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Abstract

Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and

repetitive mTBI has been linked to age-related neurogenerative disorders that affect

white matter (WM) in the brain. However, findings of injury to specific WM tracts

have been variable and inconsistent. This may be due to the heterogeneity of mecha-

nisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factori-

zation (NMF) is a data-driven approach that detects covarying patterns (components)

within high-dimensional data. We applied NMF to diffusion imaging data from military

Veterans with and without a self-reported TBI history. NMF identified 12 independent

components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gath-

ered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis)

Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-

related associations in NMF-derived components while adjusting for age, sex, post-

traumatic stress disorder, depression, and data acquisition site/scanner. We found sig-

nificantly stronger age-dependent effects of lower FA in Veterans with TBI than Vet-

erans without in four components (q < 0.05), which are spatially unconstrained by

traditionally defined WM tracts. One component, occupying the most peripheral loca-

tion, exhibited significantly stronger age-dependent differences in Veterans with mTBI.

We found NMF to be powerful and effective in detecting covarying patterns of FA

associated with mTBI by applying standard parametric regression modeling. Our results

highlight patterns of WM alteration that are differentially affected by TBI and mTBI in

younger compared to older military Veterans.

K E YWORD S

diffusion MRI, ENIGMA, military, mTBI, nonnegative matrix factorization, traumatic brain injury

1 | INTRODUCTION

Traumatic brain injury (TBI) is a significant health concern worldwide,

with approximately 69 million diagnoses per year worldwide (Dewan

et al., 2018). Military personnel are particularly at risk for TBI due to

repetitive exposure to blasts or explosions (Hoge et al., 2008).

Between 2000 and 2019, over 400,000 United States military person-

nel were diagnosed with a TBI, and approximately 84% of these
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diagnoses were mild TBI (mTBI) cases (Defense Medical Surveillance

System et al., 2020). TBI diagnosis and severity are defined by dura-

tion of loss of consciousness (LOC), posttraumatic amnesia (PTA), and

alterations of consciousness (AOCs) at the time of the injury (Kay

et al., 1993). Diagnosis of mTBI limits LOC to less than 30 min, and

PTA and AOC of less than 24 hr. Moderate and severe TBI diagnosis

involve longer durations and may include abnormalities on conven-

tional computed tomography (CT) imaging.

Over the past decade, there have been significant advances in

neuroimaging techniques to assess TBI, particularly mTBI. Diffusion

weighted imaging (DWI), which detects the movement of water mole-

cules within brain tissue (Le Bihan, 2003; Mukherjee, Berman, Chung,

Hess, & Henry, 2008), has been employed to indirectly evaluate the

organization of white matter (WM) integrity. Fractional anisotropy

(FA) measures the predominant direction of water molecule diffusion

to infer the orientation of the long axes of axons and the fiber integ-

rity. FA is not completely robust as it can provide misleading informa-

tion related to crossing, diverging, or kissing fibers (Glenn et al., 2016).

However, higher FA has been linked to increased directionality,

suggesting healthy WM, whereas lower FA can implicate

compromised WM.

Repeated exposures to TBI accelerate age-related brain changes

(Esopenko & Levine, 2015; Goldstein et al., 2012; McKee &

Robinson, 2014). Specifically, reductions in FA, which are a normal

part of healthy aging (Yap et al., 2013), are accelerated by repetitive

blast exposures (Trotter, Robinson, Milberg, McGlinchey, &

Salat, 2015). However, most prior reports on exposed military per-

sonnel have yielded inconsistent findings on the WM regions

affected by TBI (Asken, DeKosky, Clugston, Jaffee, & Bauer, 2018).

This lack of consensus, particularly pertaining to blast-related mTBI,

may stem from the tremendous spatial and individual heterogeneity

due to the variability of biomechanical parameters related to blasts,

including the directions and magnitudes of concussive forces, the

presence of nearby rigid surfaces, the presence of protective gear,

and other factors (Tate et al., 2021). Inconclusive findings in the lit-

erature may be partially explained by the presence of small statisti-

cal effects that are detectable only in large samples (Open Science

Collaboration, 2015). Thus, the magnitudes and spatial distributions

of injuries, coupled with the complexity of military-related TBIs,

imply that the accurate spatial mapping of WM disruption has

remained elusive (Dennis et al., 2020).

Recent, large-scale studies have used region of interest (ROI)

approaches to study military TBI. However, head injuries, especially in

a military context, exhibit heterogeneity in mechanism (as highlighted

above), etiology (Davenport, 2016), and comorbidities such as post-

traumatic stress disorder (PTSD) and depression that make TBI-

related effects harder to interpret (Dennis et al., 2019; van Velzen

et al., 2020). Thus, a data-driven approach, unconstrained by the

potential spatial biases associated with factors like anatomic

parcellations, may empower the identification of WM damage pat-

terns that are undetectable by ROI approaches due to these heteroge-

neous effects. By contrast, whole-brain voxel-wise methods impose

stringent corrections for multiple comparisons that may lead to type II

errors and that may obscure individual spatial heterogeneity across

affected WM voxels.

To address these inferential challenges,

1. We accessed data shared by nine research cohorts in the Military

Brain Injury working group from the Enhancing Neuro-Imaging

Genetics through Meta-Analysis (ENIGMA) Consortium (Dennis

et al., 2020).

2. We applied a multivariate, hypothesis-free method, called non-

negative matrix factorization (NMF; Sotiras, Resnick, &

Davatzikos, 2015; Xie, Ho, & Vemuri, 2011), to identify complex

patterns of covariation (components) in data with high inter-

individual spatial heterogeneity. NMF uses a parts-based approach

to data representation (unlike principal component analysis or

independent component analysis), used widely to identify image

features.

3. We used regression modeling to test null hypotheses pertaining to

associations between the mean FA of each component and the

presence of military-related TBI while adjusting for potentially con-

founding demographic and clinical variables. To understand cross-

sectional age-related effects on the components, we explored the

interaction between TBI diagnosis and age. Due to the high rates

of PTSD and depression in military samples, we also controlled for

the effects of these diagnoses.

4. We conducted the same analysis exploring mild TBI effects while

adjusting for potentially confounding demographic and clinical var-

iables by excluding sites with moderate or severe TBI participants.

5. Lastly, we conducted a confirmatory analysis with a more homolo-

gous sample by removing two older cohorts who recruited

Vietnam-era Veterans to ensure our analysis was not driven by

these two older samples. We adjusted for potentially confounding

demographic and clinical variables.

2 | MATERIALS AND METHODS

2.1 | Participants

Clinical, demographic, and imaging data of 1,475 participants from

nine different cohorts included 725 Veterans who endorsed at least

one military-related TBI event and 750 Veterans without a TBI history

(Table 1). Cohorts included United States Veterans and active-duty

service members, as well as military personnel from the Netherlands.

Seven cohorts included personnel from the Iraq and Afghanistan mili-

tary operations, and two studies included Vietnam-era Veterans. All

sites except the ADNI/DoD cohort were restricted to military person-

nel with mild TBI. Only the ADNI/DoD cohort of 201 participants

included moderate and severe TBI. Due to heterogeneity in injury

severity this cohort was removed from analyses using model_2 and

model_3 described later in the manuscript. There were 63 participants

(15 non-TBI, 46 TBI) missing either PTSD or depression diagnosis

information. Diagnostic criteria can be found in Table S1. We

accounted for missingness of clinical data with a simple imputation
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method of replacing the missing variable with the mean value of that

variable in participants from the same diagnostic category (i.e., missing

PTSD for a TBI participant was replace with the mean PTSD value in

the TBI group). T-tests and chi-square tests were used to determine

group differences between demographic data (i.e., age, sex, PTSD

diagnoses, and depression diagnosis) between TBI and non-TBI

groups. All participants provided written informed consent approved

by local institutional review or ethics boards.

2.2 | Preprocessing of diffusion imaging data

Each cohort's curators/owners processed their data locally using the

ENIGMA DTI pipeline (http://enigma.ini.usc.edu/protocols/dti-

protocols/#eDTI) for tract-based spatial statistics (TBSS v1.2; Smith

et al., 2006). Table S2 lists acquisition parameters for individual

cohorts. Diffusion data were registered to the ENIGMA-DTI FA mask

and WM skeleton. In brief the ENIGMA-DTI QC protocol involved

three major steps: (a) examination of non-normal distribution of mean

FA values per region (tract) and removal of outliers (>2.69 � SD),

(b) examination of diffusion weighted scans for each subject for scan-

ner artifact and excessive motion, (c) inspection of FA maps after reg-

istration for misregistration of images. Visual inspection was

conducted to remove data with artifacts or signal drop out. Visual

inspection was done again by a central site to ensure proper registra-

tion. The WM skeleton specifies the center of the longitudinal axis

along each WM tract. The mean FA skeleton was created for each

subject by thinning the mean aligned FA values. The subject-specific

skeletons were then thresholded to include voxels with FA values

exceeding >0.2 to exclude voxels in the cerebral spinal fluid and gray

matter (Smith, Kindlmann, & Jbabdi, 2009). This removed voxels with

both low mean values and with high inter-subject variability within

each site (Smith et al., 2006) and to ensure the skeletons to do not

reach the outer edge of the cortex which can aid in alignment (Smith

et al., 2009). Moreover, several studies examining the optimal

thresholding of FA have reported results that are consistent with our

selection of 0.2 (Kunimatsu et al., 2004; Taoka et al., 2009). The

subject-specific skeletons were then projected onto the ENIGMA

skeleton by choosing the maximum FA values perpendicular to local

skeleton structure within standard space. This approach aims to miti-

gate inter-subject alignment errors (Smith et al., 2006). Individual sub-

jects' skeleton FA data were shared by each participating site with the

central site at Duke University to conduct the remaining steps of the

analysis pipeline.

2.3 | Nonnegative matrix factorization (NMF)
analysis

NMF is a data-driven approach that detects covarying patterns (com-

ponents) within high-dimensional data which has previously been

used across a number of neuroscience applications (Cohen &

Rothblum, 1993; Lee & Seung, 1999; Paatero, Tapper, Aalto, &

Kulmala, 1991; Yang & Michailidis, 2016). More recently NMF has

been applied to neuroimaging analyses (Sotiras et al., 2015; Xie

et al., 2011), but to our knowledge has not yet to be applied to TBI

analyses. The MATLAB code for calculating NMF components is avail-

able at https://github.com/asotiras/brainparts. We used NMF to find

covarying patterns of FA across all 1,475 participants. First, the data

were organized into an m � n matrix X where each row corresponded

to the set of m voxels from the skeleton map, each column represen-

ted the set of n subjects, and each matrix element (i, j) contained the

FA value of the ith voxel and jth subject. The data matrix X was given

as input to NMF, which approximated it as a product of two non-

negative matrices W and H. The m � c matrix W represents m voxels

(rows) and c components (columns), where c is specified by the user.

TABLE 1 Site demographics

Cohort N Scanner number TBI (%) Age (mean) Females (%) PTSDa (%) Depressiona (%)

ADNI DoD 201 20 115 (57.2%) 69.3 1 (0.5%) 88 (45.1%) 44 (22.6%)

Duke 298 3 160 (53.7%) 41.8 77 (25.8%) 64 (26.1%) 50 (20.4%)

INTRuST 85 11 54 (63.5%) 39.4 16 (18.8%) 34 (41.5%) 26 (31.7%)

iSCORE 118 1 41 (34.7%) 35.7 16 (13.6%) 54 (46.2%) 43 (36.8%)

MEDVAMC 49 2 35 (71.4%) 35.6 6 (12.2%) 44 (95.7%) 36 (78.3%)

VA Minneapolis 220 2 169 (76.8%) 32.6 12 (5.5%) 71 (39.7%) 79 (44.1%)

Stanford 35 2 45 (100%) 44.6 6 (17.1%) NAb 16 (55.2%)

UMC Utrecht 94 1 10 (10.6%) 35.6 0 (0%) 46 (50.5%) 25 (27.5%)

VETSA 375 2 106 (28.2%) 61.8 0 (0%) 37 (9.9%) 42 (11.3%)

Total 1,475 44 725 (49.2%) 48.1 134 (9.1%) 438 (33.0%) 345 (26.0%)

Abbreviations: ADNI DoD, Alzheimer's Disease Neuroimaging Initiative-Department of Defense; INTRuST, Injury & Traumatic Stress; iSCORE, Imaging

Support for the Study of Cognitive Rehabilitation Effectiveness; MEDVAMC, Michael E. DeBakey Veterans Affairs Medical Center, UMC Utrecht,

University Medical Center Utrecht; VETSA, Vietnam Era Twin Study of Aging.
aPercentages were calculated excluding participants missing clinical diagnoses.
bStanford cohort did not collect PTSD diagnoses.
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Each matrix element (i, j) contains the loading of the jth component on

the ith voxel, which denotes the relative contribution of each voxel to

a given component. The above method is illustrated with a schematic

in Figure 1. Components are estimated by positively weighting vari-

ables that consistently covary across participants to yield highly spe-

cific and reproducible patterns. The c � n matrix H corresponds to

c components (rows), n subjects (columns), and each matrix element (i,

j) contains the coefficient of the ith component and jth subject. These

subject-specific coefficients indicate the contribution of each compo-

nent in reconstructing the original FA map. In general matrix factoriza-

tion can be solved readily if the non-negative constraint is removed.

However, in an application such as the present, FA values that make

up components cannot be negative, they must be positive. Factoriza-

tion using a non-negative constraint provides a solution that fits our

context of white matter FA. Rather than including both positive and

negative weights, NMF's nonnegative constraint allows for increased

interpretability through a parts-based representation of the WM

(Sotiras et al., 2015).

To determine the optimal number of components, we examined

multiple NMF solutions ranging from two to 50, in increments of two,

and assessed the reconstruction error for each solution as the

Frobenius norm of the difference between the original data in X and

the NMF approximation. We additionally evaluated metrics from a

split-sample reproducibility analysis, which was performed by splitting

the data into two halves of similar age and sex distribution and exam-

ining how the reproducibility of the solution varies with the number

of estimated components. The reproducibility was quantified by mea-

suring the overlap between the independently estimated components

for the two splits, after having matched them using the Hungarian

algorithm (Kuhn, 1955). The overlap was measured using the inner

product, which uses values in the range [0, 1], with higher values

corresponding to higher overlap. Higher reproducibility was measured

by the increasing overlap between individual components estimated

by NMF in each split-half of the data (Sotiras et al., 2015).

2.4 | Statistical analysis

We sought to quantify the statistical association between the pres-

ence of TBI and the configuration of FA patterns captured by NMF-

derived components with linear mixed effects regression modeling

using the fitlme function in MATLAB (v9.5). This function fits data to a

linear mixed-effects regression model, which can include both fixed

and random effects. We first explored the main effects of TBI diagno-

sis of our sample while adjusting for age, sex, PTSD diagnosis and

depression diagnosis as fixed effects and site/scanner as a random

effect (model_1).

MeanFAof component �TBIþAgeþSexþPTSDþDepression

þ 1 jSiteð Þ

We then examined the interaction between age and TBI diagnosis

while adjusting for sex, PTSD diagnosis, depression diagnosis and

site/scanner.

MeanFAof component �TBI�AgeþSexþPTSDþDepression

þ 1 jSiteð Þ

Next, we excluded sites who recruited participants with moderate or

severe TBI and explored the same interaction between age and mild

F IGURE 1 Schematic of non-negative matrix factorization (NMF) method. The data matrix X was given as input to NMF, which approximated
it as a product of two non-negative matricesW and H. The m � c matrix W represents m voxels (rows) and c components (columns), where c is
specified by the user. Each matrix element (i, j) contains the loading of the jth component on the ith voxel, which denotes the relative contribution
of each voxel to a given component
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TBI diagnosis while adjusting for sex, PTSD diagnosis, depression

diagnosis, and site/scanner (model_2). Lastly, as a confirmatory analy-

sis to ensure our results were not driven by two older cohorts, we

excluded sites who recruited Vietnam-era Veterans to constrain our

sample to military personal who served in Afghanistan and Iraq. We

examined the same interaction between age and mTBI diagnosis with

this younger sample (model_3).

We controlled for type I errors by correcting for the multiple

comparisons associated with each component in model_1 and

model_2 using the false discovery rate (FDR) method of Benjamini

and Hochberg (Benjamini & Hochberg, 1995) implemented in

MATLAB (v9.5). Corrected FDR significance values are reported as q-

values of p < .012 for model_1 and p < .004 for model_2.

3 | RESULTS

3.1 | Participants

The optimal number of components was derived from 1,475 partici-

pants who ranged in age from 18 to 85 (mean age = 48.1, SD = 15.7),

with the majority (91%) self-reported as male. For model_1, TBI and

non-TBI groups differed significantly by age (t[1,473] = �5.07,

p < .001), sex (χ2(1) = 4.24, p = .039), PTSD diagnosis (χ2(1) = 45.9,

p < .001), and depression diagnosis (χ2(1) = 44.4, p < .001), with more

females, older participants and less clinical diagnoses in the non-TBI

group. Model_2 was constrained to sites who recruited mild TBI

(n = 1,278) and ranged in age from 18 to 71 (mean age = 44.77,

SD = 14.14), with the majority (89%) self-reported as male. The mTBI

and non-mTBI groups did not differ in sex (χ2(1) = 3.49, p = .062), but

significantly differed by age (t[1272] = �7.96, p < .001), PTSD diagno-

sis (χ2(1) = 53.2, p < .001), and depression diagnosis (χ2(1) = 48.6,

p < .001), with older participants and less clinical diagnoses in the

non-mTBI group. Lastly, to ensure our results were not driven by our

older cohorts of Vietnam-era Veterans, model_3 included 899 military

personnel and ranged in age 18–71 (mean age = 37.66, SD = 10.4),

with the majority (85%) self-reported as male. The younger mTBI and

non-mTBI groups did not differ in age (t[1272] = �1.07, p = .287),

but differed by sex (χ2(1) = 15.9, p < .001, PTSD diagnosis

(χ2(1) = 23.7, p < .001), and depression diagnosis (χ2(1) = 29.7,

p < .001), with more females and less clinical diagnoses in the non-

mTBI group. Above reported PTSD diagnosis and depression diagnosis

statistics do not include imputed data.

3.2 | Optimal number of components

The optimal number of components was determined to be 12 compo-

nents. As displayed in Figure S1a, reproducibility overall decreased

with an increase in number of components, yet a peak is demon-

strated at 12 components. This inflection with a high inner mean

product can be interpreted as relatively stable with a higher probabil-

ity of reproducible networks for this dataset. Similarly, in Figure S1b,

the reconstruction error decreased with an increase in network

resolution, however there is a peak at 12 components suggesting a

local performance maximum. While the reconstruction error and

reproducibility are not consistent across the specified range of com-

ponents, it does demonstrate stability in the 12 identified compo-

nents. Fewer than the optimal number of components (i.e., 12) may

omit necessary information modeled by NMF; however, adding more

than 12 components may model uninterpretable information such as

noise in the data due to motion. The optimal components (Figure S2)

are composed of voxels that span portions of several anatomically

defined white matter tracts (Table S3).

Visually, the 12 components display a high degree of anterior–

posterior, radial, and left–right hemispheric symmetry. Components

2, 3, and 5 occupy the most central locations of white matter. Compo-

nent 2 is primarily comprised of the bilateral anterior thalamic radia-

tion and posterior limb of the internal capsule. Both components

3 and 5 encompass the corpus callosum, but component 3 also

includes forceps major while component 5 involves forceps minor.

More peripherally, components 10 and 11 are located. Likewise, com-

ponent 10 spans forceps minor, but further extends to bilateral ante-

rior corona radiate and inferior fronto-occipital fasciculus. Similarly,

component 11 includes bilateral inferior fronto-occipital fasciculus as

well as bilateral inferior longitudinal fasciculus. Next, component 6 pri-

marily occupies bilateral anterior thalamic radiation, superior corona

radiata, and posterior corona radiata. Component 8 encompasses

bilateral superior longitudinal fasciculus, while component 7 spans for-

ceps minor and bilateral inferior fronto-occipital fasciculus. Compo-

nent 1 and component 4 are comprised mostly of bilateral inferior

longitudinal fasciculus. Component 12 is visually the most peripheral

spanning forceps minor and inferior fronto-occipital fasciculus. Lastly,

component 9 occupies the most inferior brain locations including

bilateral corticospinal tract and inferior cerebellar peduncle. The num-

ber of component voxels for each white matter tract is listed in

Table S3.

3.3 | Main effect and interaction effect of TBI

There was no significant main effect of TBI in model_1 (Table 2 and

Table S4). However, we found a significant interaction (Table 3 and

Table S5) after FDR correction between TBI and age after adjusting

for sex, PTSD diagnosis, depression diagnosis, and site in four compo-

nents including component 1 (q = 0.036), component 4 (q = 0.036),

component 6 (q = 0.036), and component 12 (q = 0.036). FA values

were negatively associated with age (as expected), but the association

between age and lower FA was significantly stronger in the TBI than

in the non-TBI group (Figure 2).

3.4 | Main effect and interaction effect of mild
TBI (mTBI)

We explored an analysis, excluding the cohort (n = 201) who rec-

ruited moderate and severe TBI participants, to address the age and

mTBI interaction in the remaining 1,274 participants. There was no
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significant main effect of mTBI in model_2 (Table 4 and Table S6) We

identified a significant interaction (Table 5 and Table S7) after FDR

correction between age and mTBI while adjusting for sex, PTSD diag-

nosis, depression diagnosis, and site/scanner in component

12 (q = 0.048). FA values were negatively associated with age

(as expected), but the association between age and lower FA was sig-

nificantly stronger in the mTBI than in the non-mTBI group

(Figure 3a).

3.5 | Interaction effect of mTBI excluding older
veterans

Finally, we conducted a confirmatory analysis, excluding the two

cohorts with Veterans from the Vietnam-era (n = 576), in 899 partici-

pants. We identified a significant interaction (Table 6 and Table S8)

between age and mTBI while adjusting for sex, PTSD diagnosis,

depression diagnosis, and site/scanner in component 12 (p = .012).

FA values were negatively associated with age (as expected), but the

association between age and lower FA was significantly stronger in

the mTBI than in the non-mTBI group (Figure 3b). Due to the confir-

matory nature of this analysis, an FDR correction was not imposed.

4 | DISCUSSION

The present study applied data-driven multivariate analyses to diffu-

sion imaging and clinical data accessed through the ENIGMA Military

Brain Injury working group (Dennis et al., 2020). We identified covary-

ing patterns of fluctuation in voxel FA values, referred to as compo-

nents, that were associated with TBI diagnosis. In four components,

age-dependent effects in lower FA were significantly stronger in the

TBI group than in the non-TBI group while adjusting for sex, PTSD

diagnosis, depression diagnosis, and site/scanner. When our dataset

TABLE 2 Model 1: effect of TBI, controlling for age, sex, PTSD diagnosis, depression diagnosis, and site/scanner

Component number Voxel number Beta estimate Standard error T statistic Degree of freedom Confidence interval p value

1 30,217 0.00028 0.00147 0.190 1,469 �0.003, 0.003 .849

2 8,729 �0.00138 0.00189 �0.732 1,469 �0.005, 0.002 .464

3 4,117 0.00145 0.00259 0.557 1,469 �0.004, 0.007 .577

4 12,615 �0.00040 0.00168 �0.241 1,469 �0.004, 0.003 .810

5 4,084 �0.00299 0.00327 �0.915 1,469 �0.009, 0.003 .360

6 13,525 �0.00098 0.00144 �0.680 1,469 �0.004, 0.002 .497

7 10,740 �0.00010 0.00203 �0.050 1,469 �0.004, 0.004 .960

8 7,862 �0.00055 0.00183 �0.301 1,469 �0.004, 0.003 .764

9 5,764 0.00008 0.00182 0.043 1,469 �0.003, 0.004 .966

10 5,714 �0.00168 0.00196 �0.859 1,469 �0.006, 0.002 .391

11 5,719 �0.00195 0.00217 �0.899 1,469 �0.006, 0.002 .369

12 8,053 0.00058 0.00185 0.314 1,469 �0.003, 0.004 .754

TABLE 3 Model 1: interaction of TBI and age, adjusting for sex, PTSD diagnosis, depression diagnosis, and site/scanner

Component
number

Voxel
number

Beta
estimate

Standard
error T statistic

Degree of
freedom Confidence interval p value q value

1 30,217 �0.00023 0.00009 �2.518 1,468 �0.0005, �0.0001 .012** 0.036**

2 8,729 �0.00025 0.00012 �2.198 1,468 �0.0004, �0.00002 .028* 0.066*

3 4,117 �0.00013 0.00016 �0.838 1,468 �0.0004, 0.0002 .402 0.439

4 12,615 �0.00028 0.00010 �2.757 1,468 �0.0005, �0.0001 .006** 0.036**

5 4,084 �0.00027 0.00020 �1.356 1,468 �0.0007, 0.0001 .175 0.210

6 13,525 �0.00023 0.00009 �2.597 1,468 �0.0004, �0.0001 .009** 0.036**

7 10,740 �0.00026 0.00012 �2.108 1,468 �0.0005, �0.00002 .035* 0.066*

8 7,862 �0.00023 0.00011 �2.012 1,468 �0.0004, �0.00001 .044* 0.066*

9 5,764 �0.00022 0.00011 �2.015 1,468 �0.0004, �0.00001 .044* 0.066*

10 5,714 �0.00009 0.00012 �0.725 1,468 �0.0003, 0.0001 .469 0.469

11 5,719 �0.00025 0.00013 �1.916 1,468 �0.0005, 0.00001 .056 0.075

12 8,053 �0.00032 0.00011 �2.82 1,468 �0.0005, �0.0001 .005** 0.036**

*p < .05. **Survived FDR correction (p < .012).
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F IGURE 2 Model 1: interaction between age and TBI. Four components showed a significant interaction between TBI status and age in the
total sample (n = 1,475). Component 1, component 4, component 6, and component 12 all displayed age-dependent effects of lower FA that
were stronger in TBI than non-TBI groups

TABLE 4 Model 2: effect of mild TBI, controlling for age, sex, PTSD diagnosis, depression diagnosis, and site/scanner

Component number Voxel number Beta estimate Standard error T statistic Degree of freedom Confidence interval p value

1 30,217 0.0004 0.00165 0.235 1,268 �0.0028, 0.0036 0.814

2 8,729 0.0008 0.00189 0.411 1,268 �0.0029, 0.0045 0.681

3 4,117 0.0013 0.00236 0.562 1,268 �0.0033, 0.0060 0.574

4 12,615 0.0006 0.00175 0.319 1,268 �0.0029, 0.0040 0.750

5 4,084 0.0007 0.00283 0.254 1,268 �0.0048, 0.0063 0.799

6 13,525 0.0001 0.00158 0.048 1,268 �0.0030, 0.0032 0.962

7 10,740 0.0007 0.00214 0.306 1,268 �0.0035, 0.0049 0.760

8 7,862 �0.0002 0.00163 �0.147 1,268 �0.0034, 0.0030 0.883

9 5,764 0.0004 0.00198 0.207 1,268 �0.0035, 0.0043 0.836

10 5,714 �0.0006 0.00205 �0.277 1,268 �0.0046, 0.0034 0.782

11 5,719 �0.0005 0.00223 0.015 1,268 �0.0043, 0.0044 0.988

12 8,053 0.0009 0.00197 0.458 1,268 �0.0030, 0.0048 0.647
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was constrained to mTBI, the same age-dependent difference in FA

remained in one component and was further identified when our data

included a more homologous sample of Veternas from the Iraq and

Afghanistan military operations. Our findings indicate that mapping

FA patterns in diffusion data, defined by data-driven methods, is an

effective means to ascertain the impact of mTBI on WM organization

in a manner that is unconstrained by predefined neuroanatomical

tracts.

Military-related mTBI involves unique mechanisms of injury

including exposure mechanisms, comorbidities, and biological factors

that may produce inter-individual and spatial heterogeneity across

white matter. Extensive evidence supports that blast TBI encom-

passes a unique pathophysiology (Goeller, Wardlaw, Treichler,

O'Bruba, & Weiss, 2012; Salzar, Treichler, Wardlaw, Weiss, &

Goeller, 2017), and repetitive exposure, which is commonly experi-

enced in military conflicts, appears to have a dose–response relation-

ship on white matter (Taber et al., 2015). After a head injury, which is

often coincident with combat trauma, military personnel are at an

increased risk of developing PTSD and depression (Stein et al., 2019)

that negatively impact white matter (Davenport, Lim, &

Sponheim, 2015; Dennis et al., 2019; Matthews et al., 2011). NMF

can overcome this resulting heterogeneity by comparing subject-

specific coefficients derived for each component (Matrix H), where

components are defined with a multivariate data-driven approach,

highlighting its power for future mTBI analyses. However, this method

should be used with caution because component identification may

TABLE 5 Model 2: interaction of mild TBI and age, adjusting for sex, PTSD diagnosis, depression diagnosis, and site/scanner

Component number Voxel number Beta estimate Standard error T statistic

Degree of

freedom Confidence interval p value q value

1 30,217 �0.0003 0.00011 �2.515 1,267 �0.0005, �0.0001 .012* 0.072*

2 8,729 �0.0002 0.00013 �1.198 1,267 �0.0004, 0.0001 .231 0.308

3 4,117 �0.0003 0.00016 �1.75 1,267 �0.0006, 0.00003 .080 0.137

4 12,615 �0.0002 0.00012 �2.057 1,267 �0.0005, �0.00001 .040* 0.134*

5 4,084 �0.0001 0.00019 �0.669 1,267 �0.0005, 0.0002 .504 0.550

6 13,525 �0.0002 0.00011 �1.834 1,267 �0.0004, 0.00001 .067 0.134

7 10,740 �0.0003 0.00014 �1.896 1,267 �0.0006, 0.00001 .058 0.134

8 7,862 �0.0002 0.00011 �1.62 1,267 �0.0004, 0.00004 .105 0.158

9 5,764 �0.0002 0.00013 �1.838 1,267 �0.0005, 0.00002 .066 0.134

10 5,714 �0.00007 0.00014 �0.493 1,267 �0.0003, 0.0002 .622 0.622

11 5,719 �0.0002 0.00015 �1.107 1,267 �0.0005, 0.0001 .268 0.322

12 8,053 �0.0004 0.00013 �2.87 1,267 �0.0006, �0.0001 .004** 0.048**

*p < .05. **Survived FDR correction (p < .004).

F IGURE 3 Model 2: Interaction between age and mild TBI. Component 12 showed a significant interaction between mTBI status and age.
The interaction in A was assessed in the sample (n = 1,274) of cohorts who only recruited mild TBI. The interaction in B further included a sample
(n = 899) of cohorts who only recruited military personnel who served in the Iraq and Afghanistan military operations
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be biased by systematic data quality issues. We still identified age-

dependent differences in our NMF-derived components even when

adjusting for highly comorbid disorders like PTSD and depression.

White matter microstructural disruptions, in the form of lower FA, are

associated with depression in Veterans with co-occurring PTSD and

TBI compared with Veterans with depression alone (Isaac et al., 2015;

Matthews et al., 2011). Similarly, FA reductions are found in patients

with both TBI and PTSD compared to TBI alone (Lepage et al., 2018).

Controlling for the variance of these comorbid disorders is informative

in understanding the complex factors that influence the relationship

between TBI and white matter organization in military personnel.

Studies of military mTBI have yielded inconsistent findings on

which WM tracts are affected and whether FA is increased or

decreased (Asken et al., 2018). Published studies report lower FA after

remote mTBI (Davenport, Lim, Armstrong, & Sponheim, 2012; Petrie

et al., 2014), lack of significant mTBI effects (Hayes, Miller, Lafleche,

Salat, & Verfaellie, 2015; Jorge et al., 2012; Sorg et al., 2016), and ele-

vated FA in a sample similar to the present (Dennis et al., 2018). These

inconsistencies may be due to the variability in mechanism and etiol-

ogy surrounding mTBI. NMF is well suited to tackling inter-individual

spatial heterogeneity because our components are not neuro-

anatomically constrained by tract-based ROI definitions, and at the

same time, our method avoids the excessive burden of multiple com-

parison correction that plagues whole-brain voxel-wise methods

(e.g., TBSS). Instead, NMF identifies patterns of FA-fluctuation within

the data unrelated to any previously defined ROIs. Each component

with significant findings was composed of portions of multiple neuro-

anatomical white matter tracts. Prior data-driven studies, which avoid

these barriers, have demonstrated widespread white matter damage

in military personnel and Veterans with mTBI (Davenport et al., 2012;

Miller, Hayes, Lafleche, Salat, & Verfaellie, 2016; Morey et al., 2013;

Taber et al., 2015). NMF constrains the coefficients to positive values

and uses a parts-based representation, which may be more interpret-

able than components derived from principal component analysis or

independent component analysis. Prior findings applying NMF to

healthy subjects identified NMF-derived patterns of gray matter

structural covariance that differed anatomically, but aligned closely

with functionally defined brain networks (Sotiras et al., 2015). Future

studies of mTBI should continue to consider hypothesis-generating

approaches such as NMF to further discern effects of mTBI as well as

correlate data-derived patterns with post-injury functional

outcome data.

Upon visual inspection, qualitative features that characterize the

spatial distribution of the 12 components within the brain are note-

worthy (Figure S2). The 12 components display a high degree of left–

right hemispheric symmetry, a similar type of symmetry has been

identified previously with NMF in patterns of gray matter (Sotiras

et al., 2017). Component 12, which remained significant in all three

analyses, shows anterior–posterior symmetry that affects WM almost

exclusively in the frontal and occipital poles. In addition, component

12, along with component 4 and component 1, were the most periph-

erally located. While component 4 and component 1 did not remain

significant after multiple comparison correction in the model consider-

ing only mTBI, these three peripheral components trended to exhibit

stronger age-dependent associations for lower FA in military person-

nel with mTBI. However, component 6 was significant when Veterans

with moderate to severe TBI were included in the model. Contrast-

ingly, component 6 encompasses more centralized white matter

tracts, including hippocampal regions. Such a pattern is consistent

with findings of damage to deep central structures typically limited to

more severe injuries (Wilde et al., 2007).

Component 12 was the only component that remained significant

across all three models. It primarily spanned the forceps major of the

splenium, bilateral inferior fronto-occipital fasciculus (IFOF), and bilat-

eral inferior longitudinal fasciculus (ILF). One case study of a lesion in

the forceps major described persistent deficits in the manipulation of

visuo-spatial information and specific types of navigation (Tamura

et al., 2007), while global alexia was observed in other patients with

TABLE 6 Model 3: interaction of mild TBI and age, adjusting for sex, PTSD diagnosis, depression diagnosis, and site/scanner after the removal
of older Vietnam-era Veterans

Component number Voxel number Beta estimate Standard error T statistic Degree of freedom Confidence interval p value

1 30,217 �0.0003 0.00019 �1.574 892 �0.0007, 0.0001 .116

2 8,729 �0.0001 0.00021 �0.668 892 �0.0006, 0.0003 .504

3 4,117 �0.0003 0.00027 �0.940 892 �0.0008, 0.0003 .347

4 12,615 �0.0002 0.00019 �1.108 892 �0.0006, 0.0002 .268

5 4,084 �0.0001 0.00032 �0.443 892 �0.0008, 0.0005 .658

6 13,525 �0.0003 0.00018 �1.517 892 �0.0006, 0.0001 .130

7 10,740 �0.0003 0.00024 �1.157 892 �0.0008, 0.0002 .247

8 7,862 �0.0002 0.00018 �1.240 892 �0.0005, 0.0001 .215

9 5,764 �0.0003 0.00022 �1.534 892 �0.0008, 0.0001 .125

10 5,714 �0.0001 0.00022 �0.550 892 �0.0006, 0.0003 .583

11 5,719 �0.0003 0.00026 �1.220 892 �0.0008, 0.0002 .223

12 8,053 �0.0006 0.00023 �2.531 892 �0.0010, �0.0001 .012*

*p < .05.
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injuries to this tract (Binder & Mohr, 1992). Studies using ele-

ctrostimulation to the left IFOF resulted in deficits in semantic

processing, specifically semantic paraphasia (Duffau et al., 2005;

Duffau, Gatignol, Mandonnet, Capelle, & Taillandier, 2008; Moritz-

Gasser, Herbet, & Duffau, 2013) as well as non-verbal semantic dis-

ruptions (Moritz-Gasser et al., 2013). In addition, lower FA in the left

IFOF has been correlated with worse semantic processing perfor-

mance (Han et al., 2013). Stimulation to the right IFOF resulted in spa-

tial cognition disruptions. Studies in stroke patients with damage to

the right hemisphere spanning the right IFOF found left spatial

neglect (Karnath, Rorden, & Ticini, 2009; Urbanski et al., 2011). Lastly,

damage to the left ILF has been correlated with orthographic

processing (Wang et al., 2020), while case studies of damage to the

right ILF have visual hypoemotionality deficits (Fischer et al., 2016).

Therefore, FA disruption of component 12 may be associated with

several cognitive processes including visual attention, spatial cogni-

tion, semantic processing, and the integration of visual information

and emotionality. However, the present study does not currently have

neuropsychological test data to test these hypotheses.

Our results provide cross-sectional evidence that age-related

decline in WM integrity is greater in individuals who experience mTBI.

Relatedly, a trained machine learning algorithm that estimated brain

age from the gray and white matter intensities of T1-weighted MRI

found the brains of TBI participants appeared 5–6 years older than

the participants' chronological age (Cole et al., 2015). Using a whole-

brain voxel-wise method in military Veterans exposed to blast forces,

Trotter et al. (2015) similarly reported greater FA reductions with

advanced age compared to blast unexposed Veterans. Even more con-

cerning is the reported link between the chronic effects of TBI and

neurodegenerative disorders, which exhibit progressive atrophy on

structural MRI and FA decline of white matter based on DTI

(Esopenko & Levine, 2015; McKee & Robinson, 2014). This evidence

heightens concerns about TBI exposure and neurodegenerative disor-

ders typically associated with advanced age, such as Alzheimer's dis-

ease, Parkinson's disease, or amyotrophic lateral sclerosis.

It is possible that our finding of stronger age-dependent associa-

tions of lower FA in TBI could be explained by a single cohort of older

Veterans in our sample with moderate/severe TBI (ADNI-DoD), while

the other cohorts in our sample were restricted to mTBI. This is worth

noting particularly when coupled with evidence of a link between

increased TBI severity and neurodegenerative disease later in life

(Crane et al., 2016; Plassman & Grafman, 2015). To explore this

assumption, we conducted an analysis after excluding this older mod-

erate/severe TBI cohort. Our results yielded the same age-dependent

associations in one component even after a multiple comparison cor-

rection, which exhibited lower FA for military personnel with mTBI

compared to military personnel without mTBI. This effectively demon-

strates our initial significant finding in component 12 using the total

sample was not driven by moderate and severe TBI in our older

cohort. To ensure this finding was also not confounded by military

personnel from a different era and theater experienced by our older

Vietnam-era Veterans, we explored a confirmatory analysis excluding

a second older cohort (VETSA). The same age-dependent association

of lower FA in component 12 remained regardless of the restriction in

age, sample size, and military era.

While it is unclear why the younger participants' FA is greater in

the TBI group than the non-TBI group, some explanations may be

ventured. It is possible that young military personnel have differences

in FA prior to an exposure to a blast or impact event, which may influ-

ence whether they report symptoms sufficient to meet criteria and be

diagnoses with mTBI. In addition to this theory, military personnel

with lower FA could experience more difficulty recalling events lead-

ing to the inability to meet criteria for mTBI during a retrospective

interview at a younger age. More likely, younger military personnel

may exhibit higher FA for a period of time after injury due to their

recovery process. Acute inflammation could contribute to this higher

FA (Kimura-Ohba et al., 2016; Yang et al., 1999); however, this sce-

nario is also unlikely due to the remoteness in time between the

mTBI-related event and data collection. Regardless, this might offer

insight into the inconsistent results in the literature, where some stud-

ies report higher FA and some report lower FA in mTBI. However,

these hypotheses can only be tested in a longitudinal design where

diffusion imaging is acquired pre- and post-exposure. Such a design

could further incorporate multiple post-exposure scans to confirm

that age-related FA changes are indeed accelerated by TBI, which can

only be inferred by the present cross-sectional design.

The data for this analysis were combined across nine cohorts

including data acquisition site/scanner as a random effect in a mixed

effects analysis. We evaluated leading methods to harmonize our dif-

fusion imaging data across sites/scanners with particular emphasis on

ComBat (Fortin et al., 2017; Hatton et al., 2020). ComBat is a method

for harmonization of data from multiple sites or scanners using an

empirical Bayesian method. Unfortunately, ComBat performance has

only been tested for harmonizing data with as few as 20 samples per

site, but not smaller. Several sites/scanners in our dataset consisted of

fewer than 20 participants. Excluding these small sites would result in

a dramatic attrition of our overall sample size. The ENIGMA Brain

Injury consortium is also working on procedures to harmonize TBI-

specific clinical, symptom, and exposure parameters such as time since

injury, mechanism, combat-specific vs deployment-specific injuries,

blast-related vs impact-related injuries, post-concussive symptoms,

and cognitive functioning. Such procedures are expected to remove

site/scanner-associated variance from the mean-FA within compo-

nents for improved attribution to TBI-associated variance. Neverthe-

less, we were able to identify patterns of disrupted white matter

regardless of differences in scanning protocols and clinical assess-

ments across sites by taking advantage of mixed-effects modeling to

adjust for site/scanner effects. Indeed, previous reports from

ENIGMA suggest that the results from a mixed-effects mega-analysis

are comparable to performing data harmonization with ComBat

(Radua et al., 2020).

Combining neuroimaging datasets accessed through ENIGMA has

allowed us to increase our sample size and using an approach like

NMF has allowed us to reduce high-dimensional neuroimage data,

which provides increased power to detect smaller effect sizes. For

instance, the weakest effect size among our significant findings was
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d = 0.17. Sample size estimation reveals that detecting this effect size

with 95% power requires approximately 200 participants (Faul,

Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, &

Buchner, 2007), which has been rare in the TBI literature. Further,

there is a significant push within the scientific community to produce

replicable results for brain-wide associations that require large

consortia-type sample sizes (Marek et al., 2020). Performing large-

scale analyses across sites may also add to the goal of precision medi-

cine (Thompson et al., 2020). Ongoing and future efforts to combine

neuroimaging data from multiple cohorts will help to unravel the com-

plexities and resolve inconsistencies in the TBI literature by increasing

statistical power to detect differences that may be missed or irrepro-

ducible with smaller, underpowered samples.

5 | LIMITATIONS

While our results are informative, the study has some limitations.

First, it may be argued that our components could have been derived

from our non-TBI sample in order not to bias the selection of voxels

that were subsequently compared to our TBI and mTBI groups.

Rather, we chose to derive our components from the entire dataset to

ensure significant power for the data-driven analysis and to eliminate

the possibility of confounding factors associated with only our non-

TBI sample. The sample was obtained from nine cohorts that acquired

diffusion-imaging data from 44 different sites and/or scanners, some

with few participants per site. It may be beneficial to remove sites

with limited sample size or harmonize the data prior to analysis as dis-

cussed above (Fortin et al., 2017; Radua et al., 2020). DTI analysis also

have their own technique limitations such as incorrect estimations of

fiber directions due to crossing, diverging, or kissing fibers. Future

analyses can adopt more sophisticated methods for data collection

such as high angular resolution diffusion imaging, diffusion spectrum

imaging, or Q-ball imaging (Glenn et al., 2016; Soares, Marques,

Alves, & Sousa, 2013). In addition, a major challenge of research in

military mTBI is that most studies depend on participant recollection

and self-report regarding exposures and symptoms often incurred

during particularly chaotic times. This is generally deemed less reliable

than contemporaneous accounts recorded by observers in the field.

Furthermore, our study focused primarily on remote mTBI, so our

results may not apply to the consequences of acute or subacute mTBI.

Consortium efforts are underway to increase the sample size of our

datasets and harmonize future variables such as time since injury,

number of injuries, current symptomology, and cognitive outcomes

that will be explored in future analyses.

6 | CONCLUSION

We used NMF, an unsupervised, data-driven method, to capture pat-

terns of fluctuation across the white matter in the brain in a sample of

military personnel accessed through the ENIGMA military brain injury

working group. We identified significantly stronger age-dependent

effects of lower FA in the military personnel with a TBI compared to a

military non-TBI group. When our sample was constrained to only

mTBI, we continued to see the same age-dependent effect of lower

FA for military personnel with mTBI even when controlling for poten-

tially confounding clinical diagnoses. These findings highlight the

power of combining data to perform large-scale analyses across sites.

Use of data-driven methods may help to uncover the heterogeneous

patterns of white matter damage resulting from military-related mTBI

and may uncover injury patterns in the brain unrelated to our current

understanding of brain structure.
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