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Abstract

SLITs comprise a family of secreted proteins that function as ligands for Roundabout (ROBO) receptors. Previous research
showed that ROBO1 promotes the differentiation of milk-producing alveolar cells by inhibiting Notch signaling in mammary
luminal cells. Here, we show enhanced alveolar development and increased milk production in Slit2-/-;Slit3-/- knockout
mammary gland epithelia. This result can also be achieved by intraperitoneal delivery of recombinant ROBO1 extracellular
domain fragment, ROBO1-5Ig-Fc, which sequesters SLITs. Together, our phenotypic studies suggest that SLITs restrict

alveologenesis and lactogenesis by inhibiting ROBO1.
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(A, B) Slit2 and Slit3 expression during pregnancy as detected by RT-qPCR (Welch’s t-test). (C-E) Representative
immunofluorescence images (C) of 17.5DP Slit2+/+;Slit3+/+ and Slit2-/-;Slit3-/- tissue outgrowths. Quantification (D, E)
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show alveolar area (D) and milk (magenta; E); basal cells labeled with ACTA2 (green) (Welch’s t-test). (F, G) Quantification
(F) and representative immunofluorescence images (G) of CSN2 (magenta) in Slit2+/+;Slit3+/+ and Slit2-/-;Slit3-/- organoids
after 5 days of differentiation (paired Welch’s t-test). Basal cells labeled with KRT14 (green). (H, I ) DIC images (H) and
quantification (I) of HC11 milk domes after 5 days of differentiation and treatment with control Fc or ROBO1-5Ig-Fc (two-
tailed paired t-test). (J, K) Representative immunoblot (J) with quantification (K) of CSN2 in HC11 cells after 5 days of
differentiation and treatment with control Fc or ROBO1-5Ig-Fc (Welch’s t-test). (L-O) Representative images of H&E-stained
sections from 17.5DP mammary glands after injection with control Fc (L) or ROBO1-5Ig-Fc (M), and quantification of fat pad
filling (N) and alveolar area (O) (Welch’s t-test). Insets are magnified images. (P, Q) Csn2 (P) and WAP (Q) expression in
17.5DP mammary glands after injection with control Fc or ROBO1-5Ig-Fc, as detected by RT-qPCR (Welch’s t-test). (R, S)
Representative immunofluorescence images (R) and quantification (S) of milk (magenta) in sections from 17.5DP mammary
glands after injection with control Fc or ROBO1-5Ig-Fc milk; basal cells labeled with ACTA2 (green) (Welch’s t-test). n=3
independent experiments, 5 images/n D-F, I, K, N, O, S. Data are represented as mean + SEM.

Description

During development, the mammary epithelium grows inward from the nipple to generate a tree-like, bi-layered, tubular
structure comprising an outer layer of basal myoepithelial cells and an inner layer of luminal epithelial cells that surround a
hollow lumen. During pregnancy, this epithelial structure grows substantially through progenitor cell expansion and
proliferation to generate milk-producing alveoli along its branches (Macias et al., 2012). We recently showed that the
transmembrane ROBO1 receptor is expressed by alveolar myoepithelial cells and functions to enhance milk production by
reducing CTNNB1 nuclear translocation and repressing JAG1 expression, thereby curbing Notch activation in neighboring
luminal cells (Cazares et al., 2021). Notch signaling, which stimulates alveolar progenitor cell renewal and expansion, must be
suppressed during alveologenesis to promote differentiation of mature, milk-producing alveolar cells (Oakes et al., 2006).
Secreted SLIT proteins (SLITs 1-3) are the ligands for ROBO1, and their function is highly context dependent. For example,
SLITs were originally identified as a chemorepellent acting through ROBO1 in the nervous system (Brose et al., 1999), but
there are also examples of them signaling as chemoattractants through the same receptor (Kellermeyer et al., 2020; Kramer et
al., 2001; Ma et al., 2007; Wang et al., 2003). Here, we explore the function of SLITs during mammary alveologenesis and
lactogenesis by examining the consequences of their loss.

In the mammary gland, Slit2 and Slit3 are expressed primarily in basal cells while Slit1 is not detected (Bach et al., 2017;
Strickland et al., 2006). We previously examined the nulliparous phenotype of Slit2-/- mammary outgrowths and Slit3-/-
mammary glands, observing an adhesion phenotype in Slit2-/- tissue, but no detectable defects in Slit3-/- tissue (Strickland et
al., 2006). To examine Slit expression over pregnancy, we used RT-qPCR and observed a steady decline in Slit2 as pregnancy
progressed (Fig. 1A). In contrast, Slit3 increased during early pregnancy reaching its peak at 10.5DP after which it decreased
(Fig. 1B). To further investigate, we sought to examine the knockout phenotype; however homozygous loss of Slit2 results in
perinatal lethality (Plump et al., 2002). Consequently, we generated double homozygous Slit2-/-:Slit3-/- (dKO) embryos and
followed standard protocols to contralaterally transplant wildtype (WT) and dKO anlage into fat pads of immunocompromised
mice that had been precleared of their epithelial tissue (Marlow et al., 2008; Robinson et al., 2000). We generated tissue for
analysis by performing secondary contralateral transplantations using WT and dKO tissue fragments from the fully developed
(8-10 weeks) primary outgrowths produced by anlagen rescue (Marlow et al., 2008; Young, 2000). We previously showed the
efficiency of rescuing WT and dKO anlage is similar and that WT and dKO nulliparous secondary outgrowths are also similar
in gross morphology (size and branching) (Marlow et al., 2008). However, the nulliparous secondary dKO outgrowths
displayed increased proliferation and their ducts contained hyperplastic lesions, suggesting that SLITs play a role in restricting
cell growth and governing cellular interactions (Marlow et al., 2008).

To examine WT and dKO tissue during pregnancy, the contralaterally-transplanted secondary outgrowths were allowed to fully
develop (8-10 weeks) before mating the host animals and harvesting the mammary glands at 17.5DP. By immunostaining
tissue sections with anti-milk antibody, we found that dKO alveoli were, on average, twice as large as WT alveoli and
contained more milk (Fig. 1C-E). SLITs, however, were still present in the stroma in this transplant model (Ahirwar et al.,
2021; Chang et al., 2012). To address this caveat, we obtained a conditional Slit2 knockout line and generated
Sli2lox/ IOX;SIitS—/— animals (Rama et al., 2015, Yuan et al., 2003). Because tamoxifen administration in these Slit dKO animals
interfered with successful pregnancy, we examined the phenotype by administering tamoxifen to nulliparous animals,
collecting the epithelia and generating primary cell organoids (Rubio et al.,, 2020). After 5 days of differentiation,
immunostaining for CSN2 revealed more milk in Slit2lox/10x g3/ organoids (Fig. 1F, G), which also displayed disorganized
cells reminiscent of the hyperplastic phenotype previously documented in nulliparous dKO mammary outgrowths (Marlow et
al., 2008). Taken together, these data show that loss of Slit2 and Slit3 results in enhanced alveologenesis and milk production.
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Another way to deplete SLITs is to sequester them by using a ROBO ectodomain (Liu et al., 2004). We generated and purified
ROBO1-5Ig-Fc, comprising the 5 extracellular immunoglobulin (Ig) domains of ROBO1 linked to murine fragment
crystallizable region (Fc), and tested this reagent in HC11 cells that undergo a well-established, prolactin-sensitive
differentiation process (Cazares et al., 2021; Ball et al., 1988). We treated competent HC11 cells with ROBO1-5Ig-Fc for 18H,
before differentiating the cells for 5 days. We observed an increased number of milk domes with 15nM and 45nM ROBO1-
SIg-Fc treatments (Fig. 1H, I). Dome number was not increased with 135nM ROBO1-5Ig-Fc treatment, but the domes
appeared larger as reflected by the dose-dependent increase in CSN2 expression, as detected by Western blot (Fig. 1J, K).
Next, we performed four subcutaneous injections of ROBO1-5Ig-Fc or Fc (7.5mg/kg) into WT mice at DP 5.5, 8.5, 11.5, 14.5,
and then harvested the mammary glands at DP17.5. Histological analysis of sectioned MGs showed increased epithelial fat
pad filling (~35%) and increased alveolar area in ROBO1-5Ig-Fc injected animals (Fig. 1L-O). This increase in alveolar
development was accompanied by increased expression of milk protein genes Csn2 and WAP, as assayed by RT-qPCR (Fig.
1P, QQ), and increased milk production as assayed by immunostaining (Figure 1R, S). These data showed that sequestration of
SLITs using ROBO1-5Ig-Fc enhanced alveologenesis, milk protein gene expression and milk production.

Collectively, our data show that knocking out Slits in the murine mammary gland enhances alveologenesis and lactogenesis.
Furthermore, we found that depletion of SLITs through injection of ROBO1-5Ig-Fc into WT animals also enhances milk
production, an indication that this regulatory axis can be targeted in vivo as a non-hormonal means to increase milk
production. Recently, a proteomic analysis of human milk fat globules identified the pathway — Regulation of Expression of
SLITs and ROBOs — as the top pathway more abundant in milk fat globules compared to milk fat globule membranes, but how
this pathway, which contains many proteasomal and ribosomal proteins, affects the function of a milk secreting cell requires
further elucidation (Martin Carli et al., 2023). A limitation of this study is that only the loss-of-function phenotype was
examined; further research on the role of SLITs in regulating alveologenesis and milk production will benefit from gain-of-
function approaches.

The mammary gland phenotype we identified due to loss of Slits or SLIT sequestration during pregnancy is opposite the one
observed in the Robol-/- mammary gland where decreased alveologenesis and lactogenesis was observed (Cazares et al.,
2021). How SLITs regulate ROBO receptor activity is also a topic of contention. Recent X-ray crystallography studies suggest
that a tetrameric assembly involving ROBO1 (cis) dimers interacting back-to-back between adjacent cells (trans) is dissociated
and activated by SLIT binding (Aleksandrova et al., 2018). Another study proposes a different model of trans interaction
whereby ROBOs are in an auto-inhibitory assembly that precludes dimerization until SLIT binds and exposes a ROBO
dimerization domain (Barak et al., 2019). Moreover, it is possible there are different mechanisms of SLIT/ROBO signaling
when ROBOs face the extracellular matrix where they are free from trans interactions and are regulated instead by interactions
with heparin sulfate proteoglycans (Hohenester, 2008). Taken together, our data provide genetic evidence that during
alveologenesis in the mammary gland SLITs either inhibit ROBO1 signaling or potentiate an inhibitory interaction between
different ROBOs on adjacent cells (Evans et al., 2015; Kraut et al., 2004).

Methods

Animal Studies: Slit2-/- were provided by Marc Tessier-Lavigne (Plump et al., 2002), Slit3-/- mice were provided by David
Ornitz (Yuan et al., 2003), Slit2lox/lox were provided by Alain Chédotal (Rama et al., 2015). Transplantation studies were
performed using Foxnlnu mice (Simonsen Labs). ROBO1-5Ig-Fc studies were performed on timed pregnancy CD-1 female
mice (Charles River). All animal procedures were both approved by and conducted in accordance with the guidelines set by
the University of California, Santa Cruz (UCSC) Institutional Animal Care and Use Committee (IACUC).

Tamoxifen administration: Tamoxifen was dissolved in corn oil in a [20mg/ml] stock solution and given orally [2g/kg body
weight] for 3-consecutive days. Slit2lox/lox mice were administered tamoxifen (or corn oil as vehicle control) and
experiments were conducted one-month post-administration to allow for maximum depletion of SLIT?2.

Mammary fat pad clearing, and transplantation: To generate Slit2-/-;Slit3-/- embryos, double heterozygote animals were
crossed. Mammary anlage from E16-20 WT and Slit2-/-;Slit3-/- female embryos, generated through independent heterozygous
crosses (n=3 independently generated anlage), were rescued and contralaterally transplanted into fat pads of ~6 weeks old,

athymic nude (Foxn1™) host females that had been precleared of mammary epithelia at 3 weeks of age (Marlow et al., 2008;
Robinson et al., 2000). To generate additional WT and dKO tissue for analysis, 8-10 weeks after anlage rescue, similarly sized
(~1.5mm3) WT and Slit2-/-;Slit3-/- tissue fragments were dissected from fully developed outgrowths, which had been
generated from anlage, and were contralaterally transplanted into ~6 weeks old Foxn1™ hosts that had been precleared at 3
weeks of age (Strickland et al., 2006; Young, 2000). After 8-10 weeks, animals were mated for timed pregnancies, scored by
the presence of a vaginal plug. Plugged mice were considered 0.5 days pregnant (DP) on plug day and embryos were
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examined at the time of mammary gland harvest to confirm pregnancy timepoint. Contralateral outgrowths were harvested at
17.5 DP.

ROBO1-Ig5-Fc treatments: The Expi-CHO Max system was used to prepare large quantities of pure His-ROBO1-5Ig-Fc or
His-Fc, followed by purification on a Nickel-NTA column. For in vitro studies, primed HC11 cells were treated with the Fc-
Control or ROBO1-5Ig-Fc at the indicated concentrations for 18 hours. For in vivo studies, WT females were subcutaneously
injected with either Fc-Control or ROBO1-5Ig-Fc at 7.5mg/kg body weight every 72 hours beginning at 5.5DP (5.5-14.5DP).

Fat pad filling analysis: Paraffin-embedded Fc control or ROBO1-5Ig-Fc-injected mammary glands or contralateral
outgrowths were sectioned and subjected to H&E staining. Images were analyzed using ImageJ, and percent fat pad filling was
calculated by measuring the area occupied by the alveoli.

3D cell cultures: Primary cell organoids were grown and processed for high-resolution imaging as previously described
(Rubio et al., 2020). Briefly, primary cells were mixed and grown in Matrigel Growth Factor Reduced (GFR); Phenol Red-
Free (Corning, CB-40230C) and cultured in basal medium. After 5 days, growing organoids were washed and cultured in
differentiation medium for an additional 5 days. Organoids were liberated from the 3D matrix using ice-cold recovery solution
and incubated at 4°C for 60 min. Liberated organoids were fixed with 4% PFA at 4°C for 45 min. Fixed organoids were
immunostained using primary antibodies at 4°C for 18 h, washed, and then incubated with secondary antibodies at 4°C for 18
h. Immunostained organoids were mounted with Vectashield® Vibrance™ Mounting Media with DAPI inside three stacked
Secure-Seal™ Spacers (Thermo Fisher Scientific, S24735).

HC11 dome assay: HC11 cells were obtained from American Type Culture Collection (ATCC) and routinely checked for
mycoplasma (Mycoplasma PCR kit, ABM, Cat# G238). Undifferentiated HC11 cells were cultured using in growing medium
(RPMI-1640 (Thermo-Fisher, 72400047), supplemented with 10% FBS, [5mg/mL] Insulin (Millipore-Sigma, 16634),
[10ng/mL] Epidermal Growth Factor (EGF) (Preprotech, AF-100-15), 1X Anti-Anti at 37°C with 5% CO2. Competent HC11
cells were primed for differentiation by culturing them in priming medium (RPMI-1640 supplemented with, 5% charcoal-
stripped-FBS (Equitech Bio, SFBM31), [5mg/mL] Insulin, [ImM] Dexamethasone (Millipore-Sigma, D4902-1G), and 1X
Anti-Anti for 18 hours at 37°C with 5% CO2. To induce differentiation, primed HC11 cells were cultured in DIP Medium
(RPMI-1640, supplemented with 10% FBS, [5mg/mL] Insulin, [ImM] Dexamethasone (Millipore-Sigma, D4902), 1X anti-
anti, and [3mg/mL] Prolactin (NHPP, oPRL-21) at 37°C with 5% CO2.

Immunofluorescence and microscopy: Paraffin-embedded tissue was sectioned at a thickness of 5 micrometers and mounted
on Superfrost Plus Microscope Slides (Fisher, 12-550-15). Mounted tissue sections were and rehydrated by warming slides to
55°C for 5 minutes, then hydrated by incubating in Xylenes 3 times for 5 minutes, 100% ethanol 2 times for 2 minutes, 95%
ethanol for 1 minute, 70% ethanol for 1 minute, 50% ethanol for 1 minute, and diH20 for 10 minutes. Antigen retrieval was
performed using antigen unmasking solution (VectorLabs, H3300-250) in a conventional lab microwave. Cells were
permeabilized for 20 min in PBS (Thermo-Fisher, 10010023) containing 0.1% Triton-X. Blocking of nonspecific sites was
then done using with 10% NDS and 0.1% Triton for 60 min at room temp in a humidifying chamber (VWR, 68432A). For
antibodies raised in mouse a M.O.M.® kit was used. Primary and secondary antibodies were diluted and used as described
above.

Western Blotting: Whole cell lysates were prepared using 1X NP40 lysis buffer (Themo-Fisher, FNN0021) supplemented
with Pierce Protease and Phosphatase inhibitors (Thermo-Fisher, A32959). Cells were washed with ice-cold PBS (Gibco,
14190136), and lysed directly in buffer and kept at 4 °C rocking at 70rpm. Lysed cells were collected and then spun at 14,000
x g at 4 °C for 15 minutes. Equivalent (35-50ug) of each sample was resolved by SDS page and transferred to polyvinylidene
difluoride (PVDF) (Millipore-Sigma, IPVH00010), for 60 minutes at 100V. Immunoblots were blocked using 5% (%v/v) fish
gelatin for 60 minutes at room temperature. Primary antibodies were incubated overnight at 4°C in a rocker at 65 RPMs. All
HRP-conjugated secondary antibodies (Jackson Labs) were used at 1:7500 for 90 minutes at room temp. Immunoblots were
developed using Clarity ECL (BioRad), detected using a BioRad Chemi-Doc MP Image, and quantified using ImageLab
software (BioRad) as previously described (Le et al., 2016).

RNA preps and RT-qPCR: Whole-gland total RNA was extracted using Direct-zol RNA MiniPrep Plus (Zymo,R2070). The
RNA was further purified with TURBO DNase (Ambion, AM1906) treatment. Total RNA quality was analyzed by agarose gel
electrophoresis and quantified with an ND-1000 spectrophotometer (NanoDrop). cDNA was prepared from 500-1000 ng of
total RNA using iScript cDNA synthesis kit (BioRad, 1708841). Quantitative RT-qPCR was performed in triplicates using
SsoAdvanced Universal SYBR Green Supermix, (Biorad, 1725272). The reactions were run in a BioRad CFX’Connect Real-
Time System and CFX Manager software (BioRad) as follows: 95°C for 2 min followed by 40 cycles of 95°C for 15 sec, 60°C
for 30 sec and 72°C for 45 sec. The melting curve was graphically analyzed to control for nonspecific amplification reactions.
Results were normalized to GAPDH. The primers were all purchased from IDT and the sequences are as follows: mWAP:
fwd: 5’-TCTGCCAAACCAACGAGGAGTG bwd: 5 -AGAAGCCAGCTTTCGGAACACC; mCsn2 fwd: 5’-
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CCTCTGAGACTGATAGTATT bwd: 5’-TGGATGCTGGAGTGAACTTTA; mSlit2 fwd: 5’-CCCCCTTCACATCAGTTCCC
bwd: 5-TTTCTGCCTATGCGCTGTCA; mSlit3 fwd: 5-CTAAACCAGACCCTGAACCTGTGGT bwd: 5 -
AAGGTAGAGGGGGCTGTTGCTGCCCACT; mGapdh fwd: 5 -CATGGCCTTCCGTGTTCCTA bwd: 5’-
CCTGCTTCACCACCTTCTTGAT

Image processing: Images were processed using Fiji or ZEISS ZEN Imaging Software (Zeiss) and equally adjusted manually
if needed. All graphs were generated with GraphPad Prism version 9.0.

Quantification and statistical analysis: No statistical method was used to predetermine sample size. Statistical analysis was
performed using Prism9 software. Sample size, biological replicates, statistical test, and statistical significance are denoted in
the figure legends. P-values higher than 0.05 were considered not statistically significant.

Reagents

Mouse anti-TUB1A1 clone DM1A (IB, 1:1000), Santa Cruz Biotech; Rabbit anti-KRT14 (IF, 1:1000), Covance; Mouse anti-
ACTA2 clone 1A4 (IF, 1:500), Sigma; Rabbit anti-mouse milk (IF, 1:1000) and Rabbit anti-CSN2 monoclonal (IB, 1:4000, IF,
1:500), both kind gifts from Dr. Charles Streuli; Insulin, Millipore-Sigma, 16634; Epidermal Growth Factor (EGF), Preprotech,
AF-100-15; Dexamethasone, Millipore-Sigma, D4902); Prolactin (NHPP, oPRL-21); charcoal-stripped-FBS, Equitech Bio,
SFBM31.
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