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Drift in the transverse directions can be more readily corrected numerically in the reconstruction.  Differential laser 
interferometers installed in the MET5 chamber track the position of the reticle and grating with respect to the optic and 
are logged with each image.  These positions are then used to create a non-uniform sampling grid over which the phase 
modulation is fit.  This technique relaxes the accuracy requirements on the stage as it performs the grating scan since 
stage position errors couple into this same correction mechanism. 

2.4 Multiplexed source and illumination design 

One of the key challenges with designing a shearing interferometer for a tool with single-nanometer optical resolution is 
creating a spherical wave input to the system.  A high-quality spherical input is necessary for characterizing the optical 
system because aberrations in the optic cannot be decoupled from aberrations in the input wave.  A standard way of 
producing a spherical reference is via diffraction through a small pinhole where the pinhole diameter D is chosen to 
match the object-side resolution limit of the system.  For systems with resolutions of 50 nm and smaller, this is not a 
practical solution due to the poor efficiency of small pinholes creating insufficient signal in the interferogram. 

One accepted solution to this problem is to use pinhole multiplexing [5].  In this setup, multiple pinholes are arrayed in 
the object plane and each serve as an independent input source to the interferometer.  The geometry of the pinhole array 
must satisfy three criteria: 

1. The smallest separation between adjacent pinholes must be large compared with the coherence function
width wc at the object so that the contribution of each pinhole adds in intensity (incoherently) at the detector.

2. The pinhole spacing must be periodic, and the period Tp must be an integer multiple of the shearing
interferometry grating period Tg times the magnification m of the system: Tp = nmTg, n ∈ N.  Pinholes that
lie outside of this grid contribute phase-shifted interferograms which serve to reduce rather than enhance
contrast in the interferogram.

3. The diffraction NA of the pinholes plus the illumination NA must be greater than or equal to the object-side
NA of the optical system to ensure that the optic receives light across its entire pupil.

An ostensible solution to satisfy these three requirements would be to use a full disk illumination.  Since this 
illumination fills the pupil NA and the corresponding coherence function at the object is a delta function, criteria 1 and 3 
are satisfied by default, and criterion 2 is easily satisfied by setting Tp = mTg.  The issue is that DC flare coming from 
light transmitted through the mask absorber causes an image of the pupil fill to be superposed onto the interferograms, 
and if this fill is not sufficiently uniform, it causes noise in the data.   

To overcome this obstacle, a disk illumination of 0.3-σ is employed, as this number matches the angular cutoff of the 
central obscuration of the Schwartzchild objective. As a result, all of the DC flare is directed into and blocked by the 
obscuration.  To satisfy criterion 3, the pinhole diameter is chosen to be 80 nm, which provides sufficient diffraction to 
fill the rest of the pupil.  In this configuration, criteria 1 and 2 are satisfied by setting Tp = mTg, since the coherence 
width for the illumination is wc = 240 nm, which is far less than the mask-side grating period of 1.17 um. 

2.5 Grating design 

The 2D diffraction grating used in the MET5 shearing interferometer was manufactured by the CXRO nanofabrication 
lab using an 80-nm nickel absorber on top of a 100-nm silicon nitride membrane window.  The grating pattern is 
designed as rotated checkerboard pattern with pitch T = 234 nm generating a shear of 5% across the pupil.  Figure 3 
contrasts the ideal thin-mask checkerboard grating spectrum to that of a conventional 2D square grating design.   
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Figure 4. LSI reconstructted aberrations of the MET5 optiic before alignment (a) and afterr alignment (b).  (c) shows Zerniike 
decomposition before and after alignment. 
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