). 

The sequences of E1A from different primate adenoviruses reveal four highly 

homologous regions known as conserved regions 1-4 (CR1 – CR4) (Avvakumov et al., 2004; 

Kimelman, 1986). Most of E1A’s functions can be mapped to one or more of its conserved 

regions. Early in infection the most abundant E1A messages are two alternatively spliced 

mRNAs, 12S and 13S, which differ only by the size of the intron removed during mRNA 

maturation (Svensson et al., 1983). The 12S message encodes the small E1A protein (e1a) of 243 

amino acids with CR3 removed by intronic splicing, while the 13S message encodes large E1A, 

289 amino acids long consisting of all four conserved regions. CR3 is a C-4 zinc finger 

containing transcription activation domain (Lillie and Green, 1989). Large E1A, via CR3, mainly 

functions to activate other early adenoviral genes by recruiting mediator complex and P300/CBP 

to their promoters to stimulate assembly of transcription pre-initiation complexes (Boyer et al., 
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1999; Hsu et al., 2018; Liu and Green, 1994). In the absence of large E1A, the small isoform, 

e1a, induces DNA synthesis and transformation in growth-arrested cells; therefore CR3 is not 

necessary for this process (Braithwaite et al., 1983; Spindler et al., 1985). Detailed mutagenesis 

assays revealed that the transforming activity of E1A requires the first N-terminal 80 amino 

acids, which encompass CR1 and CR2 (Barbeau et al., 1994; Quinlan et al., 1988).  

Co-immunoprecipitation experiments have found several large and small E1A-interacting 

cellular proteins. The first of which was the retinoblastoma tumor suppressor, Rb1, (Whyte et al., 

1988). Shortly after this finding, antigens from unrelated tumor viruses were also found to target 

Rb1 and its homologues, p107 and p130 (collectively Rbs) (DeCaprio et al., 1988; Dyson et al., 

1989). Through these interactions the regulation of the cell cycle by E2F family transcription 

factors was elucidated. E1A’s CR2 (Fig. 1), and other viral antigens, interact with Rbs through 

an LXCXE high affinity Rb-binding motif (Nevins et al., 1997). E1A displaces Rbs from E2F 

transcription factors bound at the promoters of several cell cycle regulating genes (Ghosh and 

Harter, 2003). This exposes E2F activation domains and transcriptionally activates genes that 

drive cells into S phase. The mechanism of E2F pathway derepression by modulating the activity 

of the Rbs provides a partial explanation for e1a-mediated transformation. While this process is 

sufficient to force cells from G0/G1 to S phase, it is not, however, sufficient for complete passage 

around the cell cycle (Stein et al., 1990; Wang et al., 1993). 
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Figure 1 e1a protein interaction map 
e1a protein interaction map with p300/CBP (green), RBs (purple), FOXK (yellow), DCAF7 complexes (red), and 
CtBP (blue), and e1a conserved regions (CR) 1, 2, and 4 (CR3 is uniquely in large E1A). 
 

An interaction of CR1 and e1a’s N-terminus with a protein of about 300 kDa, designated 

p300 (Fig. 1), was found to be necessary for E1A-mediated transformation (Stein et al., 1990). 

Later determined to be a paralog of CBP (CREB-binding protein), p300, which also binds E1A 

at the same region, are histone acetyl transferases that function as global transcriptional 

coactivators by relaxing chromatin structure and interacting with RNA Polymerase II and general 

transcription factors (Chan and La Thangue, 2001; Vo and Goodman, 2001). Mutations in 

p300/CBP are common in malignancies, which may relate to their co-regulation of tumor 

suppression with critical tumor suppressors such as p53 (Iyer et al., 2004). CBP and p300 are 

found at active enhancer regions and transcription start sites of actively transcribed genes and 

their enrichment generally correlate with levels of gene activation (Holmqvist and Mannervik, 

2013). Small E1A causes a global cellular decrease in histone H3 Lysine 18 and 27 (H3K18 and 

H3K27) acetylation dependent on its interaction with p300/CBP, suggesting H3K18 and H3K27 

to be substrates of p300/CBP (Horwitz et al., 2008). Furthermore, e1a redirects p300 to E2F-

enriched promoters where H3K18ac is selectively increased and transcription is activated 

(Ferrari et al., 2008, 2014). 
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While e1a only needs to interact with either Rbs or P300/CBP to drive quiescent baby rat 

kidney cells into S-Phase (Howe et al., 1990), it must retain both interactions to achieve 

immortalization in cooperation with E1B or oncogenic Ras (Stein et al., 1990). Since these 

discoveries, several other E1A interacting proteins have been described, although the functional 

consequences of these interactions are not as well understood (Berk, 2005).  

The less studied C-terminal region (exon 2 encoded) of E1A was demonstrated to 

suppress transformation. Ras-cooperative transformation experiments revealed that e1a with C-

terminal deletions enhanced transformation (Subramanian et al., 1989; Boyd et al., 1993). A 

deletion of amino acids 225-238 gave a hypertransforming phenotype comparable to a large 

deletion removing most of the C-terminus. This construct deleted a conserved PXDLS motif and 

corresponded with the loss of interaction with the first discovered small E1A C-terminal binding 

protein, C-teriminal binding protein (CtBP). While it is presently unknown why these E1A 

deletion mutants cause these phenotypes, it is likely due to the loss of interaction with proteins 

such as CtBP1/2 (collectively CtBP), the DDB1- and CUL4-associated factor 7 (DCAF7), Dual 

specificity tyrosine-phosphorylation-regulated kinase 1A and 1B (DYRK1A/B) and Forkhead 

box protein K1 and K2 (FOXK1/2) (Fig. 1). 

CtBP binds directly to proteins with a PXDLS amino acid motif, located in E1A CR4 

(Fig. 1; Schaeper et al., 1995). This region is highly conserved amongst the different serotypes of 

human and simian adenoviruses. Repressors with PXDLS-like motifs such as Zeb1/2 and Znf217 

recruit CtBP dimers to target promoters (Postigo and Dean, 1999; Quinlan et al., 2006). CtBP 

acts as a corepressor by inhibiting transcription of tumor suppressor genes like INK4 and CDH1 

as well as proapoptotic genes like PERP, BAX and PMAIP1 (Yousef et al., 2012). CtBP 

promotes repression through its association with chromatin-modifying enzymes such as histone 
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deactylases and demethylases (Shi et al., 2003). Small molecule inhibition of CtBP has been 

shown to specifically target transformed and cancer cells for apoptosis (Straza et al., 2010). It 

was reported that e1a mediates the acetylation of CtBP by p300/CBP which eliminates CtBP 

repression of PMAIP1 (E-Cadherin) (Zhao et al., 2006). The derepression of tumor suppressors 

through e1a inhibition of normal CtBP activity may help explain the Ras-cooperative 

hypertransformation phenotype when PXDLS is deleted. However, how e1a modulates CtBP 

activity has yet to be determined. 

 DCAF7 (a.k.a. HAN11 or WDR68) directly interacts with a broad region of E1A’s CR4 

(Fig. 1; Glenewinkel et al., 2016). E1A mutations that interfere with DCAF7 binding also exhibit 

hypertransformation in cooperation with oncogenic Ras (Komorek et al., 2010). DCAF7 is a 

CLR4 E3 ubiquitin ligase substrate receptor (Jin et al., 2006). DCAF7 binds to the dual 

specificity tyrosine-regulated kinases, DYRK1A and DYRK1B (collectively DYRK1) as well as 

the homeodomain interacting protein kinase 2, HIPK2 (Miyata and Nishida, 2011; Ritterhoff et 

al., 2010). Through its direct binding to E1A, DCAF7 is responsible for E1A’s indirect 

association with DYRK1 and HIPK2 (Glenewinkel et al., 2016). Genetic studies in zebrafish and 

Drosophila indicate that DCAF7 orthologs are necessary for normal organismal development 

(Morriss et al., 2013; Nissen et al., 2006). The DYRK1A locus is present on the Down syndrome 

critical region of Chromosome 21 (Shapiro, 1999). DYRK1A kinase activity is believed to be 

involved in cell cycle control and differentiation through activating transcription factors such as 

NFAT, Gli and Foxo1 and the Notch signaling pathway (Arron et al., 2006; Fernandez-Martinez 

et al., 2009; Woods et al., 2001). DYRK1A activates p53-mediated cell death by directly 

phosphorylating p53 at Ser15 and promoting activation of CDKN1A (p21) in embryonic neuronal 

cells (Park et al., 2010). Also, DYRK1A has been shown to promote formation of the DREAM 
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complex, which represses E2F-regulated cell cycle-dependent genes during quiescence 

(Sadasivam and DeCaprio, 2013). DYRK1A achieves this through phosphorylation of Lin52, a 

component of the MuvB core, which increases its affinity for p130, p107 and repressive E2Fs to 

form the DREAM complex. Inhibition of DYRK1A causes derepression of DREAM-regulated 

genes and formation of Myb-MuvB (MMB) complex, which activates many G2/M-phase genes 

(Litovchick et al., 2011). 

 The forkhead (FKH) family transcription factors regulate genes involved in cell cycle 

progression, apoptosis and differentiation. Two FKH members FOXK1 and FOXK2 (collectively 

FOXK) have been identified to interact with a serine/threonine rich region of E1A just upstream 

of CR4 in its C-terminal half (Fig. 1; Komorek et al., 2010). This region is conserved among the 

human adenoviruses classified in "species C" and is highly similar to a domain of the human 

papillomavirus E6 protein, also known to bind FOXK (Komorek et al., 2010). This interaction is 

mediated through a Forkhead association (FHA) domain that is unique to FOXK and facilitates 

an interaction with phosphorylated residues (Durocher and Jackson, 2002; Komorek et al., 2010). 

Foxk1 knockout mice show a severe growth defect as well as impairment of myogenic cell 

proliferation (Garry et al., 2000). This may be due to its repression of FOXO4 in myogenic 

progenitors (Shi et al., 2010). Furthermore, synchronous U2OS cells lose cell cycle oscillations 

when FOXK1 is knocked down (Grant et al., 2012). While FOXK1 has been the more 

extensively studied homolog, FOXK2, was found to co-regulate AP-1 activated genes by 

recruiting AP-1 to chromatin (Ji et al., 2012). Furthermore, ChIP-seq experiments have found 

that FOXK1 is also enriched at AP-1 binding sites (Grant et al., 2012). Little is known about the 

functional consequences of the FOXK1-E1A interaction, though E1A mutants that disrupt this 

interaction present a Ras-cooperative hypertransformation phenotype (Komorek et al., 2010). 
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RAS Signaling 
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e1a mutants defective for C-terminal region-host protein interactions 

We constructed Ad vectors expressing mutant e1as defective for interacting with FOXK, DCAF7 

or CtBP (FOXKb-, DCAF7b- and CtBPb-, respectively). Multi-site combinations of individual 

mutations that had been previously shown to reduce these interactions were constructed in order 

to generate strong phenotypes that simplify genomic level analysis. To eliminate the FOXK 

interaction with the e1a ser/thr-rich region just N-terminal of CR4 (Fig. 1), two e1a amino acid 

substitutions T183A and S185A were introduced (Fig. 2.1A), previously reported to individually 

interfere with e1a’s ability to bind FOXK (Komorek et al., 2010). Immunoprecipitation of e1a 

followed by western blotting validated that these amino acid substitutions inhibited e1a-

association with FOXK1 but not with CtBP, DCAF7 or DYRK1A (Fig. 2.1B,C). To prevent e1a 

binding to DCAF7 complexes we constructed a four amino acid substitution, R212E, D225K, 

L226A and L227A (Fig. 2.1A), mutations previously shown to individually reduce association 

with DYRK1A (Cohen et al., 2013). This mutant failed to co-IP DCAF7 and one of its 

associated kinases, DYRK1A (Fig. 2.1C), however e1a’s interactions with FOXK1 and CtBP 

remained intact (Fig. 2.1B). Lastly, we mutated the previously characterized e1a CtBP binding 

motif (Zhao et al., 2007), PLDLS, to ALAAA spanning amino acids 233-237 (Fig. 2.1A). These 

mutations completely eliminate e1a’s ability to co-IP CtBP (Fig. 2.1B). The mutations 

introduced in FOXKb-, DCAF7b- and CtBPb- did not interfere with e1a’s ability to bind RB1 or 

p300 (Fig. 2.1C). 
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Figure 2.1 Mutations in e1a’s C-terminal Region that Disrupt Interactions with Host Proteins  
(A) Amino acid substitutions in e1a to disrupt FOXK binding (e1aFOXKb-), DCAF7 binding (e1aDCAF7b-), or 
CtBP binding (e1aCtBPb-).  
(B) Extracts of HeLa cells 24h p.i. with the indicated mutant e1a expression vectors were immunoprecipitated with 
anti-e1a mAb (M58) and immunoprecipitates were subjected to western blotting with the indicated antibodies. (C) 
Same as (B) but with A549 cells. 
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WT e1a from whole cell lysate can be resolved into two differentially migrating bands by 

SDS-PAGE; however, the e1a C-terminal mutants exhibited primarily the faster migrating form 

(Fig. 2.1B, 2.2). The slower migrating form is due to phosphorylation at Ser89 (Dumont et al., 

1989). Although pSer89 is reduced in the C-terminal mutants, phosphorylation at Ser173, the 

major site of e1a phosphorylation (Tsukamoto et al., 1986), was similar to WT e1a (Fig. 2.2). 

To assay the effects of these mutations following infection, we incorporated these E1A 

mutants into dl1500 background human Ad5 vectors, previously described (Ferrari et al., 2014), 

that do not express the large E1A isoform making them defective for activation of other 

adenoviral promoters and viral replication (Montell et al., 1984). 

 
 
Figure 2.2 The e1a C-terminal mutations interfere with phosphorylation at Ser89 but not Ser173 
Western blot of protein extract from HBTEC 24h p.i. with the indicated vectors using monoclonal antibodies against 
e1a (M58, top) and e1a pSer173 (bottom). 
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Consequences of defects in e1a interactions on regulation of cellular mRNAs and virus 

replication 

Contact-inhibited, G1-arrested human primary bronchial/tracheal epithelial cells (HBTEC), 

derived from the natural host tissue for Ad2 and the closely related Ad5, were infected with 

FOXKb-, DCAF7b-, CtBPb-, or a WT e1a expressing Ad5 vector (e1aWT). To control for the 

effects of the infectious process on cellular gene expression, cells were also mock-infected or 

infected with an Ad5 E1A deletion mutant (ΔE1A), dl312 (Jones and Shenk, 1979). For 

comparison, we included infections with two Ad5 vectors expressing e1a N-terminal multi-site 

mutants, a p300/CBP-binding mutant, e1aP300b-, and an RB1/p107/p130-binding mutant, 

e1aRBb- (Ferrari et al., 2014). e1aP300b- and e1aRBb- were found previously to misregulate 

hundreds of genes that are activated or repressed by e1aWT in primary human fibroblasts 

(Ferrari et al., 2014).  

RNA-seq was performed with RNA isolated at 24 h p.i. to determine which expressed 

genes (FPKM>1) were differentially expressed 2-fold or more by the e1a mutant expressing cells 

compared to cells expressing WT e1a. Relatively small numbers of genes were expressed 

differently in cells producing e1a C-terminal mutants compared to cells expressing e1aWT (105 

– 146 genes overexpressed by the different C-terminal mutants compared to e1aWT, and 68 – 

138 genes underexpressed (Fig. 2.3A, Table 2.1). Since the genes expressed at higher level in the 

e1a mutant compared to e1aWT expressing cells were also expressed at higher level than in 

mock-infected cells (Fig. 2.4A), they were activated by infection with the vectors expressing the 

e1a C-terminal mutants. The same genes were only slightly activated by theΔE1A mutant (Fig. 

2.4A). Similarly, genes expressed at lower level by the C-terminal mutants than in cells 

expressing WT e1a were expressed at lower level than in mock-infected cells, and were reduced 
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less by the ΔE1A mutant (Fig. 2.4B). Consequently, these genes were more repressed by the e1a 

C-terminal mutants than by WT e1a. The number of genes differentially expressed by the C-

terminal mutants compared to e1aWT was much lower than the number of differentially 

expressed genes comparing e1aP300b- and e1aRBb- to e1aWT (Fig. 2.3B, Table 2.1). These data 

show that the e1a-p300/CBP and e1a-RB family protein interactions regulate many more cellular 

genes than the e1a C-terminal interactions. 

 
Figure 2.3 Cellular Gene Expression in HBTEC Expressing WT e1a or e1a Mutants 
(A) Scatter plot of log2 FPKM values for all expressed cellular genes (>1 FPKM) in cells expressing e1a mutants 
(y-axis), (FOXKb-, orange; DCAF7b-, purple; CtBPb-, blue), and e1aWT (x-axis). Colored dots above and below the 
black lines show the FPKMs of genes expressed at two times higher (above) or 2-fold lower (below) than the level 
from e1aWT. FPKMs of genes expressed within 2-fold of the mock-infected levels are shown in gray. (B) Same as 
(A) but for cells expressing the e1a p300b- mutant (green) or the RBb- mutant (purple).  
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Table 2.1 Number of host cell genes expressed greater than two times higher and less than 
two times lower than in HBTECs infected with the e1aWT vector 
e1a mutant Genes 2X > e1aWT Genes 2X < e1aWT 
P300b- 728 241 
RBb- 454 790 
FOXKb- 105 68 
DCAF7b- 146 105 
CtBPb- 119 138 

 

Unexpectedly, there was a large overlap in the genes overexpressed in response to each 

of the C-terminal mutants (Fig. 2.4A,C). Most of these genes were overexpressed 2-fold or more 

by two or more C-terminal mutants with 52 genes being overexpressed by all three. Furthermore, 

when considering the three groups of genes overexpressed in response to the FOXKb-, DCAF7b-, 

and CtBPb- e1a mutants, changes in their expression relative to that in cells expressing WT e1a 

were similar for each of the mutants (Fig. 2.4A). These results suggest that each of the e1a C-

terminal interactions influence host cell gene expression similarly. Gene ontology analysis of the 

52 genes overexpressed ≥2-fold by all three mutants showed overwhelming enrichment for 

interferon (IFN) response genes (p=7.2 E-47) (Fig. 2.4C). Several of these genes are known to 

have antiviral functions (Schoggins, 2014). Motif analysis of the promoter regions of the 52 

genes overexpressed by all three C-terminal mutants shows that they are highly enriched for the 

well-characterized IFN-stimulated response element (ISRE) (p-value 1 E-22) (Fig. 2.4C) bound 

by IFN-signaling activated transcription factors such as IRFs and STATs (Borden et al., 2007). 
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Figure 2.4 Genes Differentially Expressed by e1a C-terminal Mutants  
(A) Distributions of FPKMs plotted as boxplots for the genes expressed 2-fold higher by HBTEC expressing 
FOXKb- (left, 105 genes), DCAF7b- (middle, 146 genes) or CtBPb- (right, 119 genes) compared to e1aWT. (B) 
Distributions of FPKM values for genes expressed 2-fold lower by HBTECs expressing FOXKb- (68 genes, left), 
DCAF7b- (105 genes, middle) or CtBPb- (138 genes, right) compared to e1aWT. (A,B) * p<0.005, ** p<0.001, *** 
p<0.0001 Kolmogorov-Smirnov test for significant differences from the distribution in e1aWT expressing HBTECs. 
(C-D) Venn diagrams showing overlap and gene ontologies for genes expressed 2-fold higher (C) or 2-fold lower 
(D) by each e1a mutant compared to e1aWT. The ISRE motif enriched in promoters of genes expressed 2-fold 
higher by all three e1a mutants is shown in (C). 
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As with the genes overexpressed by the C-terminal mutants, the genes expressed 2-fold 

lower in cells expressing a C-terminal mutant compared to e1aWT also showed a surprisingly 

high degree of overlap (Fig. 2.4B,D). Again, the distributions of expression for the three sets of 

genes 2-fold lower for each C-terminal mutant, were significantly lower for all three C-terminal 

mutants compared to e1aWT (Fig. 2.4B). These results further demonstrate that all three of the 

e1a C-terminal interactions regulate a similar set of cellular genes. The genes that were 

expressed at lower level when e1a was defective for any one of its C-terminal interactions are 

enriched for genes related to the HRAS oncogenic signature (Fig. 2.4D). 

To test if the loss of e1a’s C-terminal interactions affect virus replication through the 

activation of this subset of ISGs we infected separate plates of HBTEC with vectors for each of 

the mutants to induce the C-terminal mutant activated genes. 12h later the cells were 

superinfected with WT Ad5. 48h later, virus was harvested and WT Ad5 was assayed by plaque 

formation on HeLa cells. (The recombinant Ad5 vectors cannot form plaques on HeLa cells 

because they do not express the large E1A protein required to activate transcription from the 

other viral early promoters.) Cells initially infected with the e1a FOXKb- and CtBPb- vectors 

produced ~12 fold less WT Ad5 than cells pre-infected with an e1aWT expressing vector, while 

cells initially infected with the DCAF7b- vector produced ~28 fold less (Fig. 2.5A). These data 

indicate that activation and/or repression of host genes by the e1a C-terminal mutants greatly 

interfere with Ad5 replication. This interference with viral replication correlates with the level of 

the ISGs induced by the C-terminal mutants (Fig. 2.4A, 2.5A). 
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Figure 2.5 e1a Protein Complexes and Phosphorylation 
(A) HBTEC were infected with vectors expressing WT e1a or the indicated C-terminal mutants. 12h later, the same 
cells were superinfected with WT Ad5 virus at an moi of 5 for 48h before harvesting virus. Virus titers were 
quantified by plaque assays on a HeLa monolayer. Data are represented as averages + S.D. (B) Relative levels of 
indicated mRNAs in HBTEC infected with vectors for the indicated e1a C-terminal mutants, as assayed by qRT-
PCR. F-/D-/C- refers to cells coinfected with all three of the e1a C-terminal mutants. Data are represented as 
averages + S.D. (A,B) Data are represented as averages of three separate experiments + S.D. * p<0.05, ** p<0.01, 
*** p<0.001 
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The same e1a molecule must make all three C-terminal region interactions to block 

transcriptional activation of a subset of IFN-stimulated genes 

e1a has been postulated to function as a molecular hub (Pelka et al., 2008) due to its intrinsically 

disordered flexible structure (Ferreon et al., 2009), allowing it to form functional multimeric 

complexes by simultaneously binding to multiple proteins that would otherwise not interact. 

While the RNA-seq results indicate that e1a must make all three C-terminal interactions with 

host cell proteins to reduce expression of certain ISGs, they do not address the question of 

whether one e1a molecule must make two or three of the three possible interactions to prevent 

activation of these ISGs. To address this question we performed a coinfection with vectors for all 

three C-terminal mutants to determine if there would be complementation of the defect in 

suppressing overexpression of these ISGs. Expression of IFIT2, ISG15 and OASL were similar 

in the coinfected cells as in cells expressing the individual mutants (Fig. 2.5B). The e1a mutants 

expressed in the coinfected cells can make each of the three possible bi-molecular interactions 

between e1a and FOXK, e1a and the DCAF7 complex, and e1a and CtBP (Fig. 2.1B,C). Yet 

these ISGs continued to be overexpressed, phenocopying cells expressing the single mutants. 

These results suggest that e1a prevents activation of these ISGs, dependent on the same e1a 

molecule interacting with all three C-terminal binding proteins, either simultaneously or in 

series. Coinfection of cells with vectors that produced equal amounts of WT e1a and the 

DCAF7b- mutant showed that DCAF7b- is partially dominant to e1aWT (Fig. 2.6A). 
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Figure 2.6 e1aWT and DCAF7b- coinfection and e1a nuclear protein complexes 
(A) Relative levels of ISG15 and IFIT2 mRNA as assayed by qRT-PCR from HBTECs infected or coinfected with 
indicated vectors. moi for individual vectors indicated in parentheses. Data are represented as averages of percent of 
DCAF7b- (moi 60) activation + S.D. (B) Western blots of Superose 6 column fractions from mock or e1aWT-vector 
infected HeLa nuclear extract (24 h p.i.). Non-e1a interacting nuclear factor Ku86 is shown as a control. 
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To further explore the complexes e1a forms with cellular proteins, nuclear extracts from 

mock or e1aWT vector-infected HeLa cells were subjected to gel filtration on a Superose 6 

column capable of resolving globular protein complexes of 0.1 to 2 MDa. In the presence of e1a, 

p300, RB1 and FOXK1 were shifted to earlier eluting fractions indicating incorporation into 

higher molecular weight complexes (Fig. 2.6B). The most dramatic shift was with RB1; a large 

fraction of RB1 co-eluted with p300 in the presence of e1a, consistent with our previous 

observations (Ferrari et al., 2014) and an earlier report of an e1a-p300-RB1 trimeric complex 

(Wang et al., 1995). Eluted fractions containing FOXK1 and CtBP1 were distinct from fractions 

containing p300-e1a-RB1 complexes (Fig. 2.6B, compare red and purple boxes). DCAF7 and 

DYRK1A eluted heterogeneously from high molecular weight fractions ~1 MDa, consistent with 

a recent report (Vona et al., 2015), through lower molecular weight fractions down to ~150 kD. 

These data indicate that most of the e1a-p300-RB1 complexes in the nucleus are distinct from 

e1a complexes containing FOXK1 and CtBP1.  

 

Increased transcription of overexpressed ISGs 

An increase in mRNA expression can be due to a higher level of transcription or increased 

stability of the transcript. To test if the increased expression of IFIT2 and ISG15 in cells 

expressing the C-terminal e1a mutants was due to increased transcription, we designed primers 

for qRT-PCR that only amplify intron-containing pre-mRNA. The higher levels of IFIT2 and 

ISG15 pre-mRNA induced by expression of the C-terminal e1a mutants (Fig. 2.7A) indicates that 

these genes were activated at the level of transcription. Transcriptional activation was further 

confirmed by the observation of activating chromatin signatures. ChIP-seq for RNA polymerase 

II (pol2) revealed that ISG15 had an increase in pol2 association near the transcription start site 
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(TSS) as well as through the gene body after infection with the C-terminal mutant vectors but not 

with the e1aWT vector (Fig. 2.7B). Another ISG, MX1 also had peaks of pol2 near the 

alternative TSSs that increased after infection with the C-terminal mutant vectors compared to 

the e1aWT vector, correlating with the increased level of mRNA (Fig. 2.7B). A similar profile 

was seen for OASL (Fig. 2.8A) and other activated ISGs (not shown). ChIP-seq was also 

performed on two histone modifications that correlate with levels of active transcription, 

acetylated (ac) H3K18 and H3K27. Both ISG15 and MX1 exhibited increases in H3K18ac near 

their TSSs after expression of the e1a C-terminal mutants but not e1aWT, while H3K27ac 

increased only slightly or not at all (Fig. 2.7B). OASL gained acetylation on both H3K18 and 

H3K27 near its TSS in response to the C-terminal mutants (Fig. 2.8A). The average profile of 

pol2 and H3K18ac near the TSS for the 52 genes overexpressed by all three C-terminal mutants 

showed that on average pol2 and H3K18ac were higher in cells expressing the mutants compared 

to e1aWT (Fig. 2.8B). The higher levels of pre-mRNA, pol2 and H3 acetylation demonstrate a 

transcriptional activation of these ISGs induced by the e1a C-terminal mutants. 
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Figure 2.7 Transcriptional Activation of ISGs by e1a C-terminal Mutants 
(A) Relative levels of IFIT2 and ISG15 pre-mRNAs following infection with the indicated vectors or coinfected 
with the vectors for e1a mutants for each of the three e1a C-terminal mutants (F-/D-/C-). Data are represented as 
averages of three separate experiments + S.D. * p<0.05, ** p<0.01, *** p<0.001. (B) Genome browser plots of 
RNA- or ChIP-seq normalized sequence tags. 
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Figure 2.8 Chromatin marks related to transcriptional activation at e1a C-terminal-induced ISGs 
(A) Genome browser track of RNA-seq and ChIP-seq enrichment upstream of and across the OASL gene from 
HBTEC infected for 24h. (B) Metagene plots showing average tag density of Pol2 or H3K18ac ChIP-seq enrichment 
around TSS of 52 genes expressed 2-fold higher by all three e1a C-terminal mutants using chromatin from cells 
mock-infected or infected with indicated e1a expressing Ad5 vector for 24 h. Data was normalized so there were 
equal numbers of mapped reads across samples. 
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e1a C-terminal mutants cause increases in IRFs and STATs, but only IRF3 is necessary for 

ISG activation 

STAT1 and STAT2 are phosphorylated following Type I IFN receptor activation resulting in 

formation of transcription factor ISGF3 composed of p-STAT1, p-STAT2 and IRF9 (Borden et 

al., 2007; Darnell et al., 1994). We noted that many of the 52 genes overexpressed by all three C-

terminal e1a mutants are also in a list of genes activated by the transcription factor 

unphosphorylated ISGF3 (U-ISGF3), a complex of unphosphorylated STAT1 (U-STAT1) and 

STAT2 (U-STAT2) with IRF9 that reach high concentrations and drive a secondary prolonged 

response to IFNβ-stimulation lasting for days (Cheon and Stark, 2009; Cheon et al., 2013). 21 

out of the 29 U-ISGF3 activated genes (72%) reported in Cheon et al. (2013) were overexpressed 

2-fold or more by all three e1a C-terminal mutants (Fig. 2.9A) and 26 (90%) were overexpressed 

by at least one e1a C-terminal mutant. Given this striking overlap, we examined levels of total 

and phosphorylated STAT1, STAT2, and IRF9 protein following infection to determine if we 

could attribute ISG activation by the C-terminal e1a mutants to increased U-ISGF3.  

Indeed, by 24h p.i. the C-terminal e1a mutants caused a substantial increase in the 

concentrations of STAT1, STAT2 and IRF9 compared to mock-infected cells (Fig. 2.10A). 

Infection with the ΔE1A vector also increased STAT1/2, although to a lesser extent than vectors 

for the C-terminal mutants, but IRF9 was increased to a comparable level. While U-ISGF3 

subunits have been reported to increase in concentration following activation of the type I IFN 

receptors and JAK/STAT signaling pathway, we did not detect any phosphorylated STAT1 

following infection from 2-24h with any of the Ad5 vectors (Fig. 2.9B). Importantly, the type I 

IFN encoding mRNAs were not significantly increased as measured by RNA-seq. These 

observations indicate that ISG activation is not due to an autocrine response to IFN production 
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by the infected cells, but rather, may result from the large increase in the U-ISGF3 subunits, 

independent of JAK/STAT pathway activation. 

 
 
Figure 2.9 STAT1 is not phosphorylated at its activating site following infection 
(A) Venn diagram showing overlap of U-ISGF3 induced genes (Cheon et al., 2013) and e1a C-terminal mutant 
overexpressed genes. (B) Western blots for phosphorylated Y701 STAT1 from lysates of infected HBTEC at 
various times p.i. An extract from HTBEC treated with 10ng/mL IFNα for 2h was used as a positive control for 
STAT1 phosphorylated at Y701. (C) IFNB1 mRNA assayed by qRT-PCR during a time course of infection of 
HBTEC. 



	 33	

 

Figure 2.10 e1a C-terminal mutants increase STAT1/2, IRF9 and IRF3 but only IRF3 is necessary for ISG 
activation 
(A) Western blots of HBTEC extract from 24h p.i., with the indicated expression vectors. (B) Western blots with 
extract from 2fTGH and U2A cells transfected with indicated siRNAs for 72h and immunoblotted for KD efficiency 
of IRF3 and IRF9. (C) qRT-PCR assaying OASL and IFIT2 mRNA from U2A cells transfected with a negative 
control siRNA with no known targets (si CTRL), siRNA targeting IRF3 (si IRF3) or no siRNA (-). Data are 
represented as averages of three separate experiments + S.D. (D) Same as with (C) but in 2fTGH and including 
siRNA targeting IRF9. Data are represented as averages of three separate experiments + S.D. (E) Western blots of 
HBTEC extract from 6, 12 or 24 h p.i., with the indicated expression vectors. 
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 To determine if the U-ISGF3 complex was responsible for ISG activation by the e1a C-

terminal mutants, we infected U2A cells, which do not express IRF9 (McKendry et al., 1991), 

the principal DNA binding subunit (Fink and Grandvaux, 2013). Inconsistent with a requirement 

for U-ISGF3, the FOXKb- e1a mutant activated OASL and IFIT2 to a similar level as in the 

parental cells, 2fTGH (Fig. 2.10C,D), which express IRF9 (Fig. 2.10B). Similar results were 

observed in STAT1 mutant U3A and STAT2 mutant U6A cells (Stark, 2007) (Fig. 2.11). 

Therefore U-ISGF3 is not necessary for activation of these ISGs by the e1a C-terminal mutants.  

 
 
Figure 2.11 STAT1 and STAT2 are not necessary for e1a C-terminal activation of ISGs 
(A) STAT1 mutant U3A cells were infected for 24h with the indicated vectors prior to RNA isolation and qRT-PCR 
to determine relative ISG15 and IFIT2 mRNA levels. (B) Same as with A but in STAT2 mutant U6A cells. 
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 Since, the promoters of the activated ISGs contain ISREs bound by all the IRFs, we 

analyzed changes in expression of other IRFs in addition to IRF9. IRF3 is the principal effector 

activating the IFN response pathway following cellular detection of viral DNA during infection 

(Ikushima et al., 2013). When we analyzed IRF3 protein following infection of HBTEC by the 

C-terminal mutants, we observed an increase over mock-infected cells by 12h p.i. that became 

still greater by 24h p.i. (Fig. 2.10E). The structurally related IRF7, however, did not change. 

IRF3 is regulated by cytoplasmic restriction until phosphorylated to allow nuclear entry (Lin et 

al., 1998). Consequently we analyzed the phosphorylation status of IRF3 at activating site 

Ser396. Cells expressing the e1a C-terminal mutants but not WT e1a had high IRF3 Ser396 

phosphorylation at 24h p.i., comparable to the level induced by poly(I:C), a TLR3 ligand, after 

3h (Fig. 2.12A). Although we observed increased total IRF3 by 12h p.i. (Fig. 2.10E), 

phosphorylation was not induced until 24h p.i. (Fig. 2.12A); therefore the increase in IRF3 

preceded its phosphorylation at Ser396. 

 Unlike IRF9, IRF3 siRNA knockdowns in U2A cells did prevent e1a-FOXKb- from 

activating OASL and IFIT2 (Fig. 2.10B,C). IRF3 siRNA KD In the parental 2fTGH cells also 

prevented activation of these genes, while siRNA KD of IRF9 had no significant effect (Fig. 

2.10B,D). Taken together, these results indicate that IRF3, but not U-ISGF3, is necessary for e1a 

C-terminal mutant activation of these ISGs. 
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Figure 2.12 Phosphorylation of IRF3 protein by infections and Poly(I:C) 
(A) HBTEC were infected for the indicated times or transfected with poly(I:C) 20ug/mL for 3h as a positive control 
for pIRF3. Level of pSer396 IRF3 was assayed by western blot. (B) HBTEC were transfected with Poly(I:C) 
20ug/mL for the indicated times and total IRF3 protein was assayed by western blot. (C) Genome Browser image 
demonstrating the absence of IRF3 binding at its promoter following Ad5 vector infection/e1a expression, while 
Sendai virus infected B lymphocytes induces binding. GEO: GSE44939 (Freaney et al., 2013). 
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IRFs and STATs increase post-transcriptionally leading to IRF3 accumulation on 

chromatin independent of phosphorylation to activate a subset of ISGs 

Following the observation that IRF3, and not IRF9, was required for ISG activation by the e1a 

C-terminal mutants, we analyzed chromatin associated levels of these proteins as well as 

STAT1/2. We observed a dramatic increase in IRF3 association with chromatin at 12h p.i. that 

persisted to 36h p.i., specifically in response to the C-terminal mutants (Fig. 2.13A). 

Furthermore, IRF3 ChIP-seq in C-terminal mutant, but not mock-infected or e1aWT expressing 

HBTEC revealed IRF3 binding to the promoters of activated ISGs such as ISG15 and MX1 (Fig. 

2.13B). Inconsistent with phosphorylation being required for IRF3’s nuclear entry, we did not 

observe IRF3 phosphorylation at 12h p.i. when IRF3 had increased on chromatin. However, an 

increase in pIRF3 was observed at later time points. STAT1 also accumulated on chromatin in 

e1a C-terminal mutant expressing cells, but with slower kinetics than IRF3 (Fig. 2.13A). STAT2 

and IRF9 showed only modest increases in association with chromatin. The observed increase of 

IRF3 on chromatin 12h p.i. is consistent with the kinetics of ISG activation induced in cells 

expressing e1a C-terminal mutants. In these cells OASL, ISG15 and IFIT2 were activated by 12h 

p.i. and ISG15 and IFIT2 mRNAs continued to increase until or past 24h (Fig. 2.13C, left).  
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Figure 2.13 e1a C-terminal mutants induce stabilization and IRF3 binding to chromatin prior to 
phosphorylation 
(A) Western blot of chromatin associated proteins from HBTEC 6, 12, 24 or 36h p.i. with the indicated vectors. (B) 
Genome browser plots of IRF3 ChIP-seq normalized sequence tags. (C) qRT-PCR of OASL, ISG15, IFIT2, IRF3, 
STAT1, STAT2 and IRF9 mRNA from HBTEC during a time course of infection with the indicated vectors. Data 
are plotted as relative to mock-infected. (D) S35-Met –Cys pulse-chase followed by IRF3 IP SDS-PAGE and 
autoradiography from HBTEC infected with either e1aWT or DCAF7b-. Left is autoradiogram displaying IRF3 
band and right is graph of log2 of the relative intensities of the bands measured by densitometry from the 
autoradiogram. The least squares line through the points indicates a t1/2 ≈ 0.33 h. 
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The increased levels of IRFs and STATs could be due to an increase in their respective 

mRNAs, accelerated translation or stabilization of the proteins. To determine which mechanism 

occurs under these conditions, IRF3, STAT1/2 and IRF9 mRNA were assayed by qRT-PCR from 

0-36h p.i. (Fig. 2.13C, right). The levels of these mRNAs increased 2-fold or less, whereas their 

encoded proteins increased much more by 24h p.i. (Fig. 2.10A,E). Therefore, the increase in 

these proteins is not a result of their mRNAs increasing, whether from transcription or message 

stabilization. To determine if IRF3 is stabilized we performed S35 protein labeling pulse-chase 

experiments followed by IRF3 immunopreciptitaion and autoradiography. In e1aWT expressing 

HBTEC IRF3 had a short half-life, ~20 min. In contrast, in cells expressing e1aFOXKb- there 

was no observed IRF3 decay (Fig. 2.13D). Taken together, our data suggest that the e1a C-

terminal mutants activate transcription of a subset of ISGs through an increase in IRF3 by 

protein stabilization, leading to selective ISG promoter binding and transcription activation. 

Furthermore, the phosphorylation of IRF3 induced by poly(I:C) activation of TLR3 signaling, 

did not lead to an increase in total IRF3 in HBTEC (Fig. 2.12B). Therefore a mechanism that 

increases IRF3 protein level independently of phosphorylation at the activating site operates in 

the e1a C-terminal mutant expressing cells. We note that the well-characterized IRF3 target 

IFNB1 (Ikushima et al., 2013), was not activated throughout a timecourse of infection (Fig. 

2.9C), and IRF3 was not found to bind the IFNB1 promoter following infection with the e1a C-

terminal mutant expressing Ad vectors (Fig. 2.12C), while IRF3 is recruited to IFNB1 following 

infection with other viruses as seen in Sendai virus infected human B lymphocytes (Freaney et 

al., 2013). Taken together this suggests a noncanonical mechanism of activation by IRF3 with 

restricted gene targets. 
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Methods 

 

Experimental Model and Subject Details 

 

Cell Culture 

Male human Bronchial/Tracheal Epithelial Cells (HBTEC, Lifeline Cell Technology Cat# FC-

0035; lot# 02196) were grown at 37°C in BronchiaLife Medium Complete Kit (Lifeline Cell 

Technology catalog number: LL-0023) in a 5% CO2 incubator until they reached confluence. 

Cells were then incubated 3 days more without addition of fresh media and were either mock 

infected or infected with the indicated Ad5-based vectors in the conditioned medium. All other 

cell lines were grown in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine 

serum. 

 

Method Details 

 

Ad Vectors, Infection, Interferon Treatment 

Ad5 vectors expressed Ad2 WT or mutant e1a's from the normal E1A promoter with the dl1500 

deletion removing the 13S E1A mRNA 5' splice site (Montell et al.,1984). The vectors were 

constructed using the Ψ5 vector and in vivo Cre24 mediated recombination (Hardy et al., 

1997),and consequently contain an out of frame insertion of a LoxP site at the Bgl II site in the 

region encoding the carboxy-terminus of E1B-55K. All infections were for 24 h at an moi of 60, 

unless otherwised indicated. These multiplicities of infection yielded approximately equal 

amounts of WT and C-terminal mutant e1a proteins and mRNA as judged by western blotting, 
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qRT-PCR of E1A message and mapping of RNA-seq reads to the Ad2 genome. Human 

interferon-α 1 (IFNα) from Cell Signaling Technology (Cat#8927) was added to the conditioned 

media of HBTEC cultures at a concentration of 10 ng/mL for indicated times. The ΔE1A mutant 

was dl312 (Jones and Shenk, 1979). 

 

RNA-seq Procedure and Data Analysis 

1X106 Low-passage HBTEC were mock-infected or infected with Ad5 E1A-E1B-substituted, 

E3-deleted vectors expressing WT Ad2 small E1A proteins from the dl1520 deletion removing 

the 13S E1A mRNA 50 splice site (Montell et al., 1984), 3 days after reaching confluence. RNA 

was isolated 24h p.i. using QIAGEN RNeasy Plus Mini Kit. Eluted RNA was treated with 

Ambion DNA-free™ DNA Removal Kit and then Ambion TRIzol reagent, precipitated with 

isopropanol, and dissolved in sterile water. RNA concentration was measured with a Qubit 

fluorometer. One microgram of RNA was fragmented and copied into DNA then PCR amplified 

with bar-coded primers for separate samples to prepare sequencing libraries using the Illumina 

TruSeq RNA Sample Preparation procedure. Libraries were sequenced using the Illumina HIseq-

2000 to obtain single end 50-base-long reads. Sequences were aligned to the hg19 human 

genome sequence using TopHat v2. FPKM (fragments per kb per million mapped reads) for each 

annotated hg19 RefSeq gene ID was determined using Cuffdiff v2 from Cufflinks RNA-Seq 

analysis tools at http://cufflinks.cbcb.umd.edu. Homer (http://homer.salk.edu/homer 

PMID: 20513432) gene ontology enrichment analysis was performed on indicated gene lists. 

Homer motif discovery algorithm was used to look for transcription factor motifs +/- 1 kb from 

the TSS of genes expressed 2X or more by all three e1a C-terminal mutants compared to e1aWT. 

RNA-seq results from mock, ΔE1A, e1aWT and e1a C-terminal mutants were validated with 
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three replicate experiments. One representative experiment was used for further analysis and 

presentation of the data. 

 

ChIP-Seq 

Pol2, H3K18ac and H3K27ac ChIP-seq was performed using 1x107 low-passage HBTEC were 

mock-infected or infected with indicated Ad vector 3 days after reaching confluence. 24h p.i. 

cells were cross-linked for 1% formaldehyde for 10 minutes at room temperature on rotator. 

Formaldehyde crosslinking was quenched with 0.14M glycine for 30 minutes at room 

temperature on rotator. Cells were washed with PBS and scraped from plates in PBS with Roche 

protease inhibitor cocktail. Cells were pelleted and lysed in 400uL lysis buffer (1% SDS, 50mM 

Tris-HCl pH8, 20mM EDTA, Roche complete protease inhibitors) and sonicated at 4°C using 

the Qsonica Q800R2 at 20% amplitude 10s on 30s off until DNA fragments from sheared 

chromatin were mostly between the sizes of 200-600 base pairs. 100uL of sonicated chromatin 

was diluted in 10X lysis dilution buffer (16.7 mM Tris-HCl, 1.1% Triton X-100, 1.2mM EDTA, 

167mM NaCl) and precleared for 1h 4°C with 30uL of protein A dynabeads washed 10X lysis 

dilution buffer on nutator. IPs were performed O/N at 4°C on nutator with precleared chromatin 

and 2ug of anti-Pol2, -H3K27ac or 5uL of H3K18ac anti-rabbit sera. 50uL of protein A 

dynabeads were added for 4h on nutator at 4°C. Bead-immunocomplexes were washed for 5min 

2X with each of the following buffers in order: wash buffer A (50mM Hepes pH 7.9, 0.1% SDS, 

1% Triton X-100, 0.1% Deoxycholate, 1mM EDTA, 140mM NaCl), wash buffer B (50mM 

Hepes pH 7.9, 0.1% SDS, 1% Triton X-100, 0.1% Deoxycholate, 1mM EDTA, 500mM NaCl), 

LiCl buffer (20mM Tris-HCl pH8, 0.5% NP-40, 0.5% Deoxycholate, 1mM EDTA, 250mM 

LiCl), TE (50mM Tris-HCl pH8, 1mM EDTA). Elution was performed in 150uL of elution 
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buffer (50mM Tris HCl pH8, 1mM EDTA, 1% SDS) then ChIP samples and inputs (10uL of 

precleared chromatin lysis plus 140uL elution buffer) were reverse crosslinked O/N at 65°C. 

Samples were RNase A treated for 1h at 37°C and DNA was purified and extracted with 

phenol/chloroform and ethanol precipitated. DNA pellets were resuspended in 12uL of TE and 

measured using Qubit fluorometer. IRF3 ChIP-seq was performed similarly with the following 

modifications: cells were double crosslinked with 4mM DSG in PBS for 30min then 1% 

formaldehyde for 10 min, crosslinking was quenched in 500mM Tris pH7.9 for 20min and cell 

pellets were lysed in 1mL lysis buffer 1 (50mM HEPES-KOH, pH 7.5, 140mM NaCl, 1mM 

EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, Roche complete protease inhibitors) for 

10min on ice. Lysate was pelleted at 3000 rpm 5min 4°C then resuspended in 1mL lysis buffer 2 

(10mM Tris-HCl, pH 8.0, 200mM NaCl, 1mM EDTA, 0.5mM EGTA, Roche complete protease 

inhibitors) and placed on nutator 10min 4°C and pelleted as before, then resuspended in 125uL 

of lysis buffer 3 (10mM Tris-HCl, pH 8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na-

Deoxycholate, 0.5% N-lauroylsarcosine, Roche complete protease inhibitors) and sonicated, 5ug 

of anti-IRF3 (Cat#sc-9082; Lot#31515) was used, magnetic beads were washed and blocked in 

0.5% BSA in PBS. Sequencing libraries were constructed from 1 ng of immunoprecipitated and 

input DNA using the KAPA Hyper Prep Kit from KAPA Biosystems and NEXTflex ChIP-Seq 

barcodes purchased from Bioo Scientific. 

 

Data Analysis of ChIP-seq 

ChIP-seq libraries were sequenced using Hiseq-2000 or 4000 systems for single-end 50 base pair 

reads. Reads were mapped to the hg19 human genome reference using Bowtie2 software. Only 

reads that aligned to a unique position in the genome with no more than two sequence 
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mismatches were retained for further analysis. Duplicate reads that mapped to the same exact 

location in the genome were counted only once to reduce clonal amplification effects. A custom 

algorithm executed by MATLAB was used for further processing. The genome was tiled into 50 

base pair windows and each read was extended by 150 bases and was counted as one read to 

each window to which it partially or fully matched. The total counts of the input and ChIP 

samples were normalized to each other. Normalization was done across samples for equal 

number of uniquely mapped reads. The input sample was used to estimate the expected counts in 

a window. Wiggle files were generated using a custom algorithm and present the data as 

normalized tag density as seen in all figures with genome browser shots and average tag density 

for the indicated TSSs generated by CEAS software.  

 

siRNA and Poly(I:C) Transfections 

siRNA KD was performed in U2A or 2fTGH using Invitrogen RNAiMAX reverse transfection 

protocol. 500,000 cells were plated in 6cm2 plates in antibiotic free 10% FBS DMEM containing 

siRNA for a final concentration of 10nM that was preincubated in 7.5uL of lipofectamine 

RNAiMAX reagent in 750uL of Opti-MEM. Ambion siRNAs used were IRF3 s7505, IRF9 

s2029 and negative control no.1 AM4611. After 48h of transfections cells were infected for 24h 

in U2A cells and 12h in 2fTGH with Ad5 vectors or mock-infected. Poly(I:C) purchased from 

Sigma-Aldrich was transfected into cells at 20ug/mL final concentration using 20uL of 

lipofectamine 2000 Invitrogen diluted in 1mL of Opti-Mem into 10cm2 plates of confluent 

HBTECs. RNA was isolated using QIAGEN RNeasy Plus Mini Kit. Cells were lysed for protein 

in EBC lysis buffer (120mM NaCl, 0.5% NP-40, 50mM Tris-Cl pH 8.0, Roche cOmplete 

protease inhibitor). Transfections were performed in triplicate. Data are represented as an 
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average of n=3 experimental replicates. 

 

Cellular Biochemical Fractionation 

For chromatin associated protein 4x106 HBTEC were infected for indicated times collected and 

washed in PBS and resuspended in 100uL of Buffer A (10mM HEPES [pH 7.9], 10mM KCl, 

1.5mM MgCl2, 0.34 M sucrose, 10% glycerol, 1mM dithiothreitol, and Roche protease inhibitor 

cocktail) and triton X-100 was added for 0.1% final concentration. Cells were incubated on ice 

for 8 minutes then nuclei were pelleted by centrifugation 5 min, 1,300 × g , 4°C. Supernatant 

extract was collected as cytoplasmic extract. The pellet was washed 1X in buffer A and lysed in 

buffer B (3mM EDTA, 0.2mM EGTA, 1mM dithiothreitol, and Roche protease inhibitor 

cocktail), and insoluble chromatin was pelleted from soluble (nucleoplasmic supernatant) by 

centrifugation (5 min, 1,700 × g, 4°C). The chromatin pellet was washed once with buffer B and 

resuspended in 1% SDS Laemmli buffer and denatured for 10 min at 65°C. HeLa cell nuclear 

extract for Superose 6 gel filtration was isolated as described in (Dignam et al., 1983). 15x107 

HeLa cells were mock or e1aWT infected for 24h then pelleted in PBS. Cells were resuspended 

in 5 volumes to pellet size with Buffer A (10mM HEPES (pH 7.9 at 4C), 1.5mM MgCl2, 10mM 

KC1 and 0.5mM DTT). Cells were transferred to B-type pestle dounce homogenizer and lysed 

with 10 strokes then centrifuged for 20 min at 10,000 rpm. Nuclei pellets were resuspended in 

buffer C (20mM HEPES (pH 7.9), 25% (v/v) glycerol, 0.42M NaCl, 1.5mM MgCl2, 0.2mM 

EDTA, 0.5mM PMSF and 0.5mM DTT) and stirred gently for 30 min at 4°C. Nuclei were spun 

at 10,000 rpm for 30min. Supernatant was collected and used for Superose 6 gel filtration. 

 

Co-Immunoprecipitation 
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Co-IPs were performed using M58 crosslinked to protein G agarose beads. 1mL of clarified M58 

hybridoma supernatant was incubated with 50uL of 50% slurry protein G agarose beads on 

nutator for 4h at 4°C. Beads were washed 3X with 0.2M sodium borate pH 9 then antibody was 

crosslinked to protein G beads in 20mM DMP in 0.2M sodium borate pH 9 for 40 min on nutator 

at room temperature. Beads were then washed once with 0.2M ethanolamine pH 8 then quenched 

in 1mL ethanolamine pH 8 on nutator for 2h at room temperature. To remove uncoupled IgGs 

beads were washed 3X with 0.58% acetic acid and 150mM NaCl, then washed 3X with PBS. 

Cells were lysed in EBC lysis buffer (120 mM NaCl, 0.5% NP-40, 50 mM Tris-Cl pH 8.0, and 

Roche cOmplete protease inhibitors) l on ice. 2-4 mg of supernatant lysate from infected HeLa or 

A549 cells was precleared with 30uL agarose G beads for 1h then immunoprecipitated overnight 

at 4°C with M58 cross-linked to agarose G beads. Immuno-bead complexes were washed 3 times 

with cold EBC buffer and eluted in Laemmli buffer and incubated 10 min at 65°C. 

 

Western blot 

Proteins were extracted from indicated cells by lysis in EBC (120 mM NaCl, 0.5% NP-40, 50 

mM Tris-Cl pH 8.0, and Roche cOmplete protease inhibitors). Protein concentration was 

quantified by Bradford assay and normalized in Laemmli buffer and heated for 10min at 65°C 

then resolved in a 9% SDS-polyacrylamide gel. Proteins were electrotransferred to a 

polyvinylidene difluoride (PVDF) membrane then blocked in 5% milk in TBS-Tween 0.1% 

(blocking buffer) for 30 minutes. Primary antibody was added at manufacturer recommended 

dilutions for 1h at room temperature or O/N at 4°C. Membranes were washed 3X in TBS-Tween 

(0.1%) then anti-mouse or anti-rabbit secondary antibodies were added for 1h room temperature 

in blocking buffer. Membranes were then washed 3X in TBS-Tween (0.1%) prior to addition of 
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ECL reagent for detection of chemiluminescence. Western blots were validated with replicates of 

two or more with representative western blots presented. 

 

qRT-PCR 

Cells were collected at indicated times following transfection or infection and RNA was isolated 

as described above. 1ug of RNA, as measured by Qubit fluorometer, was used for reverse 

transcription with SuperScript III First-Strand Synthesis SuperMix using random hexamer 

primers. qRT-PCR was performed with 5uL of cDNA, diluted 1:10 or 1:10000 for 18s rRNA. 

Runs were done using an ABI 7500 Real Time Thermocycler and reactions took place in optical-

grade, 96-well plates (Applied Biosystems, Carlsbad, CA, USA) 25uL total volume with primers 

at a concentration of 900nM and 12.5uL of 2X FastStart Universal SYBR Green Master (Rox). 

Relative mRNA levels were calculated as 2ΔCt and normalized to relative values of 18s rRNA. 

Data are presented as average of three or more experimental replicates ± standard deviation. 

 

Plaque Assay 

6cm2 confluent HBTEC plates were infected for 12h at moi 60 with the indicated e1a-expressing 

recombinant Ad5 vectors then superinfected with WT Ad5 virus for 48h. Cells were lysed with 3 

cycles of freeze/thaw/vortex in 1mL of PBS and the cellular debris was pelleted. The 

supernatant, containing released Ad particles, was serially diluted to 10-4 - 10-6 and 100uL of the 

dilutions used to infect 6cm2 80% confluent HeLa monolayer. After 1h absorption of virus 5mL 

of 0.7% agarose in DMEM with 10% fetal bovine serum was overlayed. 1 day later 3mL of 0.7% 

agarose and DMEM with 10% fetal bovine serum was overlayed. Cells were stained with neutral 

red stain on day 6 p.i. and plaques were counted on day 7 to determine Ad5 titers. Data are 
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represent the average plaque forming units from three replicate superinfections ± standard 

deviation. 

 

S35 Pulse-Chase Protein Labeling and Autoradiography 

Confluent 3x106 HBTEC were mock-infected or infected for 22h with the indicated Ad vectors. 

Cells were washed 2X with room temperature PBS and DMEM Met-Cys-free (Gibco 

Cat#21013) pulse media with 250uCi/mL EasyTag EXPRESS 35S Protein Labeling Kit was 

added to cells for 2h and placed in cell culture incubators. After labeling, labeling media was 

removed and cells were washed 2X with room temperature PBS and Fresh HBTEC media was 

added for indicated chase times. Upon harvesting cells were washed with cold PBS and collected 

and lysed in 500uL of EBC lysis buffer (120 mM NaCl, 0.5% NP-40, 50 mM Tris-Cl pH 8.0, 

and Roche cOmplete protease inhibitors). Cell lysate was used for IRF3 immunoprecipitation as 

described above in co-immunoprecipitation section with 2uL of anti-IRF3 (D6I4C) from Cell 

Signaling Technology. Eluted protein was run on 9% SDS polyacrylamide gels. Gels were fixed 

in 10% acetic acid and 20% methanol in water on rotator for 30 minutes. Gels were washed for 

30 minutes in DI water on rotator and incubated in 1M sodium salicylate on rotator for 30 

minutes prior to being dried on a gel drying vacuum system. Exposed films were scanned and 

band intensities were quantified using ImageJ software. 

 

Quantification and Statistical Analysis 

 

Relative mRNA values as determined by qRT-PCR from experiments of three independent 

biological replicates were used to determine significance between conditions using a one-way 
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ANOVA statistical tests. Statistical differences in the distributions of expression (FPKM values) 

of a given set of genes between conditions were determined using Kolmogorov-Smirnov tests. 

 

Data and Software Availability 

The accession number for the sequencing data reported in this paper is GEO: GSE105040 

 

Key Resources Table 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Rabbit polyclonal anti-FOXK1 Bethyl Cat#A301-728A; 

RRID:AB_1211446 
Rabbit monoclonal anti-WDR68 a.k.a. DCAF7 Abcam Cat#ab138490 
Mouse monoclonal anti-DYRK1A Abcam Cat#ab54944; 

RRID:AB_941372 
Rabbit polyclonal anti-CtBP (H-440) Santa Cruz Cat#sc-11390; 

RRID:AB_2086634 
Rabbit polyclonal anti-CtBP1 Bethyl Cat#A300-338A; 

RRID:AB_420970 
Rabbit polyclonal anti-H3K18ac (814) Grunstein/Kurdistani 

laboratories (Suka et 
al., 2001) 

N/A 

Rabbit polyclonal anti-H3K27ac Active Motif Cat#39133; 
RRID:AB_2561016; 
Lot#31814008 

Rabbit polyclonal anti-KU-86 (H-300) Santa Cruz Cat#sc-9034; 
RRID:AB_2218743 

Rabbit polyclonal anti-Pol2 (N20) Santa Cruz Cat#sc-899; 
RRID:AB_632359 

Rabbit monoclonal anti-STAT1 (D1K9Y) Cell Signaling 
Technology 

Cat#14994S 

Rabbit monoclonal anti-Phospho-STAT1 Tyr701 (58D6) Cell Signaling 
Technology 

Cat#9167S 

Rabbit monoclonal anti-STAT2 (D9J7L) Cell Signaling 
Technology 

Cat#72604S 

Rabbit monoclonal anti-IRF9 (D2T8M) Cell Signaling 
Technology 

Cat#76684S 

Rabbit polyclonal anti-p300 (N15) Santa Cruz Cat#sc-584; 
RRID:AB_2293429 

Mouse monoclonal anti-Rb1 Abcam Cat#ab24; 
RRID:AB_303042 

Rabbit polyclonal anti-IRF7  Cell Signaling 
Technology 

Cat#4920S; 
RRID:AB_2127551 

Rabbit monoclonal anti-IRF3 (D6I4C) Cell Signaling 
Technology 

Cat#11904S 
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Rabbit monoclonal anti-Phospho-IRF-3 (Ser396) (4D4G) Cell Signaling 
Technology 

Cat#4947S; 
RRID:AB_823547 

Rabbit polyclonal anti-H2B Millipore Cat#07-371; 
Lot#2617640; 
RRID:AB_310561 

Mouse monoclonal anti-E1A (M58) hybridoma 
supernatant 

Produced in house; 
(Harlow et al., 1985) 

N/A 

Mouse monoclonal anti-p-Adenovirus-2 E1A (C-9), 
specific for pSer219 in E1A, equivalent to Ser173 
in e1a 

Santa Cruz Cat#sc-374663; 
RRID:AB_10986401 

Rabbit polyclonal anti-Beta-Actin GeneTex Cat#GTX16039; 
RRID:AB_367276 

Rabbit polyclonal anti-IRF3 (FL-425) Santa Cruz Cat#sc-9082; 
RRID:AB_2264929; 
Lot#31515 

Bacterial and Virus Strains  
e1aWT Ad5 recombinant vector (Ferrari et al., 2014) N/A 
dl312 (Jones and Shenk, 

1979) 
N/A 

FOXKb- Ad5 recombinant vector This paper N/A 
DCAF7b- Ad5 recombinant vector This paper N/A 
CtBPb- Ad5 recombinant vector This paper N/A 
P300b- Ad5 recombinant vector (Ferrari et al., 2014) N/A 
RBb- Ad5 recombinant vector (Ferrari et al., 2014) N/A 
Chemicals, Peptides, and Recombinant Proteins 
Human Interferon-α1 (hIFN-α1) Cell Signaling 

Technology 
Cat#8927 

Poly(I:C) Sigma-Aldrich P9582 
Proteinase K Roche/Sigma-Aldrich Cat#3115887001 
RNase A Roche/Sigma-Aldrich Cat#10109142001 
Lipofectamine RNAiMAX Transfection Reagent Thermo Fisher Cat#13778075 
Complete Protease inhibitor Cocktail Roche Cat#04693132001 
Critical Commercial Assays 
EasyTag EXPRESS 35S Protein Labeling Kit Perkin-Elmer NEG772014MC  
TruSeq Stranded mRNA Library Prep Kit illumina Cat#RS-122-2101 
Kapa Hyper Prep Kit Kapa biosystems  

Cat#KK8504 
NEXTflex ChIP-Seq barcodes BIOO Cat#NOVA-514121 
RNeasy Plus Mini Kit Qiagen Cat#74134 
SuperScript III First-Strand Synthesis SuperMix ThermoFisher Cat#18080400 
FastStart Universal SYBR Green Master (Rox) Roche Cat#04913850001 
Dynabeads Protein A Thermo Fisher Cat#10001D 
DNA-free™ DNA Removal Kit Ambion/ThermoFisher Cat#1906 
Deposited Data 
Raw and aligned data This paper GEO: GSE105040 
Experimental Models: Cell Lines 
Male Human Bronchial/Tracheal Epithelial Cells 
(HBTEC) 

Lifeline Cell 
Technologies 

Cat#FC-0035; 
lot#02196 

A549 ATCC RRID:CVCL_0023 
HeLa Cold Spring Harbor 

Laboratory 
RRID:CVCL_0030 
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2fTGH George Stark Lab RRID:CVCL_0115 
U2A George Stark Lab RRID:CVCL_M019 
U3A George Stark Lab RRID:CVCL_9469 
U6A George Stark Lab RRID:CVCL_D316 
Oligonucleotides 
See table S3 This Paper N/A 
Software and Algorithms 
Bowtie2 http://bowtie-

bio.sourceforge.net/bo
wtie2/index.shtml 

RRID: SCR_005476 

Samtools http://samtools.sourcef
orge.net/ 

RRID:SCR_002105 

Tophat2.2.1 https://ccb.jhu.edu/soft
ware/tophat/index.sht
ml 

RRID:SCR_000691 

HOMER http://homer.salk.edu/
homer 

RRID:SCR_010881 

CEAS http://liulab.dfci.harvar
d.edu/CEAS/ 

RRID:SCR_010946 

cuffdiff2.0.2 http://cole-trapnell-
lab.github.io/cufflinks/c
uffdiff/ 

RRID:SCR_001647 
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CHAPTER 3 

De-differentiation during oncogenic transformation caused by YAP/TAZ inactivation 
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Introduction 

Compromised differentiation is a hallmark of oncogenic transformation and tumor progression 

(Roy and Hebrok, 2015). Likewise, expression of viral oncogenes often inhibit differentiation. 

Adenovirus E1A, in addition to forcing quiescent cells into S-phase by inhibiting Retinoblastoma 

(Rb) family proteins (DeCaprio, 2009) and repressing expression of CDK inhibitors (Ferrari et 

al., 2014), also represses cellular differentiation (Frisch and Mymryk, 2002). For example, E1A 

blocks differentiation of rodent myoblasts by interfering with the function of developmentally 

regulated cis-acting transcription control regions (Webster et al., 1988). Yet, how E1A represses 

differentiation of various cell types has not been fully clarified. While most E1A-induced 

transcriptional repression requires its interaction with the closely related lysine acetyltransferases 

CBP and p300 (Ferrari et al., 2014; Stein et al., 1990), it is unclear how particular genes, mainly 

cell-type specific genes, are targeted for repression. 

 A consequence of E1A’s interaction with CBP and p300 is a dramatic reduction in total 

cellular histone H3 lysines 27 and 18 acetylation (H3K27/18ac) (Ferrari et al., 2014; Horwitz et 

al., 2008; Jin et al., 2011). H3K27/18ac are highly enriched at enhancers and promoters of active 

genes, and their presence correlates with enhancer activity (Creyghton et al., 2010). Enhancers 

are critical for establishing the diversity between different cell types necessary for the complex 

multi-tissue development of a metazoan (Bulger and Groudine, 2011; Carey, 1998; Levine, 

2010). More recently, a new classification of enhancers, termed super-enhancer, was described 

that includes ~1.5-4% of enhancers in differentiated mammalian cells (Whyte et al., 2013). 

Super-enhancers are clusters of neighboring enhancers with a high density of transcription factor 

(TF) binding, activating histone marks and co-activator association (Whyte et al., 2013). Super-
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enhancers often are controlled by cell-type-specific TFs and regulate key cell identity genes 

important for normal mammalian development.  

 The Hippo pathway regulates organ size across metazoans (Pan, D., 2013; Yu et al., 

2015; Zanconato et al., 2016;) and is essential for the first tissue differentiation during 

mammalian embryonic development: the differentiation of cells on the surface of the 16-32 cell 

embryo (morula) into trophectoderm which will develop into the early placenta, and cells in the 

interior of the morula which develop into the embryo and adult (Sasaki, 2017). In mammals, 

paralogous transcription co-activators, YAP (aka YAP1) and TAZ (aka WWTR1), are the 

terminal effectors for Hippo signaling and activate target genes mainly through binding TEAD 

family TFs (Zhao et al., 2008). YAP/TAZ are considered to be oncogenes because they are 

frequently over-expressed in a variety of human cancers, are often amplified in squamous cell 

carcinoma, and over-expression of YAP/TAZ target genes correlates with poor prognosis (Wang 

et al., 2018). YAP is indispensable for early embryonic development (Sasaki, 2017), and is 

expressed at some point during the development of almost all mammalian cell types (Varelas, 

2014). During active Hippo signaling, a kinase cascade results in phosphorylation and activation 

of kinases LATS1/2 which phosphorylate YAP/TAZ leading to their cytoplasmic retention and 

ubiquitin-mediated degradation (Yu et al., 2015). Crucially, the hippo pathway regulates 

expression of multiple genes in response to mechanical cues generated by interactions with 

neighboring cells and the extracellular matrix (ECM) (Dupont et al., 2011; Meng et al., 2018). 

The AMOT family proteins (AMOTs) enhance Hippo signaling by activating LATS1/2 at 

adherens junctions between cells in preimplantation embryos (Hirate et al., 2013). Hippo 

signaling is suppressed when AMOTs are sequestered away from adherens junctions by binding 

to filamentous actin (F-actin) (Hirate et al., 2013). AMOTs also inhibit YAP/TAZ through direct 
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interactions (Chan et al., 2011; Zhao et al., 2011). YAP/TAZ also are regulated by alternative 

Wnt signaling in addition to Hippo pathway signaling (Park et al., 2015).  

We began this study pursuing the mechanism of how adenovirus E1A causes preferential 

hypoacetylation of H3K27/18 at enhancers and super-enhancers compared to promoters (TSSs). 

Unexpectedly, we found that most of this regulation of H3 acetylation occurs at sites of TEAD 

TF association, leading us to the discovery that E1A inactivates the TEAD co-activators YAP 

and TAZ by causing their sequestration in the cytoplasm. Further analyses showed that 

YAP/TAZ inactivation contributes greatly to the de-differentiated phenotype of adenovirus-

transformed cells. Despite hundreds of generations of E1A-induced de-differentiation, when E1A 

was eliminated from HEK293 cells, they retained the ability to re-differentiate into cells 

resembling normal human mesenchymal stem cells (MSC), the cell type from which they were 

likely derived. This re-differentiation was dependent on activation by both YAP and TAZ. 

Mechanistically, following E1A loss, YAP and TAZ translocate from the cytoplasm to the 

nucleus, dependent on F-actin assembly and signaling through Rho-family small GTPases. In the 

nucleus they associate with TEAD TFs and establish enhancers and then super-enhancers that 

strongly activate MSC-specific genes necessary for a drastic change in cell morphology. 

Virtually all the MSC-specific gene activation and enhancer establishment after removal of E1A 

depends on YAP/TAZ. These results, together with earlier studies, suggest that YAP/TAZ 

operate in a developmental check-point regulated by signals from the actin cytoskeleton 

generated through indirect interactions with adherens junctions between neighboring cells and 

with the surrounding extracellular matrix. Such signaling from the actin-cytoskeleton is required 

for MSC differentiation because YAP/TAZ associate with and activate virtually all MSC-

specific enhancers. 
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RESULTS 

E1A represses principally cell-type specific genes 

To analyze E1A repression of cell-type specific genes as opposed to ubiquitously expressed 

genes, we performed RNA-seq on three cultured primary human cell types at 24 h post-infection 

with adenovirus type 5 (Ad5) mutant dl1500 (Montell et al., 1984). This mutant has a nine base-

pair deletion of the 5’ splice-site of the mRNA encoding the large E1A isoform, and 

consequently expresses only the small E1A protein isoforms. Since large E1A is required to 

activate transcription from all other viral RNA Polymerase II promoters (Montell et al., 1984; 

Winberg and Shenk, 1984), dl1500 expresses only the small E1A isoforms and very low levels 

of other viral proteins. Considering genes with a greater than 2-fold change in FPKM comparing 

dl1500-infected to control, mock-infected cells and a q-value <0.05 at 24h p.i., 495 genes were 

repressed by small E1A in primary human foreskin fibroblasts (HFF), 755 in primary human 

fetal lung fibroblasts (IMR90), and 1869 in primary human bronchial/tracheal epithelial cells 

(HBTEC) (Fig. 3.1A), considerably more than in the IMR90 and HFF fibroblasts. This may be 

because HBTECs are derived from the natural host tissue for Ad5. The genes repressed in the 

HBTECs are expressed at higher level in these epithelial cells compared to the fibroblasts, while 

the genes repressed uniquely in the fibroblasts are expressed at higher level in the fibroblasts 

than in the epithelial cells (Fig. 3.1B). The gene ontologies of genes repressed uniquely in 

IMR90 fibroblasts are enriched for fibroblast functions, while the genes repressed uniquely in 

HBTECs are enriched for epithelial differentiation and development (Fig. 3.1C). Therefore, E1A 

preferentially represses highly expressed cell type-specific genes, potentially explaining E1A’s 

ability to repress differentiation of various cell types (Frisch and Mymryk, 2002). 
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Figure 3.1 E1A represses cell specific gene expression and differentiation 
(A) Venn diagram representing number of overlapping and non-overlapping significantly repressed genes from 
mRNA-seq in IMR90 (Ferrari et al. 2014), HFF, or HBTEC (Zemke and Berk, 2017) infected for 24 hours with Ad5 
small E1A vector at multiplicity of infection (MOI) 40 for IMR90 and 60 for HFF and HBTEC. (B) Boxplots 
represent expression distributions (FPKM) in mock-infected cells of genes uniquely repressed by small E1A in the 
cell types indicated at the top. (C) Gene ontology (DAVID) enriched terms of genes uniquely repressed by small 
E1A in IMR90 or HBTEC. (D) Heatmap comparing expression change for all genes activated and repressed by 
E1AKD in HEK293 cells to expression change of the same genes in HBTEC, IMR90, or HFF 24 h post infection 
with Ad5 dl1500 expressing small E1A compared to mock-infected cells. (E) SaVanT analysis heatmap displaying 
Z-scores for similarity of expression values of HEK293 siRNA transfected cells to gene signatures in various cell 
types. Z-scores for cell types most similar to E1AKD293 are: MSC 3.9, lymph node stroma 3.8, cardiac myocytes 
3.3, fibroblastic reticular cell 3.3, skin fibroblasts 3.1, smooth muscle 2.3.  
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Following loss of E1A, HEK293 cells re-differentiate into cells with properties of MSCs 

To determine if removing E1A from adenovirus-transformed cells would reverse repression of 

cellular differentiation, we performed E1A siRNA knockdown (E1AKD) in the Ad5-transformed 

human embryonic kidney cell line HEK293 (Graham et al., 1977) followed by RNA-sequencing 

(RNA-seq). E1A protein levels were reduced to <1% by four days post E1A siRNA transfection 

(Fig. 3.2A). Considering genes with expression changes >2-fold and q-value <0.05 compared to 

cells transfected with a negative control siRNA (siCtrl) at eight days post siRNA-transfection, 

E1AKD repressed 2203 genes and activated 2584 genes (Fig. 3.2B). E1AKD-repressed genes 

were highly enriched for cell cycle function (Fig. 3.2C), and were likely repressed by re-

activation of Rb family proteins. In contrast, the genes activated following E1AKD were 

enriched for MSC functions such as ECM synthesis, components of focal adhesions, collagen 

catabolism, and mesodermal cell differentiation (Fig. 3.2C). Genes activated by E1AKD in 

HEK293 cells are repressed by E1A in normal primary human cells, while genes repressed by 

E1AKD in HEK293 cells are activated by E1A in normal primary human cells (Fig. 3.1D). 

Consequently, most genes regulated by E1A in HEK293 cells are bona fide E1A-regulated genes 

in acutely infected primary human cells. Consequently, it is probably more accurate to consider 

genes “activated by E1AKD” to be repressed by E1A in the transformed HEK293 cells, and de-

repressed when E1A is virtually eliminated by E1A siRNA. 

By 4 days of E1AKD, the cells underwent a dramatic change in morphology, expanding to a 

larger surface area, mostly due to an increased cytoplasmic compartment accompanied by dense 

newly formed actin filaments (F-actin) stained with fluorescent-phalloidin (Fig. 3.2D). These 

“E1AKD293 cells” also assumed a much flatter morphology than the siCtrl cells, which were 

similar to untreated HEK293 cells and had a more globular shape with scant cytoplasm, 
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indicative of rapidly proliferating cells (Fig. 3.2D). The bioinformatic Signature Visualization 

Tool (SaVanT), which compares gene expression profiles of multiple human and mouse cell 

types and tissues (Lopez et al., 2017), scored E1AKD293 cells as most similar to normal 

mesenchymal stem cells (MSCs), and slightly less so to fibroblasts which have a similar pattern 

of gene expression to MSCs (Driskell and Watt, 2015) (Fig. 3.1E). HEK293 cells did not have a 

gene expression profile similar to any normal human cell type (Fig. 3.1E). HEK293 were derived 

by stable transformation of cultured primary human embryonic kidney cells with fragmented 

Ad5 DNA (Graham et al., 1977). Consequently, the cell type originally transformed was likely 

one of the most abundant cell types in the developing embryonic kidney, including MSC, the 

most abundant (Little and McMahon, 2012). Taken together, the RNA-seq data and 

morphological changes indicate that following loss of E1A, the E1AKD293 cells re-differentiate 

into cells with properties of MSCs.  
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Figure 3.2 E1AKD in HEK293 cells reverses oncogenic transformation associated gene expression and 
morphology 
(A) Expression of E1A proteins after 1-4 days of indicated siRNA transfections or mock-transfected (-) in HEK293 
cells. Nuclear protein KU86 serves as a loading control. (B) XY scatter plot displaying genes as dots and indicating 
genes significantly changed (q<0.05) with >2X activated (yellow) or repressed (green) by E1AKD compared to 
siCtrl in HEK293 cells following 8 days of siRNA treatment. (C) Gene ontology (DAVID) enriched terms of 
activated or repressed E1AKD genes from analysis from Fig. 3.2B. (D) Confocal microscopy of siRNA transfected 
HEK293 cells for 4 days fixed and stained with phalloidin-iFluor and DAPI.  
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E1AKD establishes typical and super-enhancers to activate MSC-specific gene expression 

E1A’s principle mechanism of repression is associated with inhibition of CBP and p300 

acetyltransferase activity (Ferrari et al., 2014; Stein et al., 1990), and a reduction in total cell 

H3K18ac and H3K27ac to ~30% the level in control cells (Ferrari et al., 2014; Horwitz et al., 

2008). Consistent with this, E1AKD in HEK293 reciprocally resulted in an increase in total 

H3K27/18ac (Fig. 3.3A). To identify the genomic regions that gained H3 acetylation we 

performed ChIP-seq at 1 and 4 days post siRNA transfection. By 4 days, H3K27ac increased 5-

fold or more at 3,657 peaks; 90% of these are more than 5 kb from a transcription start site 

(TSS), indicative of enhancers (Fig. 3.3B). Only 220 H3K27ac peaks showed a greater than 5-

fold reduction with 53% being within 5 kb of a TSS. These peaks are enriched for E2F motifs 

(p=1E-17) and likely were hypoacetylated because the return of Rb family protein activity after 

loss of E1A repressed E2F-directed H3 acetylation. Most of the E1AKD-induced H3 acetylation 

was gained at enhancers while promoters were largely unaffected (Fig. 3.3B). Consistently, in 

normal primary HBTECs, E1A induced H3K27/18 hypoacetylation at enhancers to a much 

greater extent than promoters (Fig. 3.4A).  
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Figure 3.3 E1AKD in HEK293 cells stimulates H3 acetylation at enhancers genome-wide 
(A) Levels of total H3K18 and H3K27 acetylation following 1 day of siRNA transfection or mock-transfection (-) in 
HEK293 cells. (B) Bars represent percentage of significant H3K27ac or H3K18ac ChIP-seq peaks found within 
indicated distance to nearest TSS. (C) Heat maps representing relative ChIP-seq read density for each significant 
peak that was located > 2.5kb from a TSS and subdivided into super-enhancer or typical enhancer peaks from 
siRNA transfected HEK293 cells. Base pair span is +/-3kb from center of peak. (D) Averages of ChIP-seq read 
density centered at all significant peaks of either typical enhancers or within super- enhancers following indicated 
siRNA transfections in HEK293 cells. (E) Boxplots represent expression distributions (FPKM) of SE-associated 
gene expression following indicated siRNA transfections in HEK293 cells. * p<0.001 as compared to siCtrl of same 
transfection length. (F) Gene ontology (DAVID) enriched terms of E1AKD293 activated SE-associated genes. 
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To determine how super-enhancers respond to E1A we used the Ranking of Super-

Enhancers (ROSE) algorithm (Hnisz et al., 2013) with H3K27ac ChIP-seq data from 4-day 

siRNA transfected cells. This identified 272 super-enhancers in HEK293 transfected with control 

siRNA, compared to 668 in E1AKD293 cells (Fig. 3.4B). 477 new super-enhancers formed in 

E1AKD293 cells. H3K27/18ac increased within typical enhancers after 1 day of E1AKD then 

remained stable, while levels in super-enhancers continued to increase for 4 days (Fig. 3.3C,D). 

Super-enhancer associated genes (assigned by proximity) were significantly de-repressed after 

E1AKD (Fig. 3.3E), and their gene ontologies are enriched for MSC functions, focal adhesion, 

ECM and adherens junctions, also enriched in normal MSC (Fig. 3.3F). Therefore, E1AKD de-

represses genes that promote differentiation of HEK293 into MSC-like cells by establishing 

typical and super-enhancers that activate them. Since cell type-specific genes tend to be the 

genes most reliant on enhancers for expression (Heinz et al., 2015), E1A’s preferential targeting 

of H3K27/18 hypoacetylation to typical and super-enhancers may explain why cell-type specific 

genes are targeted for repression. 
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Figure 3.4 Enhancers are most sensitive to E1A-induced hypoacetylation and YAP is inactivated by E1A in 
different cell types 
(A) Average ChIP-seq signal centered at all TSS (top) or enhancers (H3K27ac peaks >2.5kb from a TSS) in HBTEC 
following 24 hours of mock-infection or infection with Ad5 dl1500 mutant expressing small E1A (e1a). MOI 60. 
(B) Venn diagram of super-enhancers in HEK293 transfected with siCtrl (green) or siE1A (orange). (C) Confocal 
microscopy of 4 day siRNA transfected HEK293 cells fixed and immunostained with anti-TAZ (CL0371) and 
stained with phalloidin-iFluor and DAPI. Scale bars represent 20 µM. (D) HEK293 cells were transfected with 
siE1A RNA. Four days later, the media was changed to media with siE1A RNA (top row, siE1A+siE1A), or media 
with siCtrl RNA (siE1A+siCtrl). 4 days later cells were fixed and stained with anti-YAP antibody (DH81X), 
phalloidin-iFluor and DAPI and confocal micrographs were prepared. (E) Confocal microscopy of IMR90 cells 
infected for 4 days with Ad5 dl312 (ΔE1A) or dl1500 (expressing small E1A) at MOI 10. Fixed and immunostained 
with anti-YAP (DH81X) phalloidin-iFluor and DAPI. (F) Confocal microscopy of normal BRK cells or BRK 
transformed with E1A and E1B. Fixed and immunostained with anti-YAP (DH81X) and stained with phalloidin-
iFluor and DAPI. 
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E1AKD induces YAP association with chromatin-bound TEADs, chromatin remodeling 

and gene activation  

To determine if the newly established enhancers following E1AKD are in an accessible or 

inaccessible chromatin state prior to gaining H3 acetylation, we performed ATAC-seq 

(Buenrostro et al., 2013). Removal of E1A greatly increased ATAC-seq signal particularly ~300 

bp up- or downstream of H3K27ac peaks (Fig. 3.5A), suggesting that TF binding in these regions 

generated increased chromatin accessibility. To identify the TFs involved in establishing the 

newly formed enhancers we performed HOMER motif analysis (Heinz et al., 2010) on E1AKD 

induced ATAC peaks (>5-fold increase in ATAC signal following E1AKD), and observed 

overwhelming enrichment for TEAD family TF binding motifs (Fig. 3.5B). Using ChIP-seq, 

TEAD1 and TEAD4 were found to be highly enriched at the E1AKD-induced ATAC peaks (Fig. 

3.5C,D), implicating TEAD TFs in establishment of the newly formed enhancers in E1AKD293 

cells. 

For TEAD family TFs to activate gene expression they must associate with the closely 

related co-activators YAP and/or TAZ (Vassilev et al., 2001). Since YAP and TAZ are regulated 

through cytoplasmic restriction (Dong et al., 2007; Zhao et al., 2007) we determined whether or 

not   their subcellular localization changed following E1AKD. Indeed, in control HEK293 

YAP/TAZ are mostly restricted to the cytoplasm, and upon E1AKD they became concentrated in 

the nucleus (Fig. 3.5E, 3.4C). This nuclear localization was reversible. HEK293 cells were 

treated with siE1A for 4 days, then the media was replaced with media containing either siE1A 

or siCtrl for an additional 4 days. The E1AKD293 cells that had the siE1A replaced with siCtrl 

proliferated and had mostly cytoplasmic YAP with a reduction of F-actin filaments and a smaller 

surface area, similar to untreated HEK293 cells (Fig. 3.4D, 3.5E). Furthermore, E1A prevented 
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YAP nuclear accumulation in dl1500-infected IMR90 (Fig. 3.4E). Also, primary baby rat kidney 

(BRK) cells display mostly nuclear YAP, while Ad-transformed BRK cells have mostly 

cytoplasmic YAP (Fig. 3.4F). Taken together, these results suggest that E1A inactivation of 

YAP/TAZ by cytoplasmic sequestration is a general occurrence during adenovirus oncogenic 

transformation and infection.  

To determine if nuclear YAP associates with chromatin at E1AKD-induced ATAC peaks, 

we performed YAP ChIP-seq. Indeed, following E1AKD YAP peaks coincided with 91% of 

E1AKD-induced ATAC peaks (Fig. 3.5F,G,H). Conversely, control HEK293 cells had much 

less, or no detectable YAP association at these sites. E1AKD-induced super-enhancers, such as 

those close to E1AKD-derepressed genes IER3 and AMOTL2 (Fig. 3.5H), had very low 

H3K27/18ac, ATAC signal or YAP association in control HEK293. However, following 

E1AKD, ATAC peaks were generated, all of which coincided with new peaks of YAP (Fig. 

3.5H,I). H3K27/18ac peaks flanking YAP peaks first appeared after 1 day of E1AKD and 

continued to increase and spread across the entire super-enhancers following 4 days of E1AKD 

(Fig. 3.5H). 
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Figure 3.5 E1AKD induces YAP nuclear import and formation of TEAD/YAP complexes on chromatin at 
TEAD binding sites, establishing super-enhancers 
(A) Average ATAC-seq signal centered at H3K27ac peaks that increased >5X following 4 days of E1AKD. (B) 
Sequence motif analysis (HOMER) showing most significantly enriched TF motif at all ATAC-seq peaks that 
increased >5X following E1AKD. (C) Average TEAD1 ChIP-seq signal centered at ATAC-seq peaks that increased 
>5X following 4 days of E1AKD. (D) Average TEAD4 ChIP-seq signal centered at ATAC-seq peaks that increased 
>5X following 4 days of E1AKD. (E) Confocal microscopy of 4 day siRNA transfected HEK293 cells fixed and 
immuno-stained with anti-YAP (DH81X) and stained with phalloidin-iFluor and DAPI. Scale bars represent 20µm. 
(F) Venn Diagram displaying number of overlapping or nonoverlapping ATAC-seq and YAP ChIP-seq peaks. (G) 
Average YAP ChIP-seq signal centered at ATAC-seq peaks that increased >5X following 4 days of E1AKD. (H) 
Genome browser plots (IGB) displaying indicated ChIP-, ATAC-, and mRNA-seq signal at super-enhancers (SE, 
gold bars) near E1AKD activated genes IER3 and AMOTL2. (I) Heat maps representing relative ATAC- or ChIP-
seq read density centered at every E1AKD-induced ATAC-seq peak (increased >5X compared to siCtrl) from 
siRNA transfected HEK293 cells. Peaks are sorted by sum of ATAC-seq peak signal in siE1A. Base pair span is +/-
3kb from center of peak.  
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 TEAD4 was found at many of the E1AKD-induced enhancers prior to E1AKD, 

indicating that these enhancers were marked with DNA-bound TEAD4 prior to their activation 

(Fig. 3.5D,H,I). However, H3K27/18ac and ATAC accessibility increased greatly when YAP 

was associated in E1AKD293 cells (Fig. 3.5A,H,I). H3K4me1 is found at both active enhancers 

and inactive, poised enhancers (Creyghton et al., 2010; Heintzman et al., 2009). In control 

HEK293, H3K4me1 was enriched at E1AKD induced ATAC peaks, but in E1AKD293 cells, 

H3K4me1 shifted to ~200-300 bp up- and downstream from the center of the ATAC peak (Fig. 

3.6A, 3.6B). This finding suggests that chromatin remodeling occurred when YAP/TAZ 

associated with the DNA-bound TEAD TFs, resulting in nucleosome depleted regions detected 

as high ATAC peaks. Additionally, the level of TEAD4 and H3K4me1 correlated in control 

HEK293 (Fig. 3.6C), consistent with their co-occupancy at individual loci. Taken together, these 

data suggest that in HEK293 many of the E1AKD-induced enhancers are epigenetically pre-

marked by DNA-bound TEAD4 and H3K4me1, but undergo chromatin remodeling following 

YAP binding to TEAD4, which induces chromatin accessibility and recruitment of additional 

transcriptional activators such as TEAD1. 
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Figure 3.6 H3K4me1 and TEAD4 mark inactive enhancers and F-actin but not alternative Wnt signaling in 
E1AKD293 cells activates YAP 
(A) Heatmap displaying relative signal for H3K4me1 ChIP-seq reads from HEK293 cells 4 days post siRNA 
transfection for at all ATAC-seq peaks that increased >5X with E1AKD (new ATAC sites) . Base pair span is +/-
3kb from the center of the ATAC peak. (B) Average ChIP-seq signal after transfection with the indicated siRNAs 
for 4 days centered at ATAC-seq peaks that increased >5X following 4 days of E1AKD. (C) Heatmap displaying 
relative signal for TEAD4 or H3K4me1 ChIP-seq reads in HEK293 cells 4 days post transfection at all ATAC-seq 
peaks that increased >5X with E1AKD (new ATAC sites). Peaks are sorted by amount of H3K4me1 signal in siCtrl 
HEK293 cells. Base pair span is +/-3 kb from center of peak. (D) Average expression level (FPKM) of LATS1 from 
3 replicates of siRNA transfected HEK293 cells. (E) Confocal microscopy of 4 day siRNA transfected HEK293 
cells fixed and immunostained with anti-YAP (DH81X), phalloidin-iFluor and DAPI. Scale bars represent 20µM. 
(F) Western blot for WNT5A/B using supernatant of E1AKD293 cell culture conditioned media following 4 days of 
transfection and DMSO or IWP-2 (2µM) treatment. Ponceau red of membrane serves as a loading control. (G) 
Confocal microscopy of HEK293 cells 4days after siRNA transfection and addition of either DMSO or IWP-2 in 
DMSO (2µM final media concentration). Cells were fixed and immunostained with anti-YAP (DH81X) and stained 
with phalloidin-iFluor and DAPI. 
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YAP activation requires F-actin and coincides with reduced Hippo signaling and AMOT 

re-localization 

To determine if alterations in Hippo signaling account for YAP/TAZ activation when E1A is 

removed from HEK293 cells, we assayed protein levels and phosphorylation of YAP/TAZ and 

their upstream regulatory kinases LATS1/2. Nuclear YAP and TAZ are more stable than 

cytoplasmic YAP/TAZ (Yu et al. 2015). Consistent with this, the shift of YAP/TAZ from the 

cytoplasm into the nucleus in E1AKD293 cells was associated with substantial increases in YAP 

and TAZ (Fig. 3.7A). Unexpectedly, total LATS1 protein decreased considerably in E1AKD293 

cells (Fig. 3.7A), while there was no significant decrease in LATS1 mRNA (Fig. 3.6D). This 

suggests post-transcriptional down-regulation of LATS1 following loss of E1A. Consistent with 

this, treatment with the drug MLN4924, an inhibitor of cullin neddylation required for activity of 

cullin-based ubiquitin ligases (Soucy et al., 2009), prevented the decrease in LATS1 (Fig. 4B). 

The level of LATS1 in control HEK293 cells was unaffected by MLN4924 suggesting ubiquitin-

mediated degradation of LATS1 in E1AKD293 cells but not in HEK293 cells. In contrast, the 

protein level of LATS2 was unchanged before and after E1AKD (Fig. 3.7A). Activation by 

YAP/TAZ is promoted when LATS1 is in its inactive, hypophosphorylated state due to low 

activity of upstream Hippo pathway kinases. The level of T1079-phosphorylated, activated 

LATS1 in E1AKD293 cells was decreased compared to control siRNA-transfected HEK293 

cells (Fig. 3.7A). The decrease in total LATS1 and phospho-T1079 LATS1 probably contribute 

to high YAP/TAZ activity in E1AKD293 cells. 
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Figure 3.7 YAP nuclear import depends on F-actin and coincides with Hippo signaling and AMOT re-
localization 
(A) Protein levels and phosphorylation status of Hippo pathway proteins from 4 day siRNA transfected HEK293 
cells. KU86 serves as a loading control. (B) LATS1 protein levels from HEK293 cells transfected for 3 days with 
either siCtrl or siE1A then treated with 5µM MLN4924 or DMSO control for 8 hours. (C) E1AKD293 cells treated 
with either DMSO or latrunculin B (LatB) for 30 minutes following 4 days of siE1A transfection. Cells were fixed 
and immuno-stained with anti-YAP (DH81X) and stained with phalloidin-iFluor and DAPI. (D) HEK293 cells were 
transfected with an empty vector plasmid or plasmid expressing RhoA Q63L for 3 days. Cells were fixed and 
immuno-stained with anti-YAP (DH81X) and stained with phalloidin-iFluor and DAPI. (E) Confocal microscopy of 
4day siRNA transfected HEK293 cells fixed and immuno-stained with anti-AMOT and stained with phalloidin-
iFluor and DAPI. (F) Same as in E except cells were immuno-stained with anti-YAP instead of anti-AMOT.  
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Since signals from the actin cytoskeleton activate YAP/TAZ (Dupont et al., 2011), and we 

observed robust F-actin assembly in E1AKD293 cells, we tested if F-actin is necessary for YAP 

activation by treating with latrunculin B, an inhibitor of actin polymerization. A 30 min 

treatment of E1AKD293 cells caused actin filament disassembly and YAP cytoplasmic 

localization (Fig. 3.7C). Consistent with a requirement for signaling from the actin cytoskeleton, 

knock-down of Rho-family small GTPases CDC42, RhoA, and RAC1 known to stimulate actin 

fiber assembly and dynamics, prevented YAP nuclear accumulation when E1A was knocked-

down (Fig. 3.6E). To determine if F-actin formation in HEK293 cells is sufficient to force YAP 

into the nucleus, we transfected an expression vector for constitutively active RhoA Q63L, 

which promotes F-actin assembly (Caron and Hall, 1998). In cells with the brightest phalloidin 

signal indicating assembly of actin filaments, YAP was localized in the nucleus with a more 

intense signal (Fig. 3.7D), suggesting that F-actin assembly and/or RhoA signaling is sufficient 

for YAP nuclear import, even in the presence of E1A.  

During trophectoderm differentiation in the 16-32 cell embryo, the correlation between F-

actin assembly and nuclear YAP/TAZ can be attributed to AMOT family protein binding to 

newly formed F-actin in the apical cortex of surface cells (Hirate et al., 2013). This sequesters 

AMOTs, preventing them from directly inhibiting YAP/TAZ or from activating LATS1/2 at 

adherens junctions (Hirate et al., 2013; Sasaki, 2017). To test if AMOT is re-located similarly in 

E1AKD293 cells we performed AMOT immuno-staining. In siCtrl 293 cells AMOT was 

observed primarily in punctae often at cell peripheries or between cells, consistent with its 

association with adherens junctions (Fig. 3.7E) where it binds and activates LATS1/2, inhibiting 

YAP/TAZ. Upon E1AKD, most of the AMOT was co-localized with F-actin. Consequently, 

AMOT sequestration by F-actin in E1AKD293 cells likely contributes to YAP/TAZ nuclear 
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import. Indeed, siRNA KD of all three AMOTs was sufficient to induce YAP nuclear import and 

E1AKD-associated morphological changes in HEK293 cells even though E1A was still 

expressed (Fig. 3.7F). The association of AMOTs with F-actin is inhibited by their 

phosphorylation by LATS1 (Chan et al., 2013). Consequently, both the reduction in active 

phospho-LATS1 (Fig. 3.7A) and the large increase in polymerized actin that sequesters AMOTs 

can account for the re-localization of AMOT with F-actin following E1AKD, and likely also 

contributes to YAP/TAZ nuclear accumulation. 

 YAP/TAZ were recently shown to be downstream effectors for alternative Wnt signaling 

(Park et al., 2015). To determine if YAP/TAZ are being activated by the alternative Wnt pathway 

in E1AKD293 cells, we treated the cells with IWP-2, an inhibitor of Wnt processing/secretion 

(Chen et al., 2009). While IWP-2 prevented secretion of WNT5A/B, major activators of 

alternative Wnt-signaling (van Amerongen, 2012) (Fig. 3.6F), it did not prevent nuclear import 

of YAP (Fig. 3.6G), suggesting that alternative Wnt signaling is not necessary for E1AKD 

induced YAP nuclear import. 

 

YAP/TAZ are required to establish enhancers for re-differentiating HEK293 after E1A is 

eliminated 

To determine the extent to which E1AKD-induced gene de-repression is dependent on 

YAP/TAZ, we used siRNA to deplete YAP and TAZ simultaneously with E1A depletion (Fig. 

3.8A). RNA-seq from triple KDs of E1A, YAP and TAZ revealed that most of the gene de-

repression is dependent on YAP and TAZ (Fig. 3.9A). 1488/1890 (~80%) of E1AKD de-

repressed genes (FPKM siE1A/siCtrl >2, q<.05) were defective (p<.05) for de-repression in 

E1AKD293 cells when YAP and TAZ were also knocked-down. Surprisingly, although YAP 
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and TAZ have been considered to be largely functionally redundant (Nishioka et al., 2009; Xin et 

al., 2013), many of the E1AKD-de-repressed genes, such as COL1A1, SERPINE1, COL3A1, 

CTGF and MYOF, depend on both YAP and TAZ for de-repression, indicating that YAP/TAZ 

have non-redundant functions required for expression of these genes (Fig. 3.9B, upper panel). 

However, some genes rely more on YAP or TAZ for expression when E1A is removed. When 

YAP or TAZ were individually knocked-down at the same time as E1A, a subset of genes de-

repressed by E1AKD were >5X more dependent on TAZ than YAP (Table S1, e.g. TGM2 (Fig. 

3.9B lower panel left). The gene ontology of this subset of de-repressed genes is highly enriched 

(P=1.3E-15) for genes involved in synthesis of molecules in the extracellular space (Table S1 

and Fig. 3.10). In contrast, the subset of genes de-repressed by E1AKD that were >5X more 

dependent on YAP than TAZ, e.g. FGF18 (Fig. 3.9B, lower right), were enriched for gene 

ontologies “positive regulation of cell proliferation” (P=1.4E-06) and “cell growth” (P=2.7E-05) 

as well as gene ontologies related to “extracellular region” and “focal adhesions” (Fig. 3.10). 

 



	 78	

 
Figure 3.8 YAP and TAZ are necessary for cohesin loading at enhancers 
(A) Left: protein levels of YAP and TAZ following indicated siRNA transfections for 2 days. β-ACTIN serves as a 
loading control. Right: Genome browser plots (IGB) displaying mRNA-seq signal of YAP and WWTR1 (TAZ) 
following indicated siRNA treatment. (B) Average ChIP-seq signal after transfection with the indicated siRNAs for 
4 days centered at H3K27ac peaks that decreased >2X following 4 days of E1AKD. (C) Average RAD21 ChIP-seq 
signal after transfection with the indicated siRNAs for 4days centered at ATAC-seq peaks that increased >5X (new 
ATAC sites) following 4days of E1AKD. (D) Average RAD21 ChIP-seq signal after transfection with the indicated 
siRNAs for 4 days centered at all TSSs. (E) Genome browser plots (IGB) displaying indicated ATAC- and ChIP-seq 
signal at super-enhancers near E1AKD de-repressed genes AMOTL2 and COL1A1. 
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Figure 3.9 E1AKD induced re-differentiation of HEK293 cells requires YAP and TAZ 
(A) Boxplots represent distribution of expression (FPKM) of E1AKD activated genes (>2X FPKM q<0.05) 
following 8 days of indicated siRNA transfections. E=E1A, Y=YAP, T=TAZ. * p<0.0000001 as compared to 
siE1A. (B) Bar graphs represent FPKM values of select genes that were defective for E1AKD activation when YAP 
and TAZ, YAP but not TAZ, or TAZ but not YAP were knocked down at the same time as E1A. (C) Total levels of 
H3K18ac or H3K27ac following indicated siRNA transfections for 2days. YT = YAP and TAZ. EYT = E1A and 
YAP and TAZ. (D) Average ChIP-seq signal after transfection with the indicated siRNAs for 4 days centered at 
ATAC-seq peaks that increased >5X following 4 days of E1AKD. Base pair span is +/-3kb from center of peak. (E) 
Confocal microscopy of siRNA transfected HEK293 cells for 4 days fixed and stained for phalloidin-iFluor or 
DAPI. Scale bar represents 20µM. 
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Figure 3.10 Genes highly dependent on YAP but not TAZ promote proliferation 
Venn diagram and gene ontology (DAVID) enrichment terms for E1AKD activated genes (siE1A/siCtrl > 2X, 
q<0.05) that are highly dependent on YAP, not TAZ (si[E1A+YAP]/siE1A < 0.2), highly dependent on TAZ, not 
YAP (si[E1A+TAZ]/siE1A < 0.2), or highly dependent on YAP and TAZ (si[E1A+YAP]/siE1A < 0.2 and 
si[E1A+TAZ]/siE1A < 0.2). 
  

Highly dependent on YAP, not TAZ 
                                                                      P-value   Benjamini 
focal adhesion       3.2E-07   4.5E-05 
positive regulation of cell proliferation     1.4E-06   1.1E-03 
angiogenesis       5.3E-06   1.5E-03 
extracellular region                         2.2E-05   1.6E-03 
cell growth       2.7E-05   5.5E-03 
 
Highly dependent on TAZ, not YAP 
 

extracellular space      1.3E-15   1.4E-13 
proteinaceous extracellular matrix    3.1E-12   1.4E-14 
extracellular matrix      3.8E-05   1.3E-03 
heparin binding       1.3E-04   1.7E-02 
calcium ion binding      4.0E-04   2.6E-02 
 
Highly dependent on both YAP and TAZ 
 

extracellular space      2.0E-13   2.0E-11 
proteinaceious extracellular matrix    2.8E-10   1.4E-08 
extracellular matrix structural constituent  3.7E-07   4.4E-05 
collagen fibril organization     2.4E-06   1.5E-03 
extracellular matrix      9.5E-06   3.2E-04 

128	60	 148	

Highly dependent on  
YAP, not TAZ 

Highly dependent  
on TAZ, not YAP 

Highly dependent on  
YAP and TAZ 

Fig	S5	
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 Our observations that E1AKD in Ad-transformed cells induced an increase in total 

H3K27/18ac and that the genomic locations for these increases overlap new YAP peaks raised 

the question: How much of the increase in total cell H3K27/18ac in E1AKD293 cells results 

from activation by YAP and TAZ as opposed to all other activators in the cells? To address this 

question we analyzed total cell H3K27/18ac in HEK293 cells triply knocked down for YAP and 

TAZ as well as E1A. Western blots revealed that E1AKD-induced H3K27/18ac is entirely 

prevented when YAP and TAZ are additionally knocked-down (Fig. 3.9C). H3K27/18ac ChIP-

seq demonstrated that the increase in H3K18/27ac at E1AKD-induced ATAC sites are almost 

completely lost in E1A/YAP/TAZ triple KD cells (Fig. 3.9D). In contrast, sites of E1AKD-

induced H3 hypoacetylation (principally cell cycle genes regulated by E2Fs and Rbs) were 

largely unaffected by YAP/TAZ KD (Fig. 3.8B). These data suggest that most of the 

H3K27/18ac and gene de-repression resulting from elimination of E1A from HEK293 cells 

requires YAP/TAZ nuclear import to establish enhancers necessary for activating these genes. 

 Cohesin is necessary for many enhancer-promoter interactions (Kagey et al., 2010). Since 

YAP/TAZ are primarily regulating enhancers located distally from TSSs, we determined whether 

YAP/TAZ induce cohesin association at E1AKD-induced enhancers. The average association of 

cohesin subunit RAD21 with chromatin increased at E1AKD-induced ATAC sites following 

E1AKD, but fell below siCtrl levels when YAP and TAZ were knocked-down, both with and 

without E1AKD (Fig. 3.8C,E). These data suggest that YAP/TAZ are necessary for cohesin 

association at E1AKD-induced ATAC sites. The average RAD21 signal at all TSSs was largely 

unchanged by E1A and YAP/TAZ KDs (Fig. 3.8D), suggesting that YAP/TAZ-dependent 

cohesin association is specifically at enhancers, for example super-enhancers downstream of and 

within AMOTL2 and upstream of COL1A1 (Fig. 3.8E). 
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 To determine the extent to which E1AKD-induced morphological changes are dependent 

on YAP/TAZ, we imaged DAPI and phalloidin stained HEK293 cells following siRNA KD. 

While YAP and TAZ KD did not have a readily apparent morphological consequence when E1A 

was present (Fig. 3.9E si[YAP,TAZ]), YAP and TAZ KD did inhibit the induced F-actin 

formation and cell surface area increase that result from E1AKD (Fig. 3.9E siE1A compared to 

si[E1A,YAP,TAZ]). KDs of only YAP or TAZ with E1A resulted in morphologies intermediate 

between siCtrl and E1AKD293 cells (Fig. 3.9E). These experiments show a co-dependence of 

the cell on YAP and TAZ for the striking change to a more differentiated morphology upon 

E1AKD. Consistent with this, YAP and TAZ KD in normal primary HBTEC and IMR90 cells 

caused a reduction of actin cytoskeletal fibers (Fig. 3.11). Consequently, YAP and TAZ are 

required for E1AKD293 cells to assume a morphology similar to that of MSCs. 

 
Figure 3.11 YAP and TAZ are necessary for normal F-ACTIN in primary cells 
Confocal microscopy of HBTEC or IMR90 cells after 4day siRNA transfection. Fixed and immunostained with anti-
YAP (DH81X) and anti-TAZ (CL0371) stained with phalloidin-iFluor and DAPI. Scale bar represents 20µM.  
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Methods 

 

Cell Culture 

Cells were maintained at 37°C in a 5% CO2 incubator. HEK293 (human embryonic kidney cell 

line), IMR90 (primary human fetal lung fibroblasts), HFF (human foreskin fibroblasts), BRK 

(baby rat kidney cells) and BRK E1A and E1B-transformed cells were grown in Dulbecco’s 

Modified Eagle Medium (DMEM) with 10% fetal bovine serum. Human Bronchial/Tracheal 

Epithelial Cells (HBTEC, Lifeline Cell Technology Cat# FC-0035; lot# 02196) in BronchiaLife 

Medium Complete Kit (Lifeline Cell Technology catalog number: LL-0023). 

 

RNA-seq Procedure and Data Analysis 

1X106 HEK293 were transfected with indicated siRNAs for 4, 8, or 16 days. RNA was isolated 

using QIAGEN RNeasy Plus Mini Kit. Eluted RNA was treated with Ambion DNA-free™ DNA 

Removal Kit and then Ambion TRIzol reagent, precipitated with isopropanol, and dissolved in 

sterile water. RNA concentration was measured with a Qubit fluorometer. One microgram of 

RNA was fragmented and copied into DNA then PCR amplified with bar-coded primers for 

separate samples to prepare sequencing libraries using the Illumina TruSeq RNA Sample 

Preparation procedure. Libraries were sequenced using the Illumina HIseq-2000 to obtain single 

end 50-base-long reads. Sequences were aligned to the hg19 human genome sequence using 

TopHat v2. FPKM (fragments per kb per million mapped reads) for each annotated hg19 RefSeq 

gene ID was determined using Cuffdiff v2 from Cufflinks RNA-Seq analysis tools at 

http://cufflinks.cbcb.umd.edu. All RNA-seq was performed using biological duplicates and 

FPKM values represent normalized averages of duplicates. Published RNA-seq datasets from 
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infected IMR90 (Ferrari et al. 2014) and infected HBTEC (Zemke and Berk 2017) are available 

on GEO: GSE59688 & GSE105039. RNA-seq from infected HFF was generated similarly as 

above except confluent HFF cells were infected at an MOI of 60 with a small E1A expressing 

Ad5 vector described below for 24 hours prior to RNA preparation. Gene ontology analysis was 

performed using DAVID Functional Annotation Tool (Huang et al., 2009a, 2009b). The web-

based tool, SaVanT (Lopez et al., 2017) was used to determine the cell types with expression 

signatures most closely resembling expression from 16 day E1AKD HEK293. 

 

ChIP-Seq 

ChIP-seq was performed using 1x107 siRNA transfected HEK293. Cells were transfected for 1 

or 4 days for H3K18ac (814) and H3K27ac (Active Motif) ChIP, 4 days for H3K4me1 (abcam), 

RAD21 (abcam), and 8 days for YAP (CST D8H1X), TEAD1 (BD Transduction Laboratories), 

and TEAD4 (Santa Cruz N-G2). For H3K18ac, H3K27ac, H3K4me1 and RAD21 ChIP-seqs 

cells were cross-linked for 1% formaldehyde for 10 minutes at room temperature on rotator. 

Formaldehyde crosslinking was quenched with 0.14M glycine for 30 minutes at room 

temperature on rotator. Cells were washed with PBS and scraped from plates in PBS with Roche 

protease inhibitor cocktail. Cells were pelleted and lysed in 400uL lysis buffer (1% SDS, 50mM 

Tris-HCl pH8, 20mM EDTA, Roche complete protease inhibitors) and sonicated at 4°C using 

the Qsonica Q800R2 at 20% amplitude 10s on 30s off until DNA fragments from sheared 

chromatin were mostly between the sizes of mostly ~200-600 base pairs. Samples were 

normalized for equal amounts of DNA as measured by Qubit fluorometer in sonicated, cross-

linked chromatin prior to pre-clear and IP. Up to 100uL of sonicated chromatin was diluted in 

10X lysis dilution buffer (16.7 mM Tris-HCl, 1.1% Triton X-100, 1.2mM EDTA, 167mM NaCl) 
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and precleared for 1h 4°C with 30uL of protein A dynabeads washed 10X lysis dilution buffer on 

nutator. IPs were performed O/N at 4°C on nutator with precleared chromatin and 2ug of 

antibody or 5uL of H3K18ac anti-rabbit sera. 50uL of protein A dynabeads were added for 4h on 

nutator at 4°C. Bead-immunocomplexes were washed for 5min 2X with each of the following 

buffers in order: wash buffer A (50mM Hepes pH 7.9, 0.1% SDS, 1% Triton X-100, 0.1% 

Deoxycholate, 1mM EDTA, 140mM NaCl), wash buffer B (50mM Hepes pH 7.9, 0.1% SDS, 

1% Triton X-100, 0.1% Deoxycholate, 1mM EDTA, 500mM NaCl), LiCl buffer (20mM Tris-

HCl pH8, 0.5% NP-40, 0.5% Deoxycholate, 1mM EDTA, 250mM LiCl), TE (50mM Tris-HCl 

pH8, 1mM EDTA). Elution was performed in 150uL of elution buffer (50mM Tris HCl pH8, 

1mM EDTA, 1% SDS) then ChIP samples and inputs (10uL of precleared chromatin lysis plus 

140uL elution buffer) were reverse crosslinked O/N at 65°C. Samples were RNase A treated for 

1h at 37°C and DNA was purified and extracted with phenol/chloroform and ethanol 

precipitated. DNA pellets were resuspended in 12uL of TE and measured using Qubit 

fluorometer. YAP, TEAD1, and TEAD4 ChIP-seqs were performed similarly with the following 

modifications: cells were double-crosslinked with 4mM DSG in PBS for 30min then 1% 

formaldehyde for 10 min, crosslinking was quenched in 500mM Tris pH7.9 for 20min and cell 

pellets were lysed in 1mL lysis buffer 1 (50mM HEPES-KOH, pH 7.5, 140mM NaCl, 1mM 

EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, Roche cOmplete protease inhibitors) 

for 10min on ice. Lysate was pelleted at 3000 rpm 5min 4°C then resuspended in 1mL lysis 

buffer 2 (10mM Tris-HCl, pH 8.0, 200mM NaCl, 1mM EDTA, 0.5mM EGTA, Roche complete 

protease inhibitors) and placed on nutator 10min 4°C and pelleted as before, then resuspended in 

125uL of lysis buffer 3 (10mM Tris-HCl, pH 8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 

0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine, Roche complete protease inhibitors) and 
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sonicated, 2ug of antibody was used, magnetic beads were washed and blocked in 0.5% BSA in 

PBS. Sequencing libraries were constructed from 1ng of immunoprecipitated and input DNA 

using the KAPA Hyper Prep Kit from KAPA Biosystems and NEXTflex ChIP-Seq barcodes 

purchased from Bioo Scientific. 

 

Data Analysis of ChIP-seq 

ChIP-seq libraries were sequenced using Hiseq-2000 or 4000 systems for single-end 50 base pair 

reads. Reads were mapped to the hg19 human genome reference using Bowtie2 software. Only 

reads that aligned to a unique position in the genome with no more than two sequence 

mismatches were retained for further analysis. Duplicate reads that mapped to the same exact 

location in the genome were counted only once to reduce clonal amplification effects. A custom 

algorithm executed by MATLAB was used for further processing including peak calling (p-value 

< 10-6 were considered significant). The genome was tiled into 50 base pair windows and each 

read was extended by 150 bases and was counted as one read to each window to which it 

partially or fully matched. The total counts of the input and ChIP samples were normalized to 

each other. Samples were normalized for equal number of uniquely mapped reads. The input 

sample was used to estimate the expected counts in a window. Wiggle files were generated using 

a custom algorithm and present the data as normalized tag density as seen in all figures with 

genome browser shots. Metagene plots displaying normalized average relative ChIP-seq signals 

were generated using CEAS software. For determining super-enhancers with H3K27ac ChIP-seq 

in 4 day E1AKD293 cells we used ROSE software (Lovén et al., 2013; Whyte et al., 2013). 

Using the ROSE-generated list of super-enhancers we generated a list of super-enhancer 

associated genes in E1AKD HEK293 by assigning the closest TSS of an expressed gene (>1 
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FPKM) to the center of a super-enhancer. 

 

ATAC-seq and data analysis 

ATAC-seq (Omni-ATAC protocol) was performed as described in Corces et al. 2017. HEK293 

cells siRNA transfected for 4 days were lifted from plates using Accutase (Innovative Cell 

Technologies, Inc.) and 50,000 viable cells were gently pelleted at 500 RCF 4°C for 5min and 

resuspended in 50 uL cold ATAC-Resuspension Buffer (RSB) containing 0.1% NP40, 0.1% 

Tween-20, and 0.01% Digitonin. Cells were incubated on ice for 3min then washed with 1 ml of 

cold ATAC-RSB containing 0.1% Tween-20 to lyse plasma membranes. Nuclei were gently 

pelleted at 500 RCF for 10min at 4°C and resuspended in 50 uL of transposition mixture: 25 uL 

2x TD buffer and 2.5 uL transposase (both supplied in the Nextera DNA Library Prep Kit), 16.5 

uL PBS, 0.5 uL 1% digitonin, 0.5 uL 10% Tween-20, 5 uL H2O. DNA was isolated using DNA 

Clean and Concentrator-5 Kit (Zymo cat# D4014) and eluted in 21uL of elution buffer. 20uL of 

eluted DNA was amplified for 5 cycles Amplify for 5 cycles using NEBNext 2x MasterMix with 

25uM primer Ad1 + 25uM primer Ad2 or 25uM Ad1 + 25uM Ad3. Refer to Corces et al. 2017 

for PCR protocol and primer sequences. 5uL of preamplified sample was used in qPCR to 

determine additional cycles needed. Libraries were sequenced using Hi-seq-4000 single-end 

50bp reads. Reads were aligned to hg19 reference genome using bowtie2. Macs14 was used for 

calling peaks with the following parameters: --space=50 --keep-dup all --nomodel -p 1e-6. The 

summits of peaks were used as the location for the center of peaks when doing motif analysis 

and metagene profiling. Motif analysis was performed on ATAC-seq peaks that increased >5X in 

signal with siE1A treatment compared to siCtrl using Homer (http://homer.salk.edu/homer 

PMID: 20513432) to search for enriched motifs +/- 300 bp from peak summits. 
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Confocal microscopy 

250,000 cells were plated on fibronectin coated glass cover slips in 6-well plates. Cells were 

transfected or infected as indicated prior to fixing with 4% formaldehyde in PBS for 10min. 

Cells were then permeabilized with 0.1% Triton-X 100 in PBS for 10min. Next, cells were 

incubated in block buffer (1% BSA, 0.1% Tween 20 in PBS) for 30 min. Cells were incubated 

with primary antibody, YAP (CST D8H1X), TAZ (Thermo CL0371), AMOT (CST D2O4H) at 

1:200 dilutions and incubated for 1h. Cells were washed 3X with PBS then incubated with 

secondary Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) Cat#4412 or 

Anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 555 Conjugate) Cat#4409 (CST 

1:1000) and if indicated Cytopainter phalloidin-ifluor 555 reagent (abcam ab176756, 1:1000) for 

1h diluted in block buffer. DAPI was added for 5 minutes at 1 ug/mL. Slides were mounted with 

VECTASHIELD Hardset Antifade Mounting Medium (Vector Laboratories Cat. No: H-1400). 

Micrographs were taken using confocal scanning laser microscopy on a Leica TCS SP8 100X or 

40X numerical aperture oil immersion objective. All scare bars represent 20 µm. 

 

Ad Vector infections 

dl1500, an Ad2 mutant vector containing a deletion removing the 13S E1A mRNA 5' splice site 

(Montell et al., 1984) or the ΔE1A vector dl312 (Jones and Shenk 1979) were used for a 4 day 

infection of IMR90 at an MOI of 10 prior to fixing for confocal microscopy (fig S2D). Ad5 

small E1A vectors expressed Ad2 WT from the normal E1A promoter with the dl1500 deletion 

removing the 13S E1A mRNA 5' splice site (Ferrari et al. 2014). The vectors were constructed 

using the Ψ5 vector and in vivo Cre24 mediated recombination (Hardy et al., 1997), and 
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consequently contain an out of frame insertion of a LoxP site at the Bgl II site in the region 

encoding the carboxy-terminus of E1B-55K. These vectors were used to infect IMR90, HFF, and 

HBTEC for 24 hours at an MOI 40 in IMR90 (Ferrari et al. 2014), MOI 60 in HFF, and MOI 60 

in HBTEC (Zemke and Berk 2017) prior to RNA-seq (fig S1A). 

 

siRNA and plasmid Transfections and small molecule treatment 

siRNA KD was performed in HEK293, HBTEC, and IMR90 using Invitrogen RNAiMAX 

reverse transfection protocol. Cells were plated in antibiotic free 10% FBS DMEM containing 

indicated Ambion/ThermoFisher Silencer Select siRNA for a final concentration of 10nM that 

was pre-incubated in 7.5uL of lipofectamine RNAiMAX reagent in 750uL of Opti-MEM in 

6cm2. Media and reagents were scaled up accordingly for 15cm2 and scaled down when using 6-

well plates based on surface areas. For a complete list of Ambion/ThermoFisher Silencer Select 

siRNAs used and sequences see key resources table. Ambion/ThermoFisher Silencer Negative 

Control no.1 AM4611 was used as a negative control (siCtrl). Double, triple and quadruple 

knock-downs were performed with a total siRNA concentration of 10nM. Any parallel knock-

downs where cells were treated with fewer siRNAs they were used at the same concentration as 

any individual siRNA from the cells treated with the most number of siRNAs but were 

supplemented with negative control siRNA (siCtrl) to have the same total siRNA concentration 

of 10nM. pRK5-myc-RhoA-Q63L was a gift from Gary Bokoch (Addgene plasmid # 12964) 

pRK5-myc-RhoA-Q63L or a control empty vector, pAdlox, was transfected into HEK293. 2.5 ug 

of DNA was transfected into a HEK293 confluent monolayer in 6-well plates on glass 

coverslips. Plasmid DNA was pre-incubated with 10uL of lipofectamine 2000 transfection 

reagent from Invitrogen in 250 uL in Opti-MEM for 5 minutes before adding it to cells. 
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Transfections proceeded for 3 days prior to fixing and confocal microscopy (fig 4D). To block 

WNT signaling in E1AKD HEK293 cells were treated with 5uM IWP-2 or DMSO (negative 

control) for 4 days beginning at time of siRNA transfection. To block ubiquitin-mediated 

degradation HEK293 cells were treated with 5uM MLN4942 or DMSO (negative control) for 8 

hours. 

 

Western blot 

Proteins were extracted from indicated cells by lysis in EBC (120 mM NaCl, 0.5% NP-40, 50 

mM Tris-Cl pH 8.0, and Roche cOmplete protease inhibitors). Protein concentration was 

quantified by Bradford assay and normalized in Laemmli buffer and heated for 10min at 65°C 

then resolved in a 9% SDS-polyacrylamide gel. Proteins were electrotransferred to a 

polyvinylidene difluoride (PVDF) membrane then blocked in 5% milk in TBS-Tween 0.1% 

(blocking buffer) for 30 minutes. Primary antibody (M58 (anti-E1A), anti-H3K18ac (814), anti-

H3K27ac, anti-KU-86 (H-300), anti-Beta-Actin anti-YAP (D8H1X), anti-TAZ (D3I6D), anti-

Phospho-YAP (D9W2I), anti-LATS1 (C66B5), anti-LATS2 (D83D6), anti-Phospho-LATS1 

(D57D3), or anti-Wnt5a/b (C27E8)) was added at manufacturer recommended dilutions for 1h at 

room temperature or O/N at 4°C. Membranes were washed 3X in TBS-Tween (0.1%) then HRP 

conjugated anti-mouse or anti-rabbit secondary antibodies were added for 1h room temperature 

in blocking buffer. Membranes were then washed 3X in TBS-Tween (0.1%) prior to addition of 

ECL reagent for detection of chemiluminescence. Western blots were validated with replicates of 

two or more with representative western blots presented. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies  
Rabbit polyclonal anti-H3K27ac Active Motif Cat#39133; RRID: 

AB_2561016; 
Lot#31814008 

Rabbit polyclonal anti-H3K18ac (814) Grunstein/Kurdista
ni laboratories 

(Suka et al., 2001) 

Mouse monoclonal anti-E1A (M58) hybridoma 
supernatant 

Produced in house (Harlow et al., 
1985) 

Mouse monoclonal anti-WWTR1 (TAZ) (CL0371) ThermoFisher Cat#MA5-24604 
Rabbit polyclonal anti-Beta-Actin GeneTex Cat#GTX16039; 

RRID: 
AB_367276 

Rabbit polyclonal anti-KU-86 (H-300) Santa Cruz Cat#sc-9034; 
RRID: 
AB_2218743 

Mouse monoclonal anti-TEF-3 a.k.a. TEAD4 (N-
G2) 

Santa Cruz Cat#sc-101184 

Rabbit polyclonal anti-H3K4me1 abcam Cat#ab8895 
Mouse monoclonal anti-TEF1 a.k.a. TEAD1 
(31/TEF1) 

BD Transduction 
Laboratories 

Cat#610922 

Rabbit polyclonal anti-RAD21 abcam Cat#ab992 
Rabbit monoclonal anti-YAP (D8H1X) Cell Signaling 

Technology 
Cat#14074 

Rabbit monoclonal anti-Wnt5a/b (C27E8) Cell Signaling 
Technology 

Cat#2530 

Rabbit monoclonal anti-Angiomotin (D2O4H) Cell Signaling 
Technology 

Cat#43130 

Rabbit monoclonal anti-Phospho-YAP (Ser127) 
(D9W2I) 

Cell Signaling 
Technology 

Cat#13008 

Rabbit monoclonal anti-LATS1 (C66B5)  Cell Signaling 
Technology 

Cat#3477 

Rabbit monoclonal anti-LATS2 (D83D6) Cell Signaling 
Technology 

Cat#5888 

Rabbit monoclonal anti-TAZ (D3I6D)  Cell Signaling 
Technology 

Cat#70148 

Rabbit monoclonal anti-Phospho-LATS1 (Thr1079) 
(D57D3) 

Cell Signaling 
Technology 

Cat#8654 

Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa 
Fluor® 488 Conjugate) 

Cell Signaling 
Technology 

Cat#4412 

Anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa 
Fluor® 555 Conjugate) 

Cell Signaling 
Technology 

Cat#4409 

Bacterial and Virus Strains  
e1aWT Ad5 recombinant vector (Ferrari et al., 2014) N/A 
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dl312 (Jones and Shenk, 
1979) 

N/A 

dl1500 (Montell et al., 
1984) 

N/A 

Chemicals, Peptides, and Recombinant Proteins 
IWP-2 Wnt Antagonist II, CAS 686770-61-6 
Calbiochem 

EMD Millipore Cat#681671 

MLN4924 NEDD8 E1 Activating Enzyme Inhibitor 
(NAE Inhibitor)  

R&D Systems, Inc. Cat#I-502-01M 

Proteinase K Roche/Sigma-
Aldrich 

Cat#3115887001 

RNase A Roche/Sigma-
Aldrich 

Cat#10109142001 

Lipofectamine RNAiMAX Transfection Reagent ThermoFisher Cat#13778075 
Lipofectamine 2000 Transfection Reagent ThermoFisher Cat#11668019 
Complete Protease inhibitor Cocktail Roche Cat#04693132001 
Critical Commercial Assays 
TruSeq Stranded mRNA Library Prep Kit illumina Cat#RS-122-2101 
Kapa Hyper Prep Kit Kapa biosystems  

Cat#KK8504 
NEXTflex ChIP-Seq barcodes BIOO Cat#NOVA-

514121 
RNeasy Plus Mini Kit Qiagen Cat#74134 
FastStart Universal SYBR Green Master (Rox) Roche Cat#0491385000

1 
Dynabeads Protein A ThermoFisher Cat#10001D 
DNA-free™ DNA Removal Kit Ambion/ThermoFish

er 
Cat#1906 

DNA Clean and Concentrator-5 Kit Zymo Research Cat#D4014 
Nextera DNA Library Prep Kit illumina Cat#FC-121-1030 
NEBNext® High-Fidelity 2X PCR Master Mix New England 

BioLabs 
Cat#M0541S 

Cytopainter phalloidin-ifluor 555 reagent abcam Cat#ab176756 
Experimental Models: Cell Lines 
Male Human Bronchial/Tracheal Epithelial Cells 
(HBTEC) 

Lifeline Cell 
Technologies 

Cat#FC-0035; lot# 
02196 

HEK293 cell line Graham et al. 1977 RRID: 
CVCL_0045 

IMR-90 Female human fetal lung fibroblasts ATCC Cat#CCL-186 
RRID: 
CVCL_0347 

Human foreskin tissue (source of HFF human 
foreskin fibroblasts) 

NDRI Lot#ND03285 

Oligonucleotides 
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Silencer Select siRNA YAP1 
Sense: AGAUACUUCUUAAAUCACAtt 
Antisense: UGUGAUUUAAGAAGUAUCUct 

ThermoFisher 
Assay ID: s534572 

Silencer Select siRNA CDC42 
Sense: AGAUCUAGUUUAGAAAACAtt 
Antisense: UGUUUUCUAAACUAGAUCUag 

ThermoFisher Assay ID: s227090 

Silencer Select siRNA WWTR1 (TAZ) 
Sense: AAACACCCAUGAACAUCAAtt 
Antisense: UUGAUGUUCAUGGGUGUUUgt 

ThermoFisher Assay ID: s24788 

Silencer Select siRNA RHOA 
Sense: CACAGUGUUUGAGAACUAUtt 
Antisense: AUAGUUCUCAAACACUGUGgg 

ThermoFisher Assay ID: s758 

Silencer Select siRNA RAC1 
Sense: ACAGAUUAAUUUUUCCAUAtt 
Antisense: UAUGGAAAAAUUAAUCUGUaa 

ThermoFisher Assay ID: s11712 

Silencer Select siRNA AMOTL1 
Sense: CAACUUUUCUUCCACGGAAtt 
Antisense: UUCCGUGGAAGAAAAGUUGtt 

ThermoFisher Assay ID: s45895 

Silencer Select siRNA AMOT 
Sense: CAUCGUUUGUCUAUACCAAtt 
Antisense: UUGGUAUAGACAAACGAUGtg 

ThermoFisher Assay ID: s45887 

Silencer Select siRNA AMOTL2 
Sense: AGACCAUGCGGAACAAGAUtt 
Antisense: AUCUUGUUCCGCAUGGUCUtc 

ThermoFisher Assay ID: s28109 

Custom Select siRNA E1A 
Sense: GGUACUGGCUGAUAAUCUUtt 
Antisense: AAGAUUAUCAGCCAGUACCtt 

ThermoFisher Design ID: 
ADLJIAM 

Silencer™ Negative Control No. 1 siRNA ThermoFisher Cat#AM4611 
Recombinant DNA 
pRK5-myc-RhoA-Q63L Gary Bokoch Lab 

unpublished 
Addgene Plasmid 
#12964 

Software and Algorithms 
Bowtie2 http://bowtie-

bio.sourceforge.net/
bowtie2/index.shtm
l 

RRID: 
SCR_005476 

Samtools http://samtools.sour
ceforge.net/ 

RRID: 
SCR_002105 

Tophat2.2.1 https://ccb.jhu.edu/s
oftware/tophat/inde
x.shtml 

RRID: 
SCR_000691 

HOMER http://homer.salk.ed
u/homer 

RRID: 
SCR_010881 

CEAS http://liulab.dfci.har
vard.edu/CEAS/ 

RRID: 
SCR_010946 
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cuffdiff2.0.2 http://cole-trapnell-
lab.github.io/cufflin
ks/cuffdiff/ 

RRID: 
SCR_001647 

ROSE http://younglab.wi.
mit.edu/super_enha
ncer_code.html 

(Whyte et al. 2013, 
Loven et al. 2013) 
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Assessing the functions of e1a’s C-terminal interactions revealed undiscovered mechanism 

for e1a regulation of the innate immune response 

We’ve identified a previously unrecognized anti-viral defense involving activation of a 

subset of interferon stimulated genes (ISGs) beginning 12h post adenovirus infection (see 

chapter 2). This is a much later time course than activation of ISGs by recognition of viral 

nucleic acids in endosomes during infection by the pathogen pattern receptors TLR7 and 9 

(Ikushima et al., 2013). This late activation of ISGs was revealed by infection of primary human 

bronchial/tracheal epithelial cells (HBTEC) with adenovirus mutants expressing only the small 

e1a protein mutated at binding sites for host proteins and protein complexes in the C-terminal 

half of the 243 amino acid e1a protein. Infection with these mutants resulted in activation of a 

small subset (~50) of the hundreds of ISGs activated by the binding of an α- or β-IFN to the type 

I IFN receptor on the cell surface (Stark, 2007). This late activation of this subset of ISGs 

requires IRF3, which accumulates to high levels by 12h p.i. in cells expressing e1a C-terminal 

mutants, but not in cells expressing WT e1a (Fig. 4.1). Unexpectedly, the C-terminal mutants 

induce phosphorylation of IRF3 at its activating site Ser396 after accumulation of 

unphosphorylated IRF3 on chromatin. This is in contrast to the canonical view that nuclear 

import of IRF3 is regulated by phosphorylation (Lin et al., 1998). Complementation analysis in 

HBTEC coinfected with the mutants indicate that a single e1a molecule must interact via 

conserved regions in its C-terminal half with transcription factors FOXK1 or 2, the DCAF7 

specificity factor of CLR4 ubiquitin-ligase complexes, and co-repressors CtBP1 or 2 in order to 

block activation of these ISGs. It is worth noting that only human adenovirus species C e1as 

contain the FOXK binding region (Cohen et al., 2013). Therefore this function of the e1a C-

terminus may be limited to Ads in species C.  
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Figure 4.1 Model for a complex of FOXK, DCAF7, CtBP and e1a in regulation of IRF3 activation of a subset 
of ISGs 
 

Similarly to the genes activated by mutations in e1a’s C-terminal region, the genes 

repressed by these mutations had a high degree of overlap between the three different e1a C-

terminal mutants (Fig. 2.4C,D). Surprisingly, these genes are enriched for the HRAS oncogenic 

signature. Repression of the Ras pathway by these mutants was unexpected considering 

oncogenic Ras cooperative co-transformation assays with e1a C-terminal mutants result in a 

larger number of transformed colonies compared to WT e1a (Boyd et al., 1993). Perhaps the C-

terminal mutations increase the number of transformed foci in e1a-G12V HRAS co-
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transformation assays (Boyd et al. 1993; Cohen et al. 2013) because they lower gene activation 

by oncogenic RAS to a level that is more compatible with cell survival and replication. In this 

regard, it is well-established that high level RAS signaling induces senescence (Serrano et al., 

1997). 

 Cells coinfected with all three e1a C-terminal mutant expressing Ad vectors caused 

increased expression of IFIT2, ISG15 and OASL similarly to infections with any of the individual 

mutants (Fig. 2.5B, 2.7A). This observation suggests that all three e1a C-terminal binding events 

must occur on the same e1a molecule to prevent induction of these ISGs. Some evidence 

supporting a multimeric e1a C-terminal region complex comes from a proteomic analysis of 

DYRK1A and DYRK1B complexes in the E1A expressing HEK293 cells (Varjosalo et al., 

2013). The authors detected FOXK1 and CtBP2 as well as other major E1A binding proteins 

such as p300, RBs and p400 in complexes with DYRK1A and DYRK1B. In support of a 

possible multimeric complex with e1a and its C-terminal region binding partners, these proteins 

partially co-elute in size exclusion gel filtration column fractions from infected HeLa cell nuclear 

extract (Fig. 2.6B). Additionally, p300-associated e1a complexes were distinct from those 

containing FOXK1 and CtBP1, while DCAF7 and DYRK1A eluted in all e1a-containing 

fractions. Also, phosphorylation of e1a Ser89 causing a reduction in mobility in SDS-PAGE, 

varied between size-fractionated complexes (Fig. 2.6B). These results indicate that there are 

multiple different e1a-containing complexes in the cell, probably with distinct functions.  

 e1a co-eluting with FOXK1 was hyperphosphorylated (Fig. 2.6B, upper band), consistent 

with the notion that FOXKs bind e1a through their FHA domains that bind 

phosphoserine/threonine (Li et al., 2000). DYRK1A was recently reported to phosphorylate E1A 

in vivo (Glenewinkel et al., 2016). Consequently, the decrease in the slower migrating form of 
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e1aDCAF7b- may be explained if one or more of the protein kinases associated with the DCAF7 

complex, DYRK1A, DYRK1B, or HIPK2, is responsible for phosphorylating e1a Ser89.  

 Since our list of 52 e1a C-terminal mutant induced genes had a high degree of overlap 

with genes activated by the U-ISGF3 complex generated very late in response to β-interferon 

(Cheon and Stark, 2009; Cheon et al., 2013) (Fig. 2.9A), we asked if U-ISGF3 components, U-

STAT1, U-STAT2 and IRF9, increase following expression of e1a C-terminal mutants. Indeed, 

we found much higher levels of these proteins in cells expressing the e1a C-terminal mutants 

(Fig. 2.10A). However, the e1a C-terminal mutants continued to induce these ISGs in IRF9 

mutant cells. We found that another IRF, IRF3, was necessary, as a siRNA KD of IRF3 

prevented activation of these ISGs (Fig. 2.10C,D). IRF3, STAT1/2 and IRF9 proteins increased 

greatly, yet the mRNAs encoding them did not increase more than 2-fold (Fig. 2.13B). IRF3 was 

found to increase as a result of protein stabilization in cells expressing e1aDCAF7b-. Similarly, 

the e1a C-terminal binding mutants may influence the stability of IRF9 and STAT1/2 proteins.  

Relevant to our observation that the e1a C-terminal mutant induces stabilization of IRF3, 

IRF3 stability is regulated by polyubiquitinylation by the E3 ubiquitin ligase RAUL (a.k.a. 

UBE3C). RAUL activity is increased by the Kaposi’s sarcoma virus protein RTA to suppress an 

innate immune response (Yu and Hayward, 2010). Adenovirus e1a may also be regulating an 

IRF3 ubiquitin ligase by a mechanism dependent on all three C-terminal interactions to prevent 

IRF3 protein from accumulating in response to adenovirus infection. Interestingly, an analysis of 

the interacting partners of e1aWT and all three e1a C-terminal binding by Multi-Dimensional 

Protein Identification Technology (MuDPIT), applying mass spectrometry to 

immunoprecipitated e1a complexes from A549 cell extracted previously infected with our 

mutant Ad5 vectors, revealed that the most significantly decreased protein with all three e1a C-
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terminal mutants compared to e1aWT is DCAF10, a substrate receptor for the CUL4-DDB1 E3 

ubiquitin-protein ligase complex (Table 4-1). 

 

e1aWT 
A 

e1aWT 
B 

Mock 
A 

Mock 
B 

FOXKb- 
A 

FOXKb- 
B 

DCAF7b- 
A 

DCAF7b- 
B 

CtBPb- 
A 

CtBPb- 
B 

DCAF10 36 38 0 0 1 0 0 0 0 0 

Table 4.1 MuDPIT of indicated e1aWT or e1a C-terminal binding mutant immunocomplexes with DCAF10 
in duplicate (replicate A or B). Numbers represent normalized spectral counts. 
 
 

It is not immediately obvious how e1a interactions with FOXK, DCAF7 and CtBP 

prevent the stabilization of transcription factors that activate a restricted set of ISGs. However, a 

recent RNAi screen in Drosophila revealed that D.m. FOXK1 is required for activation of 

antiviral genes following infection with RNA viruses in both Drosophila and mammalian cells 

(Panda et al., 2015). Relevantly, depletion of FOXK1 by siRNA knockdown in U2OS cells 

reduced expression from a virus-inducible ISRE-luciferase reporter. FOXK1 transcriptional 

activation of ISRE-containing promoters could be a direct link between e1a’s FOXK binding and 

regulation of a subset of ISGs. 

Downregulation of some ISGs by e1a has been attributed to its ability to bind the H2B E3 

ubiquitin ligase complex hBre1/RNF20 via an N-terminal region including aa 4-25, inhibiting 

H2B ubiquitinylation (Fonseca et al., 2012). However, it is unlikely that the mutations made in 

e1a’s C-terminal region affect its ability to bind hBre1 via amino acids 4-25. Another recent 

report suggested that e1a’s C-terminal region binding to RuvBL1 contributes to the suppression 

of ISG activation (Olanubi et al., 2017). However the e1a mutants that were defective in RuvBL1 

binding also have disrupted FOXK and DYRK1A binding (Komorek et al., 2010). 

It is remarkable that these e1a mutants, defective for binding different host proteins with 

no known overlapping functions, result in a similar phenotypic cellular response. One unifying 

feature shared among these e1a mutants is their hypophosphorylation. The phosphorylation(s) 
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absent in the three e1a C-terminal mutants might be required for e1a to form a complex that 

counteracts the increase in IRF3 and subsequent ISG activation. The mechanism by which these 

hypophosphorylated e1a C-terminal mutants activate a late IFN response by increasing IRF3 

protein warrants further exploration. 

 

Ad-transformed HEK293 cells retain the ability to re-differentiate upon E1A elimination 

Compromised cellular differentiation is generally observed as cancer progresses, contributing to 

invasion of surrounding tissues and metastasis. E1A inhibition of differentiation has been 

appreciated for decades (Webster et al., 1988) and may be a useful model for understanding 

molecular mechanisms causing de-differentiation during oncogenic transformation, just as 

studies of E1A helped uncover control of cell cycling by the family of E2F transcription factors 

and the small family of retinoblastoma proteins that regulate them. The observation that E1A 

represses primarily cell type-specific genes in different primary human cells (Fig. 3.1A) led us to 

ask if removing E1A from a de-differentiated E1A-expressing transformed human cell line 

would reverse de-differentiation and activate cell type-specific gene expression. We found that 

when E1A was knocked-down to <1% the level in transformed human embryonic kidney 

HEK293 cells (Graham et al., 1977), thousands of genes were de-repressed resulting in gene 

expression most similar to mesenchymal stem cells (MSCs) and slightly less similar to 

fibroblasts which have similar gene expression to MSCs (Driskell and Watt, 2015) (Fig. 3.1E). 

This result demonstrates that HEK293 cells harbor the “memory” to re-differentiate even after 

hundreds of generations of E1A-induced de-differentiation. It appears that after elimination of 

E1A, the cells revert back to a gene expression program and morphology similar to the most 
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abundant cell type in the originally transfected embryonic kidney culture (Graham et al., 1977), 

an MSC (Little and McMahon, 2012). 

 

YAP/TAZ inactivation promotes de-differentiation of Ad-transformed cells 

The present study reveals that YAP and its paralog TAZ are inactivated by E1A in adenovirus-

infected and transformed mammalian cells. The requirement for YAP/TAZ for maintenance of 

the normal morphology and actin-cytoskeleton of primary IMR90 fibroblasts and HBTEC 

epithelial cells (Fig. 3.11), and for re-differentiation of HEK293 cells when E1A is eliminated 

(Fig. 3.9E), together with the inactivation of YAP/TAZ by E1A can explain the block to 

differentiation in adenovirus transformed cells. 

 

YAP/TAZ association with TEAD TFs establishes MSC-specific super-enhancers 

The mechanism of YAP/TAZ-dependent re-differentiation of HEK293 cells after removal of 

E1A was investigated. We observed that after release from cytoplasmic anchors by E1AKD, 

YAP/TAZ associate with enhancers, as previously reported (Galli et al., 2015; Stein et al., 2015). 

However, by comparing sites of H3K27/18ac, chromatin accessibility, and YAP-association, 

together with RNA expression in response to YAP/TAZ activation by E1AKD in HEK293 cells, 

we could discern that >90% of MSC-specific enhancers are bound by YAP. YAP/TAZ knock-

down showed that most of the increase in transcription from these genes requires active 

YAP/TAZ. This activates MSC and fibroblast (closely related to MSC (Driskell and Watt, 

2015))-specific genes (Fig. 3.2C, 3.3F, 3.1E, 3.10). Upon recruitment to the nucleus following 

E1AKD, YAP associates with TEAD family DNA-binding proteins (TEAD1 through TEAD4), 

primarily distal to promoters, and induces H3K27/18ac and chromatin opening as detected by 
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accessibility to Tn5 transposase through ATAC-seq (Fig. 3.5H,I, 4.2). After 1 day of E1AKD 

there was a large increase in H3K27/18ac neighboring TEAD/YAP peaks, while after 4 days, 

acetylation spread between closely spaced peaks establishing super-enhancers (Fig. 3.5H). 

Interestingly, TEAD4, the most highly expressed TEAD family transcription factor in HEK293 

cells, and H3K4me1 were detected at many of these YAP-dependent enhancer sites prior to 

E1AKD (Fig. 3.5H,I, 3.6A,B). Therefore, TEAD4 and H3K4me1 mark these inactive enhancers 

prior to YAP association. Furthermore, the association of TEAD4 at chromatin sites inaccessible 

to ATAC before E1AKD suggests a possible pioneer function for TEAD4 (Zaret and Mango, 

2016). The gain in YAP-binding and chromatin accessibility after E1AKD correlated with a shift 

in the peak of H3K4me1-marked nucleosomes from centered over the TEAD4 peak to adjacent 

sites ~200-300 bp away, indicative of chromatin remodeling (Fig. 3.6A,B). We also observed 

YAP/TAZ- dependent cohesin association with these newly established super-enhancers (Fig. 

3.8C,E), suggesting looping of an activated enhancer to its activated promoter.  
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Figure 4.2 Model for E1A repression of cell type-specific genes to suppress differentiation in adenovirus 
transformed cells. 
 

While KD of E1A causes a dramatic alteration in the morphology of HEK293 cells (Fig. 

3.2D), knocking down YAP and TAZ in addition to E1A prevents this. Since YAP/TAZ are 

activated through sensors of the physical cellular microenvironment and control expression of 

genes necessary for differentiation, YAP/TAZ form a molecular link between a cell’s spatial 

orientation within a tissue and its cellular identity. This link provides the potential for YAP/TAZ 

to transduce the necessary signals for a cell to undergo differentiation only after it senses a 

suitable physical environment (Fu et al., 2017; Sasaki, 2017; Totaro et al., 2018). This provides a 
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developmental checkpoint to prevent differentiation if a cell is not in the correct cellular and 

ECM environment. 

 

Indirect regulation of YAP/TAZ nuclear import by E1A 

Given the reliance on actin filaments for YAP activation in E1AKD293 cells, we propose that 

E1A inactivates YAP/TAZ indirectly by repressing actin genes (e.g. ACTA1, ACTA2, ACTG1, 

ACTB, and ACTBL2) and genes which stimulate actin filament assembly (e.g. CDC42EP3 and 

CDC42EP5). Also, stimulation of cortical actin fiber assembly by dominant-active RhoA Q63L 

induced nuclear YAP in HEK293 cells without reducing E1A-expression (Fig. 3.7D). This 

explains how E1A regulates YAP/TAZ nuclear localization without interacting with them 

directly.  

Recently Elosegui-Artola et al. (2017) indicated that the mechanism regulating nuclear 

import of YAP through mechanotransduction may involve generation of force by actomyosin 

fibers between focal adhesions and the nucleus, causing nuclear stretching that expands the 

cytoplasmic side of nuclear pores, reducing mechanical resistance to YAP import. Consistent 

with this, in E1AKD HEK293, we observe flattened nuclei that coincide with increased YAP 

nuclear import (Fig. 3.2D). Another recent report (Meng et al., 2018) ascribes regulation of YAP 

import by mechanotransduction to the small GTPase RAP2. At low ECM stiffness, RAP2-GTP 

activates LATS1/2, which phosphorylate YAP/TAZ causing their cytoplasmic sequestration. 

RAP2-GTP may be very low in E1AKD293 cells because of the low level of actin filaments, 

resulting in very low phospo-LATS1 (Fig. 3.7A) and YAP/TAZ nuclear localization. 
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YAP/TAZ activity required for most H3K27/18 acetylation  

It is remarkable that knock-down of YAP and TAZ prevented the increase in total cell 

H3K27/18ac in HEK293 cells when E1A was knocked down (Fig. 3.9C). E1A has been 

considered to be a direct inhibitor of p300/CBP acetyltransferase activity, in part because the in 

vitro histone acetyltransferase activity of CBP was inhibited by recombinant E1A (Chakravarti et 

al., 1999). The reduction in total cell H3K27/18ac caused by E1A to ~30% the level in control 

cells also is consistent with the model of direct inhibition of CBP/p300 acetyl transferase activity 

by E1A (Ferrari et al., 2014; Horwitz et al., 2008). However, E1A K285 near the C-terminus is 

acetylated by CBP (Zhang et al., 2000), so the in vitro inhibition may have been competitive 

rather than allosteric. Also, E1A binds to the CBP TAZ2 domain (Ferreon et al., 2009) which is 

far from the CBP acetyltransferase domain (Delvecchio et al., 2013). Consequently, it is unclear 

how the E1A-CBP TAZ2 domain interaction would inhibit CBP acetyltransferase activity. We 

considered the model that E1A-binding to the CBP TAZ2 domain holds the E1A acetylation 

site(s) at high local concentration to the acetyltransferase catalytic domain, increasing 

competitive inhibition. However, mutations of K285 or all three E1A lysines, to alanine or 

arginine had no effect on E1A’s inhibition of total cell H3K27/18ac (DG, AJB, unpublished 

results). 

Two alternative related possible explanations for E1A-induced H3K27/18 

hypoacetylation are raised by our observations: (1) most H3K27/18 acetylation in primary 

mammalian cells results from co-activator interactions with the YAP and TAZ activation 

domains as opposed to activation domains of all other TFs, or (2) YAP/TAZ may be required to 

initiate differentiation programs involving additional transcription factors that together result in 
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most H3K27/18ac. In either case, YAP/TAZ appear to be master regulators of MSC 

differentiation since they are required for the re-differentiation of E1AKD293 cells into MSC-

like cells, and associate with ~90% of the new H3K27/18ac peaks that appear when re-

differentiation is induced by E1AKD. 

 

Functional differences between YAP and TAZ  

YAP and TAZ share 46% identical and 60% similar sequence, both interact with DNA-bound 

TEAD TFs through similar interfaces (Kristal Kaan et al., 2017), and both are overexpressed 

individually (i.e. YAP but not TAZ, or TAZ but not YAP) in a variety of human cancers 

(Zanconato et al., 2016). However, the two proteins have distinctive features and probably 

activities (Wang et al., 2009). For example, both contain WW domains that mediate protein–

protein interactions with LATS1/2 and AMOTs, but YAP contains two tandem WW domains, 

whereas TAZ has only one. An important example of the non-equivalence of YAP and TAZ was 

recently reported in a mouse model for basal cell carcinoma (BCC), the most common human 

cancer (Maglic et al., 2018). In this mouse model where BCC is initiated by abnormal 

Hedgehog-signaling, YAP becomes over-expressed in the emerging BCC cells. Importantly, 

YAP, but not TAZ, is required for initiation and progression of BCC (Maglic et al., 2018).  

Plouffe et al. (2018) recently reported on deletion of YAP, TAZ, and both genes in a 

subline of 293 cells (293A). The effects of these gene deletions on the response to 

lysophosphatidic acid (LPA) demonstrated that YAP and TAZ are not completely functionally 

redundant as we observe in response to elimination of E1A from HEK293 cells. Although far 

fewer genes were significantly activated >2-fold by LPA in 293A cells (4 genes) than by knock-

down of E1A in HEK293 cells (2584 genes), their results showed that LPA activation of 
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AMOTL2 and FOSL1 was much more dependent on YAP than TAZ, as we also observed 

following de-repression by removal of E1A (Table S1). Moreover, far more genes were highly 

dependent (5-fold) on YAP and/or TAZ during re-differentiation of E1AKD293 cells (336 

genes) than during the LPA response in 293A cells (6 genes), and the extent of de-repression for 

many genes was far greater (several hundred-fold). Consequently, the phenomena we observe in 

E1AKD293 cells are very different than the LPA response in 293A cells (Plouffe et al., 2018). 

The observation that genes highly dependent on YAP for their transcription in re-differentiating 

E1AKD293 cells and genes highly dependent on TAZ only partially overlap (Fig. 3.10) is 

relevant to the increased tumorigenicity of YAP compared to TAZ in the BCC model (Maglic et 

al., 2018). Genes strongly dependent on YAP but not TAZ with gene ontology term “positive 

regulation of cell proliferation” include FOSL1, FGF18, and Endothelin 1, a peptide that 

regulates cell proliferation, survival, motility, and angiogenesis (Battistini et al., 1993). TAZ and 

YAP likely compete for association with DNA-bound TEAD TFs since they bind the same 

surface of the TEADs. Consequently, the overexpression of YAP observed in many human 

cancers (Pan, 2013; Zanconato et al., 2016) may contribute to tumor progression by promoting 

expression of these genes that stimulate cell proliferation. Increased expression of these genes is 

not sufficient to cause cell cycling in E1AKD293 cells, probably in part because Rb proteins 

become active when E1A is eliminated. However, in tumor cells with inactive RB1 (Hanahan 

and Weinberg, 2000), over-expression of these YAP-activated genes may contribute to 

progression of the oncogenic phenotype. 
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