
University of California
Santa Barbara

Data Mining in Neuroscience and Healthcare

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yun Zhao

Committee in charge:

Professor Linda Petzold, Chair
Professor Yu-Xiang Wang
Professor Tao Yang

June 2021

The Dissertation of Yun Zhao is approved.

Professor Yu-Xiang Wang

Professor Tao Yang

Professor Linda Petzold, Committee Chair

April 2021

Data Mining in Neuroscience and Healthcare

Copyright c© 2021

by

Yun Zhao

iii

To my parents,

Yueying Li and Jianbing Zhao, who provided me with

unconditional love and support

iv

Acknowledgements

First and foremost, my deepest gratitude goes to my Ph.D. advisor, Prof. Linda

Petzold. I’m grateful to have benefited tremendously from her broad knowledge in the

field, her trust and her attention to details. Prof. Linda led me to the research areas

of data mining, neuroscience and healthcare and provided me with endless support. I

have always felt enlightened when she generously shared her invaluable experience in

her research career and life. I always remembered the details she shared with me every

Monday happy hour, which makes my best activities during the pandemic. She inspired

me in so many ways that helped shape who I am today. I am truly thankful for her

guidance.

Next I would like to thank Prof. Yuxiang Wang and Prof. Tao Yang for serving on

my committee and providing insightful comments on my dissertation and defense. Prof.

Yuxiang sometimes challenge me to make me think harder and deeper, which I appreciate

a lot. Prof. Tao gave me lots of valuable advice for my professional career planning.

I am also very lucky to have worked with many brilliant people. I owe my thanks to

my collaborators: Prof. Paul Hansma and Dr. Ken Tovar. Not only did they help me

significantly in every piece of my work, but also I learned a lot from them during our

collaborations. I also want to thank my lab mates and friends who have inspired me and

supported me. My Ph.D. journey was a very pleasant experience because of them.

Last but not least, I would like to express my special thanks to my family, my friends,

and my loved ones. They always show care and support unconditionally, which greatly

encourage me to overcome any barriers throughout my Ph.D. life.

v

Curriculum Vitæ
Yun Zhao

Education

2021 Ph.D. in Computer Science, University of California, Santa Barbara.

2020 M.S. in Computer Science, University of California, Santa Barbara.

2016 M.E. in Electronic Engineering, Tsinghua University.

2012 B.A. in Electronic Engineering, Zhejiang University.

Professional Experience

Summer 2020 Machine Learning Software Engineer Intern, Facebook, Menlo Park,
CA.
Topic: Text Asset Selection in Ads Creation

Publications

Yun Zhao, Qinghang Hong, Xinlu Zhang, Yu Deng, Yuqing Wang, PaulK. Hansma, and
Linda Petzold, ”BERTSurv: BERT based Survival Models for Predicting Outcomes for
Trauma Patients”, to appear in ICDM 2021.

Yuqing Wang*, Yun Zhao*, Rachael Callcut, and Linda Petzold, ”Influence of ma-
chine learning configurations on Multiple Organ Failure (MOF) Prediction for Trauma
Patients”, to appear in ICDM 2021.

Yun Zhao, Franklin Ly, Qinghang Hong, Tyler Santander, Henry T. Yang, Paul K.
Hansma, and Linda Petzold, How Much Does It Hurt: A Deep Learning Framework for
Chronic Pain Score Assessment, in DMBIH 2020, Sorrento, Italy, Nov. 2020.

Yun Zhao, Richard Jiang, Zhenni Xu, Elmer Guzman, Paul K. Hansma and Linda
Petzold, Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array
Recordings, in BIOKDD 2020 , San Diego, USA, Aug. 2020.

Yun Zhao, Elmer Guzman, Morgane Audouard, Zhuowei Cheng, Paul K. Hansma,
Kenneth S. Kosik, and Linda Petzold, A Deep Learning Framework for Classification of
in vitro Multi-Electrode Array Recordings, in ICDM 2019, New York, USA, Jul. 2019.

Yun Zhao, ”An Auxiliary Classifier Generative Adversarial Framework for Relation
Extraction.” arXiv preprint arXiv:1909.05370 (2019).

Yun Zhao, Sheng Zhou, Tianchu Zhao, and Zhisheng Niu, Energy-Efficient Task Of-
floading for Multiuser Mobile Cloud Computing, in IEEE ICCC 2015, Shenzhen, China,
Nov. 2015.

Xinyi Zhang, Shiliang Tang, Yun Zhao, Gang Wang, Haitao Zheng and Ben Y. Zhao,
Cold Hard E-Cash: Friends and Vendors in the Venmo Digital Payments System, in
ICWSM 2017.

vi

Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu, A Cooperative
Scheduling Scheme of Local Cloud and Internet Cloud for Delay-Aware Mobile Cloud
Computing, in IEEE Globecom Workshop 2015, San Diego, CA, USA, Dec. 2015.

Yangtian Yan, Bangcheng Sun, Yun Zhao, Zhenhui Huang, Hui Yang, and Jian Song, A
Bi-directional Visible Light Communication System Based on DTMB-A, in IEEE VTC
2016, Nanjing, China, May, 2016.

Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu, A Cooperative
Scheduling Pricing Policy and Computational Resource Provisioning for Delay-aware
Mobile Edge Computing, in IEEE ICCC 2016, Xian, China, Jul. 2016.

Yun Zhao, Energy-efficient Resource Allocation in Mobile Cloud Computing, Master
Thesis.

In Submission

Xinlu Zhang*, Yun Zhao*, Rachael Callcut, and Linda Petzold, Multiple Organ Failure
Prediction with Classifier-Guided Generative Adversarial Imputation Networks.

Zhuowei Cheng, Franklin Ly, Tyler Santander, Elyes Turki, Yun Zhao, Henry Yang,
Michael Miller, Paul Hansma, Linda Petzold, Quantification of Chronic Pain from Phys-
iological Data.

Awards and Honors

2016 - 2021 Chancellors Fellowship (Only one in CS Department), UCSB.

2017 Summer Research Project Fellowship, UCSB.

2016 Holbrook Fellowship (annually awarded to 6 freshmen), UCSB.

2015, 2014 Department Set Scholarship (Only one in the Communication Class),
Tsinghua University.

Professional Service

Served as reviewer for a number of computer science journals, including:

IEEE Transactions on Green Communications and Networking,

Journal of Communications and Information Networks,

Peer-to-Peer Networking and Applications.

vii

Abstract

Data Mining in Neuroscience and Healthcare

by

Yun Zhao

Statistical methods, and in particular deep learning models, have achieved remarkable

success in computer vision, speech recognition, and natural language processing due to the

availability of powerful computational resources. Recently, neuroscience and healthcare

have entered an exciting new age. Modern recording technologies, like Multi-Electrode

Arrays (MEA) and electronic health records (EHR), offer unprecedented opportunities

to explore neural systems and to improve health care. At the same time, they present

extraordinary computational and statistical challenges. This Ph.D. dissertation presents

knowledge we mined from neuroscience data and healthcare data.

In the neuroscience data mining part, we propose a deep learning framework for MEA

classification of mouse and human derived induced Pluripotent Stem Cell recordings. We

also introduce a scalable Bayesian framework for inference of functional neural networks

from MEA data.

In the healthcare mining part, we first perform quantitative analysis on early multiple

organ failure (MOF) prediction with comprehensive machine learning (ML) configura-

tions, including data preprocessing (missing value treatment, label balancing, feature

scaling), feature selection,classifier choice), and hyperparameter tuning. We introduce

BERTSurv, a deep learning survival framework which applies Bidirectional Encoder

Representations from Transformers (BERT) as a language representation model on un-

structured clinical notes, for mortality prediction and survival analysis. We propose

classifier-guided generative adversarial imputation networks (Classifier-GAIN) for MOF

viii

prediction, by incorporating both observed data and label information. Finally, we pro-

pose an end-to-end deep learning framework for chronic pain score assessment.

In the end, we summarize the strengths, weaknesses, and implications of our work,

and discuss future research directions.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Data Mining in Multi-Electrode Array Recordings 2
1.2 Data Mining in Healthcare . 3

Part I Data Mining in Multi-Electrode Array Recordings 6

2 Classification of Multi-Electrode Array Recordings 7
2.1 Introduction . 7
2.2 Data Collection and Classification . 9
2.3 Deep Learning Model . 15
2.4 Experimental Setup . 16
2.5 Empirical Evaluation . 18
2.6 Discussion . 23

3 Scalable Bayesian Functional Connectivity Inference for Multi-Electrode
Array Recordings 24
3.1 Introduction . 24
3.2 Data Collection . 27
3.3 Probabilistic Model . 28
3.4 Bayesian Inference . 32
3.5 Split . 32
3.6 Results on Synthetic Data . 33
3.7 Results on Real Data . 38
3.8 Related Work . 42
3.9 Discussion . 43

x

Part II Data Mining in Healthcare 47

4 Empirical Analysis of Machine Learning Configurations for Prediction
of Multiple Organ Failure in Trauma Patients 48
4.1 Introduction . 48
4.2 Dataset . 50
4.3 Methods . 51
4.4 Experiments and Results . 58
4.5 Discussion . 68

5 Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks 69
5.1 Introduction . 69
5.2 Preliminaries . 72
5.3 Methodology . 75
5.4 Experiments . 81
5.5 Related Work . 94
5.6 Conclusion . 96

6 BERTSurv: BERT-Based Survival Models for Predicting Outcomes of
Trauma Patients 98
6.1 Introduction . 98
6.2 Dataset . 100
6.3 Methods . 101
6.4 Experiments and Analysis . 106
6.5 Discussion . 114

7 How Much Does It Hurt: A Deep Learning Framework for Chronic
Pain Score Assessment 115
7.1 Introduction . 115
7.2 Related Work . 118
7.3 Data Collection and Classification . 120
7.4 Methodology . 126
7.5 Experimental Setup . 128
7.6 Results and Analysis . 130
7.7 Optimizing the Pain Meter Design . 140
7.8 Discussion . 140

8 Conclusion and Future Work 142

Bibliography 143

xi

Chapter 1

Introduction

AI methods, and in particular deep learning models, have achieved remarkable success

in computer vision, speech recognition, and natural language processing due to the avail-

ability of powerful computational resources. Recently, neuroscience and healthcare have

entered an exciting new age. Modern recording technologies in neuroscience, like Multi-

Electrode Arrays (MEA), enable simultaneous measurements of thousands of neurons

activities. Similarly, more and more electronic health record (EHR) data are available.

Such recordings offer an unprecedented opportunity to learn the mechanistics in neu-

roscience and healthcare, but they also present an extraordinary computational and

statistical challenge: How do we make sense of these large scale recordings?

Significant work about trauma have been done by observing and studying individual

recordings or a small group of recordings. With the increasing ability to store and manage

recording data, and with the development of data mining and machine learning research,

more and more attention is going to the application of data mining and machine learning

techniques on recordings at a much larger scale. In this thesis, we demonstrate our uses

of the data-driven approaches to study MEA and electronic health recordings.

1

Introduction Chapter 1

1.1 Data Mining in Multi-Electrode Array Record-

ings

MEAs have been widely used to record neuronal activities, which could be used

in the diagnosis of gene defects and drug effects. In Chapter 2, we first address the

problem of classifying in vitro MEA recordings of mouse and human neuronal cultures

from different genotypes, where there is no easy way to directly utilize raw sequences as

inputs to train an end-to-end classification model [1]. While carefully extracting some

features by hand could partially solve the problem, this approach suffers from obvious

drawbacks such as difficulty of generalizing. We propose a deep learning framework to

address this challenge. Our approach correctly classifies neuronal culture data prepared

from two different genotypes — a mouse Knockout of the delta-catenin gene and human

induced Pluripotent Stem Cell-derived neurons from Williams syndrome. By splitting

the long recordings into short slices for training, and applying Consensus Prediction

during testing, our deep learning approach improves the prediction accuracy by 16.69%

compared with feature based Logistic Regression for mouse MEA recordings. We further

achieve an accuracy of 95.91% using Consensus Prediction in one subset of mouse MEA

recording data, which were all recorded at the age of six days in vitro. As high-density

MEA recordings become more widely available, this approach could be generalized for

classification of neurons carrying different mutations and classification of drug responses.

Also, with the advancement of MEA technology, it has become increasingly crucial

to develop statistical tools for analyzing multiple neuronal activity as a network. In

Chapter 3, we propose a scalable Bayesian framework for inference of functional networks

from MEA data [2]. Our framework makes use of the hierarchical structure of networks

of neurons. We split the large scale recordings into smaller local networks for network

inference, which not only eases the computational burden from Bayesian sampling but

2

Introduction Chapter 1

also provides useful insights on regional connections in organoids and brains. We speed

up the expensive Bayesian sampling process by using parallel computing. Experiments on

both synthetic datasets and large-scale real-world MEA recordings show the effectiveness

and efficiency of the scalable Bayesian framework. Inference of networks from controlled

experiments exposing neural cultures to cadmium presents distinguishable results and

further confirms the utility of our framework.

1.2 Data Mining in Healthcare

Multiple organ failure (MOF) is a life-threatening condition. Due to its urgency

and high mortality rate, early detection is critical for clinicians to provide appropriate

treatment. In Chapter 4, we perform quantitative analysis on early MOF prediction

with comprehensive machine learning (ML) configurations, including data preprocessing

(missing value treatment, label balancing, feature scaling), feature selection, classifier

choice, and hyperparameter tuning [3]. Results show that classifier choice impacts both

the performance and variation the most, among all of the configurations. In general,

complex classifiers including ensemble methods can provide better performance than

simple classifiers. However, blindly pursuing complex classifiers is unwise as it also brings

the risk of greater performance variation.

An important challenge in the application of machine learning models to electronic

health records (EHRs) is the pervasiveness of missing values. Most existing imputation

methods are applied in the data preprocessing phase, failing to capture the relation-

ship between data and outcome for downstream predictions. In Chapter 5, we propose

classifier-guided generative adversarial imputation networks (Classifier-GAIN) for MOF

prediction, by incorporating both observed data and label information. Specifically, the

classifier takes imputed values from the generator to predict task outcomes and provides

3

Introduction Chapter 1

additional supervision signals to the generator by joint training. The classifier-guided gen-

erator (imputer) can impute missing values with label-awareness during training, which

can improve the classifier’s performance during inference. We conduct experiments show-

ing that our approach consistently outperforms classical and state-of-art neural baselines

across a range of missing data scenarios and evaluation metrics.

Survival analysis is a technique to predict the times of specific outcomes, and is widely

used in predicting the outcomes for intensive care unit (ICU) trauma patients. Recently,

deep learning models have drawn increasing attention in healthcare. However, there is

a lack of deep learning methods that can model the relationship between measurements,

clinical notes and mortality outcomes. In Chapter 6, we introduce BERTSurv, a deep

learning survival framework which applies Bidirectional Encoder Representations from

Transformers (BERT) as a language representation model on unstructured clinical notes,

for mortality prediction and survival analysis [4]. We also incorporate clinical measure-

ments in BERTSurv. With binary cross-entropy (BCE) loss, BERTSurv can predict

mortality as a binary outcome (mortality prediction). With partial log-likelihood (PLL)

loss, BERTSurv predicts the probability of mortality as a time-to-event outcome (sur-

vival analysis). We apply BERTSurv on Medical Information Mart for Intensive Care

III (MIMIC III) trauma patient data. For mortality prediction, BERTSurv obtained

an area under the curve of receiver operating characteristic curve (AUC-ROC) of 0.86,

which is an improvement of 3.6% over baseline of multilayer perceptron (MLP) without

notes. For survival analysis, BERTSurv achieved a concordance index (C-index) of 0.7.

In addition, visualizations of BERT’s attention heads help to extract patterns in clinical

notes and improve model interpretability by showing how the model assigns weights to

different inputs.

Chronic pain is defined as pain that lasts or recurs for more than 3 to 6 months,

often long after the injury or illness that initially caused the pain has healed. The

4

Introduction Chapter 1

gold standard for chronic pain assessment remains self report and clinical assessment

via a biopsychosocial interview, since there has been no device that can measure it. A

device to measure pain would be useful not only for clinical assessment, but potentially

also as a biofeedback device leading to pain reduction. In Chapter 7, we propose an

end-to-end deep learning framework for chronic pain score assessment [5]. Our deep

learning framework splits the long time-course data samples into shorter sequences, and

uses Consensus Prediction to classify the results. We evaluate the performance of our

framework on two chronic pain score datasets collected from two iterations of prototype

Pain Meters that we have developed to help chronic pain subjects better understand their

health condition.

5

Part I

Data Mining in Multi-Electrode

Array Recordings

6

Chapter 2

Classification of Multi-Electrode

Array Recordings

2.1 Introduction

Deep learning models have achieved remarkable success in computer vision [6], speech

recognition [7], natural language processing [8] and the game of Go [9]. Recently there

has been increasing interest in using deep learning in end-to-end neuroscience data analy-

sis [10, 11, 12]. Inspired by biology, deep learning models share many common properties

with neuron functions. Deep learning models enable the extraction of information from

action potential recordings of neuron activity, playing a vital role in several important

neuron-based research and application areas [13].

Convolutional neural networks (CNN) can learn local patterns in data by using con-

volution filters as their key components [14]. Originally developed for computer vision,

CNN models have recently been shown to be effective for neuroscience data analysis.

Deep learning has recently been used to identify abnormal EEG signals [11]. In [10], re-

searchers designed an end-to-end EEG decoding for movement-related information using

7

Classification of Multi-Electrode Array Recordings Chapter 2

deep CNNs. With the latest development in fabrication of MEAs, a CNN was used to

classify different neuronal cell types using simulated in-vivo extracellular recordings [15].

However, most of the work in this area has focused on simulated data [15, 16] since

the experimental in vitro recordings are too noisy and there are not sufficient training

samples for deep learning models. Researchers have also manually extracted features for

deep learning training [15, 16]. However, this does not fully exploit the deep learning

model’s ability of end-to-end learning, which learns from the raw data without any prior

feature selection.

MEAs with advanced neural probes have been widely utilized to measure neuronal

activity by recording local field potential [17]. Since the same units are measured on

multiple recording sites, MEA recordings provide rich spatial information, which could

be used to help diagnose diseases and genetic abnormalities. Our objective in this work

has been to develop a deep learning framework which can distinguish MEA recordings of

different genotypes. For example, delta-catenin is a crucial brain-specific protein of the

adherens junction complex that localizes to the postsynaptic and dendritic compartments.

It is enriched in dendrites and can be localized to the post-synaptic compartment. Recent

studies indicate that delta-catenin is required for the maintenance of neural structure and

function in the mature cortex [18, 19, 20]. Williams syndrome (WS) is a neurodevelop-

mental disorder caused by a genomic deletion of about 28 genes [21, 22]. As a result of

this hemideletion, the subjects display a characteristic phenotype with mild to moderate

intellectual disability as well as behavioral features such as an outgoing personality and

conserved communication skills. Studying those genes is of particular interest in order

to decipher the social behaviors in humans [23].

In this chapter, we propose an end-to-end CNN architecture to classify in vitro MEA

recordings with different genotypes. We test our framework on mouse recordings to

classify Wild Type and delta-catenin Knockout. We also attempt to classify human

8

Classification of Multi-Electrode Array Recordings Chapter 2

derived induced Pluripotent Stem Cell (iPSC) neuron cultures from Williams syndrome

versus Control cultures. We split the long recordings into smaller slices for training to

provide more training samples, and then apply Consensus Prediction during testing.

The key contributions of this chapter include:

1) We propose a CNN based model to classify the genotype of in vitro MEA record-

ings, which outperforms Logistic Regression by 16.69%. To the best of our knowledge,

this is the first work using deep leaning to classify in vitro MEA recordings.

2) We split the long recordings into smaller slices for training, which not only eases

the burden on GPU memory but also provides many training samples for deep learning

models.

3) We define Consensus Prediction as the majority voting result of the sampled short

slices for testing, since not all of the short slices can be expected to contain enough useful

information. We achieve an accuracy of 95.91% using Consensus Prediction in one subset

of MEA recording data, which were all recorded at 6 days in vitro (DIV).

The rest of this chapter is organized as follows. Section 2.2 describes how our MEAs

are recorded and introduces the classification problem. We delineate the deep learning

model in Section 2.3 and describe the experimental setup in Section 2.4. Evaluation and

discussion are provided in Sections 2.5 and 2.6, respectively.

2.2 Data Collection and Classification

2.2.1 Mouse Neuron Culture

Commercial MEAs (MultiChannel Systems) were sterilized with UV irradiation for

> 30 minutes, incubated with poly-L-lysine(0.1 mg/ml) solution for at least one hour

at 37◦C, rinsed several times with sterile deionized water and allowed to dry before

9

Classification of Multi-Electrode Array Recordings Chapter 2

cell plating. Wild-type mice were in a C57BL/6 background and littermate controls

were obtained by breeding heterozygote male and female delta-catenin transgenic mice.

For the delta-catenin transgenic mice, a targeted mutation in the delta-catenin gene is

located within axon 9 of the delta-catenin locus and consists of a GFP reporter fused to

a PGK-hyygro-pA cassette followed by a stop condon, which results in the prevention

of transcription of the rest of the delta-catenin gene. Mouse pups were decapitated at

P0 or P1, the brains were removed from the skulls and the hippocampi were dissected

from the brain followed by manual dissociation and plating of 250,000 cells in the MEA

chamber [24]. After one week, cultures were treated with 200 µM glutamate to kill

any remaining neurons, followed by a new batch of cells added at the same density as

before. Cultures were grown in a tissue culture incubator (37◦C, 5% CO2), in a medium

made with Minimum Essential Media with 2 mM Glutamax (Life Technologies), 5%

heat-inactivated fetal calf serum (Life Technologies), 1 ml/L of Mito+ Serum Extender

(BD Bioscience) and supplemented with glucose to an added concentration of 21 mM.

All animals were treated in accordance with University of California and NIH policies on

animal care and use.

2.2.2 Culture of iPSCs Neurons

iPSCs were cultured in mTeSR1 media (Stem Cell Technologies) and routinely pas-

saged with ReleSR (Stem Cell Technologies). The cells were subsequently infected with

TetO-hNgn2-UBC-puro (plasmid from Addgene # 61474) and rtTA (plasmid from Ad-

dgene # 20342) lentiviruses. Briefly, the cells were passaged as single cells into 4 wells

with accutase (Life Technologies) and Y-27632 dihydrochloride (Tocris) at a final con-

centration of 10 M. On day 2 the cells were infected with hNgn2 in fresh mTeSR1 media.

On day 3, the infected iPSCs were selected by adding puromycin at 2 ug/ml for a 2 day

10

Classification of Multi-Electrode Array Recordings Chapter 2

period. The cells were infected with rtTA virus on day 5 and incubated overnight. The

neurons were differentiated by adding doxycycline at a final concentration of 2 ug/ml.

Two days after addition of doxycycline, the neurons were replated on poly-l-lysine coated

MEAs at a density of 180,000 cells concentrated in a 15 ul droplet. iPSCs-derived neurons

were cocultured with mouse primary astrocytes in BrainPhys complete medium (Stem

Cell Technologies). Doxycycline was kept in the media for 14 days total.

2.2.3 Electrophysiology

We used 120 electrode MEAs (120MEA100/30iR-ITO arrays; MultiChannel Systems)

for recording as is shown in Fig. 2.1. All recordings were performed in cell culture

medium so as to minimally disturb the neurons. The osmolality of the culture medium

was adjusted to 320 mosmol. Recordings were performed using MultiChannel Systems

MEA 2100 acquisition system. Data were sampled at 20 kHz. Recordings were performed

at 30◦C. All recordings were performed on neurons at 2-30 DIV. Data recordings were

typically 3 minutes long. The recording duration was controlled to minimize the effects

of removing MEAs from the incubator.

2.2.4 Spike Detection

For each MEA recording, we performed spike detection [25]. Extracellular signals were

band pass filtered using a digital 2nd order Butterworth filter with cutoff frequencies of

0.2 and 4 kHz. Spikes were then detected using a threshold of 5 times the standard

deviation of the median noise level. Since there are 120 electrodes in our MultiChannel

Systems, the spike detection result of a 3 min recording is a 120× 180000 shape matrix

made up of 1s and 0s, where 1 represents neuron firing and 0 represents not firing.

11

Classification of Multi-Electrode Array Recordings Chapter 2

Figure 2.1: Neural networks were grown on arrays of 120 electrodes. The purpose
of this research was to determine whether neural cultures derived from genetically
different neurons could be distinguished by analysis of their electrical activity.

12

Classification of Multi-Electrode Array Recordings Chapter 2

2.2.5 Classification

For the remainder of this chapter, Wild Type (WT) means that there is no gene

mutation. Knockout (KO) means that the gene delta-catenin is knocked out or not

expressed in the mouse neurons. WS is Williams syndrome neurons, compared with

Control. Fig. 2.2 shows Raster Plots for some sample mouse MEA recordings from WT

and KO. From the figure, the recording patterns vary drastically according to different

mice, different DIV and even different recording numbers. However, recordings of differ-

ent genotypes sometimes perform similarly. It is challenging for human eyes to distinguish

KO from WT. There are several reasons: 1. The recordings are noisy due to the errors

in measuring potentials and spike detection. 2. The firing pattern will change drastically

according to many factors like different DIV, different mice and even different recordings.

A deep learning classification framework is therefore introduced to automatically predict

the genotype, given an MEA recording.

We use two separate sets of MEA recordings in our classification: one dataset consists

of mouse neuron recordings to classify KO and WT, while the other dataset consists of

human iPSC neuron recordings to distinguish WS and Control human cells. Our mouse

recordings consist of 5 separate experiments (Exp1, Exp2, Exp3, Exp4, Exp5) and 331

180000 ms recordings in total, of which 198 recordings are WT and the remainder are

delta-catenin KO. Our iPSC recording data are made up of 12 WS recordings and 8

Control recordings. Considering the size of the two datasets, we randomly shuffle and

split the mouse MEA data into training, validation and testing by 70%, 10% and 20%,

while we apply 5-fold cross-validation for human iPSC recordings.

13

Classification of Multi-Electrode Array Recordings Chapter 2

(a) Different genotype (b) Different recording number

(c) Different DIVs (d) Different mice

0 90 180
Time(s)

0

40

80

120

El
ec
tr
od
e

I15313-Pup3-WT-6div-0002

0 90 180
Time(s)

0

40

80

120

El
ec
tr
od
e

I15048-Pup3-KO-6div-0002

0 90 180
Time(s)

0

40

80

120

El
ec
tr
od
e

I14186-Pup1-WT-16div-0001

0 90 180
Time(s)

0

40

80

120
El
ec
tr
od
e

I14186-Pup1-WT-16div-0002

0 90 180
Time(s)

0

40

80

120

El
ec
tr
od
e

I15077-Pup5-KO-4div-0001

0 90 180
Time(s)

0

40

80

120

El
ec
tr
od
e

I15306-Pup2-KO-6div-0002

0 90 180
Time(s)

0

20

40

60

80

100

120

El
ec
tr
od
e

I15048-Pup3-KO-6div-0001

Figure 2.2: Raster Plots of WT and delta-catenin KO. Blue represents WT and red
indicates delta-catenin KO. The title of each raster plot is formatted as ”MEA de-
vice-Mouse-Gene type-DIV-Record Number”. (a) KO and WT share some common
firing patterns. (b) Different recordings with the same gene type, as well as the same
DIV look different. (c) Recordings with the same mouse, the same gene type but
different DIV look different. (d) Recordings with the same gene type, the same DIV,
but different mouse look different.

14

Classification of Multi-Electrode Array Recordings Chapter 2

2.3 Deep Learning Model

The model architecture, shown in Fig. 2.3, consists of convolution-pooling layers

followed by fully connected layers. To learn temporal and spatial invariant features,

the convolution is performed on both time and space dimensions. We split the long

recordings into smaller slices with length of seq length. Detected spikes with shape

of (120, seq length) serve as input x for the neural network. A convolution operation

involves a filter w ∈ Rst, which is applied to a window of s electrodes and t ms to produce

a new feature. For example, a feature fi,j, (0 ≤ i ≤ 120−s+1, 0 ≤ j ≤ seq length−t+1)

is generated from a window size (s, t) of the spike train:

fi,j = ReLU(wxi:i+s−1,j:j+t−1 + b), (2.1)

where b ∈ R is a bias term. This filter is applied to each possible window of the spike

trains to produce a feature map:

f =

f1,1 f1,2 ... f1,seq length−t+1

f2,1 f2,2 ... f2,seq length−t+1

...

f120−s+1,1 f120−s+1,2 ... f120−s+1,seq length−t+1

, (2.2)

with f ∈ R120−s+1,seq length−t+1. We then apply a max-pooling operation over the feature

map and take the maximum value m = max f as the feature corresponding to this

particular filter. The idea is to capture the most important feature, the one with the

highest value, for each feature map. Our model uses multiple filters to obtain multiple

features. These features form the penultimate layer and are passed to a fully connected

softmax layer whose output is the probability distribution over two different genotypes.

We adjust the number of convolutional ReLU layers from 2 to 5, based on the choice of

15

Classification of Multi-Electrode Array Recordings Chapter 2

Convolutional
layer with multiple
filter widths and
feature maps

Segments with
seq_length = 4 ms Max pooling Fully connected layer

with dropout and
softmax output

3 minute recordings

176 178 180
Time(s)

0

40

80

120

E
le
ct
ro
d
e

0 2 4

0

40

80

120

Figure 2.3: Model architecture: 3 minute recordings of the electrical potentials mea-
sured on the 120 electrodes are collected from the neuron cultures. Segments with
seq length = 4 ms of these recordings are individually classified. These individual
classifications are conducted for Consensus Prediction in mouse MEA recordings.

seq length.

We use Batch Normalization [26] to accelerate training. For regulaization, dropout [27]

and early stopping methods [28] are implemented to avoid overfitting. Dropout prevents

co-adaptation of hidden units by randomly dropping out a proportion of the hidden

units during backpropagation. Model training is ended when no improvement is seen

during the last 100 validations. Softmax cross entropy loss is minimized with the Adam

optimizer [29] for training.

2.4 Experimental Setup

2.4.1 Training and Hyperparameters

We use 1 ms time bins for our spike train data, thus the dimensionality of time is

extremely high. For example, a slice of 10 seconds has 10,000 data points along the

time dimension. Thus, the CNN model has a very high demand for memory, while the

memory for the graphics processing unit (GPU) is limited. In practice, we randomly

16

Classification of Multi-Electrode Array Recordings Chapter 2

sample segments from each recording for training, which not only decreases the GPU

memory usage by reducing the dimensionality of time but also increases the number of

training samples. For example, if we use seq length of 1000ms, then a 180000ms recording

can provide 180 independent samples.

We implement the deep learning framework using Tensorflow [30] with the following

configurations. The (120, seq length) spike detected matrices (see Fig. 2.3) are input

to convolutional ReLU layers which filter the input spike train with 2 × 5 kernels and

stride of (1, 1). It is interesting to note several biologically inspired hyperparameters in

Table 2.1. Seq length is the slice length that we use to split the recordings. Kernel size

and stride in CNN correspond to propagation signals, synaptic coupling and correlation

between channels. Short latency, monosynaptic, interactions are in a range of 2-4 ms.

Propagation signals occurring between nearby electrodes have an average latency of 0.3

ms to 0.7 ms. We choose a kernel size of 2×5 and stride of (1, 1) to capture propagation

signals and synaptic coupling. Hyperparameters are described in Table 2.2. Max pooling

is then applied after each convolutional ReLU layer. The feature maps are input for fully

connected layers with 2 output nodes for the binary classification.

2.4.2 Testing

For testing, we define Consensus Prediction to measure the performance of predictions

for the whole recordings. Consensus Prediction synthesizes results from odd numbers of

short slices by majority voting, which can significantly improve the prediction accuracy

for a long recording. This is because not all of the short time-slices can be expected

to contain useful information. The results of mouse MEA recordings in Section 2.5 are

reported with Consensus Prediction.

17

Classification of Multi-Electrode Array Recordings Chapter 2

Table 2.1: Bio-inspired parameters
Para Biological Justification value
Seq length The appropriate slice length which can represent a recording 4000 ms
Kernel size Propogation signals (2,5)
Stride Synaptic coupling, correlation between channels (1,1)

Table 2.2: Hyperparameters
Hyperparameters Value
Batch size 24
Epoch 5000
Dropout rate 0.5

2.4.3 Implementation

We implement a framework that can distribute the convolutional neural network into

multiple (N) GPUs to ease the burden on GPU memory. Each GPU contains an entire

copy of the deep learning model. We first split the training batch evenly into N sub-

batches. Each GPU only processes one of the sub-batches. Then we collect gradients

from each replicate of the deep learning model, aggregate them together and update all

the replicates. With 3 NVIDIA GeForce GTX 1080s, each of which has a memory of

11178 MB, we can handle spike train segments of 14 seconds with batch size of 24.

2.5 Empirical Evaluation

We focus our evaluation mainly on the accuracy of predicting genotype. We use

Consensus Prediction, which is the majority voting result of the sampled short slices,

for the mouse recordings. We report the initial prediction accuracy of short slices for

human iPSC recordings without Consensus Prediction, since the recording experiments

18

Classification of Multi-Electrode Array Recordings Chapter 2

are better controlled.

2.5.1 Performance Analysis

Results of our framework compared against other machine learning models on mouse

recordings and human iPSC recordings are shown in Table 2.3 and Table 2.4 respectively.

We compare our CNN model with Multilayer Perceptron(MLP) and feature based Lo-

gistic Regression. We use a two layer MLP, which shares the same hyperparameters

with our model’s fully connected layers. For Logistic Regression, we first extract fea-

tures of firing rate and Pearson correlation coefficient between different electrodes for

each recording, and then classify neuron genotypes based on these two features. For

the mouse recordings, our CNN based deep learning approach improves the Consensus

Prediction accuracy by 16.69% compared with feature based Logistic Regression. Fig 2.4

shows the Consensus Prediction accuracy. The accuracy improves by 5.92% using Con-

sensus Prediction. Although not all of the short slices can be expected to contain enough

useful spike patterns, we can overcome that when we synthesize multiple individual clas-

sification results from these short slices. For the human iPSC recordings, we report the

prediction accuracy of short recording slices. Our model achieves accuracy of 96.18%

even without Consensus Prediction, which is a 15.59% improvement over feature based

Logistic Regression. Our CNN based deep learning model also outperforms MLP on

both of the two sets of recordings by 7.00% and 7.81% respectively, which shows CNN’s

advantage of local feature extraction using convolutional kernels over MLP.

Fig 2.5 shows the trend of accuracy versus the choice of seq length for human iPSC.

For the effect of seq length on accuracy, there exists a trade off between number of training

samples and representation of a whole recording. The short slices contain less information

but can provide more independent training samples. For deep learning models, larger

19

Classification of Multi-Electrode Array Recordings Chapter 2

0 25 50 75 100 125 150 175 200
Number of voting slices used for every recording

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91
Co

ns
en

su
s P

re
di

ct
io

n
ac

cu
ra

cy

Consensus Prediction accuracy vs. Number of voting slices

Figure 2.4: Consensus Prediction accuracy vs. number of short slices used for mouse
recordings.

Table 2.3: Consensus Prediction performance comparison of our deep learning model
with Multilayer Perceptrons and Logistic Regression on mouse recordings.

Model Accuracy on Testing
Convolutional Neural Network 0.8951
Multilayer Perceptron 0.8366
Logistic Regression 0.7671

numbers of training slices help more than a larger sample. However, we still cannot choose

too small of a seq length, since a too short slice is not representative for a recording. Given

the data we currently have, we use a seq length of 4000 ms.

Dropout proved to be such a good regularizer that it was fine to use a larger than

necessary network or train too many epochs and simply let dropout regularize it [31].

Dropout consistently added 2% - 4% relative performance. Our model converged best

with Adam optimizer compared with Vanilla gradient descent, Adagrad [32], Adadelta [33]

and RMSprop [34].

20

Classification of Multi-Electrode Array Recordings Chapter 2

0 2000 4000 6000 8000 10000 12000 14000
seq_length (ms)

0.75

0.80

0.85

0.90

0.95

Pr
ed

ict
io

n
ac

cu
ra

cy

Accuracy vs. seq_length for human iPSC

Figure 2.5: Accuracy vs. seq length trend for human iPSC recordings.

Table 2.4: Performance comparison of our deep learning model with Multilayer Per-
ceptrons and Logistic Regression on iPSC recordings.

Model Accuracy on Testing
Convolutional Neural Network 0.9618
Multilayer Perceptron 0.8921
Logistic Regression 0.8321

21

Classification of Multi-Electrode Array Recordings Chapter 2

Figure 2.6: Consensus Prediction accuracy for Exp1 and Exp2.

2.5.2 Case Study

It is challenging to classify the genotype of mouse MEA recordings due to the dif-

ferences in recordings taken from neurons of different DIV, different mice and different

recordings. Considering that the neuron firing patterns change drastically with different

DIV, we use two subsets of mouse recording data (Exp1 and Exp2), recorded at 6 DIV

and 10 DIV respectively, to study the effect of Consensus Prediction. Fig. 2.6 shows the

prediction accuracy versus number of voting slices in Consensus Prediction. By taking

one subset of experiments all recorded at 6 DIV, we achieve a Consensus Prediction ac-

curacy of 95.91% for Exp1. Similarly, we achieve a Consensus Prediction accuracy of

94.12% for recordings in Exp2, which are all at 10 DIV. Using Consensus Prediction,

we improve the prediction accuracy by 12.70% and 11.68% for Exp1 and Exp2 respec-

tively, which indicates that combining information from different parts of one recording

significantly helps improve the performance.

22

Classification of Multi-Electrode Array Recordings Chapter 2

2.6 Discussion

We have addressed the issue of classifying different genotype MEA recordings by

proposing a deep learning framework. We split the long recordings into smaller slices,

which not only eases the burden on GPU memory but also provides more training samples

for the deep learning model. We use Consensus Prediction during testing, to predict the

genotype for a recording. This work is a proof of principle for classification via deep

learning of in-virtro MEA recordings. Clearly, however, more work is needed before it

can be known if deep learning will be a generally useful technique for classification of

neural cell genotypes or drug effects from in vitro MEA recordings. For example, one

can use more recordings and MEAs with larger numbers of probes in future work.

23

Chapter 3

Scalable Bayesian Functional

Connectivity Inference for

Multi-Electrode Array Recordings

3.1 Introduction

Neuroscience deals with how networks of neurons are organized and how they func-

tion [35]. Understanding connectivity between neurons and within the brain is a funda-

mental problem in neurobiology [36]. Functional connectivity, defined as the statistical

dependencies between different brain regions with similar patterns, is widely used in vari-

ous neural tasks [37, 38]. For instance, functional connectivity magnetic resonance imag-

ing (MRI) is crucial for diagnosing and comprehending autism spectrum disorders [39].

MEAs [40] can record extracellular action potentials from hundreds or thousands of neu-

rons and provide insights on neuronal connectivity [41]. For hours or weeks, action po-

tentials can be non-invasively monitored, when neurons are grown on planar MEAs [42].

Further, there is a trend towards increasing the density of the arrays [43] to better un-

24

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

derstand the neuron connectivities.

MEA recordings provide researchers opportunities to understand neuron activities in

many regions such as the brain, retina, and heart [44]. However, the analysis of this data

is challenging, in part because of its high dimensionality. Summary statistics could be

used to measure the connection weights between electrodes. These include, for example,

Pearson correlation [45], cross correlogram (CCG), the maximal information coefficient

(MIC) [46] as well as biophysically-inspired metrics [47]. However, a data generative

model is required to understand the underlying structure and to make full use of the

domain expert knowledge [48]. Furthermore, these summary statistic methods provide

different functional connectivity results for the same recording since they are all deter-

ministic metrics, which present fixed connection weights between every two electrodes

instead of a probabilistic estimation.

Bayesian inference can address the requirements for the inference, since it provides

distributions for parameters using probabilistic models and observation data. In con-

trast to deterministic optimization procedures that give point estimates of the unknown

functional connectivity, computing a Bayesian posterior yields probability distributions

for the neuronal network functional connectivity. Bayesian inference has been combined

with the generalized linear model (GLM), with graph-based priors to infer the neuron

connectivity pattern for analysis [49]. However, there is a lack of scalable Bayesian tech-

niques for inference of network structure, which is particularly acute for inference from

high-density recordings.

A considerable challenge for Bayesian techniques is the rapid growth of computation

time in accordance with the increasing scale of the network. In this chapter, we pro-

pose a scalable framework of Bayesian inference, inspired by the hierarchical structure of

networks of neurons. Experiments on both synthetic datasets and large scale real-world

MEA recordings show that our framework provides accurate and insightful results. Fur-

25

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

-1

+1

+1+0
.5

Neurons on MEA Individual Electrode Recordings Detected Spikes Inferred
Functional Connectivity

Figure 3.1: The workflow for Bayesian functional connectivity inference. We consider
only negative deflections that exceeded 6 times the standard deviation of the median
noise level as spikes.

thermore, we apply the proposed framework to a controlled cadmium dataset, and the

results confirm its utility.

The key contributions of this chapter include:

1) We propose a scalable functional connectivity inference framework shown in Fig. 3.1

for MEA recording data. We speed up the expensive Bayesian sampling process through

the use of parallel computing.

2) We infer the network by splitting the large scale recordings into smaller local

networks. We also provide a strategy for inferring the regional connectivity between

local networks. This not only eases the burden from sampling but also provides useful

insights on regional connections in organoids and brains.

3) Experiments on both synthetic dataset and large-scale real-world MEA recordings

show the effectiveness and efficiency of the Bayesian framework. Inference of network

structure of Cadmium-exposed neuron cultures further demonstrates the usefulness of

our framework.

The remainder of this chapter is organized as follows. Section 3.2 describes the MEA

data collection. We delineate the probabilistic models in Section 3.3 and demonstrate

the Bayesian inference details in Section 3.4. Section 3.5 describes the hierarchical setup.

Results for both synthetic and real data are provided in Sections 3.6 and 3.7, respectively.

26

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Related work is described in Section 3.8. Section 3.9 is the Discussion.

3.2 Data Collection

3.2.1 Cell Culture

We prepared hippocampal neurons from postnatal day 0 (P0) mice with C57BL/6

genetic background using a previously described protocol [50]. Cleaned and sterilized

MEAs (120MEA100/30iR-ITO arrays; Multi Channel Systems) were incubated with

poly-L-lysine (0.1 mg/ml) for at least one hour at 37 ◦C, rinsed 3 times with sterile

deionized water and allowed to air dry before cell plating. Glial cultures were maintained

in separate T-75 flasks. 100, 000 - 125, 000 dissociated glial cells were used for the first

plating of MEAs to obtain a confluent glial culture over the surface of the electrodes.

Once glia were confluent, the hippocampi dissected from the brain followed by manual

dissociation were plated at 250, 000 cells in the MEA chamber. Cultures were grown in

a tissue culture incubator (37 ◦C, 5% CO2) in a medium made with minimum essential

medium + Earles salts (Thermo Scientific, catalog # 11090081) with 2mM Glutamax

(Thermo Scientific), 5% heat-inactivated fetal bovine serum (Thermo Scientific), and 1

ml/l Mito+ serum extender (Corning) and supplemented with glucose to an added con-

centration of 21mM. To minimize the effects of evaporation, maintain cell culture sterility,

and decrease degassing of the medium during recordings, the MEA chamber was covered

by a gas permeable membrane that permits exchange of CO2 when the plate is in the

CO2 incubator.

27

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

3.2.2 MEA recordings

Extracellular voltage recordings of neuronal cultures were performed using an MEA

2100-System (Multichannel Systems, Reutlingen, Germany). Each MEA contained 120

electrodes with a 100 m inter-electrode distance. All data were acquired at a 20 kHz sam-

pling rate. All recordings were performed in culture media. The head stage temperature

was set to 30C with an external temperature controller, and the MEAs were equilibrated

for 5 min on the head stage before data acquisition or after any pharmacological or tem-

perature manipulation. Recording duration was 3 minutes. Only cultures at 14 days in

vitro (DIV) or older were used for pharmacological experiments.

3.2.3 Data Processing

Raw data was converted to HDF5 file format and processed offline. Spike detection

was done with Matlab tools Waveclus [51]. Note that we did not apply spike sorting,

since it may introduce considerable noise due to unsupervised clustering methods when

trying to obtain the neuron (or unit) information [52], and there are many different spike

sorting algorithms [51, 53], which give different outputs. Extracellular voltage recordings

were bandpass filtered using cutoff frequencies of 200Hz and 4000Hz. Only negative

deflections in the voltage records were labelled as spikes when the amplitude exceeded 6

times the standard deviation of the median noise level. Spike times and amplitudes were

recorded and used for downstream analysis.

3.3 Probabilistic Model

In this section, we briefly review the probabilistic model of neuronal spike trains

introduced in [49] along with our choice of parameterization. Table 3.1 summarizes

28

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Table 3.1: Notations

Notations Description

Xt,n The observed spike at time bin t for electrode n
A Adjacency matrix
W Weight matrix
bn The baseline activation of electrode n
N Number of electrodes
T Autoregressive window of influence
ψt,n The activation of electrode n at time bin t
No Number of overlapped electrodes when split
Wo Weight matrix of the overlapped region
Ns Sample number of Bayesian inference
ρ The prior for connection probability
µwn Mean for the nth row of W
µb Mean of the bias vector
Swn Covariance for the nth row of W
Sb Covariance of the bias vector

some common notations that we will use in this chapter. At a high level, the model

describes how the underlying connectivity network affects the activation propensity of

each electrode over time, producing the observed spike firing pattern measured over

the entire MEA. Specifically, the model is composed of three parts: a network model

specifying the underlying connectivity of the electrodes, an activation propensity model

detailing how a network along with past spike history affects the probability of a spike

at a time bin, and a spiking observation model mapping the activation propensity to the

observed binary spike trains. Note that an electrode can fire no more than once in one

time bin because of the refractory period in neurons. A probabilistic graphical model of

this is shown in Fig 3.2.

3.3.1 Network Model

The network model aims to capture the key properties of the underlying functional

network of the electrode population. Specifically, it seeks to represent that those con-

29

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

	𝐴 		𝑊

𝑏%

𝑡

𝑛

... ...

... ... 𝑋)*+,%

...
...

𝑋)-+,% 𝑋),%

𝜓)-+,% 𝜓)*+,%𝜓),%

Figure 3.2: Probabilistic graphical model for MEA. The model describes how the
underlying connectivity of a network of electrodes (A and W) can lead to the observed
spike trains Xt,n.

nections are potentially directional and different in strength. To accommodate this, a

weighted directed graph is used where the edge weights represent the strength of the

connection between two electrodes. This is incorporated as two matrix-valued latent

variables A ∈ {0, 1}N×N and W ∈ RN×N corresponding to a binary adjacency matrix

and a real-valued weight matrix respectively.

3.3.2 Activation Propensity Model

A neuron can either fire spontaneously or as a response to communications (spikes)

it receives from incoming, connected neurons. Given a particular realization of the elec-

trode network, A and W , the instantaneous activation of electrode n at time bin t, ψt,n

is modeled as a linear, autoregressive function of the lagged spikes from neighboring

electrodes:

ψt,n = bn +
N∑
m=1

T∑
∆t=1

Am→nWm→ne
−∆t/τXt−∆t,m, (3.1)

30

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Here, bn represents the baseline activation rate for electrode n in the absence of influence

from any other electrode. Am→n ∈ {0, 1} is a binary variable indicating whether or not

there exist directed connections from electrode m to electrode n. The weight Wm→n is

the connection strength from electrode m to electrode n. The activation rate ψ is linearly

adjusted by the lagged spikes from neighboring electrodes. The strength of the lagged

spike is weighted by the strength of the connection to the neighbor and an exponentially

decreasing function of time, inspired by the synapse connectivity measurement in [47],

with time constant of τ = 15ms. This prioritizes recent spikes from strongly connected

neighbors. We consider both positive and negative Wm→n, which captures that neuronal

connections may be excitatory or inhibitory in nature. It is possible for a spike to decrease

the propensity of firing when a weight is negative.

3.3.3 Bernoulli Observation Model

Our spike train data consists of binary observations of whether electrode n fired

at time bin t, Xt,n. This is modeled as a Bernoulli random variable with probability

dependent on the activation propensity, σ(ψt,n) = eψt,n(1+eψt,n)−1, where σ is the logistic

function that maps the propensity to a probability.

31

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

3.4 Bayesian Inference

Based on the previous section, the full model, including the priors, is as follows:

Ai,j ∼ Bernoulli(ρ)

{µwn , µb}, Swn , Sb ∼ Normal-Inverse-Wishart(0, 1, I, 3)

wn|µwn , Swn ∼ Normal(µwn , Swn)

b|µb, Sb ∼ Normal(µb, Sb)

ψt,n = bn +
N∑
m=1

T∑
∆t=1

Am→nWm→ne
−∆t/τst−∆t,m

Xt,n ∼ Bernoulli(σ(ψt,n)),

(3.2)

where wn denotes the nth row of the matrix W . The hyper-parameter ρ affects the prior

over the connectivity matrix A.

We apply an efficient Gibbs sampler, which exhibits scalable parallelism, derived

from [49]. Sampling the posterior over the discrete adjacency matrix A is the most

challenging step. Due to conjugacy, we can integrate over W and sample A from its

collapsed conditional distribution. We update A and W by collapsing out W to directly

sample each of As elements. We iterate over each Am→n and sample it from its conditional

distribution. After that, we sample W from its conditional Gaussian likelihood.

We employ a novel splitting strategy to make the inference method amenable to high

density arrays. We present and verify the methodology in the following sections.

3.5 Split

We have 120 electrodes in the MEA device. However, there are 26,400 electrodes in

the MaxWell complementary metal oxide semiconductor (CMOS) MEA device. As we

32

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

can see in Fig. 3.3, the average time for one sample increases drastically with the size

of the array. That is because the dimensions of parameters (A and W) to be estimated

exhibit quadratic growth according to the number of electrodes. The time reported in

Fig. 3.3 is the sampling time, computed in parallel with 24 CPU cores. To deal with

the time complexity challenge, we propose a hierarchical inference procedure. As shown

in Fig. 3.4, we split the whole large array into fixed number (for example, 4) of regions.

In the first level of the algorithm, we perform Bayesian inference individually on each

of the smaller regions. In the second level, we treat each whole region as one group by

taking the mean of all the spike trains in the region. We apply the same probabilistic

model to infer the regional connectivity, which is the connection strength between each

pair of regions. This heuristic splitting strategy is inspired by the biological phenomenon

of regional connections in brains. The splitting strategy decreases the average sampling

time quadratically in accordance with the number of sub-regions. To get a better un-

derstanding of the connections on the border of any two regions, we further propose an

overlapping split mechanism, as shown in Fig. 3.5.

3.6 Results on Synthetic Data

Due to the lack of ground truth functional connectivity in an MEA, we first use

synthetic data to check the effectiveness of the probabilistic model and our splitting

strategies. We use the ground truth model to generate synthetic data and compare the

functional connectivity inferred from synthetic data with the ground truth. For all the

experiments in this section and the next section, we use spike trains with shape of 180,

000 * 120. We apply parallel sampling with 24 CPUs. The Gibbs sampler was run for

1000 iterations. The first 500 samples were discarded to account for burn-in. We verify

that the chain has reached a steady state by observing that the parameter traces and the

33

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

0 120 240 360 480 600 720
Number of Electrodes

0

1000

2000

3000

4000

5000

Average Time for One Bayesian Sample (s)

Figure 3.3: Average time for one Bayesian sampling exhibits quadratic growth accord-
ing to the number of electrodes. The time reported is the sampling time computed in
parallel with 24 central processing units (CPU) cores.

• • • • • •
• • • • • • • •

• • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • •
• • • • • • • •

• • • • • •

A B C D E F G H J K L M

1
2
3
4
5
6
7
8
9
10
11
12

Figure 3.4: Non-overlapping split. We split the large array into four regions. For the
first level, we infer individually on the smaller regions. For the second level, we treat
each whole region as one hidden super node and infer the regional connection strength
between each pair of sub-regions.

34

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

• • • • • •
• • • • • • • •

• • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • •
• • • • • • • •

• • • • • •

A B C D E F G H J K L M

1
2
3
4
5
6
7
8
9
10
11
12

Figure 3.5: Overlapping split. To better capture the connections on the border of the
regions, an overlapping split is used.

log-likelihood have converged.

In Fig. 3.6, the inferred posterior mean is almost the same as the ground truth

connectivity matrices. Cosine similarity measures the similarity between two matrices of

an inner product space, which is widely used in high dimensional spaces [54]. The inferred

functional network A and W both achieved a high cosine similarity of 0.99 compared with

ground truth in this case. Similarly in Fig. 3.7, we obtain cosine similarity of 0.95 and

0.99 for A and W when the number of electrodes increases to 10.

We also use synthetic datasets to verify the effectiveness of our splitting strategies.

Here, we assume all the electrodes lie in a line. For the non-overlapping split, we use

N electrodes and split them into two sub-regions, ”front” and ”back”, with equal size

and apply the Bayesian inference on each region. We compared the separate split results

with the Bayesian inference results without split and reported the cosine similarity in

Tab. 3.2. It is shown that the cosine similarities are consistently high with all different

parameter settings, which validates the effectiveness of our splitting strategy. Similarly,

35

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Table 3.2: Non-overlapping Results: Cosine Similarity

N Sw µb ρ Wfront Afront Wback Aback

10 1 0 0.5 0.93 0.99 0.94 0.98
10 1 0 1 0.99 0.99 0.98 0.99
10 1 5 0.5 0.99 0.99 0.98 0.99
10 2 0 0.5 0.95 0.98 0.88 0.97
20 1 0 0.5 0.91 0.99 0.95 0.99
30 1 0 0.5 0.94 0.99 0.93 0.99

for overlapping split, we test the results from split with No overlapped electrodes. In

Tab. 3.3, No indicates the number of overlapped electrodes. Wo is the weight matrix

for the overlapped region. High cosine similarities in Tab. 3.3 confirm the effectiveness

of overlapping split strategy. From both Tab. 3.2 and Tab. 3.3, the network prior does

affect the inference of A and W but in an indirect way, which is small in degree compared

to the effect of the data.

Fig. 3.8 shows the effectiveness of regional connection inference after split. Each

element in the inferred regional connectivity matrix W summarizes the elements of the

corresponding regions in ground truth W altogether. Regional inferences after split

precisely indicate the strength and the nature of the connections between regions.

0 1 2 3

post

0

1

2

3

pr
e

Ground Truth A

0.0 0.5 1.0

0 1 2 3

post

0

1

2

3

pr
e

Inferred A

0.0 0.5 1.0

0 1 2 3

post

0

1

2

3

pr
e

Ground Truth W

1 0 1

0 1 2 3

post

0

1

2

3

pr
e

Inferred W

1 0 1

Figure 3.6: Comparison of network inferred from synthetic data with 4 electrodes
and ground truth. Zero indicates no connection. Minus one indicates an inhibitory
connection, and one indicates an excitatory connection. Cosine similarity between the
two As is 0.99. Cosine similarity between the two W s is 0.99.

36

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

0 2 4 6 8

post

0

2

4

6

8

pr
e

Ground Truth A

0.0 0.5 1.0

0 2 4 6 8

post

0

2

4

6

8
pr

e

Inferred A

0.0 0.5 1.0

0 2 4 6 8

post

0

2

4

6

8

pr
e

Ground Truth W

1 0 1

0 2 4 6 8

post

0

2

4

6

8

pr
e

Inferred W

1 0 1

Figure 3.7: Comparison of network inferred from synthetic data with 10 electrodes
and ground truth. Cosine similarity between the two As is 0.95. Cosine similarity
between the two W s is 0.99.

Table 3.3: Overlapping Results: Cosine Similarity

N No Sw µb ρ Wfront Afront Wback Aback Wo

10 2 1 0 0.5 0.97 0.9 0.95 0.99 0.98
10 2 1 0 1 0.99 0.99 0.99 0.99 0.99
10 2 1 5 0.5 0.99 0.99 0.99 0.99 0.99
10 4 2 0 0.5 0.92 0.98 0.95 0.99 0.93
20 4 1 0 0.5 0.94 0.99 0.97 0.99 0.96
30 4 1 0 0.5 0.90 0.99 0.93 0.99 0.97

0 1 2 3

post

0

1

2

3

pr
e

Gound Truth W1

1 0 1

front back

post

front

back

pr
e

Regional W1

1 0 1

0 1 2 3

post

0

1

2

3

pr
e

Gound Truth W2

1 0 1

front back

post

front

back

pr
e

Regional W2

1 0 1

Figure 3.8: Regional connections in non-overlapping split. ”Front” indicates the region
composed of electrodes 0 and 1 in the ground truth figure, while ”back” indicates the
region of electrode 2 and 3. Each element in the inferred regional connectivity matrix
W reflects the elements of the corresponding regions in ground truth W altogether.
Regional inferences after split precisely reveal the overall connectivity between regions.

37

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Figure 3.9: Comparison between our Bayesian inference and ground truth detected by
neuroscience experts. Green represents the connections found by Bayesian inference,
while red denotes the connections not found. 93.33% of the connections detected by
the neuroscience experts are detected by Bayesian inference.

3.7 Results on Real Data

In this section, we apply our framework onto two sets of real MEA recordings.

Throughout this section, we apply non-overlapping split with 4 regions of equal size

as in Fig. 3.4. As we mentioned in Section 3.2.2, we use 3-minute recordings, which

present as spike trains with shape of 180, 000 * 120. For the Bayesian inference, we

adjusted the prior hyper-parameters and verified that the results stayed consistent.

3.7.1 Comparison with Neuron Experts’ Labeled Ground Truth

For the real dataset, since we don’t have the ground truth, we adopted neuroscience

experts’ labelling as our reference. The neuroscience experts labelled those connections

38

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

by watching MEA viewer [55]. We compare our Bayesian analysis with the expert labeled

result. As is shown in Fig. 3.9, 93.33% of all the connections detected by neuron experts

are detected by our inference. We can see that the real recording has some regional

patterns, which satisfies the intuition of our splitting strategy. Because of the difficulty

in detecting those connections in neuroscience experiments, our neuroscience experts can

find some connections that they are confident in but cannot guarantee to find all the

connections. However, in our Bayesian inference, we gave the overall possible connec-

tions based on our probabilistic model. Thus we found more connections using Bayesian

inference compared with the neuroscience experts’ result. We also calculated the latency

between electrodes using CCG based on the neuroscience experts labeled ground truth

connectivity. The latency shows a similar pattern as our inferred weights.

3.7.2 Cadmium Concentration vs. Controlled Experiment

800 1000 1200 1400 1600 1800 2000
Number of Connections

0

10

20

30

40

50

60

70

80

Co
un

t

Distribution of Number of Connections

Control
1 M Cd
5 M Cd

Figure 3.10: Posterior of number of connections with Cadmium concentration. Cd
is short for Cadmium. The mean connection counts decrease with introduction of
cadmium to the culture. Higher concentrations of cadmium lead to a further decrease
in the number of connections in the functional networks.

39

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Average Clustering Coefficient

0
10
20
30
40
50
60
70
80

Co
un

t

Distribution of Average Clustering Coefficient

Control
1 M Cd
5 M Cd

Figure 3.11: Posterior of average clustering coefficient with Cadmium concentration.
Average clustering coefficient decreases with statistical significance with the introduc-
tion of Cadmium into the culture.

Cadmium is a toxic heavy metal that accumulates in living systems and is currently

one of the most important occupational and environmental pollutants [56]. Cells have a

calcium signalling toolkit whose components can be mixed and matched to create various

spatial and temporal signals [57]. Cadmium can change the intracellular concentration

of calcium, which is a universal and versatile intracellular messenger [58].

We reduced the release probability of presynaptic vesicles by titrating in increasing

amounts of cadmium in order to decrease the influx of calcium current into the presy-

naptic terminal. Baseline recordings were performed 5 minutes prior to any cadmium

addition. Following the baseline recording, the cadmium concentration was brought to

1µM and the solution was mixed gently. The MEA was placed on the recording head-

stage and allowed to equilibrate for 3 minutes, followed by a 3-minute recording. The

same procedure was performed for 5µM cadmium in the same MEA.

To analyze how cadmium affects the structure of neuronal networks, we compared

the obtained posterior matrices A and W for a set of MEA recordings, comprised of

one control with no cadmium introduced and 2 others with 1µM and 5µM of cadmium.

40

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Average Path Length

0

10

20

30

40

50

60

70

Co
un

t

Distribution of Average Path Length

Control
1 M Cd
5 M Cd

Figure 3.12: Posterior of average path length distribution with Cadmium concentra-
tion. The average path length increases significantly with the increase of cadmium
concentration.

We used a threshold of 0.05 (the value is chosen based on the outlier of the weight

distribution) to eliminate those tiny weights in the inferred weight matrix, which is noise

in biology. To understand the topology, we look at the following graph metrics for

each posterior sample: number of connections, average clustering coefficient, and average

path length. Overall, we find that Cadmium does change the topology of the estimated

networks with statistical significance in posterior regions. As is shown in Fig. 3.10, the

mean connection counts decrease with introduction of cadmium to the culture. Higher

concentrations of cadmium lead to a drastic decrease in the number of connections in the

functional networks.

Clustering coefficient is the number of edges between a electrodes immediate neigh-

bors divided by all possible connections that could exist among them. It measures the

level of local connectivity between electrodes. In Fig. 3.11, average clustering coefficient

decreases with statistical significance when cadmium is in the culture, indicating that

cadmium cultures are less likely to have connections within tightly connected groups or

41

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

communities.

Average path length is the average shortest path length for all possible pairs of elec-

trodes. Fig. 3.12 shows that the average path length increases significantly with the

increase of cadmium concentration. That validates the idea that cadmium can impede

neuron signal transmissions by changing the intracellular concentration of calcium.

In Fig. 3.13, we compare the indegree of each electrode for control and 5µM Cad-

mium concentration. We can see that the overall connection pattern maintains but the

indegree decreases prominently with the introduction of Cadmium into the culture. Sim-

ilar phenomenon can be detected for outdegree of each electrode for control and 5µM

Cadmium concentration in Fig. 3.14.

3.8 Related Work

MEAs provide opportunities for researchers to understand neuronal connectivity, by

recording spike trains but also presents severe data analysis challenges. Inferring func-

tional connectivity networks is critical to many applications in neuroscience. To analyze

high-dimensional spike trains, there exist several methods to measure connection weights.

For example, CCG [45, 59] is a metric that was built from two electrodes spike trains. It

presents the probability of an electrode firing to a spike in a τ milliseconds time window

before or after another electrode fires. MIC has been widely used to identify known and

novel relationships for data sets in gene expression and global health [46]. MIC is a two-

variable dependent measure that captures functional relationship, by providing a score

that roughly equals the coefficient of determination of the data relative to the regression

function. Biophysically-inspired metrics extracts a directed functional connectivity ma-

trix, based on the spike train [47]. It uses exponential decay property in axon potential

signals to quantify the connection coefficients. However, despite the popularity of apply-

42

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

ing those metrics on MEA recordings, we can not rely on them to get reliable functional

networks because they are deterministic and there is no model for the data.

GLM, a commonly used modeling framework [52, 60], can model the binary fire/not

(1/0) and spike train recordings. We can use the logit link function to model the binomial

distribution. GLMs are often fit by maximum a posteriori (MAP) estimation [61, 62].

However, when it comes to high-density recordings, MAP cannot fully convey the in-

formation in the posterior with a point estimate. Bayesian inference is a process using

Bayes’ theorem based on the prior beliefs about the probabilistic data generation pro-

cess [63]. It updates the posterior for parameters in data generation model, as more data

becomes available. GLM and graph-based models have been combined to infer the neu-

ron connectivity patterns in a Bayesian way [49]. However, the Bayesian techniques have

a considerable downside of the increased computation time, especially when the number

of electrodes is large. In this chapter, we introduced a scalable Bayesian inference frame-

work on large scale MEA recordings. The functional connectivities are inferred from a

joint probabilistic model of GLM and networking.

3.9 Discussion

In this chapter we have focused on inferring functional neuronal network connections

using MEA recordings. Specifically, our goal has been to infer the functional connectivity

for MEAs with large numbers of probes. Along this line, we proposed a scalable Bayesian

inference framework. Our framework makes use of the hierarchical structure of networks

of neurons and splits the whole array into smaller local networks for network inference.

The splitting strategy decreases the average sampling time quadratically with the number

of sub-regions. We also provide a strategy for inferring the connectivity between local

networks. By comparing with ground truth for both synthetic data and real world human

43

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

expert labeled MEA recordings, our experimental results provide compelling evidence

that our framework can infer the underlying functional connectivity. Furthermore, we

applied the proposed framework to a controlled cadmium dataset, and the results confirm

its utility. As the density of the MEA continues to increase, our method will become

more valuable to be able to infer the neuronal network structure efficiently.

Our experimental results demonstrate the usefulness of this framework. Here we

suggest some avenues for future work. First, the model could be extended to account

for more detailed biological knowledge. For example, there are different types of neurons

such as motor neurons and interneurons, which exhibit different types of behaviors in

response to incoming signals. The auto-regressive propensity model, which is currently

linear, can also be improved to incorporate nonlinear effects or other mechanistic firing

models. Secondly, developing a method to determine when and how to split can allow

for the framework to be used more robustly. Moreover, using the framework to study

different factors instead of Cadmium, such as the presence of certain genes, may produce

a greater understanding of the biologically complex systems.

44

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Control Indegree

0

5

10

Cd 5 M Indegree

0

5

10

Figure 3.13: Incoming connections for control and Cadmium 5µM . Nodes are sized
and colored according to the number of incoming connections. The overall connec-
tion pattern remains but the indegree decreases prominently with the introduction of
Cadmium into the culture.

45

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
Chapter 3

Control Outdegree

0

5

10

Cd 5 M Outdegree

0

5

10

Figure 3.14: Outgoing connections for control and Cadmium 5µM . Nodes are sized
and colored according to the number of outgoing connections. The overall connection
pattern remains but the outdegree decreases prominently with the introduction of
Cadmium into the culture.

46

Part II

Data Mining in Healthcare

47

Chapter 4

Empirical Analysis of Machine

Learning Configurations for

Prediction of Multiple Organ Failure

in Trauma Patients

4.1 Introduction

Multiple organ failure (MOF) is a clinical syndrome with variable causes including

pathogens [64], complicated pathogenesis [65], and a major cause of mortality and mor-

bidity for trauma patients who are admitted to Intensive Care Units (ICU) [66]. Based

on recent studies on ICU trauma patients, up to 47% have developed MOF, and MOF

increased the overall risk of death 6 times compared to patients without MOF [67]. To

prevent the development of MOF for trauma patients from progression to an irreversible

stage, it is essential to diagnose MOF early and effectively. Many scoring systems have

been proposed to predict MOF [68, 69, 70, 71] and researchers have attempted to predict

48

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

MOF on trauma patients using predictive models in an early phase [72, 73].

The rapid growth of data availability in clinical medicine requires doctors to han-

dle extensive amounts of data. As medical technologies become more complicated,

technological advances like machine learning (ML) are increasingly needed to improve

real-time analysis and interpretation of the results [74]. In recent years, practical uses

of ML in healthcare have grown tremendously, including cancer diagnosis and predic-

tion [75, 76, 77], tumor detection [78, 79], medical image analysis [80], and health moni-

toring [81, 82].

Compared to traditional medical care, ML-assisted clinical decision support enables

a more standardized process for interpreting complex multi-modality data. In the long

term, ML can provide an objective viewpoint for clinical practitioners to improve perfor-

mance and efficiency [83]. ML is often referred to as a black box: explicit input data and

output decisions, but opaque at intermediate learning process. Additionally, in medical

domains, there is no universal rule for selecting the best configuration to achieve the op-

timal outcome. Moreover, medical data has its own challenges such as numerous missing

values [84] and colinear variables [85]. Thus it is difficult to process the data and choose

the proper model and corresponding parameters, even for a ML expert. Furthermore,

detailed quantitative analysis of the potential impacts of different settings of ML systems

on MOF has been missing.

In this chapter, we experiment with comprehensive ML settings for prediction of

MOF, considering 6 different dimensions from data preprocessing (missing value treat-

ment, label balancing, feature scaling), feature selection, classifier choice, to hyperpa-

rameter tuning. To predict MOF for trauma patients at an early stage, we use only

initial time measurements (hour 0) as inputs. We mainly use area under the receiver op-

erating characteristic curve (AUC) to evaluate MOF prediction outcomes. We focus on

analyzing the relationships among configuration complexity, predicted performance, and

49

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

performance variation. Additionally, we quantify the relative impacts of each dimension.

The main contributions of this chapter include:

1. To the best of our knowledge, this is the first work to conduct a thorough empirical

analysis quantifying the predictive performance with exhaustive ML configurations

for MOF prediction.

2. We provide general guidance for ML practitioners in healthcare and medical fields

through quantitative analysis of different dimensions commonly used in ML tasks.

3. Experimental results indicate that classifier choice contributes most to both perfor-

mance improvement and variation. Complex classifiers including ensemble methods

bring higher default/optimized performance, along with a higher risk of inferior

performance compared to simple ones on average.

The remainder of this chapter is organized as follows. Section 4.2 describes the dataset

and features we use. All of the ML configurations are available in Section 4.3. Exper-

imental results are discussed in Section 5.4. Finally, our conclusions are presented in

Section 4.5.

4.2 Dataset

Our dataset, collected from the San Francisco General Hospital and Trauma Center,

contains 2190 highest level trauma activation patients evaluated at the level I trauma

center. Due to the urgency of medical treatment, there are numerous missing values

for time-dependent measurements. Thus we have chosen to consider only those features

with a maximum missing value percentage of 30% over all patients. To obtain a timely

prediction, early lab measurements (hour 0) as well as patients’ demographic and illness

50

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

information were extracted as the set of features. Detailed feature statistics are available

in Table 4.1.

Feature type
of

extracted
features

Features

Demographic 5 gender, age, weight, race, blood type
Illness 2 comorbidities, drug usage

Injury factors 4
blunt/penetrating trauma,

of rib fractures,
orthopedic injury, traumatic brain injury

Injury scores 8

injury severity score,
6 abbreviated injury scale (head, face, chest,

abdomen, extremity, skin),
Glasgow coma scale score

Vital sign
measurements

4
heart rate, respiratory rate,

systolic blood pressure,
mean arterial pressure

Blood-related
measurements

13

white blood cell count,
hemoglobin, hematocrit,

serum CO2, prothrombin time,
international normalized ratio,
partial thromboplastin time,

blood urine nitrogen, creatinine,
blood pH, platelets, base deficit,

factor VII

Table 4.1: MOF dataset statistics. Italicized features are categorical.

Our target variable consists of binary class labels (0 for no MOF and 1 for MOF).

Then, the data with feature and target variables is randomly split into training and

testing sets at the ratio of 7 : 3.

4.3 Methods

Based on ML pipelines and special characteristics of our data such as large number of

missing values and varying scales in feature values, we consider comprehensive ML con-

51

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

figurations from the following 6 dimensions: data preprocessing (missing value treatment

(MV), label balancing (LB), feature scaling (SCALE)), feature selection (FS), classifier

choice (CC), and hyperparameter tuning (HT). In the remainder of the chapter, we will

interchangeably use the full name and corresponding abbreviations shown in parentheses.

Further details on each dimension are described below.

4.3.1 Data Preprocessing

Methods to handle the dataset with missing values, imbalanced labels, and unscaled

variables are essential for the data preprocessing process. We use several different meth-

ods to deal with each of these problems.

Missing Value Treatment

In our dataset, numerous time-dependent features cannot be recorded on a timely

basis, and missing data is a serious issue. We consider three different ways to deal with

missing values, where the first method serves as the baseline setting for MV, and the

latter two methods are common techniques of missing value imputation in ML.

1. Remove all patients with any missing values for the features listed in Section 4.2.

2. Replace missing values with mean for numerical features and mode for categorical

features over all patients.

3. Impute missing values by finding the k-nearest neighbors with the Euclidean dis-

tance metric for each feature respectively.

Label Balancing

Our dataset is imbalanced as the sample class ratio between class 0 and class 1 is

11 : 1. Keeping imbalanced class labels serves as the baseline setting for LB. Three

52

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

different ways are considered to resample the training set.

1. Oversampling the minority class (label 1)

1.1 Method: SMOTE (synthetic minority over-sampling technique) [86].

1.2 Explanation: choose k-nearest neighbors for every minority sample and then

create new samples halfway between the original sample and its neighbors.

2. Undersampling the majority class (label 0)

2.1 Method: NearMiss [87].

2.2 Explanation: when samples of both classes are close to each other, remove the

samples of the majority class to provide more space for both classes.

3. Combination of oversampling and undersampling

3.1 Method: SMOTE & Tomek link [88].

3.2 Tomek link: two samples are k-nearest neighbors to each other but come from

different classes.

3.3 Explanation: first create new samples for the minority class and then remove

the majority class sample in any Tomek link.

Feature Scaling

Since the range of feature values in our dataset varies widely, we perform feature

scaling. No scaling on any feature serves as the baseline setting for SCALE. Two common

scaling techniques are used for numerical features.

1. Normalization: rescale values to range between 0 and 1.

2. Standardization: rescale values with mean 0 and standard deviation 1.

53

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

4.3.2 Feature Selection

In medical datasets, there usually exist many highly correlated features, and some

features that are weakly correlated to the target [85, 89]. Thus it is essential to identify

the most relevant features that may help to improve the outcome of the analysis. Using

all of the features described in Section 2 serves as the baseline setting for FS. We consider

two main feature selection techniques: filter and wrapper methods.

1. Filter-based methods (independent of classifiers):

1.1 Use correlation between features and the target to select features which are

highly dependent on the target.

1.2 Filter out numerical features using ANOVA F -test and categorical features

using χ2 test.

2. Wrapper-based methods (dependent on classifiers):

2.1 Method: RFE (recursive feature elimination) in random forest.

2.2 Explanation: perform RFE repeatedly such that features are ranked by impor-

tance, and the least important features are disregarded until a specific number

of features remains.

4.3.3 Classifier Choice

We experimented with 15 classifiers on the dataset. In general, these classifiers can

be divided into two main categories: single and ensemble. Lists of all classifiers are

available in Table 4.2. For ensemble classifiers (combination of individual classifiers), we

tried bagging (BAG, RF, ET), boosting (GB, ABC, XGB, LGBM), voting (VOTE) and

stacking (STACK). In bagging, DT is a homogeneous weak learner. Multiple DTs learn

54

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

the dataset independently from each other in parallel and the final outcome is obtained

by averaging the results of each DT. In boosting, DT also serves as a homogeneous

weak learner. However, DTs learn the dataset sequentially in an adaptive way (new

learner depends on previous learners’ success), and the final outcome is determined by

weighted sum of previous learners. In voting, heterogeneous base estimators (LR, RF,

SVM, MLP, ET) are considered, where each estimator learns the original dataset and the

final prediction is determined by majority voting. In stacking, several heterogeneous base

learners (RF, KNN, SVM) learn the dataset in parallel, and there exists a meta learner

(LR) that combines the predictions of the weak learners. Abbreviations of classifiers

shown in parentheses for voting and stacking are the ones we use.

55

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Single classifiers Ensemble classifiers

Logistic Regression (LR)

Support Vector Machine (SVM)

Naive Bayes (NB)

K-nearest Neighbors (KNN)

Decision Tree (DT)

Multi-layer Perceptron (MLP)

Bagged Trees (BAG)

Random Forest (RF)

Extra Trees (ET)

Gradient Boosting (GB)

Adaptive Boosting (ABC)

Extreme Gradient Boosting (XGB)

Light Gradient Boosting Machine (LGBM)

Voting (VOTE)

Stacking (STACK)

Table 4.2: List of 6 single classifiers and 9 ensemble classifiers. Corresponding abbre-
viations of each classifier are shown in parentheses.

4.3.4 Hyperparameter Tuning

Hyperparameters are crucial for controlling the overall behavior of classifiers. Default

hyperparameters of classifiers serve as the baseline setting for HT. We apply grid search

to perform hyperparameter tuning for all classifiers. Detailed information about tuned

hyperparameters is available in Table 4.3.

56

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Classifiers
] of tuned

hyperparameters
Hyperparameter lists

LR 3 C, class weight, penalty

SVM 4 C, gamma, kernel, class weight

KNN 3 n neighbors, weights, algorithm

NB 1 var smoothing

DT 5
min samples split, max depth, min samples,

leaf max features, class weight

MLP 3 activation, solver, alpha

BAG 2 base estimator, n estimators

RF 2 n estimators, max features

ET 2 n estimators, max features

GB 2 n estimators, max depth

ABC 3 base estimator, n estimators, learning rate

XGB 2 min child weight, max depth

LGBM 4 num leaves, colsample bytree, subsample, max depth

VOTE 2 C (SVM), n estimators (ET)

STACK 2 C (SVM), n neighbors (KNN)

Table 4.3: Detailed configurations of tuned hyperparameters for all classifiers. All of
the hyperparameter names come from scikit-learn [90].

57

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

4.4 Experiments and Results

We formulated MOF prediction as a binary classification task. All of the experiments

in this chapter were implemented using scikit-learn [90]. As mentioned in Section 4.2,

our training and testing dataset is randomly split with a ratio of 7 : 3. One-hot encoding

is applied to all categorical features. For each classifier, we use the same training and

testing dataset. We use AUC as our main performance metric, as it is commonly used

for MOF prediction in the literature [69, 91, 92]. It provides a summary” of classifier

performance compared to single metrics such as precision and recall. AUC represents the

probability that a classifier ranks a randomly chosen positive sample (class 1) higher than

a randomly chosen negative sample (class 0), and thus useful for imbalanced datasets.

In this section, we quantify the impacts (improvement and variation) of each dimension

on the predicted performance over our testing dataset.

4.4.1 Influence of Individual Dimensions

First, we evaluate how much each dimension contributes to the AUC score improve-

ment and variation respectively, and find the correlation between performance improve-

ment and variation over all dimensions.

Performance Improvement across Dimensions

For HT, MV, LB, SCALE, and FS, we define the baseline as default hyperparameter

choices, using no missing value imputation, no label balancing, no feature scaling, and no

feature selection, respectively. For CC, we choose SVM, which achieves the median score

among all classifiers, as the baseline . Then we quantify the performance improvement

of each dimension. Fig. 4.1 shows the percentage that each dimension contributes to

the improvement in the AUC score over baseline by tuning only one dimension at a

58

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

time while leaving others at baseline settings. We observe that CC contributes most to

the performance improvement (15.00%) for MOF prediction. After CC, LB (10.81%),

FS (10.09%), MV (7.90%), HT (6.94%), and FS (2.45%) bring decreasing degrees of

performance improvement in the AUC score.

Table 4.4 shows the improvement of every single dimension on each classifier over the

baseline. In general, MV and LB tend to provide the greatest performance improvement

for most classifiers. For RF, ET, and LGBM, FS contributes the most to improvement in

performance since these classifiers require feature importance ranking intrinsically, and

external FS improves their prediction outcomes to a large extent. Note that the classifier

for which SCALE has the largest impact is KNN, as it is a distance-based classifier which

is sensitive to the range of feature values. Also, due to instability and tendency to overfit,

HT is the most critical for DT improvement.

CC LB FS MV HT SCALE0

2

4

6

8

10

12

14

AU
C

Sc
or

e
Im

pr
ov

em
en

t (
%

)

Figure 4.1: Performance improvement in the AUC score of each dimension over the
baseline when tuning only one dimension at a time while leaving others at baseline
settings. CC brings the greatest performance improvement, followed by LB, FS, MV,
HT, and SCALE in decreasing order of improvement.

59

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Classifier MV (%) LB (%) SCALE (%) FS (%) HT (%)

LR 2.78 11.48 0.30 5.50 3.03

SVM 3.37 26.83 2.38 20.95 3.21

KNN 13.60 11.85 17.68 13.12 15.60

NB 0.60 38.90 0.17 4.12 2.84

DT 12.87 16.22 0.42 15.34 38.85

BAG 2.94 8.91 0.28 7.05 5.43

RF 4.13 5.34 0.28 5.85 1.04

ET 3.82 7.87 0.00 18.96 1.33

ABC 19.33 7.02 0.00 16.99 12.99

GB 12.44 3.81 0.02 6.63 4.08

LGBM 7.03 1.85 2.75 10.39 3.13

XGB 11.46 3.97 0.02 7.47 4.27

MLP 10.78 5.08 6.05 7.53 5.69

STACK 6.94 8.94 4.32 5.48 1.82

VOTE 6.38 4.00 2.11 6.04 0.85

Table 4.4: Column 1 shows a total of 15 classifiers. Columns 2 to 6 represent the
percentage (two decimal places accuracy) of AUC score improvement when tuning
each individual dimension while leaving other dimensions at baseline settings for each
classifier. Bold entries represent the dimension that contributes to the largest im-
provement for the specific classifier. MV and LB tend to dominate in performance
improvement for most classifiers.

In addition to AUC, 6 other performance metrics are used to measure the performance

improvement degree of each dimension. The results in Table 4.5 reveal that CC brings

the greatest improvement regardless of the metrics we use. Contributions from HT and

SCALE are relatively small compared to other dimensions.

60

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

AUC F-score G-mean Precision
Sensitivity/

Recall
Specificity Accuracy

CC (%) 15.00 15.58 10.50 16.41 10.50 11.86 10.50

LB (%) 10.81 11.34 9.33 13.27 9.33 10.72 9.34

FS (%) 10.09 7.33 6.30 10.61 6.30 6.94 6.30

MV (%) 7.90 5.30 4.60 5.83 4.59 4.95 4.59

HT (%) 7.46 2.11 3.21 3.41 3.20 4.64 3.20

SCALE (%) 2.45 1.04 0.65 3.03 0.65 0.48 0.65

Table 4.5: Performance improvement in different metrics of each dimension. The per-
formance improvement of each dimension on other metrics displays an order consistent
with that of the AUC score.

Performance Variation across Dimensions

For all of the ML configurations, we further investigate how much each dimension

contributes to the performance variation in the AUC score. By tuning only one dimension

at a time while leaving other dimensions at baseline settings, we obtain a range of AUC

scores. Performance variation is the difference between the maximum and the minimum

score of each dimension. Fig. 4.2 shows the proportion of each dimension that brings

the performance variation in the AUC score. Based on Fig. 4.2, we notice that CC,

which brings the largest performance improvement, also brings the largest performance

variation (10.98 %). After CC, LB (7.00 %), FS (6.93 %), MV (5.64 %), HT (4.97 %),

and SCALE (1.66 %) bring decreasing degrees of performance variation in the AUC score.

Table 4.6 shows the variation of every single dimension on each classifier over the base-

line. We observe that for each classifier, if one dimension brings a larger performance

improvement, it also results in a larger performance variation. For our assessment of per-

formance variation, the same metrics as above are used for evaluation on each dimension.

61

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Using the same metrics as above, Table 4.7 shows that the proportion of performance

variation in different metrics from each dimension follows an order that is consistent

with the performance improvement in Table 4.5. Thus, for different metrics, greater

improvement brings greater variation of each dimension. For every step that researchers

take when predicting MOF using ML, they should always be aware of the trade-off be-

tween benefits (improvement in performance) and risks (variation in performance) when

adjusting each dimension.

CC LB FS MV HT SCALE0

2

4

6

8

10

AU
C

Pe
rfo

rm
an

ce
 V

ar
ia

tio
n

(%
)

Figure 4.2: Performance variation in the AUC score when tuning only one dimension
at a time while leaving others at baseline settings. CC brings the greatest performance
variation, followed by LB, FS, MV, HT, and SCALE in decreasing order of variation.
Larger improvement also brings the risk of larger variation for each dimension.

62

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Classifier MV (%) LB (%) SCALE (%) FS (%) HT (%)

LR 2.28 8.44 0.25 4.27 2.49

SVM 2.45 16.87 1.79 13.04 2.42

KNN 7.97 6.95 10.36 7.69 9.14

NB 0.48 22.22 0.13 3.25 2.25

DT 7.13 8.99 0.23 8.50 21.53

BAG 2.22 6.17 0.21 5.26 4.10

RF 3.35 4.14 0.23 4.49 0.84

ET 3.22 6.14 0.00 13.41 1.12

ABC 13.09 4.61 0.00 11.51 9.40

GB 9.59 2.83 0.02 5.11 3.14

LGBM 5.54 1.43 2.16 7.76 2.47

XGB 8.70 3.01 0.02 5.59 3.24

MLP 7.89 3.55 4.43 5.30 4.16

STACK 5.47 6.47 3.41 4.20 1.43

VOTE 5.19 3.13 1.71 4.63 0.69

Table 4.6: Columns 2 to 6 represent the proportion (two decimal places accuracy)
of each dimension that contributes to the performance variation in the AUC score.
Bold entries represent the dimension that contributes to the largest variation for the
specific classifier. MV and LB tend to result in larger performance variation for most
classifiers.

63

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

AUC F-score G-mean Precision
Sensitivity/

Recall
Specificity Accuracy

CC (%) 10.98 11.87 8.57 12.86 8.57 10.60 8.57

LB (%) 7.00 7.29 6.83 9.02 6.83 10.14 6.82

FS (%) 6.93 5.27 4.38 7.62 4.37 4.70 4.38

MV (%) 5.64 4.36 3.69 4.77 3.69 2.98 3.68

HT (%) 4.87 2.55 3.52 1.54 3.52 2.72 3.53

SCALE (%) 1.66 0.88 0.57 1.47 0.57 0.46 0.57

Table 4.7: Performance variations in different metrics of each dimension. The perfor-
mance variation of each dimension on other metrics displays an order that is consistent
with that of the AUC score.

4.4.2 Performance Comparison across Classifiers

We have shown that classifier choice is the largest contributor to both performance

improvement and variation in the AUC score. Hence, we further investigate the perfor-

mance differences among classifiers. Specifically, we investigate the relationships among

classifier complexity, performance, and performance variation.

Default versus Optimized Performance

Default classifiers are defined as classifiers with default parameters, while optimized

classifiers are those for which hyperparameter tuning with 10-fold cross validation is ap-

plied using grid search. We compare the performance of default and optimized classifiers

in consideration of all other dimensions, i.e., MV, LB, SCALE, and FS. The average

AUC scores of all classifiers with default and optimized settings are shown in Fig. 4.3.

In general, ensemble classifiers perform better than single classifiers regardless of default

or optimized performance.

64

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

In addition to AUC, 6 other performance metrics are used to evaluate the performance

of all classifiers. We use the median score to rank classifiers with both default and

optimized settings. Then, NDCG (normalized discounted cumulative gain), one of the

most prevalent measures of ranking quality [93], is used to compare classifier rankings

between each of these metrics and the AUC score. Detailed relevance scores are shown in

Table 4.8. The result indicates that the median performance of each classifier is similar

no matter which metric is used. This also suggests that the AUC score can represent

classifiers’ overall performance well.

Based on the above experiments, ensemble classifiers should be prioritized in MOF

prediction since they usually bring better predictive performance than single classifiers.

NB KNN DT SVM LR BAG RF ET ABC GB XGB LGBM MLP VOTESTACK
Classifiers

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

AU
C

Sc
or

e

Default
Optimized

Figure 4.3: Comparison of default and optimized performance over all classifiers.
Classifiers listed on the left-hand side of BAG are single while the ones on the right–
hand side are ensemble and MLP. Overall, ensemble methods have better default and
optimized performance compared with single classifiers.

65

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

Default (%) Optimized (%)

F-score 96.92 97.92

G-mean 96.46 97.63

Precision 95.49 90.01

Sensitivity/Recall 98.42 97.59

Specificity 95.35 97.46

Accuracy 96.46 97.59

Table 4.8: Column 1 represents 6 other performance metrics. Columns 2 and 3 show
the NDCG score between each of these metrics and the AUC score when ranking 15
classifiers by their median performance in default and optimized settings, respectively.
Median performance of classifiers is similar regardless of which metric to use.

Performance Variation across Classifiers

We measure the performance variation for each classifier in consideration of all other

dimensions, i.e., MV, LB, SCALE, FS, and HT. For each classifier, we get a range of AUC

scores. The size of the range determines the extent of performance variation. Fig. 4.4

shows the performance variation in the AUC score of all classifiers. The order of listed

classifiers on the x-axis is based on increasing model complexity, which is measured by

classifier training time with default settings. The complexity of classifiers and perfor-

mance variation demonstrates an evident U-shaped’ relationship. When the classifier is

too simple’, its performance variation is relatively large. When the complexity of the

classifier is appropriate’, the performance variation is relatively small. If the classifier

becomes too complex’, it is also at the risk of larger performance variation. Therefore,

classifiers with appropriate’ complexity are more stable, with smaller changes in perfor-

mance, while too simple’ or too complex’ classifiers are relatively unstable with larger

changes in performance in general.

66

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

In addition to AUC, the same metrics as above were used to validate the performance

variation of all of the classifiers. We use the range (difference between maximum and

minimum scores) to rank classifiers in consideration of MV, LB, SCALE, FS, and HT.

Then, NDCG is used to compare classifier rankings between each of these metrics and

the AUC score. Table 4.9 displays detailed relevance scores. The result suggests that

other metrics show a similar U-shaped’ relationship between classifier complexity and

performance variation as the AUC score. When predicting MOF, it is inappropriate for

clinical practitioners to choose too simple’ and too complex’ classifiers since they may

run the risk of underfitting and overfitting, respectively.

NB KNN DT SVM LR BAG RF ET ABC GB XGB LGBM MLP VOTESTACK
Classifiers

0.0

0.1

0.2

0.3

AU
C

Pe
rfo

rm
an

ce
 V

ar
ia

tio
n

Figure 4.4: Performance variation comparison over all classifiers. The order of classi-
fiers listed on the x-axis is based on increasing model complexity. Too simple’ and too
complex’ classifiers result in larger performance variation. The performance variation
of classifiers with appropriate’ complexity is relatively small.

F-score G-mean Precision
Sensitivity/

Recall
Specificity Accuracy

Relevance (%) 93.15 94.98 94.37 93.24 93.13 93.77

Table 4.9: NDCG score between each of 6 other performance metrics and the AUC
score in terms of classifier complexity and performance variation. Different metrics
show a similar U-shaped’ relationship.

67

Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in
Trauma Patients Chapter 4

4.5 Discussion

We have provided a timely MOF prediction using early lab measurements (hour 0),

patients demographic and illness information. Our study quantitatively analyzes the

performance via the AUC score in consideration of a wide range of ML configurations

for MOF prediction, with a focus on the correlations among configuration complexity,

predicted performance, and performance variation. Our results indicate that choosing

the correct classifier is the most crucial step that has the largest impact (performance

and variation) on the outcome. More complex classifiers including ensemble methods can

provide better default/optimized performance, but may also lead to larger performance

degradation, without careful selection. Clearly, more MOF data is needed to provide

a more general conclusion. Our work can potentially serve as a practical guide for ML

practitioners whenever they conduct data analysis in healthcare and medical fields.

68

Chapter 5

Multiple Organ Failure Prediction

with Classifier-Guided Generative

Adversarial Imputation Networks

5.1 Introduction

Multiple organ failure (MOF) is a life-threatening syndrome with variable causes,

including sepsis [94], pathogens [95], and complicated pathogenesis [96]. It is a major

cause of death in the surgical intensive care unit (ICU) [97]. Care in the first few hours

after admission is critical to patient outcomes. This period is also more prone to medical

decision errors in ICUs than later times [98]. Thus, an effective and real-time prediction

is essential for clinicians to provide appropriate treatment and increase the survival rates

for MOF patients.

69

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

With the rapid growth of electronic health record (EHR) data availability, machine

learning models have drawn increasing attention for MOF prediction. Missing values are

a pervasive and serious medical data issue, which could be caused by various reasons

such as lost records or inability to collect the data during some time periods [99]. There

exist many preprocessing imputation algorithms, such as mean value imputation [100],

multivariate imputation by chained equations (MICE) [101] and generative adversarial

imputation nets (GAIN) [102] which impute missing components by adapting generative

adversarial networks (GANs). However, these methods focus only on constructing the

distribution between the unobserved components and the observed ones, without consid-

ering the underlying connections with specific downstream tasks, as is shown in the left

of Figure 5.1.

Recently, GANs [103] have made significant progress on data generation. Labels can

be incorporated in the GAN framework, e.g. CGAN [104] and AC-GAN [105], to generate

label-aware outputs. Semi-supervised GAN [106] introduces a classifying discriminator

to output either the validity of data or its class. Triple-GAN [107] proposes a three-

player adversarial network, which contains an additional classifier to separate the role

from the discriminator. Although the classifier helps the generator control the semantics

of the generated samples and improves class prediction, the generator has to take ground

truth label to generate label-aware data, which is not applicable in classification problems

during inference.

In this chapter, we propose a classifier-guided missing value imputation framework

for MOF prediction with early-stage measurements after admission. The generator uses

observed data and random noise to impute missing components and obtains imputed

data; the classifier takes the generators outcomes, models the relationship between im-

puted data and labels by joint training with the generator, and outputs estimated labels.

70

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Imputer

Original Data with
missing elements

Models Input information Estimated outcome

Unsupervised Imputation Classifier-Guided Imputation

Imputed data

Predicted outcome

Classifier

Original Data with
missing elements

Imputer

Imputed
data

Predicted
outcome

Classifier

Figure 5.1: Workflow comparison of unsupervised imputers (left) and Classifier–
GAIN (right). Classifier-guided imputers learn from the classifier during training and
improve classification during inference, while unsupervised imputers learn only from
the partially observed data in the data-prepossessing phase. The solid lines represent
processes that occur during both the training and inference phase, while the dashed
line represents the step that only occurs during training. Note that our final goal is
to improve the classifier’s performance utilizing imputed data.

71

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

The discriminator attempts to identify which component is observed by taking imputed

data from the generator and predicted label information from the classifier.

The key contributions of this chapter include:

1) We propose a classifier-guided missing value imputation deep learning framework

for MOF prediction, which incorporates both observed data and label for modeling label-

aware imputation during training to help classification during inference. To the best of

our knowledge, this is the first GAN-based end-to-end deep learning architecture for

MOF prediction with missing values.

2) Experimental results on both synthetic and real-world MOF datasets show that

our Classifier-GAIN outperforms GAIN and MICE consistently in different missing ratio

scenarios and evaluation metrics.

3) Visualization of the values imputed by our approach further validates the effec-

tiveness of Classifier-GAIN compared to various baselines.

The remainder of our chapter is organized as follows. Preliminaries are introduced in

Section 5.2, followed by the details of our proposed approach in Section 5.3. Experimental

results are reported in Section 5.4. In Section 5.5, we review the existing related work,

and conclusions are given in Section 5.6.

5.2 Preliminaries

We formulate the MOF prediction as a binary classification problem with missing

components in multiple features. In this section, we describe the problem definition in

Section 5.2.1 and review the GAIN imputation algorithm in Section 5.2.2. The related

notations are summarized in Table 5.1. Specifically, throughout this chapter, we utilize

lower-case letters, e.g. x, to denote the data vector. p(x) is the probability distribution

72

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

function of x. 1 denotes a d-dimensional vector of 1s, and letters with hats such as x̂

denote estimated vectors.

Table 5.1: Notation definitions

Notations Description

i index of observations
j index of observed features

d ∈ N number of observed features
N ∈ N total number of observations
n ∈ N size of minibatch

x data vector
y outcome indicator
m mask vector
z noise vector
h hint vector
b binary vector for calculating hint
x̃ combination of partially observed data and NAs
ẍ combination of partially observed data and noise
G generator
C classifier
D discriminator
g reconstructed vector, the output of G
x̂ imputed data vector
m̂ estimated mask, the output of D
ŷ estimated label, the output of C

5.2.1 Problem Definition

Let X d be a d-dimensional space and x a data vector, taking values in X d following

distribution p(x). We denote xj as the j-th feature in x. Binary mask vector m ∈ {0, 1}d

indicates if the corresponding element in x is missing or not, where xj is observed if

mj = 1, otherwise xj is missing. To clarify the observed and missing components, we

define a new vector x̃ = (x̃1, · · · , x̃d) as follows:

73

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

x̃j∈{1,2,...,d} =

xj, if mj = 1,

NA, if mj = 0.

Supposing that y ∈ {0, 1} is the binary outcome indicator for each sample, we can

represent the dataset as a collection of N i.i.d. samples {(x̃i,mi), yi}Ni=1.

We aim to impute the missing components in every x̃, and predict the outcome y for

all samples by leveraging the imputed data vector. Formally, we seek to model p(y|x̃):

the conditional distribution of the task outcome given a partially observed data vector.

5.2.2 Generative Adversarial Imputation Networks (GAIN)

GAIN [102] was proposed to impute missing components with a GAN framework.

In GAIN, the generator obtains the observed components in x̃, mask vector m and a

noise vector z as inputs, and outputs a completed data vector. The discriminator tries to

distinguish the observed components and the missing ones. Furthermore, a hint vector

h is introduced to provide additional missing information for alleviating the diversity of

the imputation result.

The generator, G, takes

ẍ = m� x̃ + (1−m)� z,

a combination of x̃ and z by element-wise multiplication with m, as input, and outputs

g, the reconstructed vector,

g = G(ẍ).

Note that g is an output vector for every component, even if values are not missing in

the data vector.

74

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Thus, another element-wise multiplication is performed to calculate the imputed data

vector via

x̂ = m� x̃ + (1−m)� g,

where x̂ is obtained by taking the observed part in x̃ and replacing each NA by the

corresponding value in g.

The discriminator serves as an adversarial character to train G by taking in the im-

puted data vector x̂ and the hint vector h, following the distribution p(h|m). The output

of the discriminator is a distribution to identify which components in x̂ are observed. To

help the discriminator distinguish imputations and observations, h provides certain in-

formation about m and its amount can be controlled by adjusting h in different settings.

Specifically, a binary random variable b ∈ {0, 1}d is randomly drawn with P (bj = 1) = p.

Then, h|m is calculated by

h = m� b + 0.5(1− b),

such that the discriminator will get mask information by hj = mj if bj = 1, otherwise,

no information provided.

5.3 Methodology

Notably, conditional information such as labels can improve the performance of the

generator [104, 105], and the completed data vector can enhance its task prediction

result. However, state-of-art imputation methods, e.g. GAIN, do not make use of the

relationship between observations and outcome labels, which could provide additional in-

formation to help downstream classification tasks. Therefore, we propose Classifier-GAIN

to bridge this gap. Figure 5.2 depicts the overall architecture. We explain each of the

75

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

components and the training process of Classifier-GAIN in detail in Section 5.3.1∼ 5.3.2.

5.3.1 Classifier-guided Generative Adversarial Imputation Nets

In an imputation setting, we propose to fill in the missing components NAs in x̃, using

the distribution of data obtained by the generator, G. To guide the data imputation and

predict the final task outcome, the classifier, C, takes imputed data and is trained together

with G. The discriminator D plays an adversarial role to train G, with additional label

prediction information from C.

Generator and Classifier

Similar to the structure of GAIN, G takes x̃ as input and outputs x̂, trying to model

p(x|x̃),the conditional distribution of a data vector given the partial observations. The

classifier C is a supervised learning model to predict the task outcome, ŷ, by taking

x̂ from G, which obtains the conditional distribution P (y|x) = P (y|x̂). We define the

estimated outcome ŷ by

ŷ = C(x̂).

Then G and C are jointly trained to obtain the distribution p(y,x|x̃), making G label-

aware during imputation, which is ignored by GAIN.

Discriminator

In our architecture, the discriminator D serves as an adversarial character to train

G by receiving the predicted label information from C. We input x̂, ŷ and h into D

to obtain the probability that each component in x̂ is observed. Here, x̂ and ŷ jointly

provide information to enhance D by learning the relationship between data and task

outcomes, which can further strengthen G and C. We define the estimated mask variable,

76

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

x11 x12 NA x14

x21 NA x23 NA

x31 x32 x33 NA

Original data

x11 x12 0 x14

x21 0 x23 0

x31 x32 x33 0

Observed data
0 0 z13 0

0 z22 0 z24

0 0 0 z34

Noise
1 1 0 1

1 0 1 0

1 1 1 0

Mask

Generator

x11 x12 g13 x14

x21 g22 x23 g24

x31 x32 x33 g34

Classifier

ŷ1

ŷ2

ŷ3

Imputed data Hint
1 0.5 0 1

1 0.5 1 0

0.5 1 1 0.5

Discriminator

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

Estimated mask

Estimated label

y1

y2

y3

Ground truth label

Label prediction loss

Reconstruction loss

Mask prediction loss

Backward propagation

Backward
propagation

Backward propagation

Figure 5.2: The overall architecture of Classifier-GAIN with three samples. Each row
in the matrices and vectors corresponds to a sample. The input of our network is the
original data vector with missing components. The generator takes partial observation
data, a noise matrix filling missing components and mask, and outputs imputed data,
which is then fed into the classifier to obtain the estimated labels. The imputed
data and the estimated labels along with a hint matrix are fed into the discriminator
to estimate the mask. Dashed lines represent information flows for loss calculation.
Green solid lines represent backward propagation for the generator and the classifier
training, and red solid line represents the backward propagation for the discriminator
training.

77

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

m̂ ∈ [0, 1]d, by

m̂ = D(x̂, ŷ,h),

with the j-th item in m̂ corresponding to the probability that the j-th item in x̂ is not

NA in x̃.

5.3.2 Classifier-GAIN Training

G, C and D are trained as a min-max game by

min
G,C

max
D

V (G,C,D) = Eẍ,m,h

[
m log

(
D
(
G(ẍ), C(G(ẍ)),h

))
+ (1−m) log

(
1−D

(
G(ẍ), C(G(ẍ)),h

))]
, (5.1)

where log is an element-wise logarithm. Specifically, We train G and C together to mini-

mize the probability of D identifying m, maximize the probability of correctly predicting

y and minimize the reconstruction loss of observed components. We train D to maximize

the probability of correctly predicting m.

On each iteration, G and C are updated k times with objective function, LC&G, which

is a weighted sum of three losses

LC&G = LG(m, m̂) + αLR(x, x̂) + βLC(y, ŷ), (5.2)

where α and β are hyper-parameters.

The first loss, LG, is an adversarial loss, which applies to missing components (mj = 0)

78

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

by

LG(m, m̂) = −
d∑
j=1

[
(1−mj) log(m̂j)

]
. (5.3)

The second loss, LR, is a reconstruction loss, which applies to observed components

(mj = 1) by

LR(x, x̂) =
d∑
j=1

mjLR(xj, x̂j), (5.4)

where

LR(xj, x̂j) =

(xj − x̂j)2, for numerical variables,

−xj log(x̂j), for binary variables.

The third loss, LC , is a binary cross entropy loss for task prediction given by

LC(y, ŷ) = −
[
y log (ŷ) + (1− y) log(1− ŷ)

]
. (5.5)

Note that as G and C are updated together via Eq. 5.2, C ’s performance will influence

G ’s parameters to guide the missing component imputation.

D updates once at each iteration with objective function

LD(m, m̂) = −
d∑
j=1

[
mj log(m̂j) + (1−mj)(1− m̂j)

]
. (5.6)

The detailed training process is shown in Algorithm 1.

79

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Algorithm 1 Minibatch Classifier-GAIN training
1: repeat
2: Generator and Classifier
3: Sample a batch of n binary vector {bi}ni=1 ∼ Bern(p)d

4: for k steps do
5: Sample a batch of n noises {zi}ni=1 ∼ U(0, 1]d

6: for i← 1 to n do
7: hi ←mi � bi + 0.5(1− bi)
8: ẍi ←mi � x̃i + (1−mi)� zi
9: Imputed data gi ← G(ẍi)

10: x̂i ←mi � x̃i + (1−mi)� gi
11: Obtain ŷi ← C(x̂i)
12: Obtain m̂i ← D(x̂i, ŷi,hi)
13: end for
14: Update generator G and classifier C together via stochastic gradient descent

(SGD):
15: 5G

1
n

∑n
i=1 LG(mi, m̂i) + αLR(xi, x̂i) + βLC(yi, ŷi)

16: end for
17:

18: Discriminator
19: Sample a batch of n binary vector {bi}ni=1 ∼ Bern(p)d

20: for i← 1 to n do
21: hi ←mi � bi + 0.5(1− bi)
22: Obtain m̂i ← D(x̂i, ŷi,hi)
23: end for
24: Update discriminator with fixed G and C via SGD
25: 5D

1
n

∑n
i=1 LD(mi, m̂i)

26: until Classifier-GAIN converges

80

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

5.4 Experiments

In this section, we conduct experiments on two datasets: the PhysioNet sepsis syn-

thetic dataset and the UCSF real-world EHR dataset, introduced in Section 5.4.1, to

evaluate Classifier-GAIN’s performance. Particularly, we investigate

1. Does the classifier-guided imputation help the downstream MOF prediction?

2. How does the proposed algorithm perform across different missing ratio scenarios?

3. Are imputed values of Classifier-GAIN reasonable compared to values from other

imputation methods in the real-world missing?

We explain the experimental settings in Section 5.4.2. The performance comparisons

of Classifier-GAIN against other imputation algorithms for MOF prediction are shown in

Section 5.4.3, followed by the visualizations of the imputed missing values of the UCSF

MOF dataset in Section 5.4.4.

5.4.1 Dataset

The brief statistics of our datasets are shown in Table 5.2.

Table 5.2: Statistics of Datasets

Dataset #Feature#Patient

PhysioNet sepsis synthetic dataset 40 10,587

UCSF MOF real-world dataset 29 2,160

For the PhysioNet sepsis dataset, we randomly select 80% of the instances as the

training set, 10% as the development set, and 10% as the testing set. For the UCSF

MOF dataset, we perform a 5-fold cross validation, considering the dataset’s size and

models’ training time. The detailed description of dataset as follows:

81

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

PhysioNet Sepsis Synthetic Dataset

Sepsis is a severe critical illness syndrome that can result in MOF [94]. Since MOF is

the fatal end of sepsis progression[108], early detection of sepsis and antibiotic prescription

are critical for improving MOF patient outcomes. We built a synthetic dataset based

on the physiological data [109] provided by PhysioNet, sourced from ICU patients. Each

patient contains 40 hourly measurements in three categories (vital signs, laboratory values

and demographics) and the sepsis outcome in each hour. To obtain the sepsis outcome

in the early stages, we focus on the first 6 hours’ records of each feature. We take the

first-appearance measurement of each feature in the first six hours after admission. If

a value of a feature was not recorded in the first six hours, we assume that value was

missing. We exclude the patients whose features were entirely missing in the first six

hours. We label a patient with sepsis as 1, otherwise as 0. To obtain a completed dataset

for further experiments, we apply SMOTE [110] to balance the data, and KNN to impute

the original missing components. After data preprocessing, we obtained 10,587 patients,

among which 5,808 patients are with sepsis and 4,779 without sepsis.

UCSF MOF Real-world Dataset

Our UCSF MOF dataset, collected from the UCSF/San Francisco General Hospital

and Trauma Center, contains 2,190 patients admitted to a Level I trauma center. Both

demographic information, such as gender, age, BMI (body mass index), and injury mea-

surements, e.g. injury severity score (ISS), traumatic brain injury, and Glasgow Coma

Scale (GCS), were measured at the admission time of each patient. Laboratory results

(D-Dimer, creatinine, white blood cell etc.) and physical vital signs (for example heart

rate, respiratory rate, systolic blood pressure etc.) were recorded at different hours.

Unique ICU treatments such as blood transfusion units, fresh frozen plasma transfusion

82

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Table 5.3: Rates of missing data in the UCSF dataset

Missing rate Feature

41.9% D-Dimer
41.6% Factor VII (blood test)
17.4% BMI

10% ≥ & > 5%Factor VII treatment, PTT, Respiratory, SBP
5% ≥ & > 0% HR, numribfxs, GCS, Vasopressor, Bun, Serumco2,

PLTs, Crystalloids, Crystalloids, WBC, HGB, HCT,
AIS scores, FFP units, Blood units, age, iss,
Thromboembolic complication, Heparin gtt

0% Gender

and crystalloids for fluid resuscitation were slotted into time intervals such as 0 to 24

hours. Medical treatments (vasopressor, Heparin and Factor VII et al.) were reported in

daily after admission.

To analyze the MOF states associated with patients’ early-stage status, we select

either the first day or the initial hour records manually. We extract features with im-

portance score higher than 2% using forests of trees in Scikit-learn [111], and remove the

patients whose data were utterly missing in the early stage or whose MOF outcome was

not recorded. After data preprocessing and removal of abnormal values, we are left with

2,160 patients and 29 measurements. Selected features are categorized by types. Two

blood test features, D-Dimer and Factor VII, had a missing rate higher than 40%. The

body mass index (BMI) missed 17.4%. Factor VII treatment, partial thromboplastin

time (PTT), respiratory rate and systolic blood pressure were missing at rates between

5% and 10%. The remainder of the features were missing at rates less than 5%. The rate

of missing data for each feature is listed in Table 5.3, ordered from high to low. Missing

values account for 6.42% among all observations and the labeling ratio between No MOF

(class 0) and MOF (class 1) is 11 : 1 in the dataset.

83

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

5.4.2 Experimental Settings

Evaluation Metrics

We measure the performance of Classifier-GAIN and baselines by both macro F1-score

and area under the ROC curve (AUC-ROC).

Macro F1-score is defined as the mean of class-wise F1 scores:

Precisionl =
TPl

TPl + FPl
,

Recalll =
TPl

TPl + FNl

F1l =
2× Precisionl ×Recalll
Precisionl +Recalll

Macro F1-Score =
1

L

L∑
l=1

F1l,

where l is the class index and L is the number of classes. TNl, TPl, FPl and FNl denote

the true positive, true negative, false positive and false negative rate, respectively for

class l, and F1l is the F1-score for the class. The macro F1-score metric is commonly

applied to evaluate binary, multi-class and multi-label classification tasks [112]. It assigns

equal importance to every class. It is low for models that perform well on the common

classes, while performing poorly on the rare classes. AUC-ROC is also commonly used

for MOF prediction [113, 114]. AUC-ROC assesses the overall preference of a classifier by

summarizing over all possible classification thresholds. In binary classification problems,

the higher the AUC-ROC, the better the model’s performance in identifying the two

classes.

84

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Table 5.4: Hidden layer setting of different modules in UCSF and Sepsis datasets.

Dataset Network Hidden layer 1Hidden layer 2Dropout rate

UCSF
Classifier 32 16 0.1
Generator 64 32 0.1

Discriminator 64 32 0.1

Sepsis
Classifier 128 64 0.1
Generator 64 32 0.1

Discriminator 64 32 0.1

Missing
Rate

macro F1-score

Classifier-GAIN
Simple

imputation
MICE GAIN

0% Upper bound : 0.848± 0.001
20% 0.832 ± 0.003 0.678 ± 0.0210.686 ± 0.0150.695 ± 0.018
25% 0.829 ± 0.002 0.683 ± 0.0330.669 ± 0.0150.659 ± 0.016
30% 0.808 ± 0.008 0.674 ± 0.0210.673 ± 0.0110.671 ± 0.020
35% 0.797 ± 0.009 0.669 ± 0.0160.689 ± 0.0150.662 ± 0.033
40% 0.788 ± 0.007 0.646 ± 0.0260.669 ± 0.0230.648 ± 0.035
45% 0.772 ± 0.005 0.656 ± 0.0400.664 ± 0.0190.654 ± 0.032
50% 0.777 ± 0.008 0.651 ± 0.0160.637 ± 0.0100.655 ± 0.021

Table 5.5: Model performance (F1-score) on PhysioNet sepsis dataset in different
missing ratio settings.

Model Configurations

We compare Classifier-GAIN with both classical and state-of-art neural baselines for

MOF prediction as follows:

1. Simple imputation: It imputes missing components by mean imputation and

most frequent imputation for continuous and categorical variables, respectively.

2. MICE [101]: It is a multiple imputation method, accounting for the statistical

uncertainty in the imputations.

3. GAIN [102]: It is a deep learning adversarial imputation framework, which we

explained in Section 5.2.2 in detail.

85

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Missing
Rate

AUC-ROC

Classifier-GAIN
Simple

imputation
MICE GAIN

0% Upper bound : 0.909± 0.003
20% 0.883 ± 0.006 0.831 ± 0.0090.843 ± 0.0150.834 ± 0.014
25% 0.871 ± 0.004 0.818 ± 0.0120.819 ± 0.0060.813 ± 0.006
30% 0.864 ± 0.006 0.819 ± 0.0100.810 ± 0.0090.818 ± 0.010
35% 0.848 ± 0.004 0.812 ± 0.0110.803 ± 0.0100.817 ± 0.008
40% 0.839 ± 0.006 0.803 ± 0.0040.800 ± 0.0110.812 ± 0.009
45% 0.811 ± 0.004 0.795 ± 0.0090.792 ± 0.0090.790 ± 0.007
50% 0.821 ± 0.007 0.805 ± 0.0040.747 ± 0.0060.807 ± 0.006

Table 5.6: Model performance (AUC-ROC) on PhysioNet sepsis dataset in different
missing ratio settings.

Each of methods (1), (2) and (3) is separated into two steps. First we impute missing

components by the corresponding method. Then we utilize a binary classifier to pre-

dict the subjects’ outcomes by taking imputed data. For our proposed Classifier-GAIN,

we take the partially observed data as input, and output both an imputed data and

classification outcomes.

In order to make the performance comparison as fair as possible, we assign the same

structure and hidden size for all classifiers. GAIN has exactly the same structure in the

generator and the same number of hidden layers in the discriminator as Classifier-GAIN.

All of the networks are designed as multi-layer perceptrons with two hidden layers. We

use batch normalization to normalize the input layer by re-centering and re-scaling. Relu

activation function and dropout are applied after each hidden linear layer. All of the

neural networks utilize Sigmoid activation at the last step for outputs. The hidden layer

settings in all of our experiments are listed in Table 5.4.

We implement our model and its variants using PyTorch [115], and use a GeForce

GTX TITAN X 12 GB GPU for training, validation as well as testing. All of the neural

networks are trained by using the Adam optimizer [116], whose learning rates are selected

86

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

by grid search from 0.0005 to 0.0021.

Table 5.7: Hyperparameters for models on PhysioNet sepsis dataset and UCSF MOF dataset

Model parameter PhysioNet datasetUCSF dataset

Simple imputation
&Classifier

epochs 30
batch size 128 16

leaning rate 0.0005-0.002
classifier’s weight decay 5e-4

MICE & Classifier

epochs 30
batch size 128 16

leaning rate 0.0005-0.002
generator’s weight decay 5e-4

GAIN & Classifier

epochs for GAIN 20 50
batch size for GAIN 128 16

generator’s leaning rate
0.0005-0.002

discriminator ’s leaning rate
generator’s weight decay

5e-4
discriminator s weight decay

p hint 0.9
alpha 1

weight decay 5e-4
epochs for classifier 30

batch size for classifier 128 16
learning rate for classifier 0.0005-0.002
classifier s weight decay 5e-4

Classifier-GAIN

epochs 50
batch size 128 16

generator’s leaning rate
0.0005-0.002discriminator ’s leaning rate

classifier ’s leaning rate
p hint 0.5 0.9
alpha 5-20

generator’s weight decay
5e-4discriminator’s weight decay

classifier’s weight decay

1Other hyper-parameters are detailed in Table 5.7

87

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

5.4.3 Performance Comparison

We conduct each experiment by running 5 times with different random initializations

and show the results as the format ”mean standard deviation” to answer Q1 and Q2.

For readers’ convenience, we make the best performance bold in each of the performance

tables in this section.

Synthetic Data

To evaluate Classifier-GAINs capability to capture the relationship between clinical

records (vital signs and laboratory values) and label outcome for downstream prediction,

we randomly remove 20%, 25%, 30%, 35%, 40%, 45% and 50% of all components from

clinical records, to simulate missingness resulting from the urgency of the clinical sit-

uation. We demonstrate the effectiveness of Classifier-GAIN against other baselines in

Table 5.6 and Table 5.5. To understand the performance gap between different missing

scenarios and the completed data, we train a binary classifier on the completed dataset,

which we refer to as the upper bound. As shown in Table 5.6 and Table 5.5, Classifier-

GAIN consistently outperforms the simple imputation, MICE and GAIN across the entire

range of missing rates, for both evaluation metrics. Especially, when the missing rate

is 25%, Classifier-GAIN improves 0.052 and 0.146 in AUC-ROC and macro F1-score,

respectively, comparing with the best baselines.

To quantitatively evaluate the performance of Classifier-GAIN, we derive two addi-

tional metrics: (1) the relative improvement rate (RIR),

Classifier-GAIN - best baseline

best baseline
, (5.7)

to demonstrate how much Classifier-GAIN improves compared to the best baseline, and

88

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

(2) the relative gap reduction rate (RGRR),

Classifier-GAIN - best baseline

Upper bound - best baseline
, (5.8)

to measure the capability of Classifier-GAIN reducing the performance gap to the upper

bound.

Missing
Rate

macro F1-score

Classifier-GAIN
Simple

imputation
MICE GAIN

20% 0.683 ± 0.004 0.649 ± 0.0160.652 ± 0.0150.660 ± 0.009
25% 0.679 ± 0.010 0.643 ± 0.0050.615 ± 0.0170.646 ± 0.017
30% 0.702 ± 0.007 0.682 ± 0.0130.616 ± 0.0220.659 ± 0.010
35% 0.677 ± 0.008 0.645 ± 0.0120.604 ± 0.0210.650 ± 0.004
40% 0.657 ± 0.014 0.619 ± 0.0080.581 ± 0.0300.632 ± 0.012
45% 0.657 ± 0.010 0.625 ± 0.0140.573 ± 0.0270.617 ± 0.017
50% 0.650 ± 0.002 0.594 ± 0.0160.573 ± 0.0330.600 ± 0.017

Table 5.8: Model performance (macro F1-score) on UCSF MOF dataset with different
additionally simulated missing ratios.

Missing
Rate

AUC-ROC

Classifier-GAIN
Simple

imputation
MICE GAIN

20% 0.889 ± 0.005 0.882 ± 0.0060.891 ± 0.0020.887 ± 0.005
25% 0.885 ± 0.004 0.874 ± 0.005 0.884 ± 0.002 0.878 ± 0.003
30% 0.895 ± 0.005 0.890 ± 0.002 0.877 ± 0.002 0.887 ± 0.004
35% 0.885 ± 0.004 0.877 ± 0.004 0.870 ± 0.006 0.874 ± 0.005
40% 0.878 ± 0.005 0.868 ± 0.004 0.853 ± 0.002 0.865 ± 0.005
45% 0.868 ± 0.006 0.857 ± 0.007 0.846 ± 0.002 0.850 ± 0.007
50% 0.839 ± 0.008 0.837 ± 0.0050.842 ± 0.0010.835 ± 0.014

Table 5.9: Model performance (AUC-ROC) on UCSF MOF dataset with different
additionally simulated missing ratios.

The relative improvement rates calculated by Eq. 5.7 across different settings are

shown in Figure 5.3 (a). For both macro F1-score and AUC-ROC, Classifier-GAIN

consistently achieves a high relative improvement rate, with 21.62% and 6.16% on average

89

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

20 25 30 35 40 45 50
Missing rate(%)

0
5

10
15
20
25
30
35

R
IR

 (%
)

AUC-ROC
Macro F1

(a) The relative improvement rate (%)

20 25 30 35 40 45 50
Missing rate(%)

20
30
40
50
60
70
80
90

R
G

R
R

 (%
)

AUC-ROC
Macro F1

(b) The relative gap reduction rate (%)

Figure 5.3: The relative improvement rate (left) and the relative gap reduction rate
(right) of Classifier-GAIN on AUC-ROC and macro F1-score for PhysioNet sepsis
dataset across different missing ratio scenarios.

across different scenarios, respectively. Especially, the relative improvement rate of macro

F1-score is 25.80% when the missing rate is 25%, and the relative improvement rate of

AUC-ROC is 9.91% when the missing rate is 50%.

Figure 5.3 (b) shows the relative gap reduction rate of Classifier-GAIN with different

missing ratio settings. Classifier-GAIN significantly reduces the performance gap to

the upper bound, with a 75.43% relative reduction rate for macro F1-score on average

compared to best baselines, making the prediction less susceptible to missingness across

different scenarios. Especially when missing rates are 20% and 25% (relatively low), the

relative gap reduction rates are as high as 90.58% and 89.94%, which significantly narrows

the performance gap caused by missing components. Even when missing rates are 40%

and 50% (very high), the relative gap reduction rates remain 60.82% and 66.35%, which

further validates Classifier-GAIN’s applicability in different missing scenarios.

90

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

Real-world Data

We further evaluate our model on the UCSF MOF real-world dataset, including

early-stage clinical records for MOF prediction. In addition to the high missing ratio in

bio-marker measurements, there is a serious label imbalance issue in this dataset, which

is common in real-world clinical data. We evaluate the performance of Classifier-GAIN

on the UCSF MOF dataset in the following settings: (1) imputing the original missing

components and predicting MOF outcome; (2) adding additional random masks with

20%, 25%, 30%, 35%, 40%, 45% and 50% missing rates to simulate more serious missing

situations in real-world data.

Table 6 reports the AUC-ROC and macro F1-score to evaluate Classifier-GAIN’s

prediction performance against other methods, on the UCSF MOF dataset with origi-

nal missing components (The missing ratio of features is 6.42% among all patients on

average.). Classifier-GAIN yields the best prediction performance as measured by both

macro F1-score and AUC-ROC.

Algorithm macro F1-score AUC-ROC

Classifier-GAIN 0.710 ± 0.0100.906 ± 0.005

Simple imputation 0.689 ± 0.010 0.903 ± 0.003

MICE 0.682 ± 0.008 0.900 ± 0.004

GAIN 0.682 ± 0.009 0.902 ± 0.003

Table 6: Model performance on UCSF MOF dataset with original missing components.

For more missing ratios in our simulated setting, the corresponding macro F1-score

and AUC-ROC are shown in Table 5.8 and Table 5.9. For macro F1-score, Classifier-

GAIN consistently outperforms the simple imputation, MICE and GAIN across the en-

tire range of missing rates. For AUC-ROC, Classifier-GAIN outperforms other post-

91

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

imputation predictions in 25%, 30%, 35%, 40%, 45% missing scenarios, and achieves

comparable performance with MICE in 20% and 50% missing conditions.

0 50 100 150 200 250 300
Factor VII

0.000

0.002

0.004

0.006

0.008

0.010

0.012 No MOF
MOF
Classifier-GAIN
GAIN
MICE

(a) Factor VII imputation for no MOF

0 10 20 30 40 50
Respiratory rate (breaths per minute)

0.00

0.02

0.04

0.06

0.08

0.10
No MOF
MOF
Classifier-GAIN
GAIN
MICE

(b) Respiratory rate imputation for no MOF

0 5 10 15 20 25
D-Dimmer (mg/L)

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200 No MOF

MOF
Classifier-GAIN
GAIN
MICE

(c) D-Dimmer imputation for MOF

0 50 100 150 200 250 300
Factor VII (%)

0.000
0.002
0.004
0.006
0.008
0.010
0.012 No MOF

MOF
Classifier-GAIN
GAIN
MICE

(d) Factor VII imputation for no MOF

Figure 5.4: Density plots of features and imputed values. The blue and orange curves
are density curves of observed data points. The blue curve represents MOF = 0, and
the orange represents MOF = 1. The dashed vertical lines are the imputation results
of three different imputation methods.

5.4.4 Imputation Results

To answer Q3, we compare the imputation results for the original missingness in the

UCSF MOF dataset of Classifier-GAIN and other baselines in Figure 5.4, which plots the

univariate distributions of selected features for MOF (MOF=1) and no MOF (MOF=0)

92

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

patients, respectively. The blue and orange curves are density curves of observed com-

ponents of features that need imputation. The blue curves represent the density curves

of MOF = 0, and the orange ones represent MOF = 1. Dashed vertical lines are the

imputed results of three different imputation methods: red is Classifier-GAIN, green is

GAIN, and black is MICE imputation.

We select three features: D-Dimer, Factor VII (blood test)2 and respiratory rate, for

the imputation study. Both D-Dimer and Factor VII have more than 40% missing in the

original dataset, and the missing rate of respiratory rate is 7.31%. D-Dimer is an indicator

of patients who may develop organ failure in the further course of acute pancreatitis[117].

Factor VII and respiratory rate are highly related to pulmonary failure [118, 119]. In

the UCSF MOF dataset, the feature values available with maximum density of D-Dimer,

Factor VII and respiratory rate for patients who did not develop MOF are 0.86 mg/L,

68.82% and 16.92 breaths per minute, respectively. For MOF patients, the feature values

available with maximum density are 7.71 mg/L, 80.69% and 18.75 breaths per minute,

respectively.

For panels (a) and (b), Classifier-GAIN predicts correctly for a patient without MOF,

while the other classifiers, whose input data are imputed by MICE or GAIN, predict

incorrectly. The imputed values of Classifier-GAIN for Factor VII and respiratory rate

are relatively closer to the feature values with maximum density for no-MOF’s in both

cases. Panel (c) shows a MOF patient who’s data was missing the D-Dimer record.

MICE and GAIN have very similar imputed value which are 3.38 mg/L and 3.35 mg/L,

Classifier-GAIN imputes the D-Dimer as 6.53,mg/L which follows the trend of MOF

patients in this dataset. Panel (d) shows a situation that all of the classifiers predict a

no-MOF case incorrectly. In this case, all three methods impute the Factor VII closer to

the feature value with maximum density for MOFs.

2In the remainder of this subsection, we use Factor VII to represent Factor VII (blood test).

93

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

5.5 Related Work

Generative Adversarial Networks (GAN)

GAN, introduced in [103], is a game-theoretic framework for estimating the implicit

distribution of data via an adversarial process. CGAN conditions the GAN framework

on class labels to direct the data generation process [104]. AC-GAN further improves

generation performance by modifying the discriminator to contain an auxiliary decoder

network [105]. Semi-supervised GAN [106] performs GAN in a semi-supervised context

to make the discriminator output either data validation or class labels. Triple-GAN

facilitates the convergence of both the generator and the discriminator by introducing

the ”third player” – classifier [107].

Researchers have also applied GANs on missing value imputation. In GAIN [102],

the generator imputes the missing components while the discriminator takes a completed

vector and attempts to determine which components were actually observed and which

were imputed with some additional information in the form of a hint vector. MISGAN

learns a complete data generator along with a mask generator that models the missing

data distribution and an adversarially trained imputer [120]. However, those existing

methods ignore the connection between observations and classification information, which

can make use for learning label-aware imputation during training and help to improve

downstream task prediction during inference.

Multiple Organ Failure (MOF)

MOF is a major threat to the survival of patients with sepsis and is becoming the

most common cause of death for surgical ICU patients [121]. According to a recent

study of ICU trauma patients, almost half of them developed MOF, and MOF increased

the overall risk of death 6.0 times compared to the patients without MOF [122]. Sepsis

94

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

is viewed as an immune storm that leads to MOF and death, which still is a leading

cause of death in critically ill patients, though modern antibiotics and new resuscitation

therapies have been used [123]. The Acute Physiology and Chronic Health Evaluation

(APACHE) score and the Ranson score are widely used for seriously ill patients, but

their empirical utilization for predicting the risk of MOF at an early stage is limited

by cumbersomeness and needs to record some indexes dynamically [124]. Therefore, a

prognostic tool that can reliably predict MOF in the early phase is essential for improving

patient outcomes.Different machine learning methods have been applied to MOF and

sepsis predictions. [124] performed support vector machine, logistic regression analysis

and artificial neural networks models to predict MOF in moderately severe and severely

acute pancreatitis. [125] applied CNN to predict severe sepsis in critically ill children,

and found that the performance of the CNN approach continuously improved when more

training data was available. However, this study could utilize only 493 out of 5053

patients for training and testing, as other observations have missing features. In this

work, we have chosen to base our MOF prediction on highly-related vital signs at the

initial stage, to predict outcomes with classifier-guided imputation, in order to handle

the data sparsity problem.

Missing Data Mechanisms

Depending on the underlying reasons, missingness is divided into three categories:

missing completely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR). MCAR refers to a situation in which the occurrence for a data point

to be missing is entirely random. MAR assumes that the missingness does not have

any relationship with the missing data but may depend on the observed data. MNAR

indicates that the missing elements are related to the reasons for which the data is

missing. In general, we assume that the EHR data is MAR data because, in most EHR

95

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

instances, those collected features would be expected to explain some, but not all, of the

variation among patients who’s data have missing values[126].

Various methodologies are available to address missing data. The most common and

straightforward imputation methodologies are deletion based methods, such as listwise

deletion [127] and pairwise deletion [128], which exclude all measurements with missing

elements. These methods are easy and practical if the missingness rate is low (e.g., less

than about 5%) [129], and the missing data is MCAR. However, because EHR data

is high dimensional and the missing elements usually are not MCAR, deletion-based

methods may not be useful in predictive modelling and regression analyses in EHR data.

Single imputation algorithms only impute missing components in one iteration, which can

utilize some unique numbers (e.g., 0) or statistical characteristics, such as mean value

imputation [100], median imputation [130] and most common value imputation [131].

MICE [101] is one of the most commonly used multiple imputation algorithms, applying

multiple regression models iteratively to impute missing values for different types of

variables [132]. In this work, we have explored the algorithm with missing components

in EHRs datasets to resolve the real-world MOF prediction task.

5.6 Conclusion

In this chapter we present Classifier-GAIN, an end-to-end deep learning framework

to improve performance of MOF prediction on datasets with a wide range of missingness

ratios. In contrast to most of the label-aware GANs, which focus on improving the

generator outputs, we design a three-player adversarial imputation network, aiming to

optimize the downstream prediction while imputing missing values. Classifier-GAIN

uses a classifier to provide label supervision signals to the generator in training, and

the trained generator to improve the classifiers downstream prediction performance in

96

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation
Networks Chapter 5

inference. Extensive experimental results on both a synthetic sepsis dataset and a real

world MOF dataset demonstrate the usefulness of this framework. Although we only

demonstrate the effeteness of Classifier-GAIN in MOF prediction tasks, its applications

in other domains are worth exploring, which we leave as further work.

97

Chapter 6

BERTSurv: BERT-Based Survival

Models for Predicting Outcomes of

Trauma Patients

6.1 Introduction

Trauma is the leading cause of death from age 1 to 44. More than 180,000 deaths

from trauma occur each year in the United States [133]. Most trauma patients die or

are discharged quickly after being admitted to the ICU. Care in the first few hours after

admission is critical to patient outcome, yet this time period is more prone to medical

decision errors in ICUs [98] than later periods. Therefore, early and accurate prediction

for trauma patient outcomes is essential for ICU decision making.

Medical practitioners use survival models to predict the outcomes for trauma pa-

tients [134]. Survival analysis is a technique to model the distribution of the outcome

time. The Cox model [135] is one of the most widely used survival models with lin-

ear proportional hazards. Faraggi-Simon’s network [136] is an extension of the Cox

98

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

model to nonlinear proportional hazards using a neural network. DeepSurv [137] models

interactions between a patients covariates and treatment effectiveness with a Cox pro-

portional hazards deep neural network. However, these existing models deal only with

well-structured measurements and do not incorporate information from unstructured

clinical notes, which can offer significant insight into patients’ conditions.

The transformer architecture has taken over sequence transduction tasks in natu-

ral language processing (NLP). Transformer is a sequence model that adopts a fully

attention-based approach instead of traditional recurrent architectures. Based on Trans-

former, BERT [138] was proposed for language representation and achieved state-of-the-

art performance on many NLP tasks. There has also been increasing interest in applying

deep learning to end-to-end e-health data analysis [139]. Biobert [140] extends BERT to

model biomedical language representation. Med-BERT [141] modifies BERT by lever-

aging domain specific hierarchical code embedding and layer representation to generate

sequential relationships in the clinical domain. G-BERT [142] combines Graph Neural

Networks (GNNs) and BERT for medical code representation and medication recom-

mendation. Clinical BERT [143, 144] explores and pre-trains BERT using clinical notes.

Clearly, there is an unmet need to include unstructured text information in deep learning

survival models for patient outcome predictions.

In this chapter we propose BERTSurv, a deep learning survival framework for trauma

patients which incorporates clinical notes and measurements for outcome prediction.

BERTSurv allows for both mortality prediction and survival analysis by using BCE and

PLL loss, respectively. Our experimental results indicate that BERTSurv can achieve an

AUC-ROC of 0.86, which is an improvement of 3.6% over the baseline of MLP without

notes on mortality prediction.

The key contributions of this chapter are:

1. We propose BERTSurv: a BERT-based deep learning framework to predict the risk

99

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

of death for trauma patients. To the best of our knowledge, this is the first work applying

BERT on unstructured text data combined with measurements for survival analysis.

2. We evaluate BERTSurv on the trauma patients in MIMIC III. For mortality

prediction, BERTSurv achieves an AUC-ROC of 0.86, which outperforms baseline of

MLP without notes by 3.6%. For survival analysis, BERTSurv achieved a C-index of 0.7

on trauma patients, which outperforms a Cox model with a C-index of 0.68.

3. We extract patterns in clinical notes by performing attention mechanism visual-

ization, which improves model interpretability by showing how the model assigns weights

to different clinical input texts with respect to survival outcomes.

This chapter is organized as follows: Section 6.2 describes how we processed the

MIMIC trauma dataset. We present BERTSurv in Section 6.3.1 and describe the back-

ground of BERT and survival analysis in Section 6.3.2 and Section 6.3.3. Evaluation and

discussion are given in Sections 6.4 and 6.5, respectively.

6.2 Dataset

BERTSurv is applied to the data from trauma patients selected using the ICD-9

code from the publicly available MIMIC III dataset [145], which provides extensive elec-

tronic medical records for ICU admissions at the Beth Israel Deaconess Medical Center

between 2001 and 2012. The measurements, clinical notes, expire flag (0 for discharge

and 1 for death), and death/discharge time for each patient were used to train and test

BERTSurv. The patient data were aggregated over the first 4 hours to obtain the initial

state of each individual admission. We took the average for each of the measurements

taken during this time period, and concatenated all of the clinical notes together. Con-

sidering the missing value issue and redundancy in MIMIC III, we selected 21 common

features as our representative set: blood pressure, temperature, respiratory rate, arterial

100

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

PaO2, hematocrit, WBC, creatinine, chloride, lactic acid, BUN, sodium (Na), glucose,

PaCO2, pH, GCS, heart rate, FiO2, potassium, calcium, PTT and INR. Our feature set

overlaps 65% of the measurements required by APACHE III [146]. We also extracted 4

demographic predictors: weight, gender, ethnicity and age.

As is common in medical data, MIMIC III contains many missing values in the mea-

surements, and the notes are not well-formatted. Thus, data preprocessing is very impor-

tant to predict outcomes. To deal with the missing data issue, we first removed patients

who have a missing value proportion greater than 0.4 and then applied MICE [101] data

imputation for the remainder of the missing values. For the clinical notes, we removed

formatting, punctuation, non-punctuation symbols and stop words. In addition to the

most commonly used English stop words, our stop word dictionary includes a few specific

clinical and trauma related stop words: doctor, nurse and measurement, etc. Following

this preprocessing, our trauma dataset includes 1860 ICU patients, with 21 endogenous

measurements, 4 exogenous measurements and notes. The sample class ratio between

class 0 (discharge) and class 1 (death) is 1206 : 654.

6.3 Methods

In this section we first describe the framework of BERTSurv. Then we introduce

some basics of BERT and survival analysis, which are the key components of BERTSurv.

6.3.1 BERTSurv

Our model architecture, shown in Fig 6.1, consists of BERT embedding of clinical

notes concatenated with measurements followed by feed forward layers. The output for

BERTSurv is a single node hθ(xi) parameterized by the weights of the neural network

θ, which estimates either the probability of mortality or the hazard risk. For mortality

101

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

BERT

[CLS] representation

Blood pressure

Temperature

[CLS]

Token1

[SEP]

Respiratory rate

.

.

.

Token2

.

.

.

.

.

.

.

.

.

.. .
. .
. .
. .

.

.

.

. .
.

Survival Analysis /
Mortality Prediction

Clinical notes

M
ea
su
re
m
en
ts

Figure 6.1: The framework of BERTSurv. [CLS] is a special symbol added in front
of every clinical note sample, and [SEP] stands for a special separator token. BERT-
Surv consists of three main parts: BERT, measurements and output layer for mor-
tality prediction or survival analysis. First, we input a set of diagnostics and nurse
notes to BERT pretrained on masked language modeling and next sentence prediction.
The [CLS] representation, is treated as the representation of the input notes. Then
we concatenate the [CLS] representation and measurements as input and fine-tune
BERTSurv for downstream survival analysis.

prediction, we apply BCE loss to predict outcomes of death or discharge:

BCELoss :=
n∑
i=1

p(yi) log(hθ(xi)), (6.1)

where xi and yi represent inputs and outcomes for the ith patient, respectively.

To estimate θ in survival analysis, similar to the Faraggi-Simon network [136, 137],

we minimize the PLL loss function, which is the average negative log partial likelihood:

PLLLoss := − 1

ND=1

∑
i:Di=1

(hθ(xi)− log
∑

j∈R(Ti)

exp(hθ(xj))), (6.2)

where ND=1 is the number of patients with an observable death. The risk set Ri = {j :

Tj ≥ Ti} is the set of those patients under risk at Ti.

102

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

We use batch normalization through normalization of the input layer by re-centering

and re-scaling [26]. We apply rectified linear unit(ReLU) or scaled exponential linear units

(SELU) as the activation function. For regularization, dropout [27] is implemented to

avoid overfitting. Dropout prevents co-adaptation of hidden units by randomly dropping

out a proportion of the hidden units during backpropagation. BCE/PLL loss is minimized

with the Adam optimizer [29] for training.

BERTSurv is implemented in Pytorch [147]. We use a Dell 32GB NVIDIA Tesla M10

Graphics Card GPU (and significant CPU power and memory for pre-processing tasks)

for training, validation and testing. The hyperparameters of the network include: BERT

choice (BERTBASE or clinical BERT [143]), sequence length, batch size, learning rate,

dropout rate, training epochs and activation function (ReLU or SELU).

6.3.2 BERT

A key component of BERTSurv is the BERT language representation model. BERT is

a Transformer-based language representation model, which is designed to pre-train deep

bidirectional representations from unlabeled text by jointly considering context from both

directions (left and right). Using BERT, the input representation for each token in the

clinical notes is the sum of the corresponding token embeddings, segmentation embed-

dings and position embeddings. WordPiece token embeddings [148] with a 30,000 token

vocabulary are applied as input to BERT. The segment embeddings identify which sen-

tence the token is associated with. The position embeddings of a token are a learned set

of parameters corresponding to the tokens position in the input sequence. An attention

function maps a query and a set of key-value pairs to an output. The attention function

takes a set of queries Q, keys K, and values V as inputs and is computed on an input

sequence using the embeddings associated with the input tokens. To construct Q, K and

103

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

V , every input embedding is multiplied by the learned sets of weights. The attention

function is

Attention(Q,K, V) = softmax(
QKT

√
dk
V), (6.3)

where dk is the dimensionality of Q and K. The dimension of V is dv. A multi-head

attention mechanism allows BERT to jointly deal with information from different rep-

resentation subspaces at different positions with several (h) attention layers running in

parallel:

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO, (6.4)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i). Parameter matrices WQ

i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel are the learned linear projec-

tions from Q, K, V to dk, dk and dv dimensions.

In BERTSurv, we use pretrained BERT of BERTBASE and clinical BERT [143] for

clinical note embedding, and focus on fine-tuning for survival analysis.

6.3.3 Survival Analysis

Another key component of BERTSurv is survival analysis. Survival analysis [149, 150]

is a statistical methodology for analyzing the expected duration until one or more events

occur. The survival function S(t), defined as S(t) = P (T ≥ t), gives the probability

that the time to the event occurs later than a given time t. The cumulative distribution

function (CDF) of the time to event gives the cumulative probability for a given t-value:

F (t) = P (T < t) = 1− S(t). (6.5)

104

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

The hazard function h(t) models the probability that an event will occur in the time

interval [t, t+ ∆t) given that the event has not occurred before:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)

∆t
=
f(t)

S(t)
, (6.6)

where f(t) is the probability density function (PDF) of the time to event. A greater

hazard implies a greater probability of event occurrence. Note from Equ. 6.5 that −f(t)

is the derivative of S(t). Thus Equ. 6.6 can be rewritten as

h(t) = −dS(t)

dt
∗ 1

S(t)
= − d

dt
log(S(t)). (6.7)

By solving Equ. 6.7 and introducing the boundary condition S(0) = 1 (the event can not

occur before duration 0), the relationship between S(t) and h(t) is given by

S(t) = exp

(
−
∫ t

0

h(s)ds

)
. (6.8)

The Cox model [135] is a well-recognized survival model. It defines the hazard function

given input data h(t | y, ηηη) to be the product of a baseline function, which is a function of

time, and a parametric function of the input data y and ηηη. y and ηηη denote endogenous

measurements and exogenous measurements, respectively. Using the assumption of a

linear relationship between the log-risk function and the covariates, the Cox model has

the form

h(t | y, ηηη) = h0(t) exp(τττTy + γγγTηηη), (6.9)

where h0(t) is the baseline hazard function, and τττ and γγγ are the vectors of weights for y

and ηηη.

In BERTSurv, the log-risk function hθ(x) is the output node from the neural network:

105

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

h(t | y, ηηη) = h0(t) exp(hθ(x)), (6.10)

where the input x includes y, ηηη and clinical notes. The likelihood function for the survival

model is as follows:

p(T, δ) = h(T)δS(T). (6.11)

When δ = 1, it means that the event is observed at time T . When δ = 0, the event has

not occurred before T and it will be unknown after T . The time T when δ = 0 is called

the censoring time, which means the event is no longer observable.

The Cox partial likelihood is parameterized by τττ and γγγ and defined as

PL(τττ ,γγγ) =
n∏
i=1

{ exp(τττTy + γγγTηηη)∑
j∈Ri

exp(τττTy + γγγTηηη)
}∆i , (6.12)

where ∆i = I(Ti ≤ Ci). Ci is the censoring time for the ith patient, and I(∗) is the

indicator function.

We use the Breslow estimator [151] to estimate the cumulative baseline hazard Ĥ0(t) =∫ t
0
ĥ0(u)du:

Ĥ0(t) =
n∑
i=1

I(Ti ≤ t)∆i∑
j∈Ri

exp(τττTy + γγγTηηη)
. (6.13)

6.4 Experiments and Analysis

Throughout this section, we randomly pick 70% of the trauma data as training and

the rest as testing. Considering the size of our dataset and the training time, we apply

5-fold cross-validation on the trauma training dataset and grid search for hyperparameter

choice. Our hyperparameters are described in Table 6.1. Note that the sequence length

and batch size choices are limited by GPU memory.

106

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

Table 6.1: Hyperparameters
Hyperparameters Survival analysis Mortality prediction
Batch size 24 16
Sequence length 512 512
Epoch 4 4
Dropout rate 0.1 0.1
Learning rate 1e-2 4e-2
BERT choice clinical BERT clinical BERT
Activation SELU ReLU

Using the clinical notes and measurements, we formulate the mortality prediction

problem as a binary classification problem. Fig. 6.2 shows the averaged cross validation

confusion matrix for mortality prediction in the trauma training dataset. The testing

confusion matrix for mortality prediction is presented in Fig. 6.3. Dominant numbers on

the diagonals of both confusion matrices indicate that BERTSurv achieves high accuracy

for both of the outcomes (death/discharge). With BCE loss, we apply two baselines: MLP

without notes and the TF-IDF mortality model. In MLP without notes, we consider only

the measurements and build a MLP with 3 feed-forward layers for mortality outcomes. In

the TF-IDF mortality model, we represent notes with TF-IDF vectors and build a support

vector machine (SVM) on TF-IDF vectors combined with measurements for mortality

prediction. We use AUC-ROC as our performance metric for mortality prediction, as it

is commonly used in survival prediction [152, 153]. AUC-ROC represents the probability

that a classifier ranks the risk of a randomly chosen death patient (class 1) higher than a

randomly chosen discharged patient (class 0). As is shown in Fig. 6.5, BERTSurv achieved

an AUC-ROC of 0.86, which outperforms MLP without notes by 3.6%. BERTSurv also

outperforms MLP without notes, with 5-fold cross validation as shown for our trauma

training dataset in Fig. 6.4.

To evaluate the model’s predictive performance with PLL loss on survival analysis,

107

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

0 1

Prediction

0

1Gr
ou

nd
 tr

ut
h 0.806 0.194

0.2623 0.7377

Confusion Matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.2: Averaged confusion matrix for mortality prediction over 5-fold cross vali-
dation on our trauma training dataset.

we measure the concordance-index (C-index) as outlined by [154]. BERTSurv achieved

a C-index of 0.7 on trauma patients, which outperforms a Cox model with a C-index

of 0.68. To reduce the risk of ICU trauma patients progressing to an irreversible stage,

accurate and early prediction of patient condition is crucial for timely medical decisions.

Mortality and cumulative hazard curves for two patients with different outcomes from

BERTSurv are shown in Fig. 6.6 and Fig. 6.7. Fig. 6.6(c) indicates that an earlier

discharged patients have a lower risk than later discharged patients, while Fig. 6.6(b)

shows that patients who die early are at a relatively higher risk compared with patients

who die later. Comparing Fig. 6.6(a) and Fig. 6.6(d), the gap between early discharge

vs. early death is larger than that of late discharge vs. late death. Similar conclusions

can be drawn from the hazard curves in Fig. 6.7. Such survival and hazard curves can

provide physicians with comprehensive insight into patients condition change with time.

108

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

0 1

Prediction

0

1Gr
ou

nd
 tr

ut
h 0.7612 0.2388

0.2083 0.7917

Confusion Matrix

0.3

0.4

0.5

0.6

0.7

Figure 6.3: Confusion matrix for mortality prediction on trauma testing dataset.

Fig. 6.8 depicts four self-attention mechanisms in BERTSurv which help to under-

stand patterns in the clinical notes. In all of the panels, the x-axis represents the query

tokens and the y-axis represents the key tokens. In panels (a) and (b), we analyze a

clinical note “left apical cap and left lateral pneumothorax suggests severe chest trauma

” from a patient that died at hour 76. Panels (a) and (b) are two different head atten-

tion mechanisms. Panel (a) indicates “severe chest” and panel (b) extracts “trauma” as

prominent patterns, respectively. Similarly, panels (c) and (d) are two head attention

mechanisms for a patient discharged at hour 85. The input note to BERTSurv is “the

endotracheal tube terminates in good position approximately 4 cm above the carina”.

BERTSurv finds “good” and “good position” in panels (c) and (d), respectively. Both

“severe chest and “good position” help in understanding the patients’ conditions and

strongly correlate with the final outcomes. The indications from extracted patterns to

patient outcomes show the effectiveness of BERT representation for clinical notes.

109

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver Operating Characteristic

BERTSurv (AUC = 0.84)
MLP (AUC = 0.82)
TF-IDF (AUC = 0.78)

Figure 6.4: Receiver operating characteristic (ROC) curve for mortality prediction
over 5-fold cross validation on our trauma training dataset. BERTSurv outperforms
both baselines.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

BERTSurv (AUC = 0.86)
MLP (AUC = 0.83)
TF-IDF (AUC = 0.80)

Figure 6.5: Receiver operating characteristic (ROC) curve for mortality prediction in
trauma testing dataset. BERTSurv outperforms both baselines.

110

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

0 200 400 600 800 1000

time (hour)

0.0

0.2

0.4

0.6

0.8

1.0

BERTSurv F(t)
Patients discharged at hour 16

Patients died at hour 1

(a) early discharge vs. early death

0 200 400 600 800 1000

time (hour)

0.0

0.2

0.4

0.6

0.8

1.0

BERTSurv F(t)
Patients died at hour 1073

Patients died at hour 1

(b) early death vs. late death

0 200 400 600 800 1000

time (hour)

0.0

0.2

0.4

0.6

0.8

1.0

BERTSurv F(t)
Patients discharged at hour 16

Patients discharged at hour 593

(c) early discharge vs. late discharge

0 200 400 600 800 1000

time (hour)

0.0

0.2

0.4

0.6

0.8

1.0

BERTSurv F(t)
Patients died at hour 789

Patients discharged at hour 157

(d) late discharge vs. late death

Figure 6.6: Prediction of mortality as a function of time after admission to ICU using
BERTSurv.

111

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

0 200 400 600 800 1000

time (hour)

0

2

4

6

8

10

12
BERTSurv Cumulative Hazard
Patients discharged at hour 16

Patients died at hour 1

(a) early discharge vs. early death

0 200 400 600 800 1000

time (hour)

0

2

4

6

8

10

12
BERTSurv Cumulative Hazard
Patients died at hour 1073

Patients died at hour 1

(b) early death vs. late death

0 200 400 600 800 1000

time (hour)

0

2

4

6

8

10

12

BERTSurv Cumulative Hazard
Patients discharged at hour 16

Patients discharged at hour 593

(c) early discharge vs. late discharge

0 200 400 600 800 1000

time (hour)

0

2

4

6

8

10

12

BERTSurv Cumulative Hazard
Patients died at hour 789

Patients discharged at hour 157

(d) late discharge vs. late death

Figure 6.7: Prediction of cumulative hazard function as a function of time after ad-
mission to ICU using BERTSurv.

112

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

le
ft

ap
ica

l
ca

p
an

d
le

ft
la

te
ra

l
p ##

ne
##

um
##

ot
ho

##
ra

##
x

su
gg

es
ts

se
ve

re
ch

es
t

tra
um

a

key

left
apical

cap
and
left

lateral
p

##ne
##um

##otho
##ra
##x

suggests
severe
chest

trauma

qu
er

y

0.0548 0.0550 0.0552 0.0554 0.0556 0.0558 0.0560 0.0562

(a) patient died at hour 76

le
ft

ap
ica

l
ca

p
an

d
le

ft
la

te
ra

l
p ##

ne
##

um
##

ot
ho

##
ra

##
x

su
gg

es
ts

se
ve

re
ch

es
t

tra
um

a

key

left
apical

cap
and
left

lateral
p

##ne
##um

##otho
##ra
##x

suggests
severe
chest

trauma

qu
er

y

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
1e 6+5.555e 2

(b) patient died at hour 76

th
e

en
d

##
ot

##
ra

c
##

he
a

##
l

tu
be

te
rm

in
at

es
in go

od
po

sit
io

n
ap

pr
ox

im
at

el
y

4 cm ab
ov

e
th

e
ca

r
##

in
a

key

the
end

##ot
##rac
##hea

##l
tube

terminates
in

good
position

approximately
4

cm
above

the
car

##ina

qu
er

y

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

(c) patient discharged at hour 85

th
e

en
d

##
ot

##
ra

c
##

he
a

##
l

tu
be

te
rm

in
at

es
in go

od
po

sit
io

n
ap

pr
ox

im
at

el
y

4 cm ab
ov

e
th

e
ca

r
##

in
a

key

the
end

##ot
##rac
##hea

##l
tube

terminates
in

good
position

approximately
4

cm
above

the
car

##ina

qu
er

y

0.049990 0.049995 0.050000 0.050005 0.050010 0.050015

(d) patient discharged at hour 85

Figure 6.8: BERT visualization. The x-axis are the query tokens and the y-axis are
the key tokens. Panels (a) and (b) are two head attention mechanisms for a patient
that died at hour 76. The input notes to BERTSurv read “left apical cap and left lat-
eral pneumothorax suggests severe chest trauma”. Panels (a) and (b) extract “severe
chest” and “trauma” as prominent patterns from the two heads, respectively. “severe
chest” and “trauma” provide insight on the patient’s critically ill condition. Similarly,
panels (b) and (c) are two head attention mechanisms for a patient discharged at
hour 85. The input notes include “the endotracheal tube terminates in good position
approximately 4 cm above the carina”. “good stands out in panel (c) and “good po-
sition” emerges in panel (d). Both “good” and “good position” are strong indications
that the patient is in a relatively benign condition.

113

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients Chapter 6

6.5 Discussion

We have proposed a deep learning framework based on BERT for survival analysis to

include unstructured clinical notes and measurements. Our results, based on MIMIC III

trauma patient data, indicate that BERTSurv outperforms the Cox model and two other

baselines. We also extracted patterns in the clinical texts with attention mechanism

visualization and correlated the assigned weights with survival outcomes. This work is

a proof of principle for the incorporation of clinical notes into survival analysis with

deep learning models. Given the current human and financial resources allocated in

preliminary clinical note analysis, our method has foreseeable potential to save labor

costs, and further improve trauma care. Additional data and work are needed, however,

before the extent to which survival analysis can benefit from deep learning and NLP

methods can be determined.

114

Chapter 7

How Much Does It Hurt: A Deep

Learning Framework for Chronic

Pain Score Assessment

7.1 Introduction

Deep learning models have achieved remarkable success in computer vision [6], nat-

ural language processing [8], speech recognition [7] and the game of Go [9]. Recently

there has been increasing interest in applying deep learning for end-to-end health data

analysis [155]. However, e-health data analysis is even more challenging since well-being

data can be affected by many factors, for example individual differences, measurement

errors in data collection and missing data.

Chronic pain is described as persistent or recurrent pain that lasts for at least 3

to 6 months [156]. According to the 2016 National Health Interview Survey (NHIS),

roughly 20.4% (50.0 million) of U.S. adults suffer from chronic pain. Chronic pain affects

individuals, their families, and society, and results in complications harming both physical

115

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

and mental health. The economic costs of chronic pain and pain-related disability in the

United States cannot be overstated. One influential report [157] conservatively estimated

an annual toll of $560-$650 billion dollarsfar exceeding the costs of cardiovascular disease,

cancer, and diabetes. Therefore, identifying the score of chronic pain is of significant value

to reduce further complications.

Neurophysiological signals have been used to quantify pain [158, 159, 160]. In the last

decade, there has been some progress towards discovering the neurobiological substrates

of pain. However, none of those methods is low-cost or easy-to-use. Clearly, there is

an unmet need for a low-cost, easy-to-use Pain Meter. According to recent research

results [161, 162, 163], classical physiological measurements can effectively quantify pain.

Inexpensive technology is now available to measure relevant physiological features. Taken

together, it is clear that objectively quantifying pain is possible. We thus investigated a

number of inexpensive commercial sensors capable of measuring physiological variables

for pain score assessment. We have thus far built prototype Pain Meters that offer the

immense potential to revolutionize pain treatment and the development of therapeutics.

To this end, we collected two new chronic pain datasets, using prototype Pain Meter

1 and 2, respectively. For Dataset 1, our subject has been suffering chronic pain for

more than 10 years. Neck and shoulder pain were causing her difficulty to perform daily

activities. For Dataset 2, we recruited chronic pain subjects from our local community.

All subjects signed an informed consent form according to a protocol approved by a

Human Subjects Committee. Our chronic pain datasets are characterized by the following

unique properties: First, we use Photoplethysmography (PPG) [164], which is low cost

and comfortable for patients, to collect pulse signals. Secondly, we also include several

temperature signals and Galvanic Skin Response(GSR) signals to detect the chronic pain

symptoms like nervousness. For Dataset 2, we also use accelerometers and gyros to detect

movements.

116

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Given the pain score datasets, we introduce the task of chronic pain score predic-

tion, which is to train an end-to-end oridinal classifier to accurately predict pain score.

The illustration of our workflow is shown in Fig. 7.1. An accurate chronic pain score

assessment will

1. Facilitate the development of new therapies both in the laboratory and in Phase II

and Phase III clinical trials.

2. Make it possible for physicians to quantify the effects of existing therapies on indi-

vidual patients.

3. Minimize the harm caused by diagnostic delays and the under/overtreatment of

pain due to the influence of gender, race, or age.

4. Allow a patient to decide, with objective personal data, whether current treatments

are effective in his/her quest to reduce chronic pain.

5. Serve as a biofeedback device for chronic pain subjects. The unconscious mind can

learn to control things it can monitor [165]. If people are enabled to accurately

monitor their chronic pain score with a Pain Meter, their unconscious mind can

figure out how to decrease the chronic pain score. It is trained and rewarded by

the tiny decreases in pain score that are accurately and continuously monitored.

Pain 0?
Pain 1?
…
Pain 10?

Figure 7.1: The workflow for chronic pain score assessment. The brain image is from Google.

Our main contributions are threefold:

117

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

1. We propose a deep learning ordinal regression framework for chronic pain score

assessment. To the best of our knowledge, this is the first work to use deep learning

for chronic pain score assessment.

2. We collect two new chronic pain datasets using our prototype Pain Meters to predict

the score of chronic pain.

3. We split the long recordings into smaller slices for training, which not only eases

the burden on GPU memory but also provides many training samples for deep

learning models. We define Consensus Prediction as the majority voting result of

the sampled short slices for testing, since not all of the short slices can be expected

to contain enough useful information.

The remainder of this chapter is organized as follows. Section 7.2 discusses related

work. Section 7.3 describes the Pain Meters we used for data collection and introduces the

classification problem. Section 7.4 delineates the methodology. Section 7.5 introduces

the experimental setup for comparison of our results to those obtained via multilayer

perceptron and logistic regression. Results and case studies are described in Section 7.6.

Section 7.7 shows that our deep learning framework can also be used to provide feedback

to improve the design of the Pain Meter. Section 7.8 is the Discussion.

7.2 Related Work

7.2.1 Deep Learning for E-Heath

Since the emergence of deep learning in e-health, more and more researchers have been

implementing deep learning models for medicine, aiming to improve health care [155],

classify diseases [166], and prevent misdiagnosis [167]. More specifically, the prediction of

118

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

medical events has been popular, including the prediction of death rates [168], prescrip-

tions [169], and successful extubation [170]. Although many researchers have applied

deep learning to e-health, to the best of our knowledge no researcher has applied deep

learning from pulse signals to the prediction of chronic pain scores [171]. There are im-

age based models for automatic estimation of pain [172, 173]. Deep Pain [172] uses long

short term-memory (LSTM) and analyzes images of facial expression. However, images

alone are not reliable since images alone may not contain enough relevant information for

pain score prediction. Many factors affect pain score, including stress and mood, which

might not be fully captured by image based methods. Physio-based models have been

developed for assessments of physiological pain [174] but these have not been applied

to chronic pain. Motivated by this need, we propose a Convolutional Neural Network

(CNN)-based framework that uses physiological signals to assess chronic pain scores.

7.2.2 Chronic Pain and Traditional Machine Learning

In the context of pain assessment research, physiologically-based pain has been the

main focus for many pain researchers [175]. Chronic pain, on the other hand, is pro-

longed, lasting anywhere from months to years [176]. In the past, traditional machine

learning methods have been applied to e-health, but this has required extensive feature

extraction [177]. Human feature extraction has many disadvantages. For example, it is

costly and can result in the loss of data interpretability [178]. Random Forest has been

used to monitor the nociception (perception of pain) level, which requires feature extrac-

tion [179]. Physiological parameters like heart rate, heart rate variability, plethysmograph

wave amplitude, skin conductance level, number of skin conductance fluctuations, and

their time derivatives are extracted for prediction. In contrast, our end-to-end deep

learning framework requires no feature extraction and little data preprocessing.

119

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

7.2.3 Physiological Sensors

Photoplethysmography (PPG) is a widely used non-invasive method for measuring

pain intensity, in which changes in blood volume and light absorption are detected [164].

This type of technology is commonly used because it is simple and can easily collect

data, while being cost-efficient and accessible [180]. A PPG device has also been de-

veloped to monitor respiratory and heart rates of infants, and this has been proven to

perform well [181]. PPG is favored not only for clinical use, but also for home use as

a biofeedback device. In addition, it is more comfortable for patients because it does

not involve gel and electrodes contacting their skin [182]. Thus, in our prototype Pain

Meter, we use PPG [183] to collect pulse recordings. We also included axis accelerometer

gyroscope modules (MPU-6050), force sensitive resistors to measure the forces that cause

low frequency motion (DF9-40), and a GSR sensor (ZIYUN Grove GSR sensor).

7.3 Data Collection and Classification

7.3.1 Prototype Pain Meter

Fig. 7.2 shows the device we used for collecting Dataset 1. Pain Meter 1 contains: 1)

two PPG pulse sensors held to the temples via a headband, three at the three arteries

supplying blood to the brain mounted in a neck pillow, and two at the fingertip and palm,

2) temperature sensors at each location of the PPG pulse sensors, and 3) GSR sensors

embedded in the block on which the hand rests. These provide a total of 15 signals,

recorded in Dataset 1.

As is shown in Fig. 7.3, it turned out that the PPG sensors were sensing more than

pulse. They were also sensing subtle motion. Motivated by these phenomena, we added

actual motion sensors in our Pain Meter 2. As is shown in Fig. 7.4, Pain Meter 2 contains:

120

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Figure 7.2: Pain Meter 1 sensed temperature, pulse and GSR, but it did not directly
sense motion.

1) PPG pulse sensors in a headband, in a neck band, and on the fingertip, 2) temperature

sensors on the neck and fingertip, 3) 3-axis accelerometers and 3-axis gyros in the head

band and wrist band, 4) force sensors on the forehead, back of neck, side of neck, and

wrist band, and 5) GSR sensors between the middle and ring fingers. These provide a

total of 25 signals, recorded in Dataset 2.

For both Pain Meters, a Teensy 3.6 microcontroller with a 32-bit 180 MHz ARM

Cortex-M4 processor is used to sample all signals every 15ms. A data acquisition program

was designed in MegunoLink Pro for Pain Meter 1 data and a customized data acquisition

program was written in Python for Pain Meter 2 data.

121

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

MotionNo Motion No Motion

A

B

D

C

E
Time (s)

Figure 7.3: Motion affects the pulse sensor signals, which are based on measuring the
intensity of light reflected from the skin. Part A shows a pulse sensor at the carotid
artery, far from motion. Part B shows a pulse sensor at the finger. Motion is generated
by flexing the wrist and is measured in part C by a wrist acceleration sensor. Part D
shows data from wrist gyro sensor and part E shows data from a wrist force sensor.
Note that the pulse sensor on the finger (sensor B), which is closer to the motion, is
strongly affected by the motion, while the pulse sensor on the carotid artery (sensor
A) is not.

122

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Figure 7.4: Pain Meter 2 consists of: 1) PPG pulse sensors in a headband, in a neck
band, and on the fingertip, 2) temperature sensors on the neck and fingertip, 3) 3-axis
accelerometers and 3-axis gyros in the head band and wrist band, 4) force sensors on
the forehead, back of neck, side of neck, and wrist band, and 5) GSR sensors between
the middle and ring fingers.

123

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

7.3.2 Data Collection

Using Pain Meter 1 from Fig. 7.2, our chronic pain Dataset 1 was collected from one

subject who self-reported the pain score. The subject was asked to fix the headband and

neck pillow into a comfortable position. Once secured, real-time plots of the pulse and

temperature data were viewed to verify that the head and neck sensors were collecting

accurate and reliable signals for the subject. Minor adjustments to the sensor positions

can be made if needed. After adjustments were made, the subject placed the left hand

on the module to read the hand signals. A final verification step viewing all plots of

data was performed. Then the subject was asked to close their eyes and relax before the

recording begins. After 10 minutes, the recording was ended. Each recording was taken

on a different day at the same time in the afternoon, the same temperature and the same

environment brightness. During recordings with Pain Meter 1 we noticed that some of

the pulse signals became erratic compared to other pulse signals and that this erratic

behavior seemed to correlate with pain. We hypothesized that this was due to subtle

movement [184] and constructed Pain Meter 2 (Fig. 7.4) to have motion sensors. With

the addition of motion sensors we could confirm this hypothesis (Fig. 7.3) and measure

the motion directly.

Pain score distributions for the 2-class Dataset 1 and 7-class Dataset 2 are shown

in Table 7.1 and Fig 7.5, respectively. Each recording has a length of 10 minutes, with

signals sampled every 15 milliseconds. We have 4 recordings from one subject in Dataset

1 and 62 recordings from 20 subjects in Dataset 2. We divide each 10-minute recording

into ten mutually exclusive 1-minute samples.

124

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Table 7.1: Data statistics for Dataset 1

Data Classes
Pain score

distribution
Chronic Pain 2 1 : 1

0

12.9%1

9.7%

2

44.8%

311.3%

4

13.3%

5

2.2%

6

5.8%

Figure 7.5: Distribution of pain scores in Dataset 2. The numbers outside the pie
chart are the corresponding pain scores and the percentages of time for which each
pain score is reported are shown in the pie chart.

7.3.3 Classification Problem

The classification problem for chronic pain assessment is to classify a Pain Meter

dataset of time sequences into pain scores on a scale of 0 for no pain to 10 for the worst

pain possible. The model is first trained on Dataset 1 from a chronic pain subject who

self reports her pain score for each of the datasets on a 0 to 10 scale. Note that seldom

has our subject reported a pain score higher than 2 in Dataset 1. Thus in Dataset 1, we

use pain scores 1 and 2. In Dataset 2, we have pain scores from 0 to 6, which formulates

to be a 7 class classification problem. Our goal is to use the trained deep learning model

to accurately classify chronic pain datasets into the self reported pain scores.

125

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

7.4 Methodology

The model architecture, shown in Fig. 7.6, consists of convolution-pooling layers fol-

lowed by fully connected layers. To learn temporal and correlation features, the convo-

lution is performed on both the time and sensor dimensions. We split the 1-minute

samples into smaller slices with length of seq length. Sensor recording signals with

a dimension of (number of sensors (N) × seq length) serve as input x for the neu-

ral network. A convolution operation involves a filter w ∈ Rst, which is applied to a

window of s sensors and t samples to produce a new feature. For example, a feature

fi,j, (0 ≤ i ≤ N − s+ 1, 0 ≤ j ≤ seq length− t+ 1) is generated from a window size (s, t)

of the sensor signals:

fi,j = ReLU(wxi:i+s−1,j:j+t−1 + b), (7.1)

where b ∈ R is a bias term. This filter is applied to each possible window of the voltage

signals to produce a feature map:

f =

f1,1 f1,2 ... f1,seq length−t+1

f2,1 f2,2 ... f2,seq length−t+1

...

fN−s+1,1 fN−s+1,2 ... fN−s+1,seq length−t+1

, (7.2)

with f ∈ RN−s+1,seq length−t+1. We then apply a max-pooling operation over the feature

map and take the maximum value m = max (f) as the feature corresponding to this

particular filter. The idea is to capture the most important feature, the one with the

highest value, for each feature map. Our model uses multiple filters to obtain multiple

features. These features form the penultimate layer and are passed to a fully connected

softmax layer whose output is the probability distribution over different pain scores. We

adjust the number of convolutional ReLU layers from 2 to 5, based on the choice of

126

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

seq length. The prediction of our model, parameterized by W , is given by p(ŷ|x,W).

Due to the existence of the inherent ordering information in our chronic pain score,

we apply ordinal regression, a setting that bridges metric regression and classification,

to predict chronic pain scores of ordinal scale. Compared to regular regression problems,

these pain scores are discrete. These pain scores are also different from the labels of

multiple classes in classification problems due to the existence of the ordering information.

The cross entropy loss of our ordinal regression for input vector xn is as follows,

Ln(W) =(1 + |argmax(p(ŷ|xn,W))− y

C − 1
|)

× 1

C
(
C∑
i=1

−yi · log(p(ŷ|xn,W))),

(7.3)

where y represents the true pain scores, p(ŷ) denotes the predicted probability vector

with one value for each possible pain score, and C is number of pain scores. Divided

by C − 1, the absolute error |argmax(p(ŷ|xn,W)) − y| is normalized between 0 and

1, with C classes in total. By multiplying |argmax(p(ŷ|xn,W))−y
C−1

|, the normalized absolute

error between prediction and ground truth, with cross entropy loss, we include the ordinal

information in our loss function. We penalize more in our loss function if the absolute

error between ground truth and prediction is larger.

For testing, we define Consensus Prediction to measure the performance of predic-

tions for the whole sensor signal sample. Consensus Prediction synthesizes results from

multiple short slices by majority voting, which can significantly improve the prediction

accuracy for a long sample. This is because not all of the short time slices can be expected

to contain useful information for classification.

We use Batch Normalization [26] to accelerate training. For regularization, dropout [27]

and early stopping methods [28] are implemented to avoid overfitting. Dropout prevents

co-adaptation of hidden units by randomly dropping out a proportion of the hidden units

127

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

during backpropagation. Model training is ended when no improvement is seen during

the last 100 validations. Softmax cross entropy loss is minimized with the Adam opti-

mizer [29] for training. Since both frequency information and correlation between sensors

are captured through convolution filters, our CNN-based framework automatically deals

with the features needed for classificaiton. We use grid search for hyperparameter tuning.

The hyperparameters are described in Table 7.2.

Convolutional
layer with multiple
filter widths and
feature maps

Segments with
seq_length = 15s Max pooling Fully connected layer

with dropout and
softmax output

1 minute recordings

Figure 7.6: Model architecture: 1-minute samples of the voltages measured on the
physiological sensors are collected from our prototype Pain Meter. Segments with
seq length = 15 s of these samples are individually classified. These individual classi-
fications are conducted for Consensus Prediction in Pain score recordings.

7.5 Experimental Setup

We introduce two baselines: Multilayer Perceptron (MLP) and Logistic Regression,

to compare with our proposed CNN framework for the two classification problems.

7.5.1 CNN based Model and Consensus Prediction

We implement a parallel processing framework that distributes the convolutional neu-

ral network into multiple (N) GPUs to ease the burden on GPU memory. Each GPU

128

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

contains an entire copy of the deep learning model. We first split the training batch

evenly into N sub-batches. Each GPU processes only one of the sub-batches. Then we

collect gradients from each replicate of the deep learning model, aggregate them together

and update all the replicates. We train our CNN based framework with two NVIDIA

GeForce GTX 1080s, each of which has a memory of 11178 MB.

7.5.2 Multilayer Perceptron

We use a four layer fully connected network, whose output is the probability distri-

bution over two different classes, as a baseline. We use a parallel processing framework

similar to our CNN model implementation. We train our MLP on two NVIDIA FeForce

GTX 1080s.

7.5.3 Logistic Regression

Since the signals are periodic, we extract individual voltage signal FFT (x1) and

pairwise sensor signal Pearson Correlation (x2) as features (X) for a Logistic Regression

classifier:

P (Y = 1|X) =
1

1 + e−(w0+w1x1+w2x2)
, (7.4)

where Y is the label for classification and P is the probability of predicting Y as label 1

(pain score 1). w0, w1 and w2 are model parameters to be learned during training.

129

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

7.5.4 Split Training and Testing

Since each of our recordings is long enough to split into multiple informative samples

and there exists different settings among different recordings, we implement two methods

of splitting the training and testing data. We first divide each 10-minute recording into

ten mutually exclusive 1-minute samples.

1. Considering the size of our datasets in prediction, we use 5-fold cross validation.

For each of the 10-minute recordings, we use between 2∗ (i−1) and 2∗ i minutes as

testing, and the rest for training, for the i-th fold. This training/testing split fits

well with the scenario of practical use of pain score assessment. It is known that

different subjects have different perceptions of pain. For real use, our pain meters

need some self-calibration before getting accurate pain score readouts.

2. Leave-one-recording-out cross validation on all the recordings. Each recording is

used once as a test set while the remaining recordings form the training set. We

note that, due to differences in subjects’ sensitivity to pain, different settings while

recordings, and the size of our data, it is much more difficult to predict across

subjects than within one recording. We report the result using this splitting method

in Section 7.8.

7.6 Results and Analysis

Considering the size of our dataset in prediction, we use 5-fold cross validation and

report the average results in this section. Note that Dataset 2 is unbalanced. We also

report the confusion matrix for evaluation.

130

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Table 7.2: Hyperparameters
Hyperparameters Value
Batch size 24
Epoch 2000
Dropout rate 0.5
Seq length 15 seconds
Learning rate 0.5

Confusion matrices are shown in Fig. 7.7 and Fig. 7.8 for chronic pain score prediction.

Dominant numbers on the confusion matrix diagonal indicates that our model achieves

high accuracy for each class. Fig. 7.9 shows the individual class prediction distribution

for Dataset 2. The infrequent prediction mistakes scatter around the ground truth. For

example, although 11% of the predictions from pain score 3 are incorrect, they are still

close to 3 (either 2 or 4). Fig 7.10 further demonstrates that the probability of making

an error decreases as the absolute prediction error increases. This is the benefit from

ordinal regression, which penalizes more in the loss if the absolute error between ground

truth and prediction is larger. Fig. 7.11 is a scatter plot of expected predicted pain score

vs. self-reported pain score. The relationship between predicted pain score and ground

truth is highly linear, with an R-squared (R2) of 0.9463.

Since we use seq length to split long recordings into shorter slices, some of the short

slices may not contain enough information for pain score prediction. However, these

effects can be eliminated using Consensus Prediction. Although we have imblanced data

in Dataset 2, we still use accuracy to compare different models and check the benefits

obtained from Consensus Prediction, since chronic pain subjects are most interested in

prediction accuracy.

Results of our framework compared against other machine learning models on chronic

pain recordings are shown in Tables 7.3 and 7.4 respectively. We compare our CNN based

model with two baselines: Multilayer Perceptron (MLP) and feature-based Logistic Re-

131

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

1 2

Prediction

1

2

Pa
in

 S
co

re
0.9997 0.0003

0.0735 0.9265

Confusion Matrix

0.2

0.4

0.6

0.8

Figure 7.7: Confusion matrix for chronic pain score prediction in Dataset 1.

gression. For Dataset 1, our CNN-based deep learning approach improves the prediction

accuracy by 5.25% compared to feature-based Logistic Regression. Fig. 7.12 shows the

Consensus Prediction accuracy. The accuracy improves by 3.84% using Consensus Pre-

diction. Although not all of the short slices can be expected to contain enough useful

recording patterns, we can overcome that when we synthesize multiple individual clas-

sification results from these short slices. For Dataset 2, our model achieves accuracy of

95.23% for short recording slices, which is a 2.8% improvement over feature based Lo-

gistic Regression. The accuracy further improves to 98.30% with Consensus Prediction

as shown in Fig. 7.13. Our CNN based deep learning model also outperforms MLP on

both of the two sets of recordings by 3.32% and 2.91% respectively, which shows CNN’s

advantage of local feature extraction using convolutional kernels over MLP. Also from

Fig. 7.12 and Fig. 7.13, 100 time slices for each recording are sufficient in Consensus

Prediction.

132

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 1 2 3 4 5 6

Prediction

0

1

2

3

4

5

6

Pa
in

 S
co

re
0.883 0.059 0.057 0.001 0.001

0.971 0.022 0.007

0.006 0.009 0.973 0.001 0.01 0.001

0.002 0.081 0.89 0.027

0.001 0.019 0.98

0.053 0.947

0.018 0.001 0.98

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 7.8: Confusion matrix for chronic pain score prediction in Dataset 2. Our
model achieves high accuracy for each class.

Table 7.3: Cross-validation performance comparison of our deep learning model with
Multilayer Perceptrons and Logistic Regression on Dataset 1.

Model Accuracy on Testing
Convolutional Neural Network 0.9630
Multilayer Perceptron 0.9321
Logistic Regression 0.9150

Table 7.4: Cross-validation performance comparison of our deep learning model with
Multilayer Perceptrons and Logistic Regression on Dataset 2. Although we have
imblanced data for 7 classes, subjects are still most interested in prediction accuracy.
We showed confusion matrix for our CNN model in the previous figure.

Model Accuracy on Testing
Convolutional Neural Network 0.9523
Multilayer Perceptron 0.9238
Logistic Regression 0.9063

133

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 0 Prediction Distribution

0

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ed
ict

io
n

Di
st

rib
ut

io
n

Pain Score 1 Prediction Distribution

1

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 2 Prediction Distribution

2

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 3 Prediction Distribution

3

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 4 Prediction Distribution

4

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 5 Prediction Distribution

5

0 1 2 3 4 5 6
Pain Score

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Di

st
rib

ut
io

n

Pain Score 6 Prediction Distribution

6

Figure 7.9: Individual class prediction distribution for Dataset 2. The occasional
incorrect predictions scatter close to the ground truth.

134

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 1 2 3 4 5 6
Absolute Prediction Error

0.0

0.2

0.4

0.6

0.8

Absolute Prediction Error Distribution

Figure 7.10: The distribution of absolute prediction error using ordinal regression for
Dataset 2. The chance of making an error decreases with the increase of absolute
prediction error.

0 1 2 3 4 5 6
Pain score

0

1

2

3

4

5

6

Pr
ed

ict
ed

 p
ai

n
sc

or
e

Predicted Expectation vs. Ground Truth in testing

Figure 7.11: Scatter plot of expected predicted pain score vs. self-reported pain score
for Dataset 2. The larger size of the point corresponds to the higher appearance
frequency of the data point. We keep a decimal in calculating the expected predicted
pain score because 0.1 is a reasonable precision to estimate pain in real life. The
predicted pain score exerts high linear relationship with ground truth with a high R2

of 0.9463.

135

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 100 200 300 400 500 600
Number of time slices used every recording

0.95

0.96

0.97

0.98

0.99

1.00

1.01
Pr

ed
ict

io
n

ac
cu

ra
cy

 fo
r r

ec
od

in
gs

Prediction accuracy vs. Number of voting slices

Figure 7.12: Consensus Prediction for chronic pain score prediction in Dataset 1.

0 100 200 300 400 500 600
Number of time slices used every recording

0.94

0.95

0.96

0.97

0.98

0.99

Pr
ed

ict
io

n
ac

cu
ra

cy
 fo

r r
ec

od
in

gs

Prediction accuracy vs. Number of voting slices

Figure 7.13: Consensus Prediction for chronic pain score prediction in Dataset 2.

136

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 10000 20000 30000 40000 50000 60000
Seq_length (ms)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ed

ict
io

n
Ac

cu
ra

cy

Accuracy vs. Seq_length for Dataset 1

Figure 7.14: Accuracy vs. Seq length trend for Dataset 1.

Fig. 7.14 shows the trend of accuracy versus the choice of seq length for Dataset

1. For the effect of seq length on accuracy, there exists a trade-off between number

of training samples and representation of a whole recording. The short slices contain

less information but can provide more independent training samples. For deep learning

models, larger numbers of training slices help more than a larger sample. However, we

still cannot choose too small of a seq length, since a too short slice is not representative

for a recording. Given the data we currently have, we use a seq length of 15 seconds.

We show some failure cases for our CNN classifiers in Fig. 7.15. The upper figure

shows the histogram of short sequence prediction for one recording, where blue indicates

predicted successfully and red indicates predicted incorrectly. The x axis is the starting

point of the sampled short sequences. The lower figure shows the corresponding voltage

signals from our prototype Pain Meter recording. There is a period from 0.55 minute to

0.65 minute, during which the classifier consistently makes incorrect predictions. From

the pulse signals, they also perform abnormally compared to other periods. This is also

true for the short peak in the data coming from the palm near wrist at 0.28 minute. This

illustrates that for those periods, by looking at shorter sequences, it is easy to make a

137

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Figure 7.15: Case study for short slices that the classifier predicted incorrectly. In the
upper figure, red color bars represent incorrect predictions while blue bars represent
correct predictions.

wrong prediction for both human experts and a classifier. This is due to the fact that

our sensors are sensitive to movements. Noise can be introduced with a contact position

change between sensors and skin. However, by using Consensus Prediction, these errors

have no effect on the final prediction.

138

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

Ri
gh

t C
ar

ot
id

 P
ul

se

Le
ft

Ca
ro

tid
 P

ul
se

Ba
sil

ar
 P

ul
se

Ri
gh

t T
em

pl
e

Pu
lse

Le
ft

Te
m

pl
e

Pu
lse

Fi
ng

er
 P

ul
se

Pa
lm

 n
ea

r W
ris

t P
ul

se

Ri
gh

t C
ar

ot
id

 T
em

pe
ra

tu
re

Le
ft

Ca
ro

tid
 T

em
pe

ra
tu

re

Ba
sil

ar
 T

em
pe

ra
tu

re

Ri
gh

t F
or

eh
ea

d
Te

m
pe

ra
tu

re

Le
ft

Fo
re

he
ad

 T
em

pe
ra

tu
re

Fi
ng

er
 T

em
pe

ra
tu

re

Pa
lm

 T
em

pe
ra

tu
re

GS
R

be
tw

ee
n

fin
ge

rs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Individual Sensor Signal Performance

Figure 7.16: Individual sensor signal classification performance for Dataset 1.

139

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

7.7 Optimizing the Pain Meter Design

One of the benefits of our deep learning framework is that it can distinguish which

sensors are most useful for pain score assessment. We compare the performance of each

of the separate signals in Pain Meter 1 as shown in Fig. 7.16. We report the average

accuracy using 5-fold cross validation. This can help us to further improve our chronic

Pain Meter. By testing individual signal performance, we find that the accuracy for

temperature signals are all around 0.5, which is similar to a random guess in binary

classification. Thus the temperature signals are not very informative. We also find that

the temple pulse and the palm near wrist pulse contribute substantially to our pain score

prediction.

7.8 Discussion

We have addressed the issue of predicting a chronic pain score by proposing a deep

learning ordinal regression framework. We split the long recordings into smaller slices,

which not only eases the burden on GPU memory but also provides more training sam-

ples for the deep learning model. We define and use Consensus Prediction during test-

ing. We present the Confusion Matrix of leave-one-recording-out in Fig. 7.17. Leave-

one-recording-out does not perform well due to subjects’ differing perceptions of pain

intensities. Also since we have much more pain score 2 samples compared with other

pain score samples in Dataset 2, as is shown in Fig. 7.5, the model is prone to make

predictions of pain score 2.

This work is a proof of principle for chronic pain score assessment via deep learning.

It can provide an objective pain assessment for each patient. More data for additional

chronic pain subjects is needed before it can be definitively known if deep learning will

140

How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
Chapter 7

0 1 2 3 4 5 6

Prediction

0

1

2

3

4

5

6

Pa
in

 S
co

re
0.495 0.147 0.259 0.041 0.057 0.001

0.154 0.365 0.346 0.125 0.01

0.075 0.111 0.531 0.079 0.15 0.024 0.029

0.019 0.073 0.183 0.348 0.257 0.037 0.082

0.062 0.093 0.252 0.14 0.383 0.06 0.01

0.025 0.057 0.815 0.008 0.081 0.014

0.036 0.654 0.009 0.031 0.27

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.17: Confusion matrix for chronic pain score prediction in Dataset 2 using
leave one recording out. The performance is poor due to subjects’ differing sensitivi-
ties to pain, the use of different settings while recording and the limited unbalanced
dataset.

be a generally useful technique for chronic pain assessment.

141

Chapter 8

Conclusion and Future Work

In this dissertation we have demonstrated our use of data-driven approaches for knowl-

edge mining from MEA recordings and healthcare data.

In MEA recording mining, we proposed a deep learning framework for MEA classifi-

cation on mouse and human derived induced Pluripotent Stem Cell recordings. We also

introduced a scalable Bayesian framework for inference of functional networksfrom MEA

data.

In healthcare data mining, we first performed quantitative analysis on early MOF pre-

diction with comprehensive machine learning (ML) configurations. Then we introduced

BERTSurv to include clinical notes in addition to measurements for mortality prediction

and survival analysis. We also proposed Classifier-GAIN for MOF prediction to deal with

missing data issue, by incorporating both observed data and label information. Finally

we proposed an end-to-end deep learning framework for chronic pain score assessment.

Future work could include collecting more high-quality data, building more tools that

can best provide real-time assessment of subjects, improving the accuracy and efficiency

of the current tools, and in some cases providing a mechanism for bio-feedback.

142

Bibliography

[1] Y. Zhao, E. Guzman, M. Audouard, Z. Cheng, P. Hansma, K. S. Kosik, and
L. Petzold, A deep learning framework for classification of in vitro multi-electrode
array recordings, arXiv preprint arXiv:1906.02241 (2019).

[2] Y. Zhao, R. Jiang, Z. Xu, E. Guzman, P. K. Hansma, and L. Petzold, Scalable
bayesian functional connectivity inference for multi-electrode array recordings,
arXiv preprint arXiv:2007.02198 (2020).

[3] Y. Wang*, Y. Zhao*, R. Callcut, and L. Petzold, Empirical analysis of machine
learning configurations for prediction of multiple organ failure in trauma patients,
arXiv preprint arXiv:2103.10929 (2021).

[4] Y. Zhao, Q. Hong, X. Zhang, Y. Deng, Y. Wang, and L. Petzold, Bertsurv:
Bert-based survival models for predicting outcomes of trauma patients, arXiv
preprint arXiv:2103.10928 (2021).

[5] Y. Zhao, F. Ly, Q. Hong, Z. Cheng, T. Santander, H. T. Yang, P. K. Hansma,
and L. Petzold, How much does it hurt: A deep learning framework for chronic
pain score assessment, arXiv preprint arXiv:2009.12202 (2020).

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, Advances in neural information processing systems
25 (2012) 1097–1105.

[7] A. Graves, A.-r. Mohamed, and G. Hinton, Speech recognition with deep recurrent
neural networks, in 2013 IEEE international conference on acoustics, speech and
signal processing, pp. 6645–6649, Ieee, 2013.

[8] R. Collobert and J. Weston, A unified architecture for natural language
processing: Deep neural networks with multitask learning, in Proceedings of the
25th international conference on Machine learning, pp. 160–167, 2008.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et. al., Mastering the game of go without
human knowledge, nature 550 (2017), no. 7676 354–359.

143

[10] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball, Deep
learning with convolutional neural networks for eeg decoding and visualization,
Human brain mapping 38 (2017), no. 11 5391–5420.

[11] K. Van Leeuwen, H. Sun, M. Tabaeizadeh, A. Struck, M. Van Putten, and
M. Westover, Detecting abnormal electroencephalograms using deep convolutional
networks, Clinical neurophysiology 130 (2019), no. 1 77–84.

[12] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H.
McDermott, A task-optimized neural network replicates human auditory behavior,
predicts brain responses, and reveals a cortical processing hierarchy, Neuron 98
(2018), no. 3 630–644.

[13] A. P. Buccino, T. V. Ness, G. T. Einevoll, G. Cauwenberghs, and P. D. Häfliger,
Localizing neuronal somata from multi-electrode array in-vivo recordings using
deep learning, in 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pp. 974–977, IEEE, 2017.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86 (1998), no. 11 2278–2324.

[15] A. P. Buccino, M. Kordovan, T. V. Ness, B. Merkt, P. D. Häfliger, M. Fyhn,
G. Cauwenberghs, S. Rotter, and G. T. Einevoll, Combining biophysical modeling
and deep learning for multielectrode array neuron localization and classification,
Journal of neurophysiology 120 (2018), no. 3 1212–1232.

[16] A. P. Buccino, T. V. Ness, G. T. Einevoll, G. Cauwenberghs, and P. D. Häfliger,
A deep learning approach for the classification of neuronal cell types, in 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 999–1002, IEEE, 2018.

[17] M. E. J. Obien, K. Deligkaris, T. Bullmann, D. J. Bakkum, and U. Frey,
Revealing neuronal function through microelectrode array recordings, Frontiers in
neuroscience 8 (2015) 423.

[18] T. N. Turner, K. Sharma, E. C. Oh, Y. P. Liu, R. L. Collins, M. X. Sosa, D. R.
Auer, H. Brand, S. J. Sanders, D. Moreno-De-Luca, et. al., Loss of δ-catenin
function in severe autism, Nature 520 (2015), no. 7545 51–56.

[19] C. Matter, M. Pribadi, X. Liu, and J. T. Trachtenberg, δ-catenin is required for
the maintenance of neural structure and function in mature cortex in vivo,
Neuron 64 (2009), no. 3 320–327.

[20] K. S. Kosik, C. P. Donahue, I. Israely, X. Liu, and T. Ochiishi, δ-catenin at the
synaptic–adherens junction, Trends in cell biology 15 (2005), no. 3 172–178.

144

[21] M. A. Lalli, J. Jang, J.-H. C. Park, Y. Wang, E. Guzman, H. Zhou,
M. Audouard, D. Bridges, K. R. Tovar, S. M. Papuc, et. al., Haploinsufficiency of
baz1b contributes to williams syndrome through transcriptional dysregulation of
neurodevelopmental pathways, Human molecular genetics 25 (2016), no. 7
1294–1306.

[22] M. Bayés, L. F. Magano, N. Rivera, R. Flores, and L. A. P. Jurado, Mutational
mechanisms of williams-beuren syndrome deletions, The American Journal of
Human Genetics 73 (2003), no. 1 131–151.

[23] C. A. Morris, H. M. Lenhoff, and P. P. Wang, Williams-Beuren syndrome:
Research, evaluation, and treatment. JHU Press, 2006.

[24] K. R. Tovar and G. L. Westbrook, Amino-terminal ligands prolong nmda
receptor-mediated epscs, Journal of Neuroscience 32 (2012), no. 23 8065–8073.

[25] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering, Neural computation 16
(2004), no. 8 1661–1687.

[26] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in International conference on machine
learning, pp. 448–456, PMLR, 2015.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The journal of
machine learning research 15 (2014), no. 1 1929–1958.

[28] L. Prechelt, Early stopping-but when?, in Neural Networks: Tricks of the trade,
pp. 55–69. Springer, 1998.

[29] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et. al., Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, arXiv preprint arXiv:1603.04467 (2016).

[31] H. Wu and X. Gu, Towards dropout training for convolutional neural networks,
Neural Networks 71 (2015) 1–10.

[32] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12
(2011), no. 7.

[33] M. D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint
arXiv:1212.5701 (2012).

145

[34] T. Tieleman and G. Hinton, Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning, University of Toronto, Technical Report (2012).

[35] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience, vol. 2. Lippincott
Williams & Wilkins, 2007.

[36] K. J. Friston, Functional and effective connectivity in neuroimaging: a synthesis,
Human brain mapping 2 (1994), no. 1-2 56–78.

[37] A. Baldassarre, C. M. Lewis, G. Committeri, A. Z. Snyder, G. L. Romani, and
M. Corbetta, Individual variability in functional connectivity predicts performance
of a perceptual task, Proceedings of the National Academy of Sciences 109 (2012),
no. 9 3516–3521.

[38] A. Gazzaley, J. Rissman, and M. Desposito, Functional connectivity during
working memory maintenance, Cognitive, Affective, & Behavioral Neuroscience 4
(2004), no. 4 580–599.

[39] R.-A. Müller, P. Shih, B. Keehn, J. R. Deyoe, K. M. Leyden, and D. K. Shukla,
Underconnected, but how? a survey of functional connectivity mri studies in
autism spectrum disorders, Cerebral cortex 21 (2011), no. 10 2233–2243.

[40] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato,
T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, et. al., Simultaneous
whole-animal 3d imaging of neuronal activity using light-field microscopy, Nature
methods 11 (2014), no. 7 727.

[41] M.-G. Liu, X.-F. Chen, T. He, Z. Li, and J. Chen, Use of multi-electrode array
recordings in studies of network synaptic plasticity in both time and space,
Neuroscience bulletin 28 (2012), no. 4 409–422.

[42] C. M. Lewis, C. A. Bosman, and P. Fries, Recording of brain activity across
spatial scales, Current opinion in neurobiology 32 (2015) 68–77.

[43] I. D. Ruz and S. R. Schultz, Localising and classifying neurons from high density
mea recordings, Journal of neuroscience methods 233 (2014) 115–128.

[44] M.-G. Liu, X.-F. Chen, T. He, Z. Li, and J. Chen, Use of multi-electrode array
recordings in studies of network synaptic plasticity in both time and space,
Neuroscience bulletin 28 (2012), no. 4 409–422.

[45] M. Garofalo, T. Nieus, P. Massobrio, and S. Martinoia, Evaluation of the
performance of information theory-based methods and cross-correlation to estimate
the functional connectivity in cortical networks, PloS one 4 (2009), no. 8 e6482.

146

[46] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J.
Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, Detecting novel
associations in large data sets, science 334 (2011), no. 6062 1518–1524.

[47] Y. N. Billeh, M. T. Schaub, C. A. Anastassiou, M. Barahona, and C. Koch,
Revealing cell assemblies at multiple levels of granularity, Journal of neuroscience
methods 236 (2014) 92–106.

[48] H. Liu and B. Wu, Active learning of functional networks from spike trains, in
Proceedings of the 2017 SIAM International Conference on Data Mining,
pp. 81–89, SIAM, 2017.

[49] S. Linderman, R. P. Adams, and J. W. Pillow, Bayesian latent structure discovery
from multi-neuron recordings, in Advances in neural information processing
systems, pp. 2002–2010, 2016.

[50] K. R. Tovar, D. C. Bridges, B. Wu, C. Randall, M. Audouard, J. Jang, P. K.
Hansma, and K. S. Kosik, Action potential propagation recorded from single
axonal arbors using multielectrode arrays, Journal of neurophysiology 120 (2018),
no. 7 306–320.

[51] F. J. Chaure, H. G. Rey, and R. Quian Quiroga, A novel and fully automatic
spike-sorting implementation with variable number of features, Journal of
neurophysiology 120 (2018), no. 4 1859–1871.

[52] Z. Chen, An overview of bayesian methods for neural spike train analysis,
Computational intelligence and neuroscience 2013 (2013).

[53] J. E. Chung, J. F. Magland, A. H. Barnett, V. M. Tolosa, A. C. Tooker, K. Y.
Lee, K. G. Shah, S. H. Felix, L. M. Frank, and L. F. Greengard, A fully
automated approach to spike sorting, Neuron 95 (2017), no. 6 1381–1394.

[54] C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang, Cosine normalization:
Using cosine similarity instead of dot product in neural networks, in International
Conference on Artificial Neural Networks, pp. 382–391, Springer, 2018.

[55] D. C. Bridges, K. R. Tovar, B. Wu, P. K. Hansma, and K. S. Kosik, Mea viewer:
A high-performance interactive application for visualizing electrophysiological
data, PloS one 13 (2018), no. 2 e0192477.

[56] J. J. V. Branca, G. Morucci, and A. Pacini, Cadmium-induced neurotoxicity: still
much ado, Neural regeneration research 13 (2018), no. 11 1879.

[57] M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of
calcium signalling, Nature reviews Molecular cell biology 1 (2000), no. 1 11–21.

147

[58] G. Choong, Y. Liu, and D. M. Templeton, Interplay of calcium and cadmium in
mediating cadmium toxicity, Chemico-biological interactions 211 (2014) 54–65.

[59] E. Salinas and T. J. Sejnowski, Correlated neuronal activity and the flow of neural
information, Nature reviews neuroscience 2 (2001), no. 8 539–550.

[60] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. Chichilnisky, and
E. P. Simoncelli, Spatio-temporal correlations and visual signalling in a complete
neuronal population, Nature 454 (2008), no. 7207 995–999.

[61] L. Paninski, Maximum likelihood estimation of cascade point-process neural
encoding models, Network: Computation in Neural Systems 15 (2004), no. 4
243–262.

[62] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, A
point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects, Journal of neurophysiology 93
(2005), no. 2 1074–1089.

[63] T. Parr, G. Rees, and K. J. Friston, Computational neuropsychology and bayesian
inference, Frontiers in human neuroscience 12 (2018) 61.

[64] V.-P. Harjola, W. Mullens, M. Banaszewski, J. Bauersachs, H.-P.
Brunner-La Rocca, O. Chioncel, S. P. Collins, W. Doehner, G. S. Filippatos, A. J.
Flammer, et. al., Organ dysfunction, injury and failure in acute heart failure:
from pathophysiology to diagnosis and management. a review on behalf of the
acute heart failure committee of the heart failure association (hfa) of the european
society of cardiology (esc), European journal of heart failure 19 (2017), no. 7
821–836.

[65] Z.-K. Wang, R.-J. Chen, S.-L. Wang, G.-W. Li, Z.-Z. Zhu, Q. Huang, Z.-L. Chen,
F.-C. Chen, L. Deng, X.-P. Lan, et. al., Clinical application of a novel diagnostic
scheme including pancreatic β-cell dysfunction for traumatic multiple organ
dysfunction syndrome, Molecular medicine reports 17 (2018), no. 1 683–693.

[66] R. M. Durham, J. Moran, J. E. Mazuski, M. J. Shapiro, A. E. Baue, and L. M.
Flint, Multiple organ failure in trauma patients, Journal of Trauma and Acute
Care Surgery 55 (2003), no. 4 608–616.

[67] A. Ulvik, R. Kv̊ale, T. Wentzel-Larsen, and H. Flaatten, Multiple organ failure
after trauma affects even long-term survival and functional status, Critical Care
11 (2007), no. 5 1–8.

[68] P. S. Barie, L. J. Hydo, and E. Fischer, A prospective comparison of two multiple
organ dysfunction/failure scoring systems for prediction of mortality in critical
surgical illness., The Journal of trauma 37 (1994), no. 4 660–666.

148

[69] D. P. Bota, C. Melot, F. L. Ferreira, V. N. Ba, and J.-L. Vincent, The multiple
organ dysfunction score (mods) versus the sequential organ failure assessment
(sofa) score in outcome prediction, Intensive care medicine 28 (2002), no. 11
1619–1624.

[70] D. C. Dewar, A. White, J. Attia, S. M. Tarrant, K. L. King, and Z. J. Balogh,
Comparison of postinjury multiple-organ failure scoring systems: Denver versus
sequential organ failure assessment, Journal of trauma and acute care surgery 77
(2014), no. 4 624–629.

[71] L. Hutchings, P. Watkinson, J. D. Young, and K. Willett, Defining multiple organ
failure after major trauma: a comparison of the denver, sequential organ failure
assessment and marshall scoring systems, The journal of trauma and acute care
surgery 82 (2017), no. 3 534.

[72] A. Sauaia, F. A. Moore, E. E. Moore, J. M. Norris, D. C. Lezotte, and R. F.
Hamman, Multiple organ failure can be predicted as early as 12 hours after injury,
Journal of Trauma and Acute Care Surgery 45 (1998), no. 2 291–303.

[73] J. A. Vogel, M. M. Liao, E. Hopkins, N. Seleno, R. L. Byyny, E. E. Moore,
C. Gravitz, and J. S. Haukoos, Prediction of postinjury multiple-organ failure in
the emergency department: development of the denver emergency department
trauma organ failure score, The journal of trauma and acute care surgery 76
(2014), no. 1 140.

[74] Z. Obermeyer and E. J. Emanuel, Predicting the futurebig data, machine learning,
and clinical medicine, The New England journal of medicine 375 (2016), no. 13
1216.

[75] J. A. Cruz and D. S. Wishart, Applications of machine learning in cancer
prediction and prognosis, Cancer informatics 2 (2006) 117693510600200030.

[76] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I.
Fotiadis, Machine learning applications in cancer prognosis and prediction,
Computational and structural biotechnology journal 13 (2015) 8–17.

[77] H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel, Using machine learning
algorithms for breast cancer risk prediction and diagnosis, Procedia Computer
Science 83 (2016) 1064–1069.

[78] K. Sharma, A. Kaur, and S. Gujral, Brain tumor detection based on machine
learning algorithms, International Journal of Computer Applications 103 (2014),
no. 1 7–11.

149

[79] Z. Wang, G. Yu, Y. Kang, Y. Zhao, and Q. Qu, Breast tumor detection in digital
mammography based on extreme learning machine, Neurocomputing 128 (2014)
175–184.

[80] M. De Bruijne, Machine learning approaches in medical image analysis: From
detection to diagnosis, 2016.

[81] C. R. Farrar and K. Worden, Structural health monitoring: a machine learning
perspective. John Wiley & Sons, 2012.

[82] K. Worden and G. Manson, The application of machine learning to structural
health monitoring, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 365 (2007), no. 1851 515–537.

[83] Z. Ahmed, K. Mohamed, S. Zeeshan, and X. Dong, Artificial intelligence with
multi-functional machine learning platform development for better healthcare and
precision medicine, Database 2020 (2020).

[84] K. J. Janssen, A. R. T. Donders, F. E. Harrell Jr, Y. Vergouwe, Q. Chen, D. E.
Grobbee, and K. G. Moons, Missing covariate data in medical research: to impute
is better than to ignore, Journal of clinical epidemiology 63 (2010), no. 7 721–727.

[85] E. Tuba, I. Strumberger, T. Bezdan, N. Bacanin, and M. Tuba, Classification and
feature selection method for medical datasets by brain storm optimization
algorithm and support vector machine, Procedia Computer Science 162 (2019)
307–315.

[86] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote:
synthetic minority over-sampling technique, Journal of artificial intelligence
research 16 (2002) 321–357.

[87] I. Mani and I. Zhang, knn approach to unbalanced data distributions: a case study
involving information extraction, in Proceedings of workshop on learning from
imbalanced datasets, vol. 126, ICML United States, 2003.

[88] G. E. Batista, A. L. Bazzan, M. C. Monard, et. al., Balancing training data for
automated annotation of keywords: a case study., in WOB, pp. 10–18, 2003.

[89] H. Dağ, K. Sayin, I. Yenidoğan, S. Albayrak, and C. Acar, Comparison of feature
selection algorithms for medical data, in 2012 International Symposium on
Innovations in Intelligent Systems and Applications, pp. 1–5, IEEE, 2012.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et. al., Scikit-learn: Machine
learning in python, the Journal of machine Learning research 12 (2011)
2825–2830.

150

[91] J. Bakker, P. Gris, M. Coffernils, R. J. Kahn, and J.-L. Vincent, Serial blood
lactate levels can predict the development of multiple organ failure following septic
shock, The American journal of surgery 171 (1996), no. 2 221–226.

[92] G. I. Papachristou, V. Muddana, D. Yadav, M. O’connell, M. K. Sanders,
A. Slivka, and D. C. Whitcomb, Comparison of bisap, ranson’s, apache-ii, and
ctsi scores in predicting organ failure, complications, and mortality in acute
pancreatitis, American Journal of Gastroenterology 105 (2010), no. 2 435–441.

[93] W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li, Ranking measures and loss
functions in learning to rank, Advances in Neural Information Processing Systems
22 (2009) 315–323.

[94] J. Rossaint and A. Zarbock, Pathogenesis of multiple organ failure in sepsis,
Critical Reviews in Immunology 35 (2015), no. 4.

[95] V.-P. Harjola, W. Mullens, M. Banaszewski, J. Bauersachs, H.-P.
Brunner-La Rocca, O. Chioncel, S. P. Collins, W. Doehner, G. S. Filippatos, A. J.
Flammer, et. al., Organ dysfunction, injury and failure in acute heart failure:
from pathophysiology to diagnosis and management. a review on behalf of the
acute heart failure committee of the heart failure association (hfa) of the european
society of cardiology (esc), European journal of heart failure 19 (2017), no. 7
821–836.

[96] Z.-K. Wang, R.-J. Chen, S.-L. Wang, G.-W. Li, Z.-Z. Zhu, Q. Huang, Z.-L. Chen,
F.-C. Chen, L. Deng, X.-P. Lan, et. al., Clinical application of a novel diagnostic
scheme including pancreatic β-cell dysfunction for traumatic multiple organ
dysfunction syndrome, Molecular Medicine Reports 17 (2018), no. 1 683–693.

[97] R. M. Durham, J. Moran, J. E. Mazuski, M. J. Shapiro, A. E. Baue, and L. M.
Flint, Multiple organ failure in trauma patients, Journal of Trauma and Acute
Care Surgery 55 (2003), no. 4 608–616.

[98] M. J. Otero-López, P. Alonso-Hernández, J. A. Maderuelo-Fernández,
B. Garrido-Corro, A. Domı́nguez-Gil, and A. Sánchez-Rodŕıguez, Preventable
adverse drug events in hospitalized patients, Medicina clinica 126 (2006), no. 3
81–87.

[99] Y. Zhang, T. B. Wu, B. J. Daigle, M. Cohen, and L. Petzold, Identification of
disease states associated with coagulopathy in trauma, BMC medical informatics
and decision making 16 (2016), no. 1 1–9.

[100] E. Acuna and C. Rodriguez, The treatment of missing values and its effect on
classifier accuracy, in Classification, clustering, and data mining applications,
pp. 639–647. Springer, 2004.

151

[101] S. v. Buuren and K. Groothuis-Oudshoorn, mice: Multivariate imputation by
chained equations in r, Journal of statistical software (2010) 1–68.

[102] J. Yoon, J. Jordon, and M. Van Der Schaar, Gain: Missing data imputation using
generative adversarial nets, arXiv preprint arXiv:1806.02920 (2018).

[103] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, Advances in neural
information processing systems 27 (2014) 2672–2680.

[104] M. Mirza and S. Osindero, Conditional generative adversarial nets, arXiv preprint
arXiv:1411.1784 (2014).

[105] A. Odena, C. Olah, and J. Shlens, Conditional image synthesis with auxiliary
classifier gans, in International conference on machine learning, pp. 2642–2651,
PMLR, 2017.

[106] A. Odena, Semi-supervised learning with generative adversarial networks, arXiv
preprint arXiv:1606.01583 (2016).

[107] C. Li, T. Xu, J. Zhu, and B. Zhang, Triple generative adversarial nets, Advances
in neural information processing systems 30 (2017) 4088–4098.

[108] L. Bravo-Merodio, A. Acharjee, J. Hazeldine, C. Bentley, M. Foster, G. V.
Gkoutos, and J. M. Lord, Machine learning for the detection of early
immunological markers as predictors of multi-organ dysfunction, Scientific data 6
(2019), no. 1 1–10.

[109] M. A. Reyna, C. Josef, S. Seyedi, R. Jeter, S. P. Shashikumar, M. B. Westover,
A. Sharma, S. Nemati, and G. D. Clifford, Early prediction of sepsis from clinical
data: the physionet/computing in cardiology challenge 2019, in 2019 Computing
in Cardiology (CinC), pp. Page–1, IEEE, 2019.

[110] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote:
synthetic minority over-sampling technique, Journal of artificial intelligence
research 16 (2002) 321–357.

[111] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et. al., Scikit-learn: Machine
learning in python, the Journal of machine Learning research 12 (2011)
2825–2830.

[112] J. Opitz and S. Burst, Macro f1 and macro f1, arXiv preprint arXiv:1911.03347
(2019).

152

[113] J. Bakker, P. Gris, M. Coffernils, R. J. Kahn, and J.-L. Vincent, Serial blood
lactate levels can predict the development of multiple organ failure following septic
shock, The American journal of surgery 171 (1996), no. 2 221–226.

[114] G. I. Papachristou, V. Muddana, D. Yadav, M. O’connell, M. K. Sanders,
A. Slivka, and D. C. Whitcomb, Comparison of bisap, ranson’s, apache-ii, and
ctsi scores in predicting organ failure, complications, and mortality in acute
pancreatitis, American Journal of Gastroenterology 105 (2010), no. 2 435–441.

[115] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, in Advances in neural information
processing systems, pp. 8026–8037, 2019.

[116] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[117] D. Radenkovic, D. Bajec, N. Ivancevic, N. Milic, V. Bumbasirevic, V. Jeremic,
V. Djukic, B. Stefanovic, B. Stefanovic, G. Milosevic-Zbutega, et. al., D-dimer in
acute pancreatitis: a new approach for an early assessment of organ failure,
Pancreas 38 (2009), no. 6 655–660.

[118] S. Wei, The assessment of factor viii-related antigen in endothelial cells of
pulmonary blood vessels in multiple organ failure, Zhonghua jie he he hu xi za
zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and
respiratory diseases 13 (1990), no. 6 346–8.

[119] L. Del Sorbo and A. S. Slutsky, Acute respiratory distress syndrome and multiple
organ failure, Current opinion in critical care 17 (2011), no. 1 1–6.

[120] S. C.-X. Li, B. Jiang, and B. Marlin, Misgan: Learning from incomplete data with
generative adversarial networks, arXiv preprint arXiv:1902.09599 (2019).

[121] K. Brown, S. Brain, J. Pearson, J. Edgeworth, S. Lewis, and D. Treacher,
Neutrophils in development of multiple organ failure in sepsis, The Lancet 368
(2006), no. 9530 157–169.

[122] A. Ulvik, R. Kv̊ale, T. Wentzel-Larsen, and H. Flaatten, Multiple organ failure
after trauma affects even long-term survival and functional status, Critical Care
11 (2007), no. 5 R95.

[123] T. Gustot, Multiple organ failure in sepsis: prognosis and role of systemic
inflammatory response, Current opinion in critical care 17 (2011), no. 2 153–159.

153

[124] Q. Qiu, Y.-j. Nian, Y. Guo, L. Tang, N. Lu, L.-z. Wen, B. Wang, D.-f. Chen, and
K.-j. Liu, Development and validation of three machine-learning models for
predicting multiple organ failure in moderately severe and severe acute
pancreatitis, BMC gastroenterology 19 (2019), no. 1 1–9.

[125] R. Kamaleswaran, O. Akbilgic, M. A. Hallman, A. N. West, R. L. Davis, and
S. H. Shah, Applying artificial intelligence to identify physiomarkers predicting
severe sepsis in the picu, Pediatric Critical Care Medicine— Society of Critical
Care Medicine 19 (2018), no. 10 e495–e503.

[126] B. J. Wells, K. M. Chagin, A. S. Nowacki, and M. W. Kattan, Strategies for
handling missing data in electronic health record derived data, Egems 1 (2013),
no. 3.

[127] W. Wothke, Longitudinal and multigroup modeling with missing data., .

[128] P. E. McKnight, K. M. McKnight, S. Sidani, and A. J. Figueredo, Missing data:
A gentle introduction. Guilford Press, 2007.

[129] J. W. Graham, Missing data analysis: Making it work in the real world, Annual
review of psychology 60 (2009) 549–576.

[130] M. Kantardzic, Data mining: concepts, models, methods, and algorithms. John
Wiley & Sons, 2011.

[131] F. E. Harrell Jr, Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer, 2015.

[132] C. Zhang, V. Maroufy, B. Chen, and H. Wu, Missing data issues in ehr, Statistics
and Machine Learning Methods for EHR Data: From Data Extraction to Data
Analytics (2020) 149.

[133] C. for Disease Control, Prevention, et. al., “Wisqars data visualization.”

[134] Y. Zhang, R. Jiang, and L. Petzold, Survival topic models for predicting outcomes
for trauma patients, in 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pp. 1497–1504, IEEE, 2017.

[135] D. R. Cox, Regression models and life-tables, Journal of the Royal Statistical
Society: Series B (Methodological) 34 (1972), no. 2 187–202.

[136] D. Faraggi and R. Simon, A neural network model for survival data, Statistics in
medicine 14 (1995), no. 1 73–82.

154

[137] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger,
Deepsurv: personalized treatment recommender system using a cox proportional
hazards deep neural network, BMC medical research methodology 18 (2018), no. 1
1–12.

[138] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[139] H. R. Darabi, D. Tsinis, K. Zecchini, W. F. Whitcomb, and A. Liss, Forecasting
mortality risk for patients admitted to intensive care units using machine
learning, Procedia Computer Science 140 (2018) 306–313.

[140] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, Biobert: a
pre-trained biomedical language representation model for biomedical text mining,
Bioinformatics 36 (2020), no. 4 1234–1240.

[141] L. Rasmy, Y. Xiang, Z. Xie, C. Tao, and D. Zhi, Med-bert: pre-trained
contextualized embeddings on large-scale structured electronic health records for
disease prediction, arXiv preprint arXiv:2005.12833 (2020).

[142] J. Shang, T. Ma, C. Xiao, and J. Sun, Pre-training of graph augmented
transformers for medication recommendation, arXiv preprint arXiv:1906.00346
(2019).

[143] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and
M. McDermott, Publicly available clinical bert embeddings, arXiv preprint
arXiv:1904.03323 (2019).

[144] K. Huang, J. Altosaar, and R. Ranganath, Clinicalbert: Modeling clinical notes
and predicting hospital readmission, arXiv preprint arXiv:1904.05342 (2019).

[145] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, Mimic-iii, a freely accessible
critical care database, Scientific data 3 (2016), no. 1 1–9.

[146] W. A. Knaus, D. P. Wagner, E. A. Draper, J. E. Zimmerman, M. Bergner, P. G.
Bastos, C. A. Sirio, D. J. Murphy, T. Lotring, A. Damiano, et. al., The apache iii
prognostic system: risk prediction of hospital mortality for critically iii
hospitalized adults, Chest 100 (1991), no. 6 1619–1636.

[147] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, arXiv preprint arXiv:1912.01703 (2019).

155

[148] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et. al., Google’s neural machine translation system:
Bridging the gap between human and machine translation, arXiv preprint
arXiv:1609.08144 (2016).

[149] J. P. Klein and M. L. Moeschberger, Survival analysis: techniques for censored
and truncated data. Springer Science & Business Media, 2006.

[150] J. D. Kalbfleisch and R. L. Prentice, The statistical analysis of failure time data,
vol. 360. John Wiley & Sons, 2011.

[151] R. Prentice and N. Breslow, Retrospective studies and failure time models,
Biometrika 65 (1978), no. 1 153–158.

[152] H. Hung and C.-T. Chiang, Estimation methods for time-dependent auc models
with survival data, Canadian Journal of Statistics 38 (2010), no. 1 8–26.

[153] L. E. Chambless, C. P. Cummiskey, and G. Cui, Several methods to assess
improvement in risk prediction models: extension to survival analysis, Statistics in
medicine 30 (2011), no. 1 22–38.

[154] F. E. Harrell Jr, K. L. Lee, R. M. Califf, D. B. Pryor, and R. A. Rosati,
Regression modelling strategies for improved prognostic prediction, Statistics in
medicine 3 (1984), no. 2 143–152.

[155] A. Avati, K. Jung, S. Harman, L. Downing, A. Ng, and N. H. Shah, Improving
palliative care with deep learning, BMC medical informatics and decision making
18 (2018), no. 4 122.

[156] J. Dahlhamer, J. Lucas, C. Zelaya, R. Nahin, S. Mackey, L. DeBar, R. Kerns,
M. Von Korff, L. Porter, and C. Helmick, Prevalence of chronic pain and
high-impact chronic pain among adultsunited states, 2016, Morbidity and
Mortality Weekly Report 67 (2018), no. 36 1001.

[157] D. J. Gaskin and P. Richard, The economic costs of pain in the united states, The
Journal of Pain 13 (2012), no. 8 715–724.

[158] M. M. van der Miesen, M. A. Lindquist, and T. D. Wager, Neuroimaging-based
biomarkers for pain: state of the field and current directions, Pain reports 4
(2019), no. 4.

[159] M. C. Reddan and T. D. Wager, Brain systems at the intersection of chronic pain
and self-regulation, Neuroscience letters 702 (2019) 24–33.

[160] M. C. Reddan and T. D. Wager, Modeling pain using fmri: from regions to
biomarkers, Neuroscience bulletin 34 (2018), no. 1 208–215.

156

[161] R. Cowen, M. K. Stasiowska, H. Laycock, and C. Bantel, Assessing pain
objectively: the use of physiological markers, Anaesthesia 70 (2015), no. 7
828–847.

[162] Y. L. Yang, H. S. Seok, G.-J. Noh, B.-M. Choi, and H. Shin, Postoperative pain
assessment indices based on photoplethysmography waveform analysis, Frontiers
in physiology 9 (2018) 1199.

[163] L. S. Prichep, J. Shah, H. Merkin, and E. M. Hiesiger, Exploration of the
pathophysiology of chronic pain using quantitative eeg source localization, Clinical
EEG and neuroscience 49 (2018), no. 2 103–113.

[164] H. Liu, Y. Wang, and L. Wang, A review of non-contact, low-cost physiological
information measurement based on photoplethysmographic imaging, in 2012
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 2088–2091, IEEE, 2012.

[165] J. A. Bargh and E. Morsella, The unconscious mind, Perspectives on psychological
science 3 (2008), no. 1 73–79.

[166] R. Kanawade, S. Tewary, H. Sardana, et. al., Photoplethysmography based
arrhythmia detection and classification, in 2019 6th International Conference on
Signal Processing and Integrated Networks (SPIN), pp. 944–948, IEEE, 2019.

[167] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S.
Corrado, L. Peng, and D. R. Webster, Prediction of cardiovascular risk factors
from retinal fundus photographs via deep learning, Nature Biomedical Engineering
2 (2018), no. 3 158.

[168] H. R. Darabi, D. Tsinis, K. Zecchini, W. F. Whitcomb, and A. Liss, Forecasting
mortality risk for patients admitted to intensive care units using machine
learning, Procedia Computer Science 140 (2018) 306–313.

[169] B. Jin, H. Yang, L. Sun, C. Liu, Y. Qu, and J. Tong, A treatment engine by
predicting next-period prescriptions, in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1608–1616,
ACM, 2018.

[170] M.-H. Hsieh, M.-J. Hsieh, C.-M. Chen, C.-C. Hsieh, C.-M. Chao, and C.-C. Lai,
An artificial neural network model for predicting successful extubation in intensive
care units, Journal of clinical medicine 7 (2018), no. 9 240.

[171] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, Deep learning for
healthcare: review, opportunities and challenges, Briefings in bioinformatics 19
(2017), no. 6 1236–1246.

157

[172] P. Rodriguez, G. Cucurull, J. Gonzàlez, J. M. Gonfaus, K. Nasrollahi, T. B.
Moeslund, and F. X. Roca, Deep pain: Exploiting long short-term memory
networks for facial expression classification, IEEE transactions on cybernetics
(2017).

[173] D. Liu, F. Peng, A. Shea, R. Picard, et. al., Deepfacelift: interpretable
personalized models for automatic estimation of self-reported pain, arXiv preprint
arXiv:1708.04670 (2017).

[174] Y. Chu, X. Zhao, J. Han, and Y. Su, Physiological signal-based method for
measurement of pain intensity, Frontiers in neuroscience 11 (2017) 279.

[175] J. Lötsch and A. Ultsch, Machine learning in pain research, Pain 159 (2018),
no. 4 623.

[176] M. H. Pitcher, M. Von Korff, M. C. Bushnell, and L. Porter, Prevalence and
profile of high-impact chronic pain in the united states, The Journal of Pain 20
(2019), no. 2 146–160.

[177] A. E. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A. Clifton, and
G. D. Clifford, Machine learning and decision support in critical care, Proceedings
of the IEEE. Institute of Electrical and Electronics Engineers 104 (2016), no. 2
444.

[178] Z. M. Hira and D. F. Gillies, A review of feature selection and feature extraction
methods applied on microarray data, Advances in bioinformatics 2015 (2015).

[179] N. Ben-Israel, M. Kliger, G. Zuckerman, Y. Katz, and R. Edry, Monitoring the
nociception level: a multi-parameter approach, Journal of clinical monitoring and
computing 27 (2013), no. 6 659–668.

[180] U. Rubins, Z. Marcinkevics, I. Logina, A. Grabovskis, and E. Kviesis-Kipge,
Imaging photoplethysmography for assessment of chronic pain patients, in Optical
Diagnostics and Sensing XIX: Toward Point-of-Care Diagnostics, vol. 10885,
p. 1088508, International Society for Optics and Photonics, 2019.

[181] A. Johansson, P. Å. Öberg, and G. Sedin, Monitoring of heart and respiratory
rates in newborn infants using a new photoplethysmographic technique, Journal of
clinical monitoring and computing 15 (1999), no. 7-8 461–467.

[182] A. Bonissi, R. D. Labati, L. Perico, R. Sassi, F. Scotti, and L. Sparagino, A
preliminary study on continuous authentication methods for
photoplethysmographic biometrics, in 2013 IEEE Workshop on Biometric
Measurements and Systems for Security and Medical Applications, pp. 28–33,
IEEE, 2013.

158

[183] pulseSensor.com Accessed May 26, 2020.

[184] I. Zuzarte, P. Indic, D. Sternad, and D. Paydarfar, Quantifying movement in
preterm infants using photoplethysmography, Annals of biomedical engineering 47
(2019), no. 2 646–658.

159

pulseSensor.com

	Curriculum Vitae
	Abstract
	Introduction
	Data Mining in Multi-Electrode Array Recordings
	Data Mining in Healthcare

	Part I Data Mining in Multi-Electrode Array Recordings
	Classification of Multi-Electrode Array Recordings
	Introduction
	Data Collection and Classification
	Deep Learning Model
	Experimental Setup
	Empirical Evaluation
	Discussion

	Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings
	Introduction
	Data Collection
	Probabilistic Model
	Bayesian Inference
	Split
	Results on Synthetic Data
	Results on Real Data
	Related Work
	Discussion

	Part II Data Mining in Healthcare
	Empirical Analysis of Machine Learning Configurations for Prediction of Multiple Organ Failure in Trauma Patients
	Introduction
	Dataset
	Methods
	Experiments and Results
	Discussion

	Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation Networks
	Introduction
	Preliminaries
	Methodology
	Experiments
	Related Work
	Conclusion

	BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients
	Introduction
	Dataset
	Methods
	Experiments and Analysis
	Discussion

	How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment
	Introduction
	Related Work
	Data Collection and Classification
	Methodology
	Experimental Setup
	Results and Analysis
	Optimizing the Pain Meter Design
	Discussion

	Conclusion and Future Work
	Bibliography

