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Abstract. A graph G is said to be ubiquitous, if every graph Γ that contains arbitrarily
many disjointG-minors automatically contains infinitely many disjointG-minors. The well-
known Ubiquity conjecture of Andreae says that every locally finite graph is ubiquitous.

In this paper we show that locally finite graphs admitting a certain type of tree-decompo-
sition, which we call an extensive tree-decomposition, are ubiquitous. In particular this
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1. Introduction

Given a graph G and some relation ◁ between graphs, we say that G is ◁-ubiquitous if when-
ever Γ is a graph such that nG ◁ Γ for all n ∈ N, then ℵ0G ◁ Γ, where αG is the disjoint union
of α many copies of G. A classic result of Halin [Hal65, Satz 1] says that the ray, i.e. a one-
way infinite path, is ⊆-ubiquitous, where ⊆ is the subgraph relation. That is, any graph which
contains arbitrarily large collections of vertex-disjoint rays must contain an infinite collection of
vertex-disjoint rays. Later, Halin showed that the double ray, i.e. a two-way infinite path, is also
⊆-ubiquitous [Hal70]. However, not all graphs are ⊆-ubiquitous, and in fact even trees can fail
to be ⊆-ubiquitous (see for example [Woo76]).

The question of ubiquity for classes of graphs has also been considered for other graph re-
lations. In particular, whilst there are still reasonably simple examples of graphs which are not
⩽-ubiquitous (see [Lak76, And77]), where ⩽ is the topological minor relation, it was shown
by Andreae that all rayless countable graphs [And80] and all locally finite trees [And79] are
⩽-ubiquitous. The latter result was recently extended to the class of all trees by the present
authors [BEE+22].

In [And02] Andreae initiated the study of ubiquity of graphs with respect to the minor re-
lation ≼. He constructed a graph which is not ≼-ubiquitous, however the construction relies
on the existence of a counterexample to the well-quasi-ordering of infinite graphs under the mi-
nor relation, for which only examples of uncountable size are known [Kom95, Pit23, Tho88].
In particular, the question of whether there exists a countable graph which is not ≼-ubiquitous
remains open.

Andreae conjectured that at least all locally finite graphs, those with all degrees finite, should
be ≼-ubiquitous.

The Ubiquity Conjecture. Every locally finite connected graph is ≼-ubiquitous.

In [And13] Andreae established the following pair of results, demonstrating that his conjec-
ture holds for wide classes of locally finite graphs. Recall that a block of a graph is a maximal
2-connected subgraph, and that a graph has finite tree-width if there is an integer k such that the
graph has a tree-decomposition of width k.

Theorem 1.1 (Andreae, [And13, Corollary 1]). Let G be a locally finite, connected graph with
finitely many ends such that every block of G is finite. Then G is ≼-ubiquitous.

Theorem 1.2 (Andreae, [And13, Corollary 2]). Let G be a locally finite, connected graph of
finite tree-width such that every block of G is finite. Then G is ≼-ubiquitous.

Note, in particular, that if G is such a graph, then the degree of every end in G must be
one.1 The main result of this paper is a far-reaching extension of Andreae’s results, removing
the assumption of finite blocks.

1A precise definitions of the ends of a graph and their degree can be found in Section 3.
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Theorem 1.3. Let G be a locally finite, connected graph with finitely many ends such that every
end of G has finite degree. Then G is ≼-ubiquitous.

Theorem 1.4. Every locally finite, connected graph of finite tree-width is ≼-ubiquitous.

The reader may have noticed that these results are of a similar flavour: they all make an
assertion that locally finite graphs which are built by pasting finite graphs in a tree like fashion
are ubiquitous – with differing requirements on the size of the finite graphs, how far they are
allowed to overlap, and the structure of the underlying decomposition trees. And indeed, behind
all the above results there are unifying but more technical theorems, the strongest of which is the
true main result of this paper:

Theorem 1.5. Every locally finite connected graph admitting an extensive tree-decomposition
is ≼-ubiquitous.

The precise definition of an extensive tree-decomposition is somewhat involved and will be
given in detail in Section 4 up to Theorem 4.6. Roughly, however, it implies that we can find many
self-minors of the graph at spots whose precise positions are governed by the decomposition tree.
We hope that the proof sketch in Section 2 is a good source for additional intuition before the
reader delves into the technical details. In fact, we note that we do not know of any construction
of a locally finite connected graph which does not admit an extensive tree-decomposition.

Question 1.6. Do all locally finite connected graphs admit an extensive tree-decomposition?

To summarise, we are facing two main tasks in this paper. One is to prove our main ubiquity
result, Theorem 1.5. This will occupy the second part of this paper, Sections 6 to 8. And as our
other task, we also need to prove that the graphs in Theorems 1.3 and 1.4 do indeed possess such
extensive tree-decompositions.

This analysis occupies Section 4 and 5. The proof uses in an essential way certain re-
sults about the well-quasi-ordering of graphs under the minor relation, including Thomas’s re-
sult [Tho89] that for all k ∈ N, the classes of graphs of tree-width at most k are well-quasi-
ordered under the minor relation. In fact, the class of locally finite graphs having an extensive
tree-decomposition is certainly larger than the results stated in Theorems 1.3 and 1.4; for exam-
ple, it is easy to see that the infinite grid N × N has such an extensive tree-decomposition. It
remains an open question whether every locally finite graph has an extensive tree-decomposition.
A more precise discussion of how this problem relates to the theory of well-quasi- and better-
quasi-orderings of finite graphs will be given in Section 9.

But first, in Section 2 we will give a sketch of the key ideas in the proof, at the end of which
we will provide a more detailed overview of the structure and the different sections of this paper.

2. Proof sketch

To give a flavour of the main ideas in this paper, let us begin by considering the case of a locally
finite connected graph G with a single end ω, where ω has finite degree d ∈ N (this means that
there is a family (Ai : 1 ⩽ i ⩽ d) of d disjoint rays in ω, but no family of more than d such rays).
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Our construction will exploit the fact that graphs of this kind have a very particular structure.
More precisely, there is a tree-decomposition (S, (Vs)s∈V (S)) of G, where S = s0s1s2 . . . is a ray
and such that, if we denote Vsn by Vn and G[

⋃
l⩾n Vl] by Gn for each n, the following holds:

1. each Vn is finite;

2. |Vi ∩ Vj| = d if |i− j| = 1, and |Vi ∩ Vj| = 0 otherwise;

3. all the Ai begin in V0;

4. for each m ⩾ 1 there are infinitely many n > m such that Gm is a minor of Gn, in such a
way that for any edge e of Gm and any i ⩽ d, the edge e is contained in Ai if and only if
the edge representing it in this minor is.

Property 4 seems rather strong – it is a first glimpse of the strength of extensive tree-decompo-
sitions alluded to in Theorem 1.5. The reason it can always be achieved has to do with the well-
quasi-ordering of finite graphs. For details of how this works, see Section 5. The sceptical reader
who does not yet see how to achieve this may consider the argument in this section as showing
ubiquity simply for graphs G with a decomposition of the above kind.

Now we suppose that we are given some graph Γ such that nG ≼ Γ for each n, and we wish
to show that ℵ0G ≼ Γ. Consider a G-minor H in Γ. Any ray R of G can be expanded to a
ray H(R) in the copy H of G in Γ, and since G only has one end, all rays H(R) go to the same
end ϵH of Γ; we shall say that H goes to the end ϵH .

Techniques from an earlier paper [BEE+22] show that we may assume that there is some
end ϵ of Γ such that all G-minors in Γ go to ϵ, otherwise it can be shown that ℵ0G ≼ Γ.

From anyG-minorH we obtain raysH(Ai) corresponding to our marked raysAi inG, which
by the above all go to ϵ. We will call this family of rays the bundle of rays given by H .

Our aim now is to build up an ℵ0G-minor of Γ recursively. At stage n we hope to construct n
disjoint G[

⋃
m⩽n Vm]-minors Hn

1 , H
n
2 , . . . , H

n
n , such that for each such Hn

m there is a family
(Rn

m,i : i ⩽ d) of disjoint rays in ϵ, where the path in Hn
m corresponding to the initial segment

of the ray Ai in
⋃

m⩽n Gm is an initial segment of Rn
m,i, but these rays are otherwise disjoint

from the various Hn
l and from each other, see Figure 2.1. We aim to do this in such a way that

each Hn
m extends all previous H l

m for l ⩽ n, so that at the end of our construction we can obtain
infinitely many disjoint G-minors as (

⋃
n⩾m Hn

m : m ∈ N). The rays chosen at later stages need
not bear any relation to those chosen at earlier stages; we just need them to exist so that there is
some hope of continuing the construction.

We will again refer to the families (Rn
m,i : i ⩽ d) of rays starting at the various Hn

m as the
bundles of rays from those Hn

m.
The rough idea for getting from the nth to the n+ 1st stage of this construction is now as

follows: we choose a very large family H of disjoint G-minors in Γ. We discard all those which
meet any previous Hn

m and we consider the family of rays corresponding to the Ai in the remain-
ing minors. Then it is possible to find a collection of paths transitioning from the Rn

m,i from
stage n onto these new rays. Precisely what we need is captured in the following definition,
which also introduces some helpful terminology for dealing with such transitions:
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bundleHn
1

Rn
1,1

Rn
1,2

Rn
1,3

Hn
2

Rn
2,1
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2,2
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2,3

Hn
3

Rn
3,1

Rn
3,2

Rn
3,3

Figure 2.1: Stage n = 3 of the construction with n disjoint G[V1 ∪ V2 ∪ V3]-minors Hn
i with

their bundles of d = 3 disjoint rays.

Definition 2.1 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J)
be families of disjoint rays, where the initial vertex of each Ri is denoted xi. A family of
paths P = (Pi : i ∈ I), is a linkage from R to S if there is an injective function σ : I → J such
that

• each Pi goes from a vertex x′
i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• the family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.2 We write

R ◦P S for the family T as well Ri ◦P S for the ray in T with initial vertex xi.

We say that T is obtained by transitioning from R to S along the linkage. We say the linkage P
induces the mapping σ. We further say that P links R to S . Given a set X we say that the
linkage is after X if X ∩ V (Ri) ⊆ V (xiRix

′
i) for all i ∈ I and no other vertex in X is used by

the members of T .

Thus, our aim is to find a linkage from the Rn
m,i to the new rays after all the Hn

m. That this is
possible is guaranteed by the following lemma from [BEE+22]:

Lemma 2.2 (Weak linking lemma [BEE+22, Lemma 4.3]). Let Γ be a graph and ω ∈ Ω(Γ).
Then, for any families R = (R1, . . . , Rn) and S = (S1, . . . , Sn) of vertex disjoint rays in ω and
any finite set X of vertices, there is a linkage from R to S after X .

The aim is now to use property 4 of our tree-decomposition of G to find minor-copies
of G[Vn+1] sufficiently far along the new rays that we can stick them onto our Hn

m to obtain
suitable Hn+1

m . There are two difficulties at this point in this argument. The first is that, as well
as extending the existing Hn

m to Hn+1
m , we also need to introduce an Hn+1

n+1 . To achieve this, we
ensure that one of the G-minors in H is disjoint from all the paths in the linkage, so that we may
take an initial segment of it as Hn+1

n+1 . This is possible because of a slight strengthening of the
linking lemma above; see [BEE+22, Lemma 4.4] or Lemma 3.16 for a precise statement.

A more serious difficulty is that in order to stick the new copy of Vn+1 onto Hn
m we need the

following property:
2Where we use the notation as in [Die17], see also Definition 3.3.
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For each of the bundles corresponding to an Hn
m, the rays in the bundle

are linked to the rays in the bundle coming from some H ∈ H. This
happens in such a way that each Rn

m,i is linked to H(Ai).
(∗)

Thus we need a great deal of control over which rays get linked to which. We can keep track
of which rays are linked to which as follows:

Definition 2.3 (Transition function). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be families of
disjoint rays. We say that a function σ : I → J is a transition function from R to S if for any
finite set X of vertices there is a linkage from R to S after X that induces σ.

So our aim is to find a transition function assigning new rays to the Rn
m so as to achieve (∗).

One reason for expecting this to be possible is that the new rays all go to the same end, and so
they are joined up by many paths. We might hope to be able to use these paths to move between
the rays, allowing us some control over which rays are linked to which. The structure of possible
jumps is captured by a graph whose vertex set is the set of rays:

Definition 2.4 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I) in a graph Γ
the ray graph, RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and with an edge be-
tween i and j if there is an infinite collection of vertex disjoint paths from Ri to Rj which meet
no other Rk. When the host graph Γ is clear from the context we will simply write RG(R)
for RGΓ(R).

Unfortunately, the collection of possible transition functions can be rather limited. Consider,
for example, the case of families of disjoint rays in the grid. Any such family has a natural cyclic
order, and any transition function must preserve this cyclic order. This paucity of transition
functions is reflected in the sparsity of the ray graphs, which are all just cycles.

However, in a previous paper [BEE+23] we analysed the possibilities for how the ray graphs
and transition functions associated to a given thick3 end may look. We found that there are just
three possibilities.

The easiest case is that in which the rays to the end are very joined up, in the sense that any
injective function between two families of rays is a transition function. This case was already
dealt with in [BEE+23], where is was shown that in any graph with such an end we can find
a Kℵ0 minor. The second possibility is that which we saw above for the grid: all ray graphs are
cycles, and all transition functions between them preserve the cyclic order. The third possibility
is that all ray graphs consist of a path together with a bounded number of further ‘junk’ vertices,
where these junk vertices are hanging at the ends of the paths (formally: all interior vertices
on this central path in the ray graph have degree 2). In this case, the transition functions must
preserve the linear order along the paths.

The second and third cases can be dealt with using similar ideas, so we will focus on the
third one here.

Since we are assuming that all the G-minors in Γ go to ϵ, given a large enough collection of
G-minors H, almost all of the rays from the bundles of the H ∈ H lie on the central path of the

3An end is thick if it contains infinitely many disjoint rays.
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Hn
m

Hn+1
n+1

Figure 2.2: Extending the Hn
m by routing onto a set of disjoint G-minors might cause problems

with introducing a new Hn+1
n+1 disjoint to the rest.

ray graph of this family of rays, and so in particular by a Ramsey type argument there must be a
large collection of H ∈ H such that for each H , the rays H(Ai) appear in the same order along
the central path.

Since there are only finitely many possible orders, there is some consistent way to order
the Ai such that for every n we can find n disjoint G-minors H such that there is some ray graph
in which, for each H , the rays H(Ai) appear in this order along the central path, which we can
assume, without loss of generality, is from H(A1) to H(Ad).

This will allow us to recursively maintain a similar property for the rays from the bundles of
the Hn

m. More precisely, we can guarantee that there is a slightly larger family R of disjoint rays,
consisting of the Rn

m,i and some extra ‘junk’ rays, such that all of the Rn
m,i lie on the central path

of RG(R), and for each n and m the Rn
m,i appear on this path consecutively in order from Rn

m,1

to Rn
m,k.

Then, our extra assumption on the structure of the end ϵ ensures that given a linkage from R
to the bundles from H ∈ H which induces a transition function, we can reroute our linkage,
using the edges of RG(R), so that (∗) holds.

There is one last subtle difficulty which we have to address, once more relating to the fact
that we want to introduce a new Hn+1

n+1 together with its private bundle of rays corresponding to
its copies of the Ai, disjoint from all the other Hn+1

m and their bundles. Our strengthening of the
weak linking lemma allows us to find a linkage which avoids one of the G-minors in H, but this
linkage may not have property (∗).

We can, as before, modify it to one satisfying (∗) by rerouting the linkage, but this new linkage
may then have to intersect some of the rays in the bundle of Hn+1

n+1 , if these rays from Hn+1
n+1 lie

between rays linked to a bundle of some Hn
m, see Figure 2.2.

However, we can get around this by instead rerouting the rays in R before the linkage, so as
to rearrange which bundles make use of (the tails of) which rays. Of course, we cannot know
before we choose our linkage how we will need to reroute the rays in R, but we do know that
the structure of ϵ restricts the possible reroutings we might need to do.
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...

...

transition box

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

linkage

· · ·

· · ·

Figure 2.3: The transitioning strategy between the old and new bundles.

Hence, we can avoid this issue by first taking a large, but finite, set of paths between the rays
in R which is rich enough to allow us to reroute the rays in R in every way which is possible
in Γ. Since the rays in R also go to ϵ, the structure of ϵ will guarantee that this includes all of
the possible reroutings we might need to do. We call such a collection a transition box.

Only after building our transition box do we choose the linkage from R to the rays from H,
and we make sure that this linkage is after the transition box. Then, when we later see how
the rays in R should be arranged in order that the rays from the bundle of Hn+1

n+1 do not appear
between rays linked to a bundle of some Hn

m, we can go back and perform a suitable rerouting
within the transition box, see Figure 2.3.

This completes the sketch of the proof that locally finite graphs with a single end of finite
degree are ubiquitous. Our results in this paper are for a more general class of graphs, but one
which is chosen to ensure that arguments of the kind outlined above will work for them. Hence
we still need a tree-decomposition with properties similar to 1–4 from our ray-decomposition
above. Tree-decompositions with these properties are called extensive, and the details can be
found in Section 4.

However, certain aspects of the sketch above must be modified to allow for the fact that we
are now dealing with graphs G with multiple, indeed possibly infinitely many, ends. For any
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end δ of G and any G-minor H of Γ, all rays H(R) with R in δ belong to the same end H(δ)
of Γ. If δ and δ′ are different ends in G, then H(δ) and H(δ′) may well be different ends in Γ as
well.

So there is no hope of finding a single end ϵ of Γ to which all rays in all G-minors converge.
Nevertheless, we can still find an end ϵ of Γ towards which the G-minors are concentrated, in
the sense that for any finite vertex set X there are arbitrarily large families of G-minors in the
same component of G−X as all rays of ϵ have tails in. See Section 7 for details. In that section
we introduce the term tribe for a collection of arbitrarily large families of disjoint G-minors.

The recursive construction will work pretty much as before, in that at each step n we will
again have embedded Gn-minors for some large finite part Gn of G, together with a number of
rays in ϵ corresponding to some designated rays going to certain ends δ of G.

In order for this to work, we need some consistency about which ends H(δ) of Γ are equal
to ϵ and which are not. It is clear that for any finite set ∆ of ends of G there is some subset ∆′

such that there is a tribe of G-minors H converging to ϵ with the property that the set of δ in ∆
with H(δ) = ϵ is ∆′. This is because there are only finitely many options for this set. But if G
has infinitely many ends, there is no reason why we should be able to do this for all ends of G at
once.

Our solution is to keep track of only finitely many ends of G at any stage in the construction,
and to maintain at each stage a tribe concentrated towards ϵ which is consistent for all these
finitely many ends. Thus in our construction consistency of questions such as which ends δ
of G converge to ϵ or of the proper linear order in the ray graph of the families of canonical
rays to those ends is achieved dynamically during the construction, rather than being fixed in
advance. The ideas behind this dynamic process have already been used successfully in our
earlier paper [BEE+22], where they appear in slightly simpler circumstances.

The paper is then structured as follows. In Section 3 we give precise definitions of some
of the basic concepts we will be using, and prove some of their fundamental properties. In
Section 4 we introduce extensive tree-decompositions and in Section 5 we illustrate that many
locally finite graphs admit such decompositions. In Section 6 we analyse the possible collections
of ray graphs and transition functions between them which can occur in a thick end. In Section 7
we introduce the notion of tribes and of their concentration towards an end and begin building
some tools for the main recursive construction, which is given in Section 8. We conclude with
a discussion of the future outlook in Section 9.

3. Preliminaries

In this paper we will denote by N the set of positive integers and by N0 the set of non-negative
integers. In our graph theoretic notation we generally follow the textbook of Diestel [Die17]. For
a graph G = (V,E) and W ⊆ V we write G[W ] for the induced subgraph of G on W . For two
vertices v, w of a connected graph G, we write dist(v, w) for the edge-length of a shortest v–w
path. A path P = v0v1 . . . vn in a graph G is called a bare path if dG(vi) = 2 for all inner
vertices vi for 0 < i < n.
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3.1. Rays and ends

Definition 3.1 (Rays, double rays and initial vertices of rays). A one-way infinite path is called a
ray and a two-way infinite path is called a double ray. For a ray R, let init(R) denote the initial
vertex of R, that is the unique vertex of degree 1 in R. For a family R of rays, let init(R) denote
the set of initial vertices of the rays in R.

Definition 3.2 (Tail of a ray). Given a ray R in a graph G and a finite set X ⊆ V (G), the tail
of R after X , written T (R,X), is the unique infinite component of R in G−X .

Definition 3.3 (Concatenation of paths and rays). For a path or ray P and vertices v, w ∈ V (P ),
let vPw denote the subpath of P with endvertices v and w, and v̊P ẘ the subpath strictly be-
tween v and w. If P is a ray, let Pv denote the finite subpath of P between the initial vertex
of P and v, and let vP denote the subray (or tail) of P with initial vertex v. Similarly, we
write P v̊ and v̊P for the corresponding path/ray without the vertex v. For a ray R = r0r1 . . .,
let R− denote the tail r1R of R starting at r1. Given a family R of rays, let R− denote the
family (R− : R ∈ R).

Given two paths or raysP andQ, which intersect in a single vertex only, which is an endvertex
in both P and Q, we write PQ for the concatenation of P and Q, that is the path, ray or double
rayP ∪Q. Moreover, if we concatenate paths of the form vPw andwQx, then we omit writingw
twice and denote the concatenation by vPwQx.

Definition 3.4 (Ends of a graph, cf. [Die17, Chapter 8]). An end of an infinite graph Γ is an
equivalence class of rays, where two rays R and S of Γ are equivalent if and only if there are
infinitely many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ) the set of ends
of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ϵ of Γ if R is contained in ϵ. In this
case, we call R an ϵ-ray. Given an end ϵ ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique
component of Γ−X which contains a tail of every ray in ϵ, which we denote by C(X, ϵ). Given
two ends ϵ, ϵ′ ∈ Ω(Γ), we say a finite set X ⊆ V (Γ) separates ϵ and ϵ′ if C(X, ϵ) ̸= C(X, ϵ′).

For an end ϵ ∈ Ω(Γ), we define the degree of ϵ in Γ, denoted by deg(ϵ), as the supre-
mum in N ∪ {∞} of the set {|R| : R is a set of disjoint ϵ-rays}. Note that this supremum is
in fact an attained maximum, i.e. for each end ϵ of Γ there is a set R of vertex-disjoint ϵ-rays
with |R| = deg(ω), as proved by Halin [Hal65, Satz 1]. An end with finite degree is called thin,
otherwise the end is called thick.

3.2. Inflated copies of graphs

Definition 3.5 (Inflated graph, branch set). Given a graph G, we say that a pair (H,φ) is an
inflated copy of G, or an IG, if H is a graph and φ : V (H) → V (G) is a map such that:

• For every v ∈ V (G) the branch set φ−1(v) induces a non-empty, connected subgraph
of H;

• There is an edge in H between φ−1(v) and φ−1(w) if and only if vw ∈ E(G) and this
edge, if it exists, is unique.
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When there is no danger of confusion, we will simply say that H is an IG instead of saying
that (H,φ) is an IG, and denote by H(v) = φ−1(v) the branch set of v.

Definition 3.6 (Minor). A graph G is a minor of another graph Γ, written G ≼ Γ, if there is
some subgraph H ⊆ Γ such that H is an inflated copy of G. In this case, we also say that H is
a G-minor in Γ.

Definition 3.7 (Extension of inflated copies). Suppose G ⊆ G′ as subgraphs, and that H is
an IG and H ′ is an IG′. We say that H ′ extends H (or that H ′ is an extension of H) if H ⊆ H ′

as subgraphs and H(v) ⊆ H ′(v) for all v ∈ V (G). Observe that, since H ⊆ H ′, for every
edge vw ∈ E(G) the unique edge between the branch sets H ′(v) and H ′(w) is also the unique
edge between H(v) and H(w).

If H ′ is an extension of H and X ⊆ V (G) is such that H ′(x) = H(x) for every x ∈ X , then
we say H ′ is an extension of H fixing X .

Definition 3.8 (Tidiness). Let (H,φ) be an IG. We call (H,φ) tidy if

• H[φ−1(v)] is a tree for all v ∈ V (G);

• H[φ−1(v)] is finite if dG(v) is finite.

Note that every H which is an IG contains a subgraph H ′ such that (H ′, φ ↾ V (H ′)) is a
tidy IG, although this choice may not be unique. In this paper we will always assume, without
loss of generality, that each IG is tidy.

Definition 3.9 (Restriction). Let G be a graph, M ⊆ G a subgraph of G, and let (H,φ) be
an IG. The restriction of H to M , denoted by H(M), is the IM given by (H(M), φ′),
where φ′−1(v) = φ−1(v) for all v ∈ V (M), and H(M) consists of the union of the subgraphs
of H induced on each branch set φ−1(v) for each v ∈ V (M), together with the edge bet-
ween φ−1(u) and φ−1(v) in H for each uv ∈ E(M).

Suppose R is a ray in some graph G. If H is a tidy IG in a graph Γ, then in the restric-
tion H(R) all rays which do not have a tail contained in some branch set will share a tail. Later
in the paper, we will want to make this correspondence between rays in G and Γ more explicit,
with use of the following definition:

Definition 3.10 (Pullback). Let G be a graph, R ⊆ G a ray, and let (H,φ) be a tidy IG. The
pullback of R to H is the subgraph H↓(R) ⊆ H(R), where H↓(R) is subgraph minimal such
that (H↓(R), φ ↾ V (H↓(R))) is an IR.

Note that, since H is tidy, H↓(R) is well defined. It can be shown that, in fact, H↓(R) is
also ray.

Lemma 3.11 ([BEE+23, Lemma 2.11]). Let G be a graph and let H be a tidy IG. If R ⊆ G is
a ray, then the pullback H↓(R) is also a ray.

Definition 3.12. Let G be a graph, R be a family of disjoint rays in G, and let H be a tidy IG.
We will write H↓(R) for the family (H↓(R) : R ∈ R).
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It is easy to check that if two rays R and S in G are equivalent, then also H↓(R) and H↓(S)
are rays (Lemma 3.11) which are equivalent in H , and hence also equivalent in Γ.

Definition 3.13. For an end ω of G and H ⊆ Γ a tidy IG, we denote by H(ω) the unique end
of Γ containing all rays H↓(R) for R ∈ ω.

3.3. Transitional linkages and the strong linking lemma

The next definition is based on definitions already stated in Section 2 (cf. Definition 2.1, Defi-
nition 2.3 and Definition 2.4).

Definition 3.14. We say a linkage between two families of rays is transitional if the function
which it induces between the corresponding ray graphs is a transition function.

Lemma 3.15. Let Γ be a graph and let ϵ ∈ Ω(Γ). Then, for any finite families R = (Ri : i ∈ I)
and S = (Sj : j ∈ J) of disjoint ϵ-rays in Γ, there is a finite set X such that every linkage from R
to S after X is transitional.

Proof. By definition, for every function σ : I → J which is not a transition function from R
to S there is a finite set Xσ ⊆ V (Γ) such that there is no linkage from R to S after Xσ which
induces σ. If we let Φ be the set of all such σ which are not transition functions, then the
set X :=

⋃
σ∈ΦXσ satisfies the conclusion of the lemma.

In addition to Lemma 2.2, we will also need the following stronger linking lemma, which is
a slight modification of [BEE+22, Lemma 4.4]:

Lemma 3.16 (Strong linking lemma). Let Γ be a graph and let ϵ ∈ Ω(Γ). Let X be a finite set
of vertices and let R = (Ri : i ∈ I) a finite family of vertex disjoint ϵ-rays. Let xi = init(Ri)
and let x′

i = init(T (Ri, X)). Then there is a finite number N = N(R, X) with the following
property: For every collection (Hj : j ∈ [N ]) of vertex disjoint connected subgraphs of Γ, all
disjoint from X and each including a specified ray Sj in ϵ, there is an ℓ ∈ [N ] and a transitional
linkage P = (Pi : i ∈ I) from R to (Sj : j ∈ [N ]), with transition function σ, which is after X
and such that the family

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ I

)
avoids Hℓ.

Proof. Let Y ⊆ V (Γ) be a finite set as in Lemma 3.15. We apply the strong linking lemma
established in [BEE+22, Lemma 4.4] to the setX ∪ Y to obtain this version of the strong linking
lemma.

Lemma and Definition 3.17. Let Γ be a graph, ϵ ∈ Ω(Γ), X ⊆ V (Γ) be finite, and
let R = (Ri : i ∈ I), S = (Sj : j ∈ J) be two finite families of disjoint ϵ-rays with |I| ⩽ |J |.
Then there is a finite subgraph Y such that, for any transition function σ from R to S, there is a
linkage Pσ from R to S inducing σ, with

⋃
Pσ ⊆ Y , which is after X .

We call such a graph Y a transition box between R and S (after X).
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Proof. Let σ : I → J be a transition function from R to S. By definition, there is a linkage Pσ

from R to S after X which induces σ. Let Φ be the set of all transition functions from R to S
and let Y =

⋃
σ∈Φ Pσ. Then Y is a transition box between R and S (after X).

Remark and Definition 3.18. Let Γ be a graph and ϵ ∈ Ω(Γ). Let R1, R2, R3 be finite families
of disjoint ϵ-rays, P1 a transitional linkage from R1 to R2, and let P2 be a transitional linkage
from R2 to R3 after V (

⋃
P1). Then

1. P2 is also a transitional linkage from (R1 ◦P1 R2) to R3;4

2. The linkage from R1 to R3 yielding the rays (R1 ◦P1 R2) ◦P2 R3, which we call the con-
catenation P1 + P2 of P1 and P2, is transitional.

The following lemmas are simple exercises.

Lemma 3.19. Let Γ be a graph and (Ri : i ∈ I) be a finite family of equivalent disjoint rays.
Then the ray graph RG(Ri : i ∈ I) is connected. Also, if R′

i is a tail of Ri for each i ∈ I , then
we have that RG(Ri : i ∈ I) = RG(R′

i : i ∈ I).

Lemma 3.20 ([BEE+23, Lemma 3.4]). Let Γ be a graph, Γ′ ⊆ Γ, R = (Ri : i ∈ I) be a fi-
nite family of disjoint rays in Γ′, and let S = (Sj : j ∈ J) be a finite family of disjoint rays
in Γ− V (Γ′), where I and J are disjoint. Then RGΓ′(R) is a subgraph of RGΓ(R∪ S)

[
I
]
.

3.4. Separations and tree-decompositions of graphs

Definition 3.21. Let G = (V,E) be a graph. A separation of G is a pair (A,B) of subsets of
vertices such that A ∪B = V and such that there is no edge between B \ A and A \B. Given
a separation (A,B), we write G[B] for the graph obtained by deleting all edges in the separa-
tor A ∩B from G[B]. Two separations (A,B) and (C,D) are nested if one of the following
conditions hold:

A ⊆ C and D ⊆ B, or B ⊆ C and D ⊆ A, or
A ⊆ D and C ⊆ B, or B ⊆ D and C ⊆ A.

Definition 3.22. Let T be a tree with a root v ∈ V (T ). Given nodes x, y ∈ V (T ), let us denote
by xTy the unique path in T between x and y, by Tx denote the component of T − E(vTx)
containing x, and by Tx the tree T − Tx.

Given an edge e = tt′ ∈ E(T ), we say that t is the lower vertex of e if t ∈ vT t′. In this case,
we denote t by e−, and call t′ the higher vertex of e, denoted by e+.

If S is a subtree of a tree T , let us write ∂(S) = E(S, T \ S) for the edge cut between S and
its complement in T .

We say that S is a initial subtree of T if S contains v. In this case, we consider S to be rooted
in v as well.

4Formally, it is only the subset of P2 starting at the rays in (R1 ◦P1
R2) which is a linkage from (R1 ◦P1

R2)
to R3. Here and later in the paper, we will use such abuses of notation, when the appropriate subset of the path
family is clear from context.
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A reader unfamiliar with tree-decompositions may also consult [Die17, Chapter 12.3].

Definition 3.23 (Tree-decomposition). Given a graph G = (V,E), a tree-decomposition of G
is a pair (T,V) consisting of a rooted tree T , together with a family of subsets of verti-
ces V = (Vt : t ∈ V (T )), such that:

• V (G) =
⋃

V;

• For every edge e ∈ E(G) there is a t ∈ V (T ) such that e lies in G[Vt];

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 ∈ V (t1Tt3).

The vertex sets Vt for t ∈ V (T ) are called the parts of the tree-decomposition (T,V).

Definition 3.24 (Tree-width). Suppose (T,V) is a tree-decomposition of a graph G. The width
of (T,V) is the number sup {|Vt| − 1: t ∈ V (T )} ∈ N0 ∪ {∞}. The tree-width of a graph G is
the least width of any tree-decomposition of G.

4. Extensive tree-decompositions and self minors

The purpose of this section is to explain the extensive tree-decompositions mentioned in the
proof sketch. Some ideas motivating this definition are already present in Andreae’s proof that
locally finite trees are ubiquitous under the topological minor relation [And79, Lemma 2].

4.1. Extensive tree-decompositions

Definition 4.1 (Separations induced by tree-decompositions). For a tree-decomposition (T,V)
of a graph G, and an edge e ∈ E(T ), let

• A(e) :=
⋃
{Vt′ : t

′ /∈ V (Te+)};

• B(e) :=
⋃
{Vt′ : t

′ ∈ V (Te+)};

• S(e) := A(e) ∩B(e) = Ve− ∩ Ve+ .

Then (A(e), B(e)) is a separation of G (cf. [Die17, Chapter 12.3.1]). We call B(e) the bough
of (T,V) rooted in e and S(e) the separator of B(e). When writing G[B(e)] it is implicitly
understood that this refers to the separation (A(e), B(e)) (cf. Definition 3.21.)

Definition 4.2. Let (T,V) be a tree-decomposition of a graph G. For a subtree S ⊆ T , let us
write

G(S) = G

 ⋃
t∈V (S)

Vt


and, if H is an IG, we write H(S) = H(G(S)) for the restriction of H to G(S).
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Definition 4.3 (Self-similar bough). Let (T,V) be a tree-decomposition of a graph G. Given
an edge e ∈ E(T ), the bough B(e) is called self-similar (towards an end ω of G), if there
is a family Re = (Re,s : s ∈ S(e)) of disjoint ω-rays in G such that for all n ∈ N there is an
edge e′ ∈ E(Te+) with dist(e−, e′−) ⩾ n such that

• for each s ∈ S(e), the ray Re,s starts in s and meets S(e′);

• there is a subgraph W ⊆ G[B(e′)] which is an inflated copy of G[B(e)];

• for each s ∈ S(e), we have V (Re,s) ∩ S(e′) ⊆ W (s).

Such a W is called a witness for the self-similarity of B(e) (towards an end ω of G) of distance
at least n.

Definition 4.4 (Extensive tree-decomposition). A tree-decomposition (T,V) of G is extensive if

• T is a locally finite, rooted tree;

• each part of (T,V) is finite;

• every vertex of G appears in only finitely many parts of V;

• for each e ∈ E(T ), the bough B(e) is self-similar towards some end ωe of G.

Remark 4.5. If (T,V) is extensive then, for each edge e ∈ E(T ) and every n ∈ N, there is an
an edge e′ ∈ E(Te+) with dist(e−, e′−) ⩾ n, such that G[B(e′)] contains a witness for the self-
similarity ofB(e). Since T is locally finite, there is some rayRe in T such that there are infinitely
many such e′ on Re.

The following is the main result of this paper.

Theorem 4.6. Every locally finite connected graph admitting an extensive tree-decomposition
is ≼-ubiquitous.

4.2. Self minors in extensive tree-decompositions

The existence of an extensive tree-decomposition of a graph G will imply the existence of many
self-minors of G, which will be essential to our proof.

Throughout this subsection, let G denote a locally finite, connected graph with an extensive
tree-decomposition (T,V).

Definition 4.7. Let (A,B) be a separation ofGwithA ∩B = {v1, v2, . . . , vn}. SupposeH1, H2

are subgraphs of a graph Γ, where H1 is an inflated copy of G[A], H2 is an inflated copy of G[B],
and for all vertices x ∈ A and y ∈ B, we haveH1(x) ∩H2(y) ̸= ∅ only if x = y = vi for some i.
Suppose further that P is a family of disjoint paths (Pi : i ∈ [n]) in Γ such that each Pi is a path
from H1(vi) to H2(vi), which is otherwise disjoint from H1 ∪H2. Note that Pi may be a single
vertex if H1(vi) ∩H2(vi) ̸= ∅.
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We write H1 ⊕P H2 for the IG given by (H,ϕ), where H = H1 ∪H2 ∪
⋃

i∈[n] Pi and

H(v) :=


H1(vi) ∪ V (Pi) ∪H2(vi) if v = vi ∈ A ∩B,

H1(v) if v ∈ A \B,

H2(v) if v ∈ B \ A.

We note that this may produce a non-tidy IG, in which case in practice (in order to maintain
our assumption that each IG we consider is tidy) we will always delete some edges inside the
branch sets to make it tidy.

We will often use this construction when the family P consists of certain segments of a
family of disjoint rays R. If R is such that each Ri has its first vertex in H1(vi) and is otherwise
disjoint from H1, and such that every Ri meets H2, and does so first in some vertex xi ∈ H(vi),
then we write

H1 ⊕R H2 = H1 ⊕(Rixi : i∈[n]) H2.

Definition 4.8 (Push-out). A self minor G′ ⊆ G (meaning G′ is an IG) is called a push-out of G
along e to depth n for some e ∈ E(T ) if there is an edge e′ ∈ Te+ such that dist(e−, e′−) ⩾ n
and an inflated copy W ⊆ G[B(e′)] of G[B(e)], such that G′ = G[A(e)]⊕Re W .

Similarly, if H is an IG, then a subgraph H ′ of H is a push-out of H along e to depth n
for some e ∈ E(T ) if there is an edge e′ ∈ Te+ such that dist(e−, e′−) ⩾ n and a subgraph
W ⊆ H(G[B(e′)]), which is an inflated copy of G[B(e)], such that

H ′ = H(G[A(e)])⊕H↓(Re) W.

Note that if G′ is a push-out of G along e to depth n, then H(G′) has a subgraph which is a
push-out of H along e to depth n.

Lemma 4.9. For each e ∈ E(T ), each n ∈ N, and each witness W of the self-similarity of B(e)
of distance at least n there is a corresponding push-out GW := G[A(e)]⊕Re W of G along e to
depth n.

Proof. Let e′ ∈ E(Te+) be the edge in Definition 4.3 such thatW ⊆ G[B(e′)]. By Definition 4.3,
each ray Re,s meets S(e′) and Re,s ∩ S(e′) ⊆ W (s). Hence, the initial segment of Re,s up to the
first point in W only meets G[A(e)] ∪W in {s} ∪W (s). Now, if s′ ∈ S(e) ∩W (s) for some s′,
then s′ ∈ S(e′), and so Re,s′ ∩ S(e′) ̸⊆ W (s′), contradicting Definition 4.3.

Since G[A(e)] is an IG[A(e)] and W is an inflated copy of G[B(e)], by Definitions 4.7
and 4.8 G[A(e)]⊕Re W is well-defined and is indeed a push-out of G along e to depth n.

The existence of push-outs of G along e to arbitrary depths is in some sense the essence of
extensive tree-decompositions, and lies at the heart of our inductive construction in Section 8.
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5. Existence of extensive tree-decompositions

The purpose of this section is to examine two classes of locally finite connected graphs that have
extensive tree-decompositions: Firstly, the class of graphs with finitely many ends, all of which
are thin, and secondly the class of graphs of finite tree-width. In both cases we will show the
existence of extensive tree-decompositions using some results about the well-quasi-ordering of
certain classes of graphs.

A quasi-order is a reflexive and transitive binary relation, such as the minor relation between
graphs. A quasi-order ≼ on a set X is a well-quasi-order if for all infinite sequences (xi)i∈N
with xi ∈ X for every i ∈ N there exist i, j ∈ N with i < j such that xi ≼ xj . The following
two consequences will be useful.
Remark 5.1. A simple Ramsey type argument shows that if ≼ is a well-quasi-order on X ,
then every infinite sequence (xi)i∈N with xi ∈ X for every i ∈ N contains an increasing infi-
nite subsequence xi1 , xi2 , . . . ∈ X . That is, an increasing infinite sequence i1 < i2 < . . . such
that xij ≼ xik for all j < k.

Also, it is simple to show that if ≼ is a well-quasi-order on X , then for every infinite se-
quence (xi)i∈N with xi ∈ X for every i ∈ N there is an i0 ∈ N such that for every i ⩾ i0 there
are infinitely many j ∈ N with xi ≼ xj .

A famous result of Robertson and Seymour [RS04], proved over a series of 20 papers, shows
that finite graphs are well-quasi-ordered under the minor relation. Thomas [Tho89] showed that
for any k ∈ N the class of graphs with tree-width at most k and arbitrary cardinality is well-
quasi-ordered by the minor relation.

We will use slight strengthenings of both of these results, Lemma 5.3 and Lemma 5.11, to
show that our two classes of graphs admit extensive tree-decompositions.

In Section 9 we will discuss in more detail the connection between our proof and well-
quasi-orderings, and indicate how stronger well-quasi-ordering results could be used to prove
the ubiquity of larger classes of graphs.

5.1. Finitely many thin ends

We will consider the following strengthening of the minor relation.

Definition 5.2. Given ℓ ∈ N, an ℓ-pointed graph is a graph G together with a function
π : [ℓ] → V (G), called a point function. For ℓ-pointed graphs (G1, π1) and (G2, π2), we say
(G1, π1) ≼p (G2, π2) if G1 ≼ G2 and this can be arranged in such a way that π2(i) is contained
in the branch set of π1(i) for every i ∈ [ℓ].

Lemma 5.3. For ℓ ∈ N the set of ℓ-pointed finite graphs is well-quasi-ordered under the rela-
tion ≼p.

Proof. This follows from a stronger statement of Robertson and Seymour in [RS10, 1.7].

We will also need the following structural characterisation of locally finite one-ended graphs
with a thin end due to Halin.
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Lemma 5.4 ([Hal65, Satz 3′]). Every one-ended, locally finite connected graph G with a thin
end of degree k ∈ N has a tree-decomposition (R,V) of G such that R = t0t1t2 . . . is a ray, and
for every i ∈ N0:

• |Vti | is finite;

• |S(titi+1)| = k;

• S(titi+1) ∩ S(ti+1ti+2) = ∅.

Remark 5.5. Note that in the above lemma, for a given finite set X ⊆ V (G), by taking the union
over parts corresponding to an initial segment of the ray of the decomposition, one may always
assume that X ⊆ Vt0 . Moreover, note that since S(titi+1) ∩ S(ti+1ti+2) = ∅, it follows that
every vertex of G is contained in at most two parts of the tree-decomposition.

Lemma 5.6. Every one-ended, locally finite connected graph G with a thin end has an extensive
tree-decomposition (R,V) where R = t0t1t2 . . . is a ray rooted in its initial vertex.

Proof. Let k ∈ N be the degree of the thin end of G and let R = (Rj : j ∈ [k]) be a maximal
family of disjoint rays in G. Let (R′,W) be the tree-decomposition of G given by Lemma 5.4
where R′ = t′0t

′
1 . . ..

By Remark 5.5 (and considering tails of rays if necessary), we may assume that each ray
in R starts in S(t′0t

′
1). Note that each ray in R meets the separator S(t′i−1t

′
i) for each i ∈ N.

Since R is a family of k disjoint rays and |S(t′i−1t
′
i)| = k for each i ∈ N, each vertex in S(t′i−1t

′
i)

is contained in a unique ray in R.
Let ℓ = 2k and consider a sequence (Gi, πi)i∈N of ℓ-pointed finite graphs defined

by Gi := G[Wt′i
] and

πi : [ℓ] → V (Gi), j 7→

{
the unique vertex in S(t′i−1t

′
i) ∩ V (Rj) for 1 ⩽ j ⩽ k,

the unique vertex in S(t′it
′
i+1) ∩ V (Rj−k) for k < j ⩽ 2k = ℓ.

By Lemma 5.3 and Remark 5.1 there is an n0 ∈ N such that for every n ⩾ n0 there are
infinitely many m > n with (Gn, πn) ≼p (Gm, πm).

Let Vt0 :=
⋃n0

i=0Wt′i
and Vti := Wt′n0+i

for all i ∈ N. We claim that (R, (Vti : i ∈ N0)) is the
desired extensive tree-decomposition of G where R = t0t1t2 . . . is a ray with root t0. The ray R
is a locally finite tree and all the parts are finite. Moreover, every vertex of G is contained in at
most two parts by Remark 5.5. It remains to show that for every i ∈ N, the bough B(ti−1ti) is
self-similar towards the end of G.

Let e = ti−1ti for some i ∈ N. For each s ∈ S(e), we let p(s) ∈ [k] be such that s ∈ Rp(s)

and set Re,s = sRp(s). We wish to show there is a witness W for the self-similarity of B(e)
of distance at least n for each n ∈ N. Note that B(e) =

⋃
j⩾0 V (Gn0+i+j). By the choice

of n0 in Remark 5.1, there exists an m > i+ n such that (Gn0+i, πn0+i) ≼p (Gn0+m, πn0+m).
Let e′ = tm−1tm. We will show that there exists a W ⊆ G[B(e′)] witnessing the self-similarity
of B(e) towards the end of G.
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Recursively, for each j ⩾ 0 we can find m = m0 < m1 < m2 < · · · with

(Gn0+i+j, πn0+i+j) ≼p (Gn0+mj
, πn0+mj

).

In particular, there are subgraphs Hmj
⊆ Gn0+mj

which are inflated copies of Gn0+i+j , all com-
patible with the point functions, and so

S(t′n0+mj−1t
′
n0+mj

) ∪ S(t′n0+mj
t′n0+mj+1) ⊆ Hmj

for each j ⩾ 0.
Hence, for every j ∈ N and p ∈ [k] there is a unique Hmj−1

–Hmj
subpath Pp,j of Rp. We

claim that
W ′ :=

⋃
j⩾0

Hmj
∪
⋃
j∈N

⋃
p∈[k]

Pp,j

is a subgraph of G[B(e′)] that is an IG[B(e)]. Hence, the desired W can be obtained as a
subgraph of W ′.

To prove this claim it is sufficient to check that for each j ∈ N and each s ∈ S(tj−1tj), the
branch sets of s in Hj−1 and in Hj are connected by Pp(s),j . Indeed, by construction, every Pp,j

is a path from πn0+mj−1
(k + p) to πn0+mj

(p). And, since the Hmj
are pointed minors of Gn0+mj

,
it follows that πn0+mj−1

(k + p(s)) ∈ Hmj−1
(s) and πn0+mj

(p(s)) ∈ Hmj
(s) are as desired.

Finally, since (Gn0+i, πn0+i) ≼p (Gn0+m, πn0+m) as witnessed by Hm0 , the branch set of
each s ∈ S(ti−1ti) must indeed include V (Re,s) ∩ S(e′).

Lemma 5.7. If G is a locally finite connected graph with finitely many ends, each of which is
thin, then G has an extensive tree-decomposition.

Proof. Let Ω(G) = {ω1, . . . , ωn} be the set of the ends of G. Let X ⊆ V (G) be a finite set
of vertices which separates the ends of G, i.e. so that all Ci = C(X,ωi) are pairwise disjoint.
Without loss of generality, we may assume that V (G) = X ∪

⋃
i∈[n] Ci.

LetGi := G[Ci ∪X]. Then eachGi is a locally finite connected one-ended graph, with a thin
end ωi, and hence by Lemma 5.6 each of theGi admits an extensive tree-decomposition (Ri,V i),
where Ri is rooted in its initial vertex ri. Without loss of generality, X ⊆ V i

ri for each i ∈ [n].
Let T be the tree formed by identifying the family of rays (Ri : i ∈ [n]) at their roots, let r

be this identified vertex which we consider to be the root of T , and let (T,V) be the tree-
decompositions whose root part is

⋃
i∈[n] V

i
ri , and which otherwise agrees with the (Ri,V i).

It is a simple check that (T,V) is an extensive tree-decomposition of G.

5.2. Finite tree-width

Definition 5.8. A rooted tree-decomposition (T,V) of G is lean if for any k ∈ N, any
nodes t1, t2 ∈ V (T ), and any X1 ⊆ Vt1 , X2 ⊆ Vt2 such that |X1|, |X2| ⩾ k there are either k
disjoint paths in G between X1 and X2, or there is a vertex t on the path in T between t1 and t2
such that |Vt| < k.

Remark 5.9. Křı́ž and Thomas [KT91] showed that ifG has tree-width at mostm for somem∈N,
then G has a lean tree-decomposition of width at most m.
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Lemma 5.10. Let G be a locally finite connected graph and let (T,V) be a lean tree-decomposi-
tion ofG of width at mostm. Then there exists a lean tree-decomposition ofG of width at mostm
such that every bough is connected and the decomposition tree is locally finite. Moreover, we
may assume that every vertex appears in only finitely many parts.

Proof. We begin by defining the underlying tree T ′ of this decomposition. The root of T ′ will
be the root r of T , and the other vertices will be pairs (e, C) where e is an edge of T and C
is a component of G− S(e) meeting (or equivalently, included in) B(e). There is an edge
from r to (e, C) whenever e− = r, and from (e, C) to (f,D) whenever f− = e+ and D ⊆ C.
For future reference, we define a graph homomorphism π from T ′ to T by setting π(r) = r
and π(e, C) = e+. Next, we set V ′

r := Vr and

V ′
(e,C) := Ve+ ∩ (V (C) ∪N(V (C))),

where N(V (C)) is the neighbourhood of V (C). Moreover, we let V ′ denote the family of all V ′
p

for all nodes p of T ′.
To see that T ′ is locally finite, note that for any child (e, C) of p the set C is also a component

ofG \ Vπ(p) and that no two distinct children yield the same component; if (e, C) and (f, C)were
distinct children of p, then we would have V (C) ⊆ B(f) ⊆ A(e) and so

V (C) ⊆ A(e) ∩B(e) = S(e),

which is impossible.
We now analyse, for a given vertex v of G, which of the sets V ′

p contain v. Since (T,V) is a
tree-decomposition, T induces a subtree on the set of nodes t of T with v ∈ Vt, and so this set has
a minimal element tv in the tree order. We set pv := r if tv = r and otherwise set pv := (e, C),
where e is the unique edge of T with e+ = tv and C is the unique component of G− S(e) con-
taining v. This guarantees that v ∈ V ′

pv . For any other node p of T ′ with v ∈ V ′
p , we have p ̸= r

and so p has the form (e, C). Since v ∈ Ve+ and p ̸= pv, it follows that e− lies on the path
from tv to e+ and so v ∈ Ve− , from which v ∈ N(V (C)) follows. Thus, some neighbour w
of v lies in C. Then w ∈ B(e) \ S(e) = B(e) \ A(e) and so tw lies in Te+ . That is, p lies on
the path from pv to pw. Conversely, for any p = (e, C) on this path we have w ∈ V (C) and
so v ∈ N(V (C)) ⊆ S(e) ⊆ Ve+ , so that v ∈ V ′

p .
What we have shown is that v is in V ′

p precisely when p = pv or there is some neighbour w
of v in G such that p lies on the path in T ′ from pv to pw ∈ V (T ′

pv). Using this information, it is
easy to deduce that (T ′,V ′) is a tree-decomposition: A vertex v is in V ′

pv and an edge vw with pv
no higher (in the tree order) than pw in T is also in V ′

pv . The third condition in the definition of
tree-decompositions follows from the fact that the T ′ induces a subtree on the set of all nodes p
with v ∈ V ′

p . These sets are also all finite, since G is locally finite.
Next we examine the boughs of this decomposition. Let f ∈ E(T ′) with f+ = (e, C). Our

aim is to show that B(f) = V (C) ∪N(V (C)). For any (e′, C ′) ∈ V (T ′
f+), we have

V ′
(e′,C′) ⊆ V (C ′) ∪N(V (C ′)) ⊆ V (C) ∪N(V (C)), so that B(f) ⊆ V (C) ∪N(V (C)).

For v ∈ V (C), we have pv ∈ V (Tf+) and so v ∈ B(f) and for v ∈ N(V (C)), there is a neigh-
bour w of v such that f+ lies on the path from pv to pw, yielding once more that v ∈ B(f). This
completes the proof that B(f) = V (C) ∪N(V (C)), and in particular B(f) is connected.
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Since G is locally finite, for each e, there are only finitely many components of G− Ve− , so
thatT ′ is also locally finite. The final thing to show is that this decomposition is lean. So, suppose
we have X1 ⊆ V ′

p1
and X2 ⊆ V ′

p2
with |X1|, |X2| ⩾ k. Then also X1 ⊆ Vπ(p1) and X2 ⊆ Vπ(p2),

so that if there are no k disjoint paths from X1 to X2 in G, then there is some t on the path
from π(p1) to π(p2) in T with |Vt| ⩽ k. But then there is some p on the path from p1 to p2 in T ′

with π(p) = t and, since V ′
p ⊆ Vt, we have |V ′

p | ⩽ k.

Lemma 5.11. For all k, ℓ ∈ N, the class of ℓ-pointed graphs with tree-width at most k is well-
quasi-ordered under the relation ≼p.

Proof. This is a consequence of a result of Thomas [Tho89].

Lemma 5.12. Every locally finite connected graph of finite tree-width has an extensive tree-
decomposition.

Proof. Let G be a locally finite connected graph of tree-width m ∈ N. By Remark 5.9, G has
a lean tree-decomposition of width at most m and so, by Lemma 5.10, there is a lean tree-
decomposition (T,V) of G with width m in which every bough is connected, every vertex is
contained in only finitely many parts, and such that T is a locally finite tree with root r.

Let ϵ be an end of T and let R be the unique ϵ-ray starting at the root of T . Let
dϵ = lim infe∈R |S(e)| and fix a tail tϵ0tϵ1 . . . of R such that |S(tϵi−1t

ϵ
i)| ⩾ dϵ for all i ∈ N. Note

that, |S(tϵik−1t
ϵ
ik
)| = dϵ for an infinite sequence i1 < i2 < · · · of indices.

Since (T,V) is lean, there are dϵ disjoint paths between S(tϵik−1t
ϵ
ik
) and S(tϵik+1−1t

ϵ
ik+1

) for
every k ∈ N. Moreover, since each S(tϵik−1t

ϵ
ik
) is a separator of size dϵ, these paths are all inter-

nally disjoint. Hence, since every vertex appears in only finitely many parts, by concatenating
these paths we get a family of dϵ many disjoint rays in G.

Fix one such family of rays (Rϵ
j : j ∈ [dϵ]). We claim that there is an end ω of G such

that Rϵ
j ∈ ω for all j ∈ [dϵ]. Indeed, if not, then there is a finite vertex set X separating some

pair of rays R and R′ from the family. However, since each vertex appears in only finitely many
parts, there is some k ∈ N such thatX ∩ Vt = ∅ for all t ∈ V (Ttϵik−1

). By construction,R andR′

have tails in B(tϵik−1t
ϵ
ik
), which is connected and disjoint from X , contradicting the fact that X

separates R and R′.
For every k ∈ N, we define a point function πϵ

ik
: [dϵ] → S(tϵik−1t

ϵ
ik
) by letting πϵ

ik
(j) be the

unique vertex in V (Rϵ
j) ∩ S(tϵik−1t

ϵ
ik
).

By Lemma 5.11 and Remark 5.1, the sequence (G[B(tϵik−1t
ϵ
ik
)], πϵ

ik
)k∈N has an increasing

subsequence (G[B(tϵi−1t
ϵ
i)], π

ϵ
i )i∈Iϵ , i.e. there exists an Iϵ⊆{ik : k ∈ N} such that for any k, j∈Iϵ

with k < j, we have
(G[B(tϵk−1t

ϵ
k)], π

ϵ
k) ≼p (G[B(tϵj−1t

ϵ
j)], π

ϵ
j).

Let us define Fϵ = {tϵk−1t
ϵ
k : k ∈ Iϵ} ⊆ E(T ).

Consider T− = T −
⋃

ϵ∈Ω(T ) Fϵ, and let us write C(T−) for the components of T−. We
claim that every component C ∈ C(T−) is a locally finite rayless tree, and hence finite. Indeed,
if C contains a ray R ⊆ T , then R is in an end ϵ of T and hence Fϵ ∩R ̸= ∅, a contradiction.
Consequently, each set

⋃
t∈C Vt is finite.
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Let us define a tree-decomposition (T ′,V ′) of G with T ′ = T/C(T−), that is where we con-
tract each component C ∈ C(T−) to a single vertex and where V ′

t′ =
⋃

t∈t′ Vt. We claim this is
an extensive tree-decomposition.

Clearly T ′ is a locally finite tree, each part of (T ′,V ′) is finite, and every vertex of G in con-
tained in only finitely many parts of the tree-decomposition. Given e ∈ E(T ′), there
is some ϵ ∈ Ω(T ) such that e ∈ Fϵ. Consider the family of rays (Re,j : j ∈ [dϵ]) given
by Re,j = Rϵ

j ∩B(e). Let ωe be the end of G in which the rays Re,j lie.
There is some k ∈ N such that e = tϵk−1t

ϵ
k. Given n ∈ N, let k′ ∈ Iϵ be such that

there are at least n indices ℓ ∈ Iϵ with k < ℓ < k′, and let e′ = tϵk′−1t
ϵ
k′ . Note that, e′ ∈ Fϵ

and hence e′ ∈ E(T ′). Furthermore, by construction e′− has distance at least n from e−

in T ′. Then, since G[B(e)] = G[B(tϵk−1t
ϵ
k)] and G[B(e′)] = G[B(tϵk′−1t

ϵ
k′)], it follows

that (G[B(e)], πϵ
k) ≼p (G[B(e′)], πϵ

k′), and so suitable subgraphs witness the self-similarity
of B(e) towards ωe with the rays (Re,j : j ∈ [dϵ]), as in Lemma 5.6.

Remark 5.13. If for every ℓ ∈ N the class of ℓ-pointed locally finite graphs without thick ends is
well-quasi-ordered under ≼p, then every locally finite graph without thick ends has an extensive
tree-decomposition. This follows by a simple adaptation of the proof above.

5.3. Sporadic examples

We note that, whilst Lemmas 5.7 and 5.12 show that a large class of locally finite graphs have
extensive tree-decompositions, for many other graphs it is possible to construct an extensive
tree-decomposition ‘by hand’. In particular, the fact that no graph in these classes has a thick
end is an artefact of the method of proof, rather than a necessary condition for the existence of
such a tree-decomposition, as is demonstrated by the following examples:
Remark 5.14. The grid Z× Z has an extensive tree-decomposition, which can be seen in Fig-
ure 5.1. More explicitly, we can take a ray decomposition of the grid given by a sequence of
increasing diamond shaped regions around the origin. It is easy to check that every bough is
self-similar towards the end of the grid.

A similar argument shows that the half-grid has an extensive tree-decomposition. However,
we note that both of these graphs were already shown to be ubiquitous in [BEE+23].

6. The structure of non-pebbly ends

We will need a structural understanding of how the arbitrarily large families of IGs (for some
fixed graph G) can be arranged inside some host graph Γ. In particular, we are interested in
how the rays of these minors occupy a given end ϵ of Γ. In [BEE+23], by considering a pebble
pushing game played on ray graphs, we established a distinction between pebbly and non-pebbly
ends. Furthermore, we showed that each non-pebbly end is either grid-like or half-grid-like.

Theorem 6.1 ([BEE+23, Theorem 1.2]). Let Γ be a graph and let ϵ be a thick end of Γ. Then ϵ
is either pebbly, half-grid-like or grid-like.
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Figure 5.1: In the grid the boughs are self-similar.

Whilst the precise technical definition of such ends will not be important, one can think of
this trichotomy roughly in the following way: Pebbly ends are ends which contain an infinite
clique minor, and if we exclude such a minor, then it turns out the end has in some sense a
‘planar’ structure and must in some sense resemble a grid or half-grid in terms of how the rays
in this end are arranged in the graph. In particular, finite families of rays in a grid-like end have
some natural cyclic ordering, as they do in the grid, whereas finite families of rays in a half-
grid-like end have some natural linear ordering, as they do in the half-grid, except perhaps for a
small ‘exceptional’ set of rays on either end of this ordering. One can think of the structure of the
graph towards a grid-like end as resembling a planar graph which doesn’t embed in the half-grid,
whereas the structure towards a half-grid-like end resembles a planar graph which does embed
in the half-grid, with perhaps some ‘local’ non-planar part which is attached to the x-axis, akin
to an infinite vortex of finite depth, where in both cases there might then be ‘local’ non-planar
parts attached to 3-separators. In what follows we will simply need to use the following results
from [BEE+23].

Corollary 6.2 ([BEE+23, Corollary 5.3]). Let Γ be a graph with a pebbly end ϵ and let G be a
countable graph. Then ℵ0G ≼ Γ.

Lemma 6.3 ([BEE+23, Lemma 7.1 and Corollary 7.3]). Let Γ be a graph with a grid-like end ϵ.
Then there exists an N ∈ N such that the ray graph for any family (Ri : i ∈ I) of disjoint ϵ-rays
in Γ with |I| ⩾ N + 2 is a cycle.

Furthermore, there is a choice of a cyclic orientation, which we call the correct orientation,
of each such ray graph such that any transition function between two families of at least N + 3
disjoint ϵ-rays preserves the correct orientation.
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Lemma 6.4 ([BEE+23, Lemma 7.6, Corollary 7.7 and Corollary 7.9]). Let Γ be a graph with
a half-grid-like end ϵ. Then there exists an N ∈ N such that the ray graph K for any fam-
ily (Ri : i ∈ I) of disjoint ϵ-rays in Γwith |I| ⩾ N + 2 contains a bare path with at least |I| −N
vertices, which we call the central path of K, such that the following statements are true:

1. For any i ∈ I , if K − i has precisely two components, each of size at least N + 1, then i
is an inner vertex of the central path of K.

2. There is a choice of an orientation, which we call the correct orientation, of the central
path of each such ray graph such that any transition function between two families of at
least N + 3 disjoint ϵ-rays sends vertices of the central path to vertices of the central path
and preserves the correct orientation.

By Corollary 6.2, if we wish to show that a countable graphG is≼-ubiquitous we can restrict
our attention to host graphs Γ where each end is non-pebbly. In which case, by Lemmas 6.3
and 6.4 for any end ϵ of Γ, the possible ray graphs, and the possible transition functions between
two families of rays, are severely restricted.

Later on in our proof we will be able to restrict our attention to a single end ϵ of Γ and the
proof will split into two cases according to whether ϵ is half grid-like or grid-like. However, the
two cases are very similar, with the grid-like case being significantly simpler. Therefore, in what
follows we will prove only the results necessary for the case where ϵ is half-grid-like, and then
later, in Section 8.2, we will briefly sketch the differences for the grid-like case.

6.1. Core rays in the half-grid-like case

By Lemma 6.4, in a half-grid-like end ϵ every ray graph consists, apart for possibly some
bounded number of rays on either end, of a bare-path, each of which comes with a correct ori-
entation, which must be preserved by transition functions.

However, in the half-grid itself even more can be seen to true. There is a natural partial order
defined on the set of all rays in the half-grid, where two rays are comparable if they have disjoint
tails, and a rayR is less than a ray S if the tail ofR lies ‘to the left’ of the tail of S in the half-grid.
Then it can be seen that the correct orientations of the central path of any disjoint family of rays
can be chosen to agree with this global partial order.

In a general half-grid-like end ϵ a similar thing will be true, but only for a subset of the rays
in the end which we call the core rays.

Let us fix for the rest of this section a graph Γ and a half-grid-like end ϵ. By Lemma 6.4,
there is some N ∈ N such that all but at most N vertices of the ray graph of any large enough
family of disjoint ϵ-rays lie on the central path.

Definition 6.5 (Core rays). Let R be an ϵ-ray. We say R is a core ray (of ϵ) if there is a finite
family R = (Ri : i ∈ I) of disjoint ϵ-rays with R = Rc for some c ∈ I such that RG(R)− c has
precisely two components, each of size at least N + 1.

Note that, by Lemma 6.4, such a ray Rc is an inner vertex of the central path of RG(R). In
order to define our partial order on the core rays, we will need to consider what it means for a
ray to lie ‘between’ two other rays.
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Definition 6.6. Given three ϵ-rays R, S, T such that R, S, T have disjoint tails, we say that S
separates R from T if the tails of R and T disjoint from S belong to different ends of Γ− S.

Lemma 6.7. LetR = (Ri : i ∈ I) be a finite family of disjoint ϵ-rays and let i1, i2, j ∈ I . Then i1
and i2 belong to different components of RG(R)− j if and only if Rj separates Ri1 from Ri2 .

Proof. Suppose that Ri1 and Ri2 belong to the same end of Γ− V (Rj), and let R′ be the subset
of R \ {Rj} which belong to this end.

Then, R′ is a disjoint family of rays in the same end of Γ− V (Rj) and so by Lemma 3.19
the ray graph RGΓ−V (Rj)(R′) is connected. However, it is apparent that RGΓ−V (Rj)(R′) is a
subgraph of RGΓ(R), and so i1 and i2 belong to the same component of RG(R)− j.

Conversely, suppose i1 and i2 belong to the same component of RG(R)− j. Then, it is
clear that for any two adjacent vertices k and ℓ in RG(R)− j the rays Rk and Rℓ are equivalent
in Γ − Rj , and hence Ri1 and Ri2 belong to a common end of Γ − Rj . It follows that Rj does
not separate Ri1 from Ri2 .

Lemma 6.8. If R, S, T are ϵ-rays and S separates R from T , then T does not separate R from S
and R does not separate S from T .

Proof. As R and T both belong to ϵ, there are infinitely many disjoint paths between them. As S
separates R from T , we know that S must meet infinitely many of these paths. Hence, there are
infinitely many disjoint paths from S to R, all disjoint from T . Similarly, there are infinitely
many disjoint paths from S to T , all disjoint from R. Hence T does not separate R from S
and R does not separate S from T .

Lemma 6.9. Let R be a core ray of ϵ. Then in Γ− V (R) the end ϵ splits into precisely two
different ends. (That is, there are two ends ϵ′ and ϵ′′ of Γ− V (R) such that every ϵ-ray in Γ
which is disjoint from R is in ϵ′ or ϵ′′ in Γ− V (R).)

Proof. Let R = (Ri : i ∈ I) be a finite family of disjoint ϵ-rays witnessing that R = Rc for
some c ∈ I is a core ray. Then there are precisely two ends ϵ′ and ϵ′′ in Γ− V (R) that contain
rays in R, since connected components of RG(R)− c are equivalent sets of rays in Γ− V (R)
and moreover, the two connected components do not contain rays belonging to the same end
of Γ− V (R) by Lemma 6.7.

Suppose there is a third end in Γ− V (R) that contains an ϵ-ray S. We first claim that there is
a tail of S which is disjoint from

⋃
R. Indeed, clearly S is disjoint from R, and if S meets

⋃
R

infinitely often then it would meet some Ri ∈ R infinitely often, and hence lie in the same end
of Γ− V (R) as Ri. So let S ′ be a tail of S which is disjoint from

⋃
R.

Let us consider the family R′ := R∪ {S ′}, where the ray S ′ is indexed by some additional
index s. Since S ′ is an ϵ-ray, the ray graph RG(R′) is connected. Furthermore, since the identity
on I is clearly a transition function fromR toR′, by Lemma 6.4, c is an inner vertex of the central
path of RG(R′), and hence has degree two.

We claim that s is adjacent to some i ̸= c in RG(R′). Indeed, if not, then s must be a leaf
of RG(R′) adjacent to c. In which case, there must be some neighbour i of c in RG(R) which
is not adjacent to c in RG(R′). However, then s must be adjacent to i in RG(R′).

However, then clearly s lies in the same end of Γ− V (R) as Ri, and hence in either ϵ′

or ϵ′′.
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Hence, every core ray R splits ϵ into two ends. We would like to use this partition to define
our partial order on core rays; the core rays in one end will be less than R and the core rays in
the other end will be greater than R. However, if we want this partial order to agree with the
correct orientation of the central path for any disjoint family of rays in ϵ, then every family of
rays (Ri : i ∈ I) in whose ray graph R = Rc is a vertex of the central path will choose which
end of Γ− V (R) is less than R and which is greater than R, and we must make sure that this
choice is consistent.

So, given a finite family of disjoint ϵ-rays R = (Ri : i ∈ I) in whose ray graph R = Rc is
a vertex of the central path, we denote by ⊤(R,R) the end of Γ− V (R) containing rays Ri

satisfying i < c, where < refers to the correct orientation of the vertices of the central path, and
with ⊥(R,R) the end containing rays Ri satisfying i > c. We will show that the labelling ⊤
and ⊥ is in fact independent of the choice of family R.

Definition 6.10. Given two (possibly infinite) vertex sets X and Y in Γ, we say that an end ϵ
of Γ−X is a sub-end of an end ϵ′ of Γ− Y if every ray in ϵ has a tail in ϵ′.

Lemma 6.11. Let R and S be disjoint core rays of ϵ. Let us suppose that ϵ splits in Γ− V (S)
into ϵ′S and ϵ′′S and in Γ− V (R) into ϵ′R and ϵ′′R. If R belongs to ϵ′S and S belongs to ϵ′R, then ϵ′′S
is a sub-end of ϵ′R and ϵ′′R is a sub-end of ϵ′S .

Proof. Let T be a ray in ϵ′′S . As R belongs to a different end of Γ− V (S) than T , there is a tail T ′

of T which is disjoint from R. As S separates R from T ′, we know, by Lemma 6.8, that R does
not separate S from T ′, hence T ′ belongs to ϵ′R. Hence, ϵ′′S is a sub-end of ϵ′R. Proving that ϵ′′R is
a sub-end of ϵ′S works analogously.

Lemma and Definition 6.12. Let R1 = (Ri : i ∈ I1) and R2 = (Ri : i ∈ I2) be two finite
families of disjoint ϵ-rays, such for some c ∈ I1 ∩ I2 the ray Rc lies on the central path of
both RG(R1) and RG(R2). Then ⊤(Rc,R1) = ⊤(Rc,R2) and ⊥(Rc,R1) = ⊥(Rc,R2).

We therefore write ⊤(ϵ, Rc) for the end ⊤(Rc,R1) and ⊥(ϵ, Rc) accordingly, i.e. ⊤(ϵ, Rc)
is the end of Γ− V (Rc) containing rays that appear on the central path of some ray graph
before Rc according to the correct orientation and ⊥(ϵ, Rc) is the end of Γ− V (Rc) contain-
ing rays that appear on the central path of some ray graph after Rc according to the correct
orientation. Note that ⊤(ϵ, Rc) ∩ ⊥(ϵ, Rc) = ∅.

Proof. Let ϵ′ and ϵ′′ be the two ends of Γ− V (Rc) and let R′
1 and R′

2 be the set of rays in R1

and R2 respectively that belong to ϵ′, and similarly R′′
1 and R′′

2 be the set of rays in R1 and R2

respectively that belong to ϵ′′. Let S ′ be the larger of R′
1 and R′

2, and similarly S ′′ the larger
of R′′

1 and R′′
2.

Let us consider the family of rays S := S ′ ∪ {Rc} ∪ S ′′. Since the rays in S ′ and S ′′ belong
to different ends of Γ− V (Rc), we may, after replacing some of the rays with tails, assume that S
is a family of disjoint rays. We claim that there is a transition function σ1 from R1 to S which
maps Rc to itself, R′

1 to S ′, and R′′
1 to S ′′.

Let us take a finite separator X which separates ϵ′ and ϵ′′ in Γ− V (Rc). By Lemma 3.15,
there is a finite set Y such that any linkage after Y from R1 to S is transitional. Then, since
the rays in R′

1 and S ′ belong to the same end of Γ− V (Rc) and |R′
1| ⩽ |S ′|, there is a linkage



combinatorial theory 4 (2) (2024), #3 27

after X ∪ Y from R′
1 to S ′ in Γ− V (Rc), and similarly there is a linkage after X ∪ Y from R′′

1

to S ′′ in Γ− V (Rc). If we combine these two linkages with a trivial linkage from Rc to itself
after X ∪ Y , we obtain a transitional linkage which induces an appropriate transition function.

The same argument shows that there is a transition function σ2 from R2 to S which maps Rc

to itself, R′
2 to S ′, and R′′

2 to S ′′. By Lemma 6.4, both transition functions map vertices of the
central path to vertices of the central path and preserve the correct orientation. In particular, Rc

lies on the central path of RG(S).
Moreover, both σ1 and σ2 map ϵ′-rays to ϵ′-rays and ϵ′′-rays to ϵ′′-rays. Thus, if ϵ′ = ⊤(Rc,S),

then σ1 shows that ϵ′ = ⊤(Rc,R1) and σ2 shows that ϵ′ = ⊤(Rc,R2), and similarly
if ϵ′ = ⊥(Rc,S).

Lemma and Definition 6.13. Let core(ϵ) denote the set of core rays in ϵ. We define a partial
order ⩽ϵ on core(ϵ) by

R ⩽ϵ S if and only if either R = S,

or R and S have disjoint tails xR and yS and xR ∈ ⊤(ϵ, yS)

for R, S ∈ core(ϵ).

Proof. We must show that ⩽ϵ is indeed a partial order. For the anti-symmetry, let us suppose
that R and S are disjoint rays in core(ϵ) such that R ⩽ϵ S and S ⩽ϵ R, so that R ∈ ⊤(ϵ, S)
and S ∈ ⊤(ϵ, R). Let RS be a family of rays witnessing that S is a core ray and RR a family
witnessing that R is a core ray. By Lemma 6.11, ⊥(ϵ, S) is a sub-end of ⊤(ϵ, R) and ⊥(ϵ, R)
is a sub-end of ⊤(ϵ, S). Let R⊥(S) be the subset of RS of rays which belong to ⊥(ϵ, S).
Let R⊥(R) be defined accordingly. By replacing rays with tails, we may assume that all rays
in R := R⊥(S) ∪R⊥(R) ∪ {R} ∪ {S} are pairwise disjoint. Note that, by the comment af-
ter Definition 6.5, both R and S are inner vertices of the central path of RG(R). Thus, ei-
ther S ∈ ⊥(ϵ, R) or R ∈ ⊥(ϵ, S), contradicting Lemma 6.12.

For the transitivity, let us suppose that R, S, T are rays in core(ϵ), such that R ⩽ϵ S
and S ⩽ϵ T . We may assume that R and S, and S and T are disjoint. As ⩽ϵ is anti-symmetric,
we have T ̸⩽ϵ S, hence T ∈ ⊥(ϵ, S). Thus, R and T belong to different ends of Γ− V (S), and
we may assume that they are also disjoint. As S therefore separatesR from T , by Lemma 6.8, we
know that T does not separate S from R. Thus, R and S belong to the same end of Γ− V (T ).
Hence R ∈ ⊤(ϵ, T ).

Remark 6.14. Let R, S ∈ core(ϵ) and let R be a finite family of disjoint ϵ-rays.

1. Any ray which shares a tail with R is also a core ray of ϵ.

2. If R and S are disjoint, then R and S are comparable under ⩽ϵ.

3. IfR and S are on the central path ofRG(R), thenR ⩽ϵ S if and only ifR appears before S
in the correct orientation of the central path of RG(R).

4. The maximum number of disjoint rays in ϵ \ core(ϵ) is bounded by 2N + 2.
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Lemma 6.15. Let R, S ∈ core(ϵ) and let Z ⊆ V (Γ) be a finite set such that ⊤(ϵ, S) and ⊥(ϵ, S)
are separated byZ in Γ− V (S). Let H ⊆ Γ− Z be a connected subgraph which is disjoint to S
and contains R and let T ⊆ H be some core ϵ-ray. Then S is in the same relative ⩽ϵ-order to T
as to R.

Proof. Assume S ⩽ϵ R and hence R ∈ ⊤(ϵ, S). Since H is connected, T ∈ ⊤(ϵ, S) as well and
hence S ⩽ϵ T . The other case is analogous.

Since, by 6.14 3, the order ⩽ϵ will agree with correct order on the central path, which is
preserved by transition functions by Lemma 6.4, the order⩽ϵ will also be preserved by transition
functions, as long as they map core rays to core rays. In order to guarantee that this holds, before
linking a family of core rays R we will first enlarge it slightly by adding some ‘buffer’ rays.

Lemma and Definition 6.16. Let R = (Ri : i ∈ I) be a finite family of disjoint core ϵ-rays.
Then there exists a finite family R ⊃ R of disjoint ϵ-rays such that

• For each i ∈ I , the graph RG(R)− i has precisely two components, each of size at least
N + 1;

• Each i ∈ I is an inner vertex of the central path of RG(R);

• |R| = |R|+ 2N + 2.

Even though such a family is not unique, we denote by R an arbitrary such family.

Proof. By Remark 6.142, the rays in R are linearly ordered by ⩽ϵ. Let R denote the ⩽ϵ-greatest
and S denote the ⩽ϵ-smallest element of R.

As in the proof of Lemma 6.13, let SR and SS be families of disjoint rays witnessing that R
and S are core rays, and let S⊥(R) be the subset of rays of SR belonging to ⊥(ϵ, R) and S⊤(S)

be the subset of rays of SS belonging to ⊤(ϵ, S). Note that, by definition both S⊥(R) and S⊤(S)

contain at least N + 1 rays, and we may in fact assume without loss of generality that they both
contain exactly N + 1 rays.

Now S⊥(R) ⊆ ⊥(ϵ, R) and R′ ∈ ⊤(ϵ, R) for every R′ ∈ R \ {R}, and each ray in S⊥(R) has
a tail disjoint to

⋃
R. Analogously, S⊤(S) ⊆ ⊤(ϵ, S) and R′ ∈ ⊥(ϵ, S) for every R′ ∈ R \ {S}

and each ray in S⊤(S) has a tail disjoint to
⋃
R. Now, S⊤(S) ⊆ ⊤(ϵ, R) and S⊥(R) ⊆ ⊥(ϵ, S) by

Lemma 6.11, yielding that tails of rays in S⊤(S) are necessarily disjoint from tails in S⊥(R).
Let R be the union of R with appropriate tails of each ray in S⊥(R) ∪ S⊤(S). Note

that |R| = |R| + 2N + 2. For any ray Ri ∈ R, we first note that that S ⩽ϵ Ri and
so S ∈ ⊤(ϵ, Ri) and Ri ∈ ⊥(ϵ, S). Then, since S⊤(S) ⊆ ⊤(ϵ, S) it follows from Lemma 6.11
that S⊤(S) ⊆ ⊤(ϵ, Ri), and hence one of the components of RG(R)− i has size at least N + 1.
A similar argument shows that a second component has size at least N + 1, and finally, since Ri

is a core ray, by Lemma 6.9, there are no other components of RG(R)− i. Finally, by the
comment after Definition 6.5, it follows that Ri is an inner vertex of the central path of this ray
graph.
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Lemma 6.17 ([BEE+23, Lemma 7.10]). Let R and T be families of disjoint rays, each of size at
least N + 3, and let σ be a transition function from R to T . Let x ∈ RG(R) be an inner vertex
of the central path. If v1, v2 ∈ RG(R) lie in different components of RG(R)− x, then σ(v1)
and σ(v2) lie in different components of RG(T )− σ(x). Moreover, σ(x) is an inner vertex of
the central path of RG(T ).

Definition 6.18. Let R, S be finite families of disjoint ϵ-rays and let R′ be a subfamily of R
consisting of core rays. A linkage P between R and S is preserving on R′ if P links R′ to core
rays and preserves the order ⩽ϵ.

Lemma 6.19. LetR = (Ri : i ∈ I) be a finite family of disjoint core ϵ-rays and S = (Sj : j ∈ J)
be a finite family of disjoint ϵ-rays. Let R = (Ri : i ∈ I) be as in Lemma 6.16 and let P be a
linkage from R to S. If P is transitional, then it is preserving on R.

Proof. We first note that, by Lemma 6.4, if P links the rays in R to core rays, then it will be
preserving.

So, let σ : I → J be the transition function induced by P . For each i ∈ I , since i is an inner
vertex of the central path of RG(R), by Lemma 6.17, σ(i) is an inner vertex of the central path
of RG(S). Since the central path is a bare path, it follows that RG(S)− σ(i) has precisely two
components.

Furthermore, by Lemma 6.16, the graph RG(R)− i has precisely two components, each of
size at least N + 1, and so by Lemma 6.17 the two components of RG(S)− σ(i) each have size
at least N + 1. Hence, the family S witnesses that Sσ(i) is a core ray.

Definition 6.20. If P is a linkage from R to S, then a sub-linkage of P is just a subset of P ,
considered as a linkage from the corresponding subset of R to S.

Remark 6.21. A sub-linkage of a transitional linkage is transitional.
The following remarks are a direct consequence of the definitions and Lemma 6.4.

Remark 6.22. Let R be a finite family of disjoint core ϵ-rays and let S and T be finite families
of disjoint ϵ-rays. Let R be as in Lemma 6.16 and let P1 and P2 be linkages from R to S and
from (R ◦P1 S) to T respectively.

1. IfP1 is preserving onR, then anyP ′
1 ⊆ P1 as a linkage between the respective subfamilies

is preserving on the respective subfamily of R.

2. If P1 is preserving on R and P2 is preserving on R ◦P1 S, then the concatenation P1 + P2

is preserving on R.

Lemma 6.23. Let R and S be finite families of disjoint core rays of ϵ and let S ′ ⊆ S be a sub-
family of S with |R| = |S ′|. Then there is a transitional linkage from R to S which is preserving
on R and links the rays in R to rays in S ′.

Proof. Consider T := (S \ S) ∪ S ′ ⊆ S. It is apparent that the family T satisfies the conclu-
sions of Lemma 6.16 for S ′.
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Let σ be some transition function between R and T and let P be a linkage inducing this
transition function. By Lemma 6.19 this linkage is preserving on R. Note that, since σ is a
transition function from R to T , it is also a transition function from R to S , and so P is also a
preserving, transitional linkage from R to S. We claim further that P links the rays in R to the
rays in S ′.

Indeed, since |R| = |T | = |R| + 2N + 2, we may assume for a contradiction that there
is some Ri ∈ R such that Sσ(i) ̸∈ S ′. Note that, since i is an inner vertex of the central path
of RG(R), by Lemma 6.17 σ(i) is an inner vertex of the central path of RG(T ), and so in
particular RG(T )− σ(i) has precisely two components.

Since for each Sj ∈ S ′, j lies on the central path of RG(T ), if Sσ(i) ̸∈ S ′ then it is clear
that RG(T ) \ σ(i) contains one component of size at least |S ′|+N + 1 = |R|+N + 1. How-
ever, since i is an inner vertex of the central path of RG(R), by Lemma 6.17 and Lemma 6.19
there must be two components of RG(T ) \ σ(i) of size at least N + 1, a contradiction.

7. G-tribes and concentration of G-tribes towards an end

To show that a given graph G is ≼-ubiquitous, we shall assume that nG ≼ Γ for every n ∈ N
and need to show that this implies ℵ0G ≼ Γ. To this end we use the following notation for such
collections of nG in Γ, which we introduced in [BEE+22] and [BEE+23].

Definition 7.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite collections F of
disjoint subgraphs H of Γ, such that each member H of F is an IG.

• A G-tribe F in Γ is called thick if for each n ∈ N, there is a layer F ∈ F with |F | ⩾ n;
otherwise, it is called thin.

• A G-tribe F is connected if every member H of F is connected. Note that, this is the case
precisely if G is connected.

• A G-tribe F ′ in Γ is a G-subtribe5 of a G-tribe F in Γ, denoted by F ′ ≼ F , if there is an
injection Ψ: F ′ → F such that for each F ′ ∈ F ′, there is an injection φF ′ : F ′ → Ψ(F ′)
with V (H ′) ⊆ V (φF ′(H ′)) for every H ′ ∈ F ′. The G-subtribe F ′ is called flat, denoted
by F ′ ⊆ F , if there is such an injection Ψ satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ϵ of Γ if for every finite vertex set X of Γ,
the G-tribe FX = {FX : F ∈ F} consisting of the layers

FX = {H ∈ F : H ̸⊆ C(X, ϵ)} ⊆ F

is a thin subtribe of F .

We note that, if G is connected, every thick G-tribe F contains a thick subtribe F ′ such that
every H ∈

⋃
F ′ is a tidy IG. We will use the following lemmas from [BEE+22].

5When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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Lemma 7.2 (Removing a thin subtribe, [BEE+22, Lemma 5.2]). Let F be a thick G-tribe in Γ
and let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (φF ′ : F ′ ∈ F ′). For F ∈ F ,
if F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′

F} and set F̂ = φF ′
F
(F ′

F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Lemma 7.3 (Pigeon hole principle for thick G-tribes, [BEE+22, Lemma 5.3]). Let k ∈ N and
let c :

⋃
F → [k] be a k-colouring of the members of some thick G-tribe F in Γ. Then there is

a monochromatic, thick, flat G-subtribe F ′ of F .

Lemma 7.4 ([BEE+22, Lemma 5.4]). Let G be a connected graph and Γ a graph containing a
thick connected G-tribe F . Then either ℵ0G ≼ Γ, or there is a thick flat subtribe F ′ of F and
an end ϵ of Γ such that F ′ is concentrated at ϵ.

Lemma 7.5 ([BEE+22, Lemma 5.5]). Let G be a connected graph and Γ a graph containing a
thick connected G-tribe F concentrated at an end ϵ of Γ. Then the following assertions hold:

1. For every finite set X , the component C(X, ϵ) contains a thick flat G-subtribe of F .

2. Every thick subtribe F ′ of F is concentrated at ϵ.

The following lemma from [BEE+23] shows that we can restrict ourself to thick G-tribes
which are concentrated at thick ends.

Lemma 7.6 ([BEE+23, Lemma 8.7]). Let G be a connected graph and Γ a graph containing a
thick G-tribe F concentrated at an end ϵ ∈ Ω(Γ) which is thin. Then ℵ0G ≼ Γ.

Given an extensive tree-decomposition (T,V) of G, broadly our strategy will be to ob-
tain a family of disjoint IG’s by choosing a sequence of initial subtrees T0 ⊆ T1 ⊆ . . . such
that

⋃
Ti = T and constructing inductively a family of finitely many IG(Tk+1)’s which extend

the IG(Tk)’s built previously (cf. Definition 4.2). The extensiveness of the tree-decomposition
will ensure that, at each stage, there will be some edges in ∂(Ti) = E(Ti, T \ Ti), each of which
has in G a family of rays Re along which the graph G displays self-similarity.

In order to extend our IG(Tk) at each step, we will want to assume that the IGs in our thick
G-tribe F lie in a ‘uniform’ manner in the graph Γ in terms of these rays Re.

More specifically, for each edge e ∈ ∂(Ti), the rays Re provided by the extensive tree-
decomposition in Definition 4.4 tend to a common end ωe in G, and for each H ∈

⋃
F , the

corresponding rays in H converge to an end H(ωe) ∈ Ω(Γ) (cf. Definition 3.13), which might
either be the end ϵ of Γ at which F is concentrated, or another end of Γ. We would like that
our G-tribe F makes a consistent choice across all members H of F of whether H(ωe) is ϵ, for
each e ∈ ∂(Ti).

Furthermore, if H(ωe) = ϵ for every H ∈
⋃
F , then this imposes some structure on the

end ωe of G. More precisely, by [BEE+23, Lemma 10.1] (see Lemma 7.10), we may assume
that RGH(H

↓(Re)) is a path for each member H of the G-tribe F , or else we immediately find
that ℵ0G ≼ Γ and are done.
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By moving to a thick subtribe, we may assume that every ϵ-ray in H is a core ray for ev-
ery H ∈

⋃
F , in which case ⩽ϵ imposes a linear order on every family of rays H↓(Re), which

induces one of the two distinct orientations of the path RGH(H
↓(Re)). We will also want that

our tribe F induces this orientation in a consistent manner.
Let us make the preceding discussion precise with the following definitions:

Definition 7.7. Let G be a connected locally finite graph with an extensive tree-
decomposition (T,V) and S be an initial subtree of T . Let H ⊆ Γ be a tidy IG, H be a set
of tidy IGs in Γ, and ϵ a prescribed end of Γ.

• Given an end ω of G, we say that ω converges to ϵ according to H if H(ω) = ϵ (cf. Def-
inition 3.13). The end ω converges to ϵ according to H if it converges to ϵ according to
every element of H.
We say that ω is cut from ϵ according to H if H(ω) ̸= ϵ. The end ω is cut from ϵ according
to H if it is cut from ϵ according to every element of H.
Finally, we say that H determines whether ω converges to ϵ if either ω converges to ϵ
according to H or ω is cut from ϵ according to H.

• Given E ⊆ E(T ), we say H weakly agrees about E (with respect to ϵ) if for each e ∈ E,
the set H determines whether ωe (cf. Definition 4.4) converges to ϵ. When the end ϵ is
clear from context, we will simply say that H weakly agrees about E. If H weakly agrees
about ∂(S) we let

∂ϵ(S) := {e ∈ ∂(S) : ωe converges to ϵ according to H} ,
∂¬ϵ(S) := {e ∈ ∂(S) : ωe is cut from ϵ according to H} ,

and write

S¬ϵ for the component of the forest T − ∂ϵ(S) containing the root of T ,

Sϵ for the component of the forest T − ∂¬ϵ(S) containing the root of T .

Note that S = S¬ϵ ∩ Sϵ.

• We say thatH is well-separated from ϵ at S ifHweakly agrees about ∂(S) andH(S¬ϵ) can
be separated from ϵ inΓ for all elementsH ∈ H, i.e. for everyH there is a finiteX ⊆ V (Γ)
such that H(S¬ϵ) ∩ CΓ(X, ϵ) = ∅.

In the case that ϵ is half-grid-like, we say that H strongly agrees about ∂(S) (with respect
to ϵ) if

• it weakly agrees about ∂(S);

• for each H ∈ H, every ϵ-ray R ⊆ H is in core(ϵ);

• for every e ∈ ∂ϵ(S), there is a linear order ⩽H,e on S(e) (cf. Definition 4.4), such that the
order induced on H↓(Re) by ⩽H,e agrees with ⩽ϵ on H↓(Re) for all H ∈ H.
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Again, when the end ϵ is clear from context, we will simply say thatH strongly agrees about ∂(S).
If F is a thick G-tribe concentrated at an end ϵ, we use these terms in the following way:

• Given E ⊆ E(T ), we say that F weakly agrees about E if
⋃
F weakly agrees about E.

• We say that F is well-separated from ϵ at S if
⋃
F is.

• We say that F strongly agrees about ∂(S) if
⋃
F does.

For ease of presentation, when a G-tribe F strongly agrees about ∂(S) we will write ⩽F ,e

for ⩽⋃
F ,e.

Remark 7.8. The properties of weakly agreeing about E, being well-separated from ϵ, and
strongly agreeing about ∂(S) are all preserved under taking subsets, and hence under taking
flat subtribes.

Note that by the pigeon hole principle for thick G-tribes, given a finite edge set E ⊆ E(T ),
any thick G-tribe F concentrated at ϵ has a thick (flat) subtribe which weakly agrees about E.

The next few lemmas show that, with some slight modification, we may restrict to a further
subtribe which strongly agrees about E and is also well-separated from ϵ.

Definition 7.9 ([BEE+23, Lemma 3.5]). Let ω be an end of a graph G. We say ω is linear
if RG(R) is a path for every finite family R of disjoint ω-rays.

Lemma 7.10 ([BEE+23, Lemma 10.1]). Let ϵ be a non-pebbly end of Γ and let F be a thick
G-tribe, such that for every H ∈

⋃
F , there is an end ωH ∈ Ω(G) such that H(ωH) = ϵ. Then

there is a thick flat subtribe F ′ of F such that ωH is linear for every H ∈
⋃

F ′.

Corollary 7.11. Let G be a connected locally finite graph with an extensive tree-decomposi-
tion (T,V), S an initial subtree of T , and letF be a thickG-tribe which is concentrated at a non-
pebbly end ϵ of a graph Γ and weakly agrees about ∂(S). Then ωe is linear for every e ∈ ∂ϵ(S).

Proof. Since F weakly agrees about ∂(S), H(ωe) = ϵ for each e ∈ ∂ϵ(S). Hence, we may
apply Lemma 7.10 to F with ωH = ωe for each H ∈

⋃
F and conclude that there is a thick flat

subtribe F ′ of F for which ωH is linear for every H ∈
⋃
F ′. In particular, since ωH = ωe for

each H ∈
⋃

F ′, it follows that ωe is linear.

Lemma 7.12. Let G be a connected locally finite graph with an extensive tree-decomposi-
tion (T,V) and let S be an initial subtree of T with ∂(S) finite. Let F be a thick G-tribe in
a graph Γ, which weakly agrees about ∂(S) ⊆ E(T ), concentrated at a half-grid-like end ϵ of Γ.
Then F has a thick flat subtribe F ′ so that F ′ strongly agrees about ∂(S).

Proof. Since ϵ is half-grid-like, there is some N ∈ N as in Lemma 6.4. Then, by Remark 6.144,
given any family of disjoint ϵ-rays, at least m− 2N − 2 of them are core rays. Thus, since all
members of a layer F of F are disjoint, at least |F | − 2N − 2 members of F do not contain
any ϵ-ray which is not core. Thus, there is a thick flat subtribe F∗ of F such that all ϵ-rays in
members of F∗ are core.
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Given a member H of F∗ and e ∈ ∂ϵ(S), we consider the order ⩽H,e induced on S(e) by the
order ⩽ϵ on H↓(Re). Let Oe be the set of potential orders on S(e) which is finite since S(e) is
finite6. Consider the colouring c :

⋃
F∗ →

∏
e∈∂ϵ(S) Oe where we map everyH to the product of

the orders ⩽H,e it induces. By the pigeon hole principle for thick G-tribes, Lemma 7.3, there is a
monochromatic, thick, flat G-subtribe F ′ of F∗. We can now set ⩽F ′,e:=⩽H,e for some H ∈ F ′.
Then, by Remark 7.8, this order ⩽F ′,e witnesses that F ′ is a thick flat subtribe of F which
strongly agrees about ∂(S).

Lemma 7.13. Let G be a connected locally finite graph with an extensive tree-decomposition
(T,V). Let H ⊆ Γ be a tidy IG and ϵ an end of Γ. Let e be an edge of T such that H(ωe) ̸= ϵ.
Then there is a finite set X ⊆ V (Γ) such that for every finite X ′ ⊇ X , there exists a push-out
He = H(G[A(e)])⊕H↓(Re) We of H along e to some depth n ∈ N so that

CΓ(X
′, H(ωe)) ̸= CΓ(X

′, ϵ) and We ⊆ CΓ(X
′, H(ωe)).

Proof. Let X ⊆ V (Γ) be a finite vertex set such that CΓ(X,H(ωe)) ̸= CΓ(X, ϵ). Then
CΓ(X

′, H(ωe)) ̸= CΓ(X
′, ϵ) holds for any finite vertex set X ′ ⊇ X . Furthermore, since X ′ is

finite, there are only finitely many v ∈ V (G) whose branch sets H(v) meet X ′. By extensive-
ness, every vertex of G is contained in only finitely many parts of the tree-decomposition, and
so there exists an n ∈ N such that whenever e′ ∈ E(Te+) is such that dist(e−, e′−) ⩾ n, then

H(G[B(e′)]) ∩X ′ = ∅, and so H(G[B(e′)]) ⊆ CΓ(X
′, H(ωe)).

Since (T,V) is an extensive tree-decomposition, there is a witness W of the self-similarity
of B(e) at distance at least n. Then by Definition 4.8 and Lemma 4.9, there is a push-out
He = H(G[A(e)])⊕H↓(Re) H(W ) of H along e to depth n. Let We = H(W ), then by Defi-
nition 4.8, V (We) ⊆ V (H(G[B(e′)])) ⊆ CΓ(X

′, H(ωe)).

Lemma 7.14. Let G be a connected locally finite graph with an extensive tree-decomposi-
tion (T,V) with root r ∈ T . Let Γ be a graph and F a thick G-tribe concentrated at a half-
grid-like end ϵ of Γ. Then there is a thick subtribe F ′ of F such that

(1) F ′ is concentrated at ϵ.

(2) F ′ strongly agrees about ∂({r}).

(3) F ′ is well-separated from ϵ at {r}.

Proof. Since T is locally finite, also d(r) is finite, and, by choosing a thick flat subtribe of F ,
we may assume that F weakly agrees about ∂({r}). Moreover, by Lemma 7.12, we may even
assume that F strongly agrees about ∂({r}). Using Lemma 7.5(2), this F would then satisfy (1)
and (2). So, it remains to arrange for (3):

Given a member H of F , for every e ∈ ∂¬ϵ({r}), there exists, by Lemma 7.13, a finite
set Xe ⊆ V (Γ), such that for every finite vertex set X ′ ⊇ Xe there is a push-out

6Note that there are in fact at most two orders of S(e) induced by one of the members of F∗ since ωe is linear
by Corollary 7.11.
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He = H(G[A(e)])⊕H↓(Re) We of H along e, so that CΓ(X
′, H(ωe)) ̸= CΓ(X

′, ϵ) and
We ⊆ CΓ(X

′, H(ωe)). Let X be the union of all these Xe together with H({r}). For each
e ∈ ∂¬ϵ({r}), let He be the push-out whose existence is guaranteed by the above with respect to
this set X .

Let us define an IG
H ′ :=

⋃
e∈∂¬ϵ({r})

He ({r}ϵ ∪ Te+) .

It is straightforward, although not quick, to check that this is indeed an IG and so we will not
do this in detail. Briefly, this can be deduced from multiple applications of Definition 4.7, and,
since each He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e), all that we need to check is
that the extra vertices added to the branch sets of vertices in S(e) are distinct for each edge e.
However, this follows from Definition 4.8, since these vertices come from

⋃
H↓(Re) and the

rays Re,s and Re′,s′ are disjoint except in their initial vertex when s = s′. Let F ′ be the tribe
given by {F ′ : F ∈ F}, where F ′ = {H ′ : H ∈ F} for each F ∈ F . We claim that F ′ satisfies
the conclusion of the lemma.

Firstly, by Lemma 7.5(2), F ′ is concentrated at ϵ, i.e. (1) holds. Next, we claim that F ′

strongly agrees about ∂({r}). Indeed, by construction for each e ∈ ∂¬ϵ({r}) we have
We ⊆ CΓ(X,H(ωe)), and hence ωe is cut from ϵ according to H ′. Furthermore, by construction
H({r}ϵ) \X = H ′({r}ϵ) \X and so ωe converges to ϵ according to H ′ for every e ∈ ∂ϵ({r}).
In fact,H↓(Re) = H ′↓(Re) for every e ∈ ∂ϵ({r}). Finally, sinceH ′ ⊆ H , andF strongly agrees
about ∂({r}), it follows that every ϵ-ray in H ′ is in core(ϵ), and so (2) holds.

It remains to show that F ′ is well-separated from ϵ at {r}. Now, H ′({r}¬ϵ) \
⋃

e∈∂¬ϵ({r}) We

is finite, and each We is separated from ϵ by X . Hence, there is some finite set Y separating
H ′({r}¬ϵ) from ϵ, and so (3) holds.

Lemma 7.15 (Well-separated push-out). Let G be a connected locally-finite graph with an ex-
tensive tree-decomposition (T,V). Let H ⊆ Γ be a tidy IG and ϵ an end of Γ. Let S be a finite
initial subtree of T , such that {H} is well-separated from ϵ at S, and let f ∈ ∂ϵ(S). Then there
exists a push-outH ′ ofH along f to depth 0 (see Definition 4.8) such that {H ′} is well-separated
from ϵ at S̃ := S + f ⊆ T .

Proof. Let X ′ ⊆ V (Γ) be a finite set with H(S¬ϵ) ∩ CΓ(X
′, ϵ) = ∅. If ∂¬ϵ(S̃) \ ∂(S) = ∅,

then H ′ = H satisfies the conclusion of the lemma, hence we may assume that ∂¬ϵ(S̃) \ ∂(S) is
non-empty.

By applying Lemma 7.13 to every e ∈ ∂¬ϵ(S̃) \ ∂(S), we obtain a finite set X ⊇ X ′ and a
family (He : e ∈ ∂¬ϵ(S̃) \ ∂(S)) where each He = H(G[A(e)])⊕H↓(Re) We is a push-out of H
along e such that We ⊆ CΓ(X,H(ωe)) ̸= CΓ(X, ϵ).

Let
H ′ :=

⋃
e∈∂¬ϵ(S̃)\∂(S)

He (S
ϵ ∪ Te+) .

As before, it is straightforward to check that H ′ is an IG, and that H ′ is a push-out of H along f
to depth 0. We claim that H ′ is well-separated from ϵ at S̃.

Since X ′ separates H(S¬ϵ) from ϵ, and ∂¬ϵ(S̃) \ ∂(S) is finite, it will be sufficient to show
that for each e ∈ ∂¬ϵ(S̃) \ ∂(S), there is a finite set Xe which separates H ′(G[B(e)]) from ϵ
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in Γ. However, by construction X separates We from ϵ, and H ′(G[B(e)]) \We is finite, and so
the claim follows.

The following lemma contains a large part of the work needed for our inductive construction.
The idea behind the statement is the following: At step n in our construction, we will have a thick
G-tribe Fn which agrees about ∂(Tn), where Tn is an initial subtree of the decomposition tree T
with finite ∂(Tn), which will allow us to extend our IG(Tn)’s to IG(Tn+1)’s, where Tn+1 is a
larger initial subtree of T , again with finite ∂(Tn+1). In order to perform the next stage of our
construction, we will need to ‘refine’ Fn to a thick G-tribe Fn+1 which agrees about ∂(Tn+1).

This would be a relatively simple application of the pigeon hole principle for G-tribes,
Lemma 7.3, except that, in our construction, we cannot extend by a member of Fn+1 naively.
Indeed, suppose we wish to use an IG, say H , to extend an IG(Tn) to an IG(Tn+1). There is
some subgraph, H(Tn+1 \ Tn), of H which is an IG(Tn+1 \ Tn), however in order to use this to
extend the IG(Tn) we first have to link the branch sets of the boundary vertices to this subgraph,
and there may be no way to do so without using other vertices of H(Tn+1 \ Tn).

For this reason, we will ensure the existence of an ‘intermediate G-tribe’ F∗, which has the
property that for each member H of F∗, there are push-outs at arbitrary depth of H which are
members of Fn+1. This allows us to first link our IG(Tn) to some H ∈ F∗ and then choose a
push-out H ′ ∈ Fn+1 of H , such that H ′(Tn+1 \ Tn) avoids the vertices we used in our linkage.

Lemma 7.16 (G-tribe refinement lemma). Let G be a connected locally finite graph with an
extensive tree-decomposition (T,V), let S be an initial subtree of T with ∂(S) finite, and let F
be a thick G-tribe of a graph Γ such that

(1) F is concentrated at a half-grid-like end ϵ;

(2) F strongly agrees about ∂(S);

(3) F is well-separated from ϵ at S.

Suppose f ∈ ∂ϵ(S) and let S̃ := S + f ⊆ T . Then there is a thick flat subtribe F∗ of F and a
thick G-tribe F ′ in Γ with the following properties:

(i) F ′ is concentrated at ϵ.

(ii) F ′ strongly agrees about ∂(S̃).

(iii) F ′ is well-separated from ϵ at S̃.

(iv) F ′ ∪ F strongly agrees about ∂(S) \ {f}.

(v) S¬ϵ w.r.t. F is a subtree of S̃¬ϵ w.r.t. F ′.

(vi) For every F ∈ F∗ and every m ∈ N, there is an F ′ ∈ F ′ such that for all H ∈ F , there is
an H ′ ∈ F ′ which is a push-out of H to depth m along f .
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Proof. For every member H of F , consider a sequence (H(i) : i ∈ N), where H(i) is a push-out
of H along f to depth at least i. After choosing a subsequence of (H(i) : i ∈ N) and relabelling
(monotonically), we may assume that for each H , the set {H(i) : i ∈ N} weakly agrees on ∂(S̃),
i.e. for every e ∈ ∂(S̃) either H(i)↓(R) ∈ ϵ for every R ∈ ωe and all i or H(i)↓(R) /∈ ϵ for ev-
ery R ∈ ωe and all i. Note that a monotone relabelling preserves the property of H(i) being a
push-out of H along f to depth at least i.

This uniform behaviour of (H(i) : i ∈ N) on ∂(S̃) for each member H of F gives rise to a
finite colouring c :

⋃
F → 2∂(S̃). By Lemma 7.3, we may choose a thick flat subtribe F1 ⊆ F

such that c is constant on
⋃

F1.
Recall that, by Corollary 7.11, for every e ∈ ∂ϵ(S̃) (w.r.t. F1), the ray graph RGG(Re) is a

path. We pick an arbitrary orientation of this path and denote by ⩽e the corresponding linear
order on Re.

Note that, since F1 is a flat subtribe of F which strongly agrees about ∂(S), every ϵ-ray in
every member H ∈

⋃
F1 is core. Let us define, for each member H ∈

⋃
F1,

dH : {H(i) : i ∈ N} → {−1, 1}∂ϵ(S̃),

where

dH(H
(i))e =

{
1 if ⩽ϵ agrees with the ⩽e,

−1 if ⩽ϵ agrees with the reverse order ⩾e of ⩽e.

Since dH has finite range, we may assume by Lemma 7.3, after choosing a subsequence and
relabelling, that dH is constant on {H(i) : i ∈ N} and that H(i) is still a push-out of H along f
to depth at least i.

Now, consider d :
⋃

F1 → {−1, 1}∂ϵ(S̃), with d(H) = dH(H
(1)) (= dH(H

(i)) for all i ∈ N).
Again, we may choose a thick flat subtribe F2 ⊆ F1 such that d is constant on F2.

Since F is well-separated from ϵ at S, we get that {H(i) : H ∈ F} is well-separated from ϵ
at S. So, we can now apply Lemma 7.15 to each H(i) to obtain H ′(i), yielding a collection which
is well-separated from ϵ at S̃. Note that H ′(i) is still a push-out of H along f to depth at least i.

Now, let F∗ = F2 and F ′ = {{H ′(i) : H ∈ F} : i ∈ N, F ∈ F∗}. Let us verify that these
satisfy (i)–(vi). F∗ is concentrated at ϵ because it is a thick flat subtribe of F by Lemma 7.5. By
a comparison, layer by layer, since all members of F ′ are push-outs of members of F∗ along f ,
the tribe F ′ is also concentrated at ϵ, satisfying (i).

Property (ii) is satisfied: Since c and d are constant on
⋃
F2 the collection of the H(i)

(for H ∈
⋃
F2) strongly agrees on ∂(S̃), since we have chosen an appropriate subsequence in

which dH(H
(i)) is constant. The H ′(i) are constructed such that this property is preserved. Prop-

erty (iii) is immediate from the choice of H ′(i). Properties (iv) and (v) follow from (2) and the
fact that every member of F ′ is a push-out of a member of F along f . Property (vi) is immediate
from the construction of F ′.
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8. The inductive argument

In this section we prove Theorem 4.6, our main result. Given a locally finite connected graph
G which admits an extensive tree-decomposition (T,V) and a graph Γ which contains a thick
G-tribe F , our aim is to construct an infinite family (Qi : i ∈ N) of disjoint G-minors in Γ in-
ductively.

Our work so far will allow us to make certain assumptions about F . For example, by
Lemma 7.4, we may assume that F is concentrated at some end ϵ of Γ, which, by Lemma 7.6,
we may assume is a thick end, and, by Lemma 6.2, we may assume is not pebbly. Hence, by
Theorem 6.1, we may assume that ϵ is either half-grid-like or grid-like.

At this point our proof will split into two different cases, depending on the nature of ϵ. As
we mentioned before, the two cases are very similar, with the grid-like case being significantly
simpler. Therefore, we will first prove Theorem 4.6 in the case where ϵ is half-grid-like, and
then in Section 8.2 we will briefly sketch the differences for the grid-like case.

So, to briefly recap, in the following section we will be working under the standing assump-
tions that there is a thick G-tribe F in Γ, and an end ϵ of Γ such that

– F is concentrated at ϵ;

– ϵ is thick;

– ϵ is half-grid-like.

8.1. The half-grid-like case

As explained in Section 2, our strategy will be to take some sequence of initial subtrees
S1 ⊆ S2 ⊆ S3 . . . of T such that

⋃
i∈N Si = T , and to inductively build a collection of n in-

flated copies of G(Sn), at each stage extending the previous copies. However, in order to ensure
that we can continue the construction at each stage, we will require the existence of additional
structure.

Let us pick an enumeration {ti : i ⩾ 0} of V (T ) such that t0 is the root of T and
Tn := T [{ti : 0 ⩽ i ⩽ n}] is connected for every n ∈ N. We will not take the Sn above to be
the subtrees Tn, but instead the subtrees T¬ϵ

n with respect to some tribe Fn that weakly agrees
about ∂(Tn). This will ensure that every edge in the boundary ∂(Sn) will be in ∂ϵ(Tn). For every
edge e ∈ E(T ), let us fix a family Re = (Re,s : s ∈ S(e)) of disjoint rays witnessing the self-
similarity of the boughB(e) towards an end ωe ofG, where init(Re,s) = s. By taking Sn = T¬ϵ

n ,
we guarantee that for each edge in e ∈ ∂(Sn), s ∈ S(e), and every H ∈

⋃
Fn, the ray H↓(Re,s)

is an ϵ-ray.
Furthermore, since ∂(Tn) is finite, we may assume by Lemma 7.12, that Fn strongly agrees

about ∂(Tn). We can now describe the additional structure that we require for the induction
hypothesis.

At each stage of our construction we will have built some inflated copies of G(Sn), which we
wish to extend in the next stage. However, Sn will not in general be a finite subtree, and so we
will need some control over where these copies lie in Γ to ensure we have not ‘used up’ all of Γ.
The control we will want is that there is a finite set of vertices X , which we call a bounder, that
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separates all that we have built so far from the end ϵ. This will guarantee, since F is concentrated
at ϵ, that we can find arbitrarily large layers of F which are disjoint from what we have built so
far.

Furthermore, in order to extend these copies in the next step, we will need to be able to link
the boundary of our inflated copies of G(Sn) to this large layer of F . To this end we, will also
want to keep track of some structure which allows us to do this, which we call an extender. Let
us make the preceding discussion precise.

Definition 8.1 (Bounder, extender). Let F be a thick G-tribe, which is concentrated at ϵ and
strongly agrees about ∂(S) for some initial subtree S of T , and let k ∈ N. Let Q = (Qi : i ∈ [k])
be a family of disjoint inflated copies of G(S¬ϵ) in Γ (note, S¬ϵ depends on F).

• A bounder for Q is a finite set X of vertices in Γ separating each Qi in Q from ϵ, i.e. such
that

C(X, ϵ) ∩
k⋃

i=1

Qi = ∅.

• For A ⊆ E(T ), let I(A, k) denote the set {(e, s, i) : e ∈ A, s ∈ S(e), i ∈ [k]}.

• An extender for Q is a family E = (Ee,s,i : (e, s, i) ∈ I(∂ϵ(S), k)) of ϵ-rays in Γ such
that the graphs in E− ∪Q are pairwise disjoint and such that init(Ee,s,i) ∈ Qi(s) for ev-
ery (e, s, i) ∈ I(∂ϵ(S), k) (using the notation as in Definition 3.3).

• Given an extender E , an edge e ∈ ∂ϵ(S), and i ∈ [k], we let

Ee,i := (Ee,s,i : s ∈ S(e)).

Recall that, since ϵ is half-grid like, there is a partial order ⩽ϵ defined on the core rays of ϵ,
see Lemma 6.13. Furthermore, if F strongly agrees about ∂(S) then, as in Definition 7.7, for
each e ∈ ∂ϵ(S), there is a linear order ⩽F ,e on S(e).

Definition 8.2 (Extension scheme). Under the conditions above, we call a tuple (X, E) an ex-
tension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;

(ES3) the order ⩽ϵ on Ee,i (and thus on E−
e,i) agrees with the order induced by ⩽F ,e on E−

e,i for
all e ∈ ∂ϵ(S) and i ∈ [k];

(ES4) the sets E−
e,i are intervals with respect to ⩽ϵ on E− for all e ∈ ∂ϵ(S) and i ∈ [k].

We will in fact split our inductive construction into two types of extensions, which we will
do on odd and even steps respectively.
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In an even step n = 2k, starting with a G-tribe Fk, k disjoint inflated copies (Qn
i : i ∈ [k])

of G(T¬ϵ
k ), and an appropriate extension scheme, we will construct Qn

k+1, a further disjoint
inflated copy of G(T¬ϵ

k ), and an appropriate extension scheme for everything we built so far.
In an odd step n = 2k − 1 (for k ⩾ 1), starting with the sameG-tribeFk−1 from the previous

step, k disjoint inflated copies of G(T¬ϵ
k−1), and an appropriate extension scheme, we will refine

to a new G-tribe Fk, which strongly agrees on ∂(Tk), extend each copy Qn
i of G(T¬ϵ

k−1) to a
copy Qn+1

i of G(T¬ϵ
k ) for i ∈ [k], and construct an appropriate extension scheme for everything

we built so far.
So, we will assume inductively that for some n ∈ N0, with ρ := ⌊n/2⌋ and σ := ⌈n/2⌉ we

have:

(I1) a thick G-tribe Fρ in Γ which

• is concentrated at ϵ;
• strongly agrees about ∂(Tρ);
• is well-separated from ϵ at Tρ;
• whenever k < l ⩽ ρ, the tree T¬ϵ

k with respect to Fk is a subtree of T¬ϵ
l with respect

to Fl.

(I2) a family Qn = (Qn
i : i ∈ [σ]) of σ pairwise disjoint inflated copies of G(T¬ϵ

ρ ) (where T¬ϵ
ρ

is considered with respect to Fρ) in Γ;
if n ⩾ 1, we additionally require that Qn

i extends Qn−1
i for all i ⩽ σ − 1;

(I3) an extension scheme (Xn, En) for Qn;

(I4) if n is even and ∂ϵ(Tρ) ̸= ∅, we require that there is a set Jρ of disjoint core ϵ-rays disjoint
to En, with |Jρ| ⩾ (|∂ϵ(Tρ)|+ 1) · |En|.

We illustrate the combination of the construction steps in Figure 8.1

Q2k−1

transition box Y

match endpoints
in linkage

linkage

add Q2k
k+1

F ∈ Fk

linkage

extend each
Q2k

i to Q2k+1
i

Fk+1 ∋ F ′

refine

Q2k+1

Figure 8.1: The combination of the steps in our construction.
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Suppose we have inductively constructed Qn for all n ∈ N. Let us define Hi :=
⋃

n⩾2i−1Q
n
i .

Since T¬ϵ
k with respect to Fk is a subtree of T¬ϵ

l with respect to Fl for all k < l, we have
that

⋃
n∈N T

¬ϵ
n = T (where we considered T¬ϵ

n w.r.t. Fn), and due to the extension property (I2),
the collection (Hi : i ∈ N) is an infinite family of disjoint G-minors, as required.

So let us start the construction. To see that our assumptions can be fulfilled for the casen = 0,
we first note that since T0 = t0, by Lemma 7.14 there is a thick subtribe F0 of F which satis-
fies (I1). Let us further take Q0 = E0 = X0 = J0 = ∅.

The following notation will be useful throughout the construction. Given e ∈ E(T )
and some inflated copy H of G, recall that H↓(Re) denotes the family (H↓(Re,s) : s ∈ S(e)).
Given a G-tribe F , a layer F ∈ F and a family of disjoint rays R in G we will
write F ↓(R) = (H↓(R) : H ∈ F,R ∈ R).

Construction part 1: n = 2k is even

Case 1: ∂ϵ(Tk) = ∅.
In this case, T¬ϵ

k = T and so picking any member H ∈ Fk with H ⊆ C(Xn, ϵ) and setting
Qn+1

k+1 = H(T¬ϵ
k ) gives us a further inflated copy of G(T¬ϵ

k ) disjoint from all the previous ones.
We set Qn+1

i = Qn
i for all i ∈ [k] and Qn+1 = (Qn+1

i : i ∈ [k + 1]). Since Fk is well-separated
from ϵ at Tk, there is a suitable bounder Xn+1 ⊇ Xn for Qn+1. Then (Xn+1,∅) is an extension
scheme for Qn+1 while Fk remains unchanged.

Case 2: ∂ϵ(Tk) ̸= ∅. (See Figure 8.2)
Consider the family R− :=

⋃
{R−

e : e ∈ ∂ϵ(Tk)}. Moreover, set C := E−
n ∪ Jk and con-

sider C as in Definition 6.16. Let Y ⊆ C(Xn, ϵ) be a finite subgraph, which is a transition box
between E−

n and C after Xn as in Lemma 3.17. Let F ′ be a flat thick G-subtribe of Fk, such
that each member of F ′ is contained in C(Xn ∪ V (Y ), ϵ), which exists, by Lemma 7.5, since
both Xn and V (Y ) are finite.

Let F ∈ F ′ be large enough such that we may apply Lemma 3.16 to find a transitional link-
age P , such that

⋃
P ⊆ C(Xn ∪ V (Y ), ϵ), from C to F ↓(R−) after Xn ∪ V (Y ) avoiding some

member H ∈ F . Note that, since Xn is a bounder and
⋃

P ⊆ C(Xn ∪ V (Y ), ϵ), we get that
each element of P is disjoint from all Qn and Y .

Let
Qn+1

k+1 := H(T¬ϵ
k ).

Note that Qn+1
k+1 is an inflated copy of G(T¬ϵ

k ). Moreover, let Qn+1
i := Qn

i for all i ∈ [k] and
Qn+1 := (Qn+1

i : i ∈ [k + 1]), yielding property (I2).
Since Fk is well-separated from ϵ at Tk, and H ∈

⋃
Fk, there is a finite set Xn+1 ⊆ V (Γ)

containingXn ∪ V (Y ), such thatC(Xn+1, ϵ) ∩Qn+1
k+1 = ∅. This setXn+1 is a bounder forQn+1.

Since P is transitional, Lemma 6.19 implies that the linkage is preserving on C. Since all
rays in F ↓(R−) are core rays, we have that ⩽ϵ is a linear order on F ↓(R−). Moreover, for
each e ∈ ∂ϵ(Tk), the rays in H↓(R−

e ) correspond to an interval in this order. Thus, deleting these
intervals from F ↓(R−) leaves behind at most |∂ϵ(Tk)|+ 1 intervals in F ↓(R−) (with respect
to ⩽ϵ) which do not contain any rays in H↓(R−). Since |Jk| ⩾ (|∂ϵ(Tk)|+ 1) · |En|, by the
pigeonhole principle there is one such interval on F ↓(R−) that
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– does not contain rays in H↓(R);

– where a subset P ′ ⊆ P of size |E−
n | links a corresponding subset A of C to a set of rays B

in that interval.

By Lemmas 3.17, 6.23 and 6.19, and Remark 6.221, there is a linkage P ′′ from E−
n to A con-

tained in Y which is preserving on E−
n .

For e ∈ ∂ϵ(Tk) and s ∈ S(e), define

En+1
e,s,k+1 = H↓(Re,s) for the corresponding ray Re,s ∈ Re.

Moreover for each i ∈ [k], we define

En+1
e,s,i = (En

e,s,i ◦P ′′ A) ◦P ′ B,

noting that P ′′ is also a linkage from En to A.
By construction, all these rays are, except for their first vertex, disjoint fromQn+1. Moreover,

En+1 := (En+1
e,s,i : (e, s, i) ∈ I(∂ϵ(Tk), k + 1)) is an extender for Qn+1. Note that each ray in En+1

shares a tail with a ray in F ↓(R−).
We claim that (Xn+1, En+1) is an extension scheme for Qn+1 and hence property (I3) is sat-

isfied. Since every ray in En+1 has a tail which is also a tail of a ray in F ↓(R−), property (ES2)
is satisfied by Remark 6.141. Since P ′ is preserving on A′ and P ′′ is preserving on E−

n , Re-
mark 6.222 implies that the linkage P ′′ + P ′ is preserving on E−

n . Hence, property (ES3)
holds for each i ∈ [k]. Furthermore, sinceEn+1

e,s,k+1 = H↓(Re,s) for each e ∈ ∂ϵ(Tk) and s ∈ S(e)
and Fk strongly agrees about ∂(Tk), it is clear that property (ES3) holds for i = k + 1. Finally,
property (ES4) holds for i = k + 1 since for each e ∈ ∂ϵ(Tk), the rays in H↓(Re) are an interval
with respect to ⩽ϵ on F ↓(R−), and it holds for i ∈ [k] by the fact that P ′′ + P ′ is preserving
on E−

n together with the fact that P ′′ + P ′ links E−
n to an interval of F ↓(R−) containing no ray

in H↓(R).
Finally, note that (I1) is still satisfied by Fk and Tk, and (I4) is vacuously satisfied.

Construction part 2: n = 2k − 1 is odd (for k ⩾ 1).
Let f denote the unique edge of T between Tk−1 and Tk \ Tk−1.

Case 1: f /∈ ∂ϵ(Tk−1).
Let Fk := Fk−1. Since Fk−1 is well-separated from ϵ at Tk−1, it follows that e ∈ ∂¬ϵ(Tk)

for every e ∈ ∂(Tk) \ ∂(Tk−1). Hence T¬ϵ
k = T¬ϵ

k−1 and ∂ϵ(Tk−1) = ∂ϵ(Tk), and so Fk is well-
separated from ϵ at Tk and we can simply take Qn+1 := Qn, En+1 := En, Jk := Jk−1 and
Xn+1 := Xn to satisfy (I1), (I2), (I3) and (I4).

Case 2: f ∈ ∂ϵ(Tk−1). (See Figure 8.3)
By (I1) we can apply Lemma 7.16 to Fk−1 and Tk−1 in order to find a thick G-tribe Fk and

a thick flat subtribe F∗ of Fk−1, both concentrated at ϵ, satisfying properties (i)–(vi) from that
lemma. It follows that Fk satisfies (I1) for the next step.

Let F ∈ F∗ be a layer of F∗ such that

|F | ⩾ (∂ϵ(Tk) + 2) · |I(∂ϵ(Tk), k)|
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and consider the rays F ↓(Rf ). Consider the rays in the extender corresponding to the edge f ,
that is Ef := (En

f,s,i : i ∈ [k], s ∈ S(f)). By Lemma 6.23, there is, for every subset S of F ↓(Rf )

of size |E−
f |, a transitional linkage P from E−

f ⊆ E−
n to S ⊆ F ↓(Rf ) after Xn ∪ init(En), which

is preserving on E−
f .

Let us choose H1, H2, . . . , Hk ∈ F and let S =
(
H↓

i (Rf,s) : i ∈ [k], s ∈ S(f)
)

. Let P be
the linkage given by the previous paragraph, which we recall is preserving on E−

f . Since for
every i ⩽ k, the family

(
En−

f,s,i : s ∈ S(f)
)

forms an interval in E−
n and the set H↓

i (Rf ) forms
an interval in F ↓(Rf ), and furthermore the order ⩽ϵ agrees with ⩽Fk,f on S(f), it follows that,
after perhaps relabelling the Hi, for every i ∈ [k] and s ∈ S(f), P links En−

f,s,i to H↓
i (Rf,s).

Let Z ⊆ V (Γ) be a finite set such that ⊤(ω,R) and ⊥(ω,R) are separated by Z in Γ− V (R)
for all R ∈ F ↓(Rf ) (cf. Lemma 6.15).

Since |F | is finite and (T,V) is an extensive tree-decomposition, there exists an m ∈ N
such that if e ∈ Tf+ with dist(f−, e−) = m, then H(B(e)) ∩ (Xn ∪ Z ∪ V (

⋃
P)) = ∅ for ev-

ery H ∈ F . Let F ′ ∈ Fk be as in Lemma 7.16(vi) for F with such an m.
Hence, by definition, for each Hi ∈ F there is some H ′

i ∈ F ′ which is a push-out of Hi to
depth m along f , and so there is some edge e ∈ Tf+ with dist(f−, e−) = m and some subgraph
Wi ⊆ H(B(e)) which is an IG[B(f)] such that for each s ∈ S(f), we have that Wi(s) contains
the first vertex of Wi on H↓

i (Rf,s).
For each i ∈ [k] we construct Qn+1

i from Qn
i as follows. Consider the part of G that we want

to add G(T¬ϵ
k−1) to obtain G(T¬ϵ

k ), namely

D := G[B(f)]
[
Vf+ ∪

⋃{
B(e) : e ∈ ∂¬ϵ(Tk) \ ∂¬ϵ(Tk−1)

}]
.

Let Ki := Wi(D). Note that this is an inflated copy of D, and for each s ∈ S(f) and each i ∈ [k]
the branch set Ki(s) contains the first vertex of Ki on H↓

i (Rf,s).
Note further that, by the choice of m, all the Ki are disjoint to Qn. Let xf,s,i denote the first

vertex on the ray H↓
i (Rf,s) in Ki, and let

Os,i := (En
f,s,i ◦P F ↓(Rf ))xf,s,i,

where as before we note that P is also a linkage from En to F ↓(Rf ).
Then, if we let Oi := (Os,i : s ∈ S(f)) and O = (Os,i : s ∈ S(f), i ∈ [k]), we see that

Qn+1
i := Qn

i ⊕Oi
Ki

(see Definition 4.7) is an inflated copy of G(T¬ϵ
k ) extending Qn

i . Hence,

Qn+1 := (Qn+1
i : i ∈ [k])

is a family satisfying (I2).
Since Fk is well-separated from ϵ at Tk, and each Ki is a subgraph of the restriction of

Wi ⊆ H ′
i to D, for each Ki, there is a finite set X̂i separating Ki from ϵ, and hence the set

Xn+1 := Xn ∪
⋃
i∈[k]

X̂i ∪ V
(⋃

O
)
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is a bounder for Qn+1.
For e ∈ ∂ϵ(Tk−1) \ {f}, s ∈ S(e), and i ∈ [k], we set

En+1
e,s,i = En

e,s,i ◦P F ↓(Rf ),

and set
E ′ :=

(
En+1

e,s,i : (e, s, i) ∈ I (∂ϵ(Tk−1) \ {f}, k)
)

Moreover, for e ∈ ∂ϵ(Tk) \ ∂ϵ(Tk−1), s ∈ S(e), and i ∈ [k], we set

En+1
e,s,i = H ′↓

i (Re,s),

and set
E ′′ :=

(
En+1

e,s,i : (e, s, i) ∈ I (∂ϵ(Tk) \ ∂ϵ(Tk−1), k)
)
.

Note that, by construction, any such ray En+1
e,s,i has its initial vertex in the branch set Qn+1

i (s)
and is otherwise disjoint to

⋃
Qn+1. We set En+1 := E ′ ∪ E ′′. It is easy to check that this is an

extender for Qn+1.
We claim that (Xn+1, En+1) is an extension scheme. Property (ES1) is apparent. Since Fk

strongly agrees about ∂(Tk), every ϵ-ray in an any member of Fk is core. Then, since F∗ is a flat
subtribe of Fk and every ray in En+1 shares a tail with a ray in a member of Fk or F∗, it follows
by Remark 6.14 1 that all rays in En+1 are core rays, and so (ES2) holds.

For any e ∈ ∂ϵ(Tk−1) \ {f} and i ∈ [k], the rays En+1,e,i are a subfamily of E ′, obtained by
transitioning from the family En,e,i to F ↓(Rf ) along the linkage P . By the induction hypothesis,
⩽ϵ agreed with the order induced by ⩽Fk−1,e on En,e,i, and, since Fk ∪ Fk−1 strongly agrees
about ∂ϵ(Tk−1) \ {f}, this is also the order induced by ⩽Fk,e. Hence, since P is preserving, by
Lemma 6.19, it follows that the order induced by ⩽Fk,e on En+1,e,i agrees with ⩽ϵ.

For for e ∈ ∂ϵ(Tk) \ ∂ϵ(Tk−1) and i ∈ [k], the rays En+1,e,i are (H ′↓
i (Re,s) : s ∈ S(e)). Since

H ′
i ∈ F ′ ∈ Fk and Fk strongly agrees about ∂(Tk), it follows that the order induced by ⩽Fk,e

on En+1,e,i agrees with ⩽ϵ. Hence Property (ES3) holds.
Finally, by Lemma 3.20 it is clear that for any e ∈ ∂ϵ(Tk−1) \ {f} and i ∈ [k], the rays E−

n+1,e,i

form an interval with respect to ⩽ϵ on E−
n+1, since they are each contained in a connected

subgraph H ′
i to which the tails of the rest of E−

n+1 are disjoint. Furthermore, by choice of Z
and Lemma 6.15, it it clear that, since P is preserving on E−

n , for each e ∈ ∂ϵ(Tk) \ ∂ϵ(Tk−1)
and i ∈ [k], the rays E−

n+1,e,i also form an interval with respect to ⩽ϵ on E−
n+1. Hence, prop-

erty (ES4) holds and therefore (I3) is satisfied for the next step.
For property (I4), we note that every ray in En+1 has a tail in some H ∈ F ∈ F∗ or some

pushout H ′ of H in Fk. Note that V (H ′) ⊆ V (H). Since there is at least one core ϵ-ray
in each H ∈ F ∈ F∗, and the H in F are pairwise disjoint, we can find a family of at least
|F | − |En+1| such rays disjoint from En+1. However, since

|F | ⩾ (∂ϵ(Tk) + 2) · |En+1|,

it follows that we can find a suitable family |Jk|.
This concludes the induction step.
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8.2. The grid-like case

In this section we will give a brief sketch of how the argument differs in the case where the end ϵ,
towards which we may assume our G-tribe F is concentrated, is grid-like.

In the case where ϵ is half-grid-like we showed that the end ϵ had a roughly linear structure,
in the sense that there is a global partial order ⩽ϵ which is defined on almost all of the ϵ-rays,
namely the core ones, such that every pair of disjoint core rays are comparable, and that this order
determines the relative structure of any finite family of disjoint core rays, since it determines the
ray graph.

Since, by Corollary 7.11, RGG(Re) is a path whenever e ∈ ∂ϵ(Tk), there are only two ways
that ⩽ϵ can order H↓(Re), and, since ∂ϵ(Tk) is finite, by various pigeon-hole type arguments we
can assume that it does so consistently for each H ∈

⋃
Fk and each Ee,i.

We use this fact crucially in part 2 of the construction, where we wish to extend the graphs
(Qn

i : i ∈ [k]) from inflated copies of G(T¬ϵ
k−1) to inflated copies of G(T¬ϵ

k ) along an edge
e ∈ ∂(Tk−1). We wish to do so by constructing a linkage from the extender En to some layer
F ∈ Fk, using the self-similarity of G to find an inflated copy of G[B(e)] which is ‘rooted’ on
the rays H↓(Re) and extending each Qn

i by such a subgraph.
However, for this step to work it is necessary that the linkage from En to F ↓(Re) is such that

for each i ∈ [k], there is some H ∈ F such that ray Ee,s,i is linked to H↓(Re,s) for each s ∈ S(e).
However, since any transitional linkage we construct between En and a layer F ∈ Fn will re-
spect ⩽ϵ, we can use a transition box to ‘re-route’ our linkage such that the above property
holds.

In the case where ϵ is grid-like we would like to say that the end has a roughly cyclic structure,
in the sense that there is a global ‘partial cyclic order’ Cϵ, defined again on almost all of the ϵ-
rays, which will again determine the relative structure of any finite family of disjoint ‘core’ rays.

As before, sinceRGG(Re) is a path whenever e ∈ ∂ϵ(Tn), there are only two ways thatCϵ can
order H↓(Re) (‘clockwise’ or ‘anti-clockwise’) and so we can use similar arguments to assume
that it does so consistently for each H ∈

⋃
Fk and each Ee,i, which allows us as before to control

the linkages we build.
To this end, suppose ϵ is a grid-like end, and that N is as in Lemma 6.3, so that the ray graph

of any family of at least N + 2 disjoint rays is a cycle. We say that an ϵ-ray R is a core ray (of ϵ)
if there is some finite family (Ri : i ∈ [n]) of n ⩾ N + 3 disjoint ϵ-rays such that R = Ri for
some i ∈ [n]7.

Every large enough ray graph is a cycle, which has a correct orientation by Lemma 6.3, and
we would like to say that this orientation is induced by a global ‘partial cyclic order’ defined on
the core rays of ϵ.

By a similar argument as in Section 6.1, one can show the following:

Lemma 8.3. For every core rayR of a grid-like end ϵ there is a unique sub-end of ϵ inG− V (R),
which is linear (cf. Definition 7.9).

It follows that if R and R′ are disjoint core rays then ϵ splits into at most two ends
in G− (V (R) ∪ V (R′)).

7We note that it is possible to show that, if ϵ is grid-like, then in fact N = 3.
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Definition 8.4. Let R and R′ be disjoint core rays of ϵ. We denote by ⊤(ϵ, R,R′) the end
of G− (V (R) ∪ V (R′)) containing rays which appear between R and R′ according to the cor-
rect orientation of some ray graph of a family of at least N +3 ϵ-rays and by ⊥(ϵ, R,R′) the end
of G− (V (R) ∪ V (R′)) containing rays which appear between R′ and R in the correct orienta-
tion of some ray graph of a family of at least N + 3 ϵ-rays.

We will model our global ‘partial cyclic order’ as a ternary relation on the set of core rays
of ϵ. That is, a partial cyclic order on a set X is a relation C ⊂ X3 written [a, b, c] satisfying
the following axioms:

• If [a, b, c] then [b, c, a].

• If [a, b, c] then not [c, b, a].

• If [a, b, c] and [a, c, d] then [a, b, d].

Lemma and Definition 8.5. Let core(ϵ) denote the set of core rays of ϵ. We define a partial
cyclic order Cϵ on core(ϵ) as follows:

[R, S, T ] if and only if R, S, T have disjoint tails xR, yS, zT and yS ∈ ⊤(ϵ, xR, zT ).

Then, for any family (Ri : i ∈ [n]) of n ⩾ N + 3 disjoint ϵ-rays, the cyclic order induced
on (Ri : i ∈ [n]) by Cϵ agrees with the correct orientation.

Again, by a similar argument as in Section 6.1, one can show that this relation is in fact a
partial cyclic order and that it always agrees with the correction orientation of large enough ray
graphs. Furthermore, by Lemma 6.3, given two families R and S of at least N + 3 disjoint
ϵ-rays, every transitional linkage between R and S preserves Cϵ, for the obvious definition of
preserving.

Given a family of disjoint ϵ-rays R = (Ri : i ∈ [n]) with a linear order⩽ on R, we say that ⩽
agrees with Cϵ if [Ri, Rj, Rk] whenever Ri < Rj < Rk.

Given a family F = (fi : i ∈ I) and a linear order ⩽ on I , we denote by F (⩽) the linear
order on F induced by ⩽, i.e. the order defined by fiF (⩽)fj if and only if i ⩽ j.

As in Section 7 we say a thick G-tribe F strongly agrees about ∂(Tn) if

• it weakly agrees about ∂(Tn);

• for each H ∈
⋃

F every ϵ-ray R ⊆ H is in core(ϵ);

• for every e ∈ ∂ϵ(Tn) there is a linear order ⩽F ,e on S(e) such that H↓(Re)(⩽F ,e) agrees
with Cϵ on H↓(Re) for all H ∈

⋃
F .

Using this definition, the G-tribe refinement lemma (Lemma 7.16) can also be shown to hold
in the case where ϵ is a grid-like-end.

Furthermore, we modify the definition of an extension scheme for a family of disjoint inflated
copies of G(T¬ϵ

n ).
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Definition 8.6 (Extension scheme). Let Q = (Qi : i ∈ [k]) be a family of disjoint inflated copies
of G(S¬ϵ) and F be a G-tribe which strongly agrees about ∂(S). We call a tuple (X, E) an
extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;

(ES3) the order Cϵ agrees with E−
e,i(⩽F ,e) for every e ∈ ∂ϵ(S);

(ES4) the sets E−
s,i are intervals of Cϵ on E− for all e ∈ ∂ϵ(S) and i ∈ [k].

We can then proceed by induction as before, with the same induction hypotheses. For the
most part the proof will follow verbatim, apart from one slight technical issue.

Recall that, in the case where n is even, we use the existence of the family of rays C to find a
linkage from C to F ↓(R−) which is preserving on C and similarly, in the case where n is odd, we
do the same for E−

n . In the grid-like case we do not have to be so careful, since every transitional
linkage from C to F ↓(R−) will preserve Cϵ, as long as |C| is large enough.

However, in order to ensure that |C| and |E−
n | are large enough in each step, we should start by

building N + 3 inflated copies of G(T¬ϵ
0 ) in the first step, which can be done relatively straight-

forwardly. Indeed, in the case n = 0 most of the argument in the construction is unnecessary,
since a large part of the construction is constructing a new copy whilst re-routing the rays En
to avoid this new copy, but E0 is empty. Therefore, it is enough to choose a layer F ∈ F0

with |F | ⩾ N + 3, with say H1, . . . , HN+3 ∈ F and to take, for each i ∈ [N + 3],

Q1
i := Hi(T

¬ϵ
k )

and to take E1
e,s,i = H↓

i (Re,s) for each e ∈ ∂ϵ(T0), s ∈ S(e), and i ∈ [N + 3]. One can then
proceed as before, extending the copies in odd steps and adding a new copy in even steps.

9. Outlook: connections with well-quasi-ordering and better-quasi-ordering

Our aim in this section is to sketch what we believe to be the limitations of the techniques of this
paper. We will often omit or ignore technical details in order to give a simpler account of the
relationship of the ideas involved.

Our strategy for proving ubiquity is heavily reliant on well-quasi-ordering results. The reason
is that they are the only known tool for finding extensive tree-decompositions for broad classes
of graphs.

To more fully understand this, let us recall how well-quasi-ordering was used in the proofs
of Lemmas 5.7 and 5.12. Lemma 5.7 states that any locally finite connected graph with only
finitely many ends, all of them thin, has an extensive tree-decomposition. The key idea of the
proof was as follows: for each end, there is a sequence of separators converging towards that
end. The graphs between these separators are finite, and so are well-quasi-ordered by the Graph
Minor Theorem. This well-quasi-ordering guarantees the necessary self-similarity.
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Lemma 5.12, where infinitely many ends are allowed but the graph must have finite tree-
width, is similar: once more, for each end there is a sequence of separators converging towards
that end. The graphs between these separators are not necessarily finite, but they have bounded
tree-width and so they are again well-quasi-ordered.

Note that the Graph Minor Theorem is not needed for this latter result. Instead, the reason
it works can be expressed in the following slogan, which will motivate the considerations in the
rest of this section:

Trees of wombats are well-quasi-ordered precisely when wombats themselves are
better-quasi-ordered.

Here better-quasi-ordering is a strengthening of well-quasi-ordering, introduced by Nash-
Williams in [NW65] essentially in order to make this slogan be true. Since graphs of bounded
tree-width can be encoded as trees of graphs of bounded size, what is used here is that graphs
of bounded size are better-quasi-ordered.

What if we wanted to go a little further, for example by allowing infinite tree-width but
requiring that all ends should be thin? In that case, all we would know about the graphs between
the separators would be that all their ends are thin. Such graphs are essentially trees of finite
graphs. So, by the slogan above, to show that such trees are well-quasi-ordered we would need
the statement that finite graphs are better-quasi-ordered.

Indeed, this problem arises even if we restrict our attention to the following natural common
strengthening of Theorems 1.1 and 1.2:

Conjecture 9.1. Any locally finite connected graph in which all blocks are finite is≼-ubiquitous.

In order to attack this conjecture with our current techniques we would need better-quasi-
ordering of finite graphs.

Thomas has conjectured [Tho89] that countable graphs are well-quasi-ordered with respect
to the minor relation. If this were true, it could allow us to resolve problems like those discussed
above for countable graphs at least, since all the graphs appearing between the separators are
countable. But this approach does not allow us to avoid the issue of better-quasi-ordering of
finite graphs. Indeed, since countable trees of finite graphs can be coded as countable graphs,
well-quasi-ordering of countable graphs would imply better-quasi-ordering of finite graphs.

Thus until better-quasi-ordering of finite graphs has been established, the best that we can
hope for – using our current techniques – is to drop the condition of local finiteness from the
main results of this paper. For countable graphs we hope to show this in a future paper, however
for graphs of larger cardinalities further issues arise.
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