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ABSTRACT OF THE DISSERTATION

Dynamic Causal Inference with Imperfect Identifying Information

by

Lam Nguyen

Doctor of Philosophy in Economics

University of California San Diego, 2020

Professor James D. Hamilton, Chair

This dissertation contains three essays exploring how macroeconomists can identify and

estimate dynamic causal effects in models where researchers have doubts about identifying

assumptions.

Chapter 1 proposes a new Markov Chain Monte Carlo algorithm to estimate a sign-

restricted structural vector autoregression on time series that are subject to regime shifts. My

approach can incorporate useful prior information about both model parameters and hidden states

while transparently imposing sign restrictions. I illustrate my method by revisiting the literature

on asymmetric effects of conventional monetary policy during recessions and expansions. My

evidence suggests that previous empirical research found asymmetric effects by questionable

x



identification schemes and neglecting changes in the variances of structural shocks. I find little

difference in the structural parameters, and thus I do not find evidence of asymmetry.

Chapter 2 studies the method of instrumental variables in set-identified models. I de-

velop a proxy structural vector autoregression in which prior information from both theory and

the empirical literature is incorporated about signs and magnitudes of certain parameters and

equilibrium impacts. I use my method to investigate the relevance and validity of three popular

instruments for monetary policy shocks, developed by Romer and Romer (2004), Sims and Zha

(2006), and Smets and Wouters (2007). I find that all of them are strongly relevant but only that of

Smets and Wouters is valid. Furthermore, the empirical analysis demonstrates that my framework

can combine information from a relevant and valid instrument with prior information about sign

restrictions to improve inference about structural impulse-response functions.

Chapter 3 develops new methods to study dynamic causal effects in a data-rich environ-

ment. Current development in high-dimensional statistics fails to address the main interest of

economists: causal inference with credible assumptions. I first review the literature on high-

dimensional linear regression models and dynamic factor models. Then, I develop several new

Bayesian numerical algorithms that combine the techniques in high-dimensional statistics with

recent advances in dynamic causal inference. In particular, I discuss how to make causal state-

ments from a high-dimensional structural model when researchers have doubts about identifying

assumptions. Finally, I extend those algorithms to the case of Markov-switching models to

accommodate nonlinearities in economic time series.
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Chapter 1

Regime-Switching Structural Vector

Autoregression Identified by Sign

Restrictions: Asymmetric Effects of

Monetary Policy Revisited

Abstract

Economic relations change over time and with the business cycle. This paper proposes

a new Markov Chain Monte Carlo algorithm to estimate a sign-restricted structural vector

autoregression on time series that are subject to regime shifts. My approach can incorporate

useful prior information about both model parameters and hidden states while transparently

imposing sign restrictions. I illustrate my method by revisiting the literature on asymmetric

effects of conventional monetary policy during recessions and expansions. My evidence suggests

that previous empirical research found asymmetric effects by questionable identification schemes

and neglecting changes in the variances of structural shocks. I find little difference in the structural

parameters, and thus I do not find evidence of asymmetry.
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1.1 Introduction

Empirical macroeconomists are interested in estimating dynamic causal effects of unob-

served structural shocks on endogenous macroeconomic variables.1 The Vector Autoregression

(VAR) has been one of the main tools to accomplish this task. Since the pioneering paper by Sims

(1980), this research agenda has evolved to deal with two main challenges: (1) the identification

problem and (2) nonlinearity of macroeconomic time series.

Causal inference in VAR always requires identifying assumptions because there are

multiple structural models consistent with the observed data. As documented in Ramey (2016) and

Nakamura & Steinsson (2018), conventional exclusion restrictions are often both conceptually and

empirically controversial, and consequently, economists have been searching for new identification

strategies that only impose minimal, non-controversial identifying assumptions. A new promising

strategy is identification by sign restrictions where researchers only assert their beliefs about

the signs, instead of the magnitudes, of various quantities. This literature is pioneered by Uhlig

(2005), Faust (1998), and Canova & De Nicolo (2002), and since then it has been rising with many

notable contributions in both theories and applications, including Rubio-Ramı́rez, Waggoner

& Zha (2010), Arias, Rubio-Ramı́rez & Waggoner (2018b), Arias, Caldara & Rubio-Ramı́rez

(2019), Antolı́n-Dı́az & Rubio-Ramı́rez (2018), and Baumeister & Hamilton (2015), Baumeister

& Hamilton (2018), and Baumeister & Hamilton (2019).

Nevertheless, this recent surge in the literature has mainly focused on linear VAR. Ignoring

potential nonlinearity is an important omission because most macroeconomic time series exhibit

dramatic breaks (Hamilton (1989) and Hamilton (2016)). Primiceri (2005), Cogley & Sargent

(2001) and Cogley & Sargent (2005), and Sims & Zha (2006) all found that time-varying parameter

VARs are better descriptions of the economy than their linear counterparts. The literature on

time-varying parameter models is also vast, and there is considerable interest and promise in

1I adopt Ramey (2016)’s definition of structural shocks. Specifically, structural shocks must reflect either current
or future unanticipated movement of exogenous variables and be independent of both endogenous variables and each
other.
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modeling the time variation as changes in regime (Owyang & Ramey (2004), Benati & Surico

(2009), Lanne, Lütkepohl & Maciejowska (2010), Herwartz & Lütkepohl (2014)). With few

exceptions, most papers still use exclusion restrictions for identification and hence their results

are fragile. Current applications of identification by sign restriction to time-varying parameter

VAR are limited and suffer from two shortcomings: (1) inference is sensitive to the ordering of

variables (Baumeister & Peersman (2013)), and (2) the algorithm imposes implicit priors on the

dynamic causal effects (Rubio-Ramı́rez, Waggoner & Zha (2005), Bognanni (2018)).

This paper extends Baumeister & Hamilton (2015)’s SVAR framework to identify and

estimate regime-dependent dynamic causal effects. Specifically, I develop a new Markov Chain

Monte Carlo (MCMC) method to estimate an exogenous Markov-switching structural VAR

(SVAR) model identified by sign restrictions. By allowing the parameters to evolve according to a

Markov chain, this framework captures any potential regime-dependent effects, and the use of

sign restrictions ensures that its identification strategy is more robust than traditional approaches.

Compared to Sims & Zha (2006), my algorithm can implement not only conventional short-run

and long-run restrictions but also sign restrictions. And in contrast to Rubio-Ramı́rez, Waggoner

& Zha (2005) and Bognanni (2018), my procedure transparently incorporates priors and sign

restrictions without using draws from the uniform Haar distribution to rotate the reduced-form

VAR, a practice known to impose implicit priors on the dynamic causal effects.2 Moreover,

borrowing insights from Frühwirth-Schnatter (2001), my method explicitly deals with the label-

switching problem in Bayesian estimation of mixture models. This well-known statistical problem

results in slow convergence of the MCMC sampler and biased inference but has been ignored in

the previous econometric literature (Stephens (2000), Celeux, Hurn & Robert (2000)).

Furthermore, my algorithm can improve inference about the hidden states by incorporating

qualitative information constructed from external sources, such as recession indicators from the

National Bureau of Economic Research (NBER) or monetary policy stance indicators from

2See Baumeister & Hamilton (2015) and Baumeister & Hamilton (2018) for detailed discussions.
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Boschen & Mills (1995). Empirical work often uses external information dogmatically by

assuming that the qualitative indicators are perfectly accurate.3 My Bayesian approach generalizes

this practice by allowing researchers to express their uncertainty about the quality of those

indicators. This technique is introduced by Jefferson (1998) and recently used in Lyu & Noh

(2018). The difference between those studies and mine is that they implement it in the frequentist

framework whereas mine is Bayesian. Besides allowing researchers to incorporate their priors

about the quality of the indicators, my framework can formally test the usefulness of those

indicators by Bayesian model comparison.

To demonstrate my method, I revisit the literature on asymmetric effects of conventional

monetary policy during recessions and expansions.4 This question has received renewed interest

among economists and policy makers in the aftermath of the Global Financial Crisis (Mishkin

(2009)).5 Despite the vast literature, no consensus has emerged. Theoretical models that result in

a convex aggregate supply curve (Ball & Mankiw (1994)), credit market imperfection (Bernanke,

Gertler & Gilchrist (1999)), or loss aversion (Santoro, Petrella, Pfajfar & Gaffeo (2014)) imply

that monetary policy has stronger effects in recessions, whereas recent theories that incorporate

firm level idiosyncratic volatility (Vavra (2013)) suggest the opposite. Empirical evidence from

Kaufmann (2002), Garcia & Schaller (2002), Lo & Piger (2005), and Peersman & Smets (2002)

and Peersman & Smets (2005) suggests that monetary policy has stronger effects in recessions,

whereas Thoma (1994) and Tenreyro & Thwaites (2016) conclude it does not.

I analyze the asymmetric effects of monetary policy by estimating a 2-state Markov-

switching SVAR model of the output gap, inflation, and Fed fund rate over the period from

1950 to 2007. My method has two main improvements over previous work. First, I use the sign

3For example, Owyang, Ramey & Zubairy (2013) and Ramey & Zubairy (2018) determine recessions as periods
when the unemployment rate is higher than 6.5%.

4In this paper, I don’t consider the asymmetric effects with respect to the size or sign of monetary policy shocks,
such as those in Cover (1992), Karras (1996), Barnichon, Matthes & Ziegenbein (2016), and Angrist, Jordà &
Kuersteiner (2018)

5There is a related literature on asymmetric effects of fiscal policy during recessions and expansions, including
Auerbach & Gorodnichenko (2012a), Auerbach & Gorodnichenko (2012b), and Auerbach & Gorodnichenko (2013),
Owyang, Ramey & Zubairy (2013), Ramey & Zubairy (2018), and Lyu & Noh (2018).

4



restrictions developed by Baumeister & Hamilton (2018) to identify structural shocks whereas

earlier work typically uses changes in endogenous variables, innovations from a reduced-form

model, or shocks identified by exclusion restrictions. Thus, my identification strategy is more

robust and consistent with a wider range of structural models. Second, my model allows for a

more general form of regime changes, and it distinguishes regime changes in structural parameters

from those in the variances of structural shocks. This distinction is especially important because

failure to incorporate heteroskedasticity will exaggerate changes in coefficients (Stock (2001)

and Sims & Zha (2006)). Indeed, most previous work only allows the coefficients of interest to

change while ignoring potential heteroskedasticity in the innovations. As a result, their analyses

incorrectly favor asymmetry.

The empirical analysis reveals that the regime-switching model is a better description of

the data than its linear counterpart. However, the major difference lies in the variances of the

structural shocks during recessions and expansions. My results show that structural shocks have

larger variances in recessions, implying that neglecting these changes will falsely magnify the

effects of monetary policy during these periods. Indeed, I find symmetric effects of monetary

policy across both regimes. In particular, monetary tightening reduces the output gap and inflation

by similar magnitudes in both recessions and expansions. My results remain robust even when I

augment the baseline model with the NBER recession indicator and use asymmetric priors for

structural parameters.

The rest of this paper is organized as follows. Section 1.2 formally describes the framework

and the MCMC algorithm. Section 1.3 applies this method to investigate the effects of monetary

policy during recessions and expansions. Section 1.4 briefly concludes. Additional technical

details are shown in the appendices.
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1.2 Bayesian estimation of regime-switching structural vector

autoregression with sign restrictions

This section describes the regime-switching SVAR model with sign restrictions together

with the estimation procedure. My MCMC algorithm incorporates insights from the Gibbs

sampler for Markov-switching SVAR of Hamilton (2016) and Kim & Nelson (1999), the MCMC

algorithm for sign-restricted SVAR of Baumeister & Hamilton (2015), and the permutation

sampler of Frühwirth-Schnatter (2006).

1.2.1 General formulation

Suppose that the dynamics of the data can be summarized by an S-state p-th order

Markov-switching SVAR

ASt yt = kSt +B1,St yt−1 +B2,St yt−2 + · · ·+Bp,St yt−p +ut

ut |St ∼ N (0,DSt )

P(S1 = s) = µs

P
(
St = s′|St−1 = s

)
= ps′,s

where St ∈ {1,2, . . . ,S} is the indicator for the regime, yt is an (n×1) vector of observed variables,

and ut is a (n×1) vector of structural shocks at time t. Structural shocks should be mutually

uncorrelated, thus DSt is assumed to be an (n×n) diagonal matrix. When St = s, As is an (n×n)

matrix that governs contemporaneous relationship between observed variables in state s, ks and

B j,s ( j = 1, . . . , p) are the (n×1) vector of constants and (n×n) matrices of lag coefficients in

state s, and Ds is an (n×n) matrix that represents the variance of the structural shocks in state s.

For simplicity, the model is rewritten in a more compact form as
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ASt yt = BSt xt−1 +ut (1.1)

where BSt ≡
[

B1,St . . . Bp,St kSt

]
is [n× (np+1)] matrix, and xt−1 =

[
y′t−1 . . . y′t−p 1

]′
is [(np+1)×1] vector.

We may also have K independent indicators for the hidden regimes,
{

z(1),z(2), . . . ,z(K)
}

.

The quality of information in the kth indicator is summarized in the following S×S matrix

G(k) =


P
(

Z(k)
t = 1|St = 1

)
. . . P

(
Z(k)

t = 1|St = S
)

... . . . ...

P
(

Z(k)
t = S|St = 1

)
. . . P

(
Z(k)

t = S|St = S
)
 (1.2)

where the sth column of G(k) summarizes the quality of information in z(k) about regime s, thus

each column sums to unity. We can express our confidence about the quality of information in

z(k) as priors on elements of G(k). There are two important special cases: (1) Perfect indicator:

g(k)s,s = 1 for all s = 1, . . . ,S, and (2) Uninformative indicator: G(k)
.,s = G(k)

.,s′ for all s,s′ = 1, . . . ,S.

1.2.2 Discussion of econometric challenges

In SVAR analysis, dynamic causal effects are represented by structural impulse-response

functions (SIRFs), which are functions of the model parameters. Hence, to draw causal inference

from a regime-switching SVAR model, we must answer three questions: (1) What identifying

assumptions do we need in order to identify the parameters and the SIRFs in a given regime?,

(2) What identifying assumptions do we need in order to distinguish parameters of one regime

from those of another?, and (3) Given these identifying assumptions, how do we estimate the

model parameters and the hidden regimes? The first two questions require economic knowledge

to answer, whereas the last question is purely a statistical problem.

First, how do we identify model parameters in a given regime? The challenge is that
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even without regime changes, the model is still under-identified because the number of unknown

parameters is usually greater than the number of moment conditions. This is the identification

problem in the SVAR literature. The conventional approach is to put quantitative restrictions

on the unknown parameters to achieve point-identification, however, those restrictions might

be controversial. My main innovation here is to replace those quantitative restrictions with

qualitative ones. My framework can not only impose conventional identifying assumptions such

as short-run and long-run restrictions, but it can also impose sign restrictions on both the elements

of A and A−1. For example, sign restrictions on the systematic component of monetary policy

in Baumeister & Hamilton (2018) and Arias, Caldara & Rubio-Ramı́rez (2019) are restrictions

on A, whereas sign restrictions on the contemporaneous impacts of monetary policy shock in

Baumeister & Hamilton (2018) are restrictions on A−1.

Although those restrictions are more likely to be agreed by most economists, we no longer

have point-identification but only set-identification, meaning there will be many models consistent

with both the observed data and the sign restrictions. Estimation and inference in set-identified

model is challenging from the frequentist perspective, and hence this paper opts for the Bayesian

approach.6 The advantage is that we can still use Bayes’ rule to derive the posterior distributions

as long as we specify the priors over all unknown parameters. However, there is no Bayesian

free-lunch. The caveats are that some quantities of the posterior distribution will never be updated

and Bayesian credible set typically no longer satisfy frequentist coverage even with an infinite

amount of data. The first insight dates back to Lindley (1957) and Poirier (1998), while the

latter one is illustrated in Moon & Schorfheide (2012). To overcome this setback, I propose to

openly acknowledge that our posteriors will always be influenced by our priors as advocated

by Baumeister & Hamilton (2015) and recommend using informative priors that are carefully

constructed from theories and the previous empirical literature.

Second, how do we distinguish the parameters of one regime from those of another? The

6For discussions of frequentist inference in sign-restricted SVAR, readers are referred to Gafarov, Meier & Olea
(2018), Gafarov, Meier & Olea (2016), and Granziera, Moon & Schorfheide (2018).
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issue here is that the likelihood function is symmetric with respect to permutation of the parameters

between the states. If one researcher comes up with some particular estimates, another researcher

can swap these estimates across states and come up with another answer that is equally consistent

with the observed data. This is the normalization problem in econometrics as investigated

in Hamilton, Waggoner & Zha (2007). Their insight is that the choice of normalization will

have nontrivial influence in both frequentist and Bayesian inferences. A good normalization

rule should restrict the parameter space into a subset where the likelihood function/posterior

distribution is well-behaved (e.g. unimodal). However, a good rule is hard to find, especially

when the parameter space is large. I propose to resolve this normalization issue by selecting a rule

based on our economic knowledge. For example, if we believe the hidden states to correspond

to economic recessions and expansions, we can distinguish regimes by the variances of their

structural shocks. Another complementary solution is to use exploratory analysis of posterior

draws as in Frühwirth-Schnatter (2006).

Finally, given those identifying assumptions, how do we estimate the model? The Bayesian

objective in estimation is to sample from the posterior distributions, which reflect our beliefs about

the model parameters after observing the data. Here the challenge is that we only observe the

endogenous variables, but we do not see the hidden regime ST . Because the posterior distributions

cannot be characterized analytically, direct sampling cannot be used. To resolve this problem, I

use MCMC methods. The general idea is to replace direct sampling from an intractable posterior

distribution with iterative sampling from a sequence of ergodic Markov chain whose stationary

distribution is the true posterior distribution.

How do we construct such a sequence? The key insights here are conditioning and

data augmentation. Conditioning on the hidden states, the transition probabilities are point-

identified and the model is linear. This observation suggests that the hidden states should be

treated as unknown parameters and sampled jointly with all the others; this is the essence of

data augmentation introduced by Tanner & Wong (1987). The MCMC algorithm that takes full
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advantage of the above insights is the Gibbs sampler, pioneered by Geman & Geman (1987) and

popularized by Gelfand & Smith (1990). Its main insight is that iterative draws from conditional

posterior distributions will indeed form an ergodic Markov chain whose stationary distribution is

the true unconditional posterior distribution.

Another subtle complication with Bayesian estimation of Markov-switching model is the

label-switching problem: since the posterior distributions are necessarily multimodal, the sampler

might jump between different modes in an unbalanced fashion, resulting in extremely slow

convergence. To deal with this problem, I use the permutation sampler of Frühwirth-Schnatter

(2006). The main idea is to first sample from the unconstrained posterior by random permutations

at the end of each Gibbs iteration, thus replacing unbalanced label switching with a balanced one.

Then, a suitable normalization rule will be applied to the posterior draws to identify the subspace

of interest.7

1.2.3 MCMC algorithm for model estimation

Denote the data for both the endogenous variables and the regime indicators as WT =(
YT ,Z

(1)
T , . . . ,Z(K)

T

)
where YT = {yt}T

t=1 and Z(k)
T =

{
z(k)t

}T

t=1
. Let ST = {St}T

t=1 be the vector

of the hidden states, G be the vector that collects all parameters of the regime indicators, µµµ be the

vector of initial probabilities, P =
{

ps,s′
}

be the matrix of transition probabilities, and ΦΦΦ be the

vector of structural parameters across all states.8 My MCMC algorithm is formally stated below.

MCMC Algorithm.We start the algorithm with random initial values. Suppose we

are at the mth iteration with parameters
(

G(m),ρρρ(m),P(m),ΦΦΦ(m),(ST )
(m)
)

and we want to draw(
G(m+1),ρρρ(m+1),P(m+1),ΦΦΦ(m+1),(ST )

(m+1)
)

. We do so using the following steps

7Geweke (2007), Celeux, Hurn & Robert (2000), and Jasra, Holmes & Stephens (2005) provide different
perspective and methods to deal with the label-switching problems.

8G =
[
vec

(
G(1)

)′
vec

(
G(2)

)′
. . . vec

(
G(k)

)′]′
.

P is the S×S matrix whose row s′ column s element is ps′,s = P(St+1 = s′|St = s), thus each column sums to
unity.

ΦΦΦ =
[
vec(A1)

′ vec(B1)
′ vec(diag(D1))

′ . . . vec(AS)
′ vec(BS)

′ vec(diag(DS))
′]′
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1. Step 1: Draw the parameters for the quality of regime indicators, G(m+1), from their

conditional posterior distribution

G|µµµ(m),P(m),ΦΦΦ(m),(ST )
(m),WT .

This step will be skipped if we don’t use any regime indicator.

2. Step 2: Draw the initial probabilities, µµµ(m+1), from their conditional posterior distribution

µµµ|G(m+1),P(m),ΦΦΦ(m),(ST )
(m),WT

Draw the transition probabilities, P(m+1), from their conditional posterior distribution

P|G(m+1),µµµ(m+1),ΦΦΦ(m),(ST )
(m),WT

3. Step 3: Draw the structural parameters, ΦΦΦ
(m+1), from their conditional posterior distribution

ΦΦΦ|G(m+1),µµµ(m+1),P(m+1),(ST )
(m),WT

4. Step 4: Draw the hidden states,(ST )
(m+1) , from their conditional posterior distribution

ST |G(m+1),µµµ(m+1),P(m+1),ΦΦΦ(m+1),WT

5. Step 5: Randomly permute all parameters and hidden states using the permutation sampler.

The above cycle is repeated a large number of times to ensure convergence, then half the simulated

draws are discarded to remove the effect of the initial conditions. The remaining half will be

thought of as draws from the true posterior distribution and used for subsequent analysis.

To further simplify each step of the algorithm, I assume (a) independent priors across G,

µµµ, P, and ΦΦΦ; and (b) the regime indicators are conditionally independent from the endogenous

variables. With those two assumptions, the joint density of the data, parameters, and regimes can
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be decomposed as

P(WT ,G,µµµ,P,ΦΦΦ,ST ) = [P(YT ,ZT |G,µµµ,P,ΦΦΦ,ST )] [P(G)P(µµµ,P)P(ST |µµµ,P)P(ΦΦΦ)] (1.3)

=
[
Π

K
k=1P

(
Z(k)

T |G
(k),ST

)
P
(

G(k)
)]

︸ ︷︷ ︸
Indicator parameters

[P(µµµ,P)P(ST |µµµ,P)]︸ ︷︷ ︸
Markov chain parameters

[P(YT |ΦΦΦ,ST )P(ΦΦΦ)]︸ ︷︷ ︸
Structural parameters

(1.4)

Equation (1.3) follows from assumption (a), and equation (1.4) follows from assumption (b).

Each block in equation (1.4) corresponds to a particular step of the MCMC algorithm. I describe

each of the steps in detail in the following subsections.

Step 1: Sampling the regime indicators’ parameters

Since I assume that the priors and likelihoods are independent across indicators, I can

draw from their posterior distributions separately. In particular, let us consider the posterior of the

parameters of the kth indicator. Since each column of the matrix G(k) is a vector of non-negative

numbers that sum to unity, I will use the Dirichlet distribution, which turns out to be the natural

conjugate. Let
(

g(k)1,s , . . . ,g
(k)
S,s

)
be column s of G(k). For s = 1, . . . ,S, my prior for column s is

(
g(k)1,s , . . . ,g

(k)
S,s

)
∼ D

(
α
(k)
1,s , . . . ,α

(k)
S,s

)

Assuming independent priors across columns, it follows that

P
(

G(k)
)

∝

S

∏
s=1

S

∏
s′=1

(
g(k)s′,s

)α
(k)
s′,s−1

Let η
(k)
s′,t = 1 if Z(k)

t = s′, δs,t = 1 if St = s, and let H(k)
s′,s = ∑

T
t=1 η

(k)
s′,tδs,t , so H(k)

s′,s counts the number

of times that the regime is s and the indicator is s′ in the sequence ST . From equation (1.4), the
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component of the conditional likelihood that depends on G(k) is

P
(

Z(k)
T |G

(k),ST

)
∝

S

∏
s=1

S

∏
s′=1

(
g(k)s′,s

)H(k)
s′,s

By Bayes’ rule, the corresponding posterior distribution is

P
(

G(k)|Z(k)
T ,ST

)
∝

S

∏
s=1

S

∏
s′=1

(
g(k)s′,s

)α
(k)
s′,s+H(k)

s′,s−1

Thus, for each column s of G(k), the posterior distribution is

(
g(k)1,s , . . . ,g

(k)
S,s |Z

(k)
T ,ST

)
∼ D

(
α
(k)
1,s +H(k)

1,s , . . . ,α
(k)
S,s +H(k)

S,s

)
(1.5)

In the special case of uninformative indicator, G(k)
.,s =G(k)

.,s′ for all s,s′= 1, . . .S, the above posterior

distribution becomes

(
g(k)1 , . . . ,g(k)S |Z

(k)
T ,ST

)
∼ D

(
α
(k)
1 +

S

∑
s=1

H(k)
1,s , . . . ,α

(k)
S +

S

∑
s=1

H(k)
S,s

)
(1.6)

Step 2: Sampling the initial and transition probabilities

Because the initial probabilities and each column of the transition matrix is a vector

of non-negative numbers that sum to unity, I will use the Dirichlet distribution as in Step 1.

Let (p1,s, . . . , pS,s) be column s of P. For s = 1, . . . ,S, my priors for the initial and transition

probabilities are

(µ1, . . . ,µS)∼ D(β1,β2, . . . ,βS)

(p1,s, . . . , pS,s)∼ D(β1,s,β2,s, . . . ,βS,s)
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Assuming independent priors across columns of the transition probability matrix, it follows that

P(µµµ,P) ∝

(
S

∏
s=1

µβs−1
s

)(
S

∏
s=1

S

∏
s′=1

p
βs′,s−1
s′,s

)

From equation (1.4), the component of the conditional likelihood that depends on µµµ and P is

P(ST |µµµ,P) ∝

(
S

∏
s=1

µδs,1
s

)(
S

∏
s=1

S

∏
s′=1

p
Ts′,s
s′,s

)

where Ts′,s = ∑
T
t=2 δs,t−1δs′,t , δs,t = 1 if St = s and 0 otherwise. In other words, Ts′,s is the

total number of transition from regime s to regime s′ in the sequence ST . By Bayes’ rule, the

corresponding posterior distribution is

P(µµµ,P|ST ) ∝

(
S

∏
s=1

µβs+δs,1−1
s

)(
S

∏
s=1

S

∏
s′=1

p
βs′,s+Ts′,s−1
s′,s

)

Thus, the posterior distributions for the initial probabilities, µµµ, and for each column s of the

transition matrix, P, are

(µ1, . . . ,µS|ST )∼ D(β1 +δ1,1,β2 +δ2,1, . . . ,βS +δS,1) (1.7)

(p1,s, . . . , pS,s|ST )∼ D(β1,s +T1,s,β2,s +T2,s, . . . ,βS,s +TS,s) (1.8)

Step 3: Sampling the structural parameters

To estimate structural parameters, I use independent priors across states. The priors are

P(ΦΦΦ) =
S

∏
s=1

P(As,Bs,Ds) (1.9)
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From equation (1.4), the component of the conditional likelihood that depends on ΦΦΦ is

P(YT |ΦΦΦ,ST ) =
T

∏
t=1

1

(2π)
n
2

S

∑
s=1

δs,t
|ASt |

|DSt |
1
2

exp
{
−1

2
(ASt yt−BSt xt−1)

′D−1
St

(ASt yt−BSt xt−1)

}
(1.10)

Let ∆(s) = {t ∈ 1, . . . ,T : δst = 1} denote the set of dates for which the regime is s, and let

Y∆(s) = {yt ,xt−1 : t ∈ ∆(s)} denote the observations of the endogenous variables in regime s. It

follows that the conditional posterior distribution is

P(ΦΦΦ|YT ,ST ) ∝

S

∏
s=1

P
(
As,Bs,Ds|Y∆(s)

)
(1.11)

where

P
(
As,Bs,Ds|Y∆(s)

)
∝P(As,Bs,Ds)

× ∏
t∈∆(s)

|As|

|Ds|
1
2

exp
[
−1

2
(Asyt−Bsxt−1)

′D−1
s (Asyt−Bsxt−1)

] (1.12)

Therefore, under the prior specifications and conditioning on the states and the transition proba-

bilities, the estimation problem reduces to estimating S different sign-restricted SVAR models.

Thus, we can decompose our observations into S separate groups according to their respective

states and apply the algorithm of Baumeister & Hamilton (2015) to each group. The following

provides a brief summary of their algorithm.

Fixing a specific state s, the objective is to simulate from P
(
As,Bs,Ds|Y∆(s)

)
, the posterior

distributions of (As,Bs,Ds). For estimation purpose, I decompose the joint prior on (As,Bs,Ds)

as

P(As,Bs,Ds) = P(As)P(Ds|As)P(Bs|As,Ds) (1.13)

To facilitate computation of the posteriors, I allow arbitrary priors on parameters of As and use
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natural conjugates for the two conditional priors P(Ds|As) and P(Bs|As,Ds). Specifically, I use

independent inverse-Gamma priors for the variances of the structural shocks

p
(

d−1
ii,s |As

)
∼ Γ(κi,s,τi,s) (1.14)

P(Ds|As) =
n

∏
i=1

p
(

d−1
ii,s |As

)
(1.15)

where Γ(κi,s,τi,s) denotes the Gamma distribution with shape parameter κi,s and rate parameter

τi,s. For the lag parameters, I use multivariate normal priors and let them be independent across

equations

P(bi,s|As,Ds)∼ N (mi,s,dii,sMi,s) (1.16)

P(Bs|As,Ds) =
n

∏
i=1

P(bi,s|As,Ds) (1.17)

where N (mi,s,dii,sMi,s) denotes the multivariate normal distribution with mean mi,s and covari-

ance matrix dii,sMi,s. The joint prior is

P(As,Bs,Ds) = P(As)
n

∏
i=1

p
(

d−1
ii,s |As

) n

∏
i=1

P(bi,s|As,Ds) (1.18)

The component of the conditional likelihood that depends on As,Bs,Ds is

P
(
Y∆(s)|As,Bs,Ds

)
∝ ∏

t∈∆(s)

|As|

|Ds|
1
2

exp
{
−1

2
(Asyt−Bsxt−1)

′D−1
s (Asyt−Bsxt−1)

}
(1.19)

Given the priors and the likelihood, the posteriors are computed by Bayes’ rule and summarized

in the following proposition.

Proposition. Let the priors be given as in (1.13)-(1.18) and the likelihood function be

given as in (1.19). Moreover, let a′i,s denote the i-th row of As, Li,s denote the Cholesky factor of
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M−1
i,s = Li,sL′i,s, and T∆(s) be the total number of elements in the set ∆(s). Then, the posteriors are

P
(
As,Bs,Ds|Y∆(s)

)
= P

(
As|Y∆(s)

) n

∏
i=1

p
(

d−1
ii,s |As,Y∆(s)

) n

∏
i=1

P
(
bi,s|As,Ds,Y∆(s)

)
(1.20)

with

P
(
As|Y∆(s)

)
∝ P(As) |det(As)|T∆(s)

n

∏
i=1


∣∣∣M∗i,s∣∣∣ 1

2

|Mi,s|
1
2

τ
κi,s
i,s

Γ(κi,s)

Γ

(
κ∗i,s

)
(

τ∗i,s

)κ∗i,s

 (1.21)

p
(

d−1
ii,s |As,Y∆(s)

)
∼ Γ

(
κ
∗
i,s,τ

∗
i,s
)

(1.22)

P
(
bi,s|As,Ds,Y∆(s)

)
∼ N

(
m∗i,s,dii,sM∗i,s

)
(1.23)

κ
∗
i,s = κi,s +

T∆(s)

2
(1.24)

τ
∗
i,s = τi,s +

ζ∗i,s
2

(1.25)

ζ
∗
i,s =

(
Ỹ′i,sỸi,s

)
−
(
Ỹ′i,sX̃i,s

)(
X̃′i,sX̃i,s

)−1 (X̃′i,sỸi,s
)

(1.26)

m∗i,s =
(
X̃′i,sX̃i,s

)−1 (X̃′i,sỸi,s
)

(1.27)

M∗i,s =
(
X̃′i,sX̃i,s

)−1 (1.28)

Ỹi,s =

[
y′1aiδs,1 . . . y′T aiδs,T m′i,sLi,s

]′
(1.29)

X̃i,s =

[
x′0δs,1 . . . x′T−1δs,T Li,s

]′
(1.30)

A random-walk Metropolis-Hasting algorithm is used to draw from P
(
As|Y∆(s)

)
. Let αααs

collect all unknown elements of As, the target function is

q(αααs) = ln(αααs)+T∆(s) ln |det(As)|+
n

∑
i=1

{
1
2

ln
∣∣M∗i,s∣∣+κi,s ln(τi,s)+ ln

[
Γ
(
κ
∗
i,s
)]}

−
n

∑
i=1

{
1
2

ln |Mi,s|+ ln [Γ(κi,s)]+κ
∗
i,s ln

(
τ
∗
i,s
)} (1.31)

where κ∗i,s, τ∗i,s, and M∗i,s, are given in (1.24), (1.25), and (1.28) respectively. The algorithm will
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be more efficient with a good approximation to the posterior distribution. Since the hidden states

are unknown ex ante, the initial guess, α̂αα, is formed by maximizing equation (1.31) over the entire

sample. Then, the negative of the Hessian matrix, Λ̂ΛΛ, is calculated, and its Cholesky factor, P̂PPΛΛΛ, is

used to approximate the scale of the posterior distribution. Next, let αααold
s be the draw of αααs from

the previous iteration, to draw αααnew
s , first generate a candidate draw from α̃ααs = αααold

s +ω

(
P̂PP
−1
ΛΛΛ

)′
vvv,

where ω is a tuning parameter and vvv is a symmetric proposal distribution, such as the Student

t distribution. If q(α̃ααs)> q
(
αααold

s
)
, set αααnew

s = α̃ααs. Otherwise, set αααnew
s = αααold

s with probability

1− exp
[
q(α̃ααs)−q

(
αααold

s
)]

.

This step differs from that of Baumeister & Hamilton (2015) in two main ways. First,

because the Metropolis-Hasting algorithm is embedded within the Gibbs sampler, only a single

draw of As is needed in each Gibbs iteration.9 Second, the target for P
(
As|Y∆(s)

)
, equation

(1.21), does not involve an estimate of the reduced-form covariance matrix of each state.10 This

target is more operational because the algorithm might be trapped in one specific state in early

iterations, and hence the reduced-form covariance matrices of other states cannot be calculated,

forcing the algorithm to stop prematurely.

Lastly, conditioning on the new draw for As, Ds and Bs are sampled from their respective

natural conjugates. Specifically, equation (1.22) is used to draw d−1
ii,s from p

(
d−1

ii,s |As,Y∆(s)

)
for

i = 1, . . . ,n, and then, equation (1.23) is used to draw bi,s, the ith row of Bs, from

P
(
bi,s|As,Ds,Y∆(s)

)
for i = 1, . . . ,n.

Step 4: Sampling the hidden states

Conditioning on the transition probabilities and the structural parameters, the sequence

ST is sampled by the multi-move Gibbs sampler as described in Chib (1996), Kim & Nelson

(1999). Let θθθ denote all unknown parameters, that is θθθ =
(
vec(G)′ ,µµµ′,vec(P)′ ,vec(ΦΦΦ)′

)′, the

9Carlin & Louis (2010) notes that convergence of the Gibbs sampler is achieved for any number of Metropolis-
Hasting sub-iterations, hence one sub-iteration is often adopted in practice.

10This target comes from equation (60) in Baumeister & Hamilton (2014).
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sampler uses the following equations

P
(

ST |θθθ(m+1),WT

)
= P

(
ST |θθθ(m+1),WT

)T−1

∏
t=1

P
(

St |St+1,θθθ
(m+1),Wt

)
(1.32)

P
(

St |St+1,θθθ
(m+1),Wt

)
∝ P(St+1|St)P

(
St |θθθ(m+1),Wt

)
(1.33)

Equation (1.32) decomposes the joint conditional posterior distribution of ST into a form that

is applicable to the forward-backward algorithm. The strategy is to first run the Hamilton

filter, as described in Appendix A.1, to estimate the filtered probabilities of the hidden states,

P
(

St |θθθ(m+1),Wt

)
. Then, we iterate backward from the last value of this sequence, which is

P
(

ST |θθθ(m+1),WT

)
.

Specifically, to generate one realization for S(m+1)
T , we first draw a random number, u,

from the uniform distribution, U(0,1). If u < P
(

ST = 1|θθθ(m+1),WT

)
, we will set S(m+1)

T = 1.

If P
(

ST = 1|θθθ(m+1),WT

)
< u < P

(
ST = 1|θθθ(m+1),WT

)
+P

(
ST = 2|θθθ(m+1),WT

)
, we will set

S(m+1)
T = 2, and so on. After having the value of S(m+1)

T , we use equation (1.33) to simulate

S(m+1)
T−1 . First, we calculate

P
(

ST−1|ST = S(m+1)
T ,θθθ(m+1),WT

)
=

P
(

ST = S(m+1)
T |ST−1

)
P
(

ST−1|θθθ(m+1),WT−1

)
∑

N
j=1 P(ST |ST−1 = j)P

(
ST−1 = j|θθθ(m+1),WT−1

)
(1.34)

Then, as before, we use a random number generated from a uniform distribution to generate

S(m+1)
T−1 . Continuing this process, we will get a realization for the hidden states, S(m+1)

T , which

come from their conditional posterior distribution ST |θθθ(m+1),WT .

Step 5: Permutation sampler

Finally, to deal with the label-switching problem, I use the permutation sampler as de-

scribed in Frühwirth-Schnatter (2006). To implement the sampler, after having a new draw, we

simply switch their current labeling based on a random permutation among all S! possible permu-
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tations of the labeling. Denote a realization of the random permutation as {ρ(1) ,ρ(2) , . . . ,ρ(S)},

we will

1. Apply the permutation to the regime indicator parameters,
(

G(k)
)(m+1)

, by substituting

G(k)
.,s with G(k)

.,ρ(s) for s = 1,2, . . . ,S, and k = 1,2, . . . ,K.

2. Apply the permutation to the initial probabilities, µµµ(m+1), by substituting µ(m+1)
s with µ(m+1)

ρ(s)

for s = 1,2, . . . ,S.

Apply the permutation to the transition matrix, P(m+1), by substituting p(m+1)
s,s′ with p(m+1)

ρ(s),ρ(s′)

for s,s′ = 1,2, . . . ,S.

3. Apply the permutation to the structural parameters, ΦΦΦ
(m+1), by substituting Φ

(m+1)
s with

Φ
(m+1)
ρ(s) for s = 1,2, . . . ,S.

4. Apply the permutation to the hidden states, S(m+1)
T by substituting S(m+1)

t with ρ

(
S(m+1)

t

)
for t = 1,2, . . . ,T .

1.2.4 Structural Impulse-Response Functions

Given parameters (As,Bs,Ds), we can calculate the SIRFs associated with regime s. To

that end, define

Fs =



A−1
s B1,s A−1

s B2,s . . . A−1
s Bp−1,s A−1

s Bp,s

In 0 . . . 0 0

0 In . . . 0 0
...

... . . .
...

...

0 0 . . . In 0


Let Ft denote the information set at time t, the dynamic causal effects of structural shocks in
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regime s at horizon h is given by

Hh,s ≡
∂E
(

yt+h

∣∣∣St = s,St+1 = s, . . . ,St+h = s,Ft

)
∂u′t

= ΨΨΨh,sA−1
s (1.35)

where ΨΨΨh,s is found from the first n rows and columns of Fh
s .

Some papers, such as Ramey & Zubairy (2018) and Lyu & Noh (2018), look at the SIRFs

conditional only on starting in regime s

H∗h,s ≡
∂E
(

yt+h

∣∣∣St = s
)

∂u′t

This object is the weighted average of (1.35) across different sequences of states. In the special

case of two hidden states, Hh,s, evaluated at each state s, are the lower and upper bounds for H∗h,s.

Therefore, the similarity of Hh,s across regimes will be persuasive evidence against asymmetry.

1.2.5 Bayesian model comparison

Using Bayesian model comparison, we can answer two important questions: (1) Is there a

regime change in the data? and (2) Is the qualitative information for the hidden states useful? The

first question is challenging for frequentists since models with different regimes are not necessarily

nested.11 However, Bayesians can still solve the problem by comparing models with different

regimes. Indeed, Koop & Potter (1999) points out several advantages of Bayesian methods over

their frequentist counterparts in nonstandard inference. Similarly, the second question can be

answered by a Bayesian model comparison between a model with the qualitative information and

another one where the qualitative information is restricted to be uninformative.

Generally, a Bayesian model comparison between model 1 and 2 is done by calculating

the posterior odds ratio, showing which model is more likely now that we have seen the data.

11See Hamilton (2016) for a review of frequentist methods in determining the number of regimes.
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This can be written as the product of Bayes factor and the prior odds ratio.

P(M2|WT )

P(M1|WT )
=

P(WT |M2)

P(WT |M1)

P(M2)

P(M1)
(1.36)

Suppose before seeing the data, we assume model 1 is as likely as model 2, then our prior odds

ratio (i.e. P(M2)/P(M1)) will be one and equation (1.36) simplifies to

P(M2|WT )

P(M1|WT )
=

P(WT |M2)

P(WT |M1)
(1.37)

The quantity on the right-hand side of equation (1.37) is the so-called Bayes factor, which

is the ratio of two marginal likelihoods. The Bayes factor between model 2 and model 1 is

denoted as

B21 =
P(WT |M2)

P(WT |M1)

The Bayes factor is the ratio of two marginal likelihoods, which are high dimensional

integrals, and hence its computation is technically challenging. Let N0 be the size of the posterior

draws after discarding the burn-in sample. We estimate the marginal likelihood for each model

from the posterior draws as

P̂(WT |Ml) =

[
1

N0

N0

∑
n0=1

f (θθθn0)

P(WT |θθθn0)P(θθθn0)

]−1

for l = 1,2 (1.38)

where f (.) is chosen to closely approximates the posterior distribution while leaving out extreme

values from the simulation. Geweke (1999) proposes to use the truncated normal distribution while

Sims, Waggoner & Zha (2008) suggests a more sophisticated choice to deal with non-Gaussian

posterior. Details for both methods are given in Appendix A.2.
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1.3 Empirical application: Asymmetric effects of monetary

policy

Is conventional monetary policy more effective during recessions or expansions? To

illustrate my method, I revisit the literature on asymmetric effects of conventional monetary

policy over the business cycle by estimating a trivariate 2-state Markov-switching SVAR model

identified by sign restrictions. I allow all model parameters to depend on a hidden state governed

by an exogenous 2-state Markov chain while using the sign restrictions developed by Baumeister

& Hamilton (2018) to identify the regime-dependent dynamic causal effects. I first use symmetric

priors in both regimes, then I further check for robustness by augmenting the baseline model

with the NBER recession indicator and asymmetric priors about structural parameters. In the

following subsections, I describe the data, models, and priors in detail.

1.3.1 Data Description

The data in this study are publicly available and are downloaded from FRED. I provide

a detailed description of the data and their sources in Appendix A.3. I use five quarterly time

series: real GDP, real potential GDP, Personal Consumption Expenditures deflator (PCE deflator),

effective federal funds rate, and NBER based recession indicator. I calculate the output gap as the

log difference between real and potential GDP, and inflation rate as the Y/Y change of the PCE

deflator. The sample period is 1954Q3 to 2007Q4. Figure 1.1 plots the transformed time series

of macroeconomic variables. This figure shows that all macroeconomic variables and are less

volatile after the 1980s, which is consistent with Stock & Watson (2002)’s documentation of the

Great Moderation. Table 1.1 contains the summary statistics of my variables.
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Table 1.1: Summary statistics. This table shows the summary statistics of variables in the
empirical application. Descriptions of the data and their availability are explained in the text.
There are 214 quarterly observations for each variable in the period between 1954Q3 and
2007Q4. The units are all in percentage points.

Summary statistics
Variables Mean Standard Deviations Minimum Maximum
Output gap -0.5 2.2 -7.6 5.5
Inflation rates 3.5 2.3 0.6 10.9
Fed Fund rates 5.8 3.3 0.9 17.8

1.3.2 A regime-switching sign-restricted SVAR model of monetary policy

Here I introduce the trivariate model of output gap, inflation, and nominal Fed funds rate

in Baumeister & Hamilton (2018). My main innovation is to allow the structural parameters to be

different across regimes. Let yt be the output gap, πt be the inflation rate, rt be the nominal Fed

fund rate, the model consists of the following structural equations

1. The Phillips curve:

yt = ks
St
+α

s
St

πt +
[
bs

St

]′ xt−1 +us
t (1.39)

2. The aggregate demand equation:

yt = kd
St
+β

d
St

πt + γ
d
St

rt +
[
bd

St

]′
xt−1 +ud

t (1.40)

3. The monetary policy rule:

rt = km
St
+(1−ρSt )ψ

y
St

yt +(1−ρSt )ψ
π
St

πt +ρSt rt−1 +
[
bm

St

]′ xt−1 +um
t (1.41)
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4. The Markov transition probabilities:

P =

P(St = 1|St−1 = 1) P(St = 1|St−1 = 2)

P(St = 2|St−1 = 1) P(St = 2|St−1 = 2)

=

p11 p12

p21 p22

 (1.42)

Together, equations (1.39), (1.40), (1.41), and (1.42) constitute the baseline model.12 I impose

four sign restrictions on the structural parameters and two sign restrictions on the elements of A−1
s .

In particular, I assume the following sign restrictions hold for any state s ∈ {1,2}: (1) the Phillips

curve is downward sloping (αs
s > 0), (2) raising interest rate will not stimulate aggregate demand(

γd
s < 0

)
, (3) the Fed will raise the interest rate when inflation is higher than its target

(
ψ

y
s > 0

)
or

output gap is higher than its potential (ψπ
s > 0), and (4) the Fed wants to increase its interest rate

smoothly over time (0 < ρs < 1).

To incorporate priors on the elements of A−1
s , I first define h1,s = βd

s +γd
s (1−ρs)ψπ

s and

h2,s =
αs

sγ
d
s

αs
s−βd

s
. Then, I use the asymmetric t distributions to nudge those quantities to the region

of the parameter spaces where both of them are negative. Therefore, my expected signs for the

elements of A−1
s are

A−1
s =


+ + −

− + −

? + +


Priors for the transition probabilities

I use the Dirichlet(1,1) distribution for each column of the transition probabilities matrix

P. It is equivalent to a uniform distribution over (0,1) as prior for each element of that matrix. As

in the general formulation, I assume independent priors between columns. Intuitively, my priors

are that every number between 0 and 1 is equally plausible for the transition probabilities and

that the probability of moving to state 1 does not depend on the probability of moving to state 2.

12For simplicity, I set the initial probabilities to be 0.5 for each state.
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Formally, the priors are

P(P) = P(p11, p21)P(p12, p22)

(p11, p21)∼ D(1,1)

(p12, p22)∼ D(1,1)

For the structural parameters, I use independent and symmetric priors. In the following, I will

describe my priors for structural parameters in a state s ∈ {1,2}.

Priors for contemporaneous coefficients

Structural parameters in the general formulation are reflected in As, Bs, and Ds. My priors

for elements of As are

P(As) = cs p(αs
s) p
(

β
d
s

)
p
(

γ
d
s

)
p(ψy

s) p(ψπ
s ) p(ρs)(p(h1,s))

ζh1,s (p(h2,s))
ζh2,s

where cs is the integrating constant that needs to be accounted for when calculating the marginal

likelihood.13 The two parameters ξh1,s and ξh2,s reflect how strong the priors about elements of

A−1
s are relative to those of other parameters in As. In my application, I set both to be 1. I follow

Baumeister & Hamilton (2018) in setting prior values for elements of As, thus I do not repeat

their economic motivations in this paper.14 The following will describe my priors for Bs,Ds

conditional on As.

13I estimate cs by ĉs =

[
1

500,000
∑

500,000
m=1 p

(
h(m)

1,s

)ζh1,s p
(

h(m)
1,s

)ζh1,s
]−1

where
(

h(m)
1,s

)
and

(
h(m)

2,s

)
are calculated

with draws from the prior distributions.
14Belongia & Ireland (2019) presents another approach for setting priors of contemporaneous structural parameters

in SVAR models of monetary policy.
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Priors for covariance matrix

The priors for elements of the covariance matrix are set to be independent from each

other.

P(Ds|As) =
3

∏
i=1

p
(

d−1
ii,s |As

)
where each of the element dii,s follows an inverse-Gamma distribution

p
(

d−1
ii,s |As

)
=


τ

κi
i,s

Γ(κi,s)

(
d−1

ii,s

)ki,s−1
exp
(
−τi,sd−1

ii,s

)
for d−1

ii,s ≥ 0,

0 otherwise,

In this specification,
κi,s

τi,s
is the prior mean for d−1

ii,s , and
κi,s

τ2
i,s

is the prior variance.

Since the priors should reflect the scale of the data, I first fit three univariate AR(4) model

yt = β10 +∑
4
i=1 β1iyt−i + e1t

πt = β20 +∑
4
i=1 β2iπt−i + e2t

rt = β30 +∑
4
i=1 β3irt−i + e3t

Then, I use the fitted residuals from those regressions, êt =

[
ê1t ê2t ê3t

]′
, to estimate the

sample covariance matrix

Ŝ =
1
T

∑
T
t=1 êt ê′t

Note that the sample covariance matrix is estimated using the entire sample regardless of the state,

and hence it is fixed during every iteration of the Gibbs sampler.

Finally, I set κi,s = 2 for all i, which gives my prior a weight that equals to four observation

of the data in the posterior. Next, I set the prior mean for d−1
ii,s to be the reciprocal of the ith

diagonal element of AsŜA′s. In sum, the priors for elements of the covariance matrix will be

p
(

d−1
ii,s |As

)
∼ Γ

(
2,2a′i,sŜai,s

)
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Priors for lag coefficients

The SVAR model has four lags whose priors are set so that their counterparts for the

reduced-form coefficients are consistent with the Minnesota priors. Specifically, the priors for lag

coefficients are assumed to be independent across equations. That is

P(Bs|As,Ds) =
3

∏
i=1

P(bi,s|As,Ds)

where P(bi,s|As,Ds)∼ N (mi,s,dii,sMi). For the mean, I set mi,s (α) = η′ai,s where

η=

[
I3 03×10

]
.15 And for the covariance matrix Mi, let

√
sii be the estimated standard deviation

of the AR(4) that fits to variable i, we define

v′1 =
[

1
12λ1

1
22λ1

1
32λ1

1
42λ1

]
v′2 =

[
s−1

11 s−1
22 s−1

33

]

v3 = λ
2
0

v1v2

λ2
3


Then, Mi will be the diagonal matrix whose row r column r element is the rth element of v3:

Mi,rr = v3r. Intuitively, we are letting coefficients on higher lags to shrink to zero by setting

decreasing values for diagonal elements of Mi. The hyper-parameter λ0 captures our confidence

in the priors: a higher value implies a higher variance and less confidence. The hyper-parameter

λ1 governs how quickly the coefficients shrink to zero. And the hyper-parameter λ3 describes our

confidence in the prior for the constant: the higher the value, the less confidence we have. I set

λ0 = 0.2 , λ1 = 1 , and λ3 = 100.

Also, as seen in the monetary policy rule, I restrict the third element of that equation to be

15Note that if the reduced-form lag coefficients (Φ) follow the Minnesota prior (meaning E(ΦΦΦ) = η). Then,
E(B|A) = E(AΦ|A) = AE(Φ|A) = ηA. Thus, if the priors for the reduced-form lag coefficients are the Minnesota
prior, the priors for the lag coefficients in the structural model will be normal with mean mi (α) = η′ai.
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close to ρs. The restriction can be described as a prior on the third element of b3,s as follow

ρs = I(3)13 b3,s + v3 (1.43)

where v3 ∼ N (0,d33,sV3) and I(3)13 is the third row of I13. The variance parameter, V3, reflects the

strength of our priors because the smaller V3 is, the more likely that parameter is close to ρs. I

set V3 = 0.1. To estimate the model with the restriction (1.43), we apply the same algorithm as

described in Baumeister & Hamilton (2015) with some modifications for Ỹi,s and X̃i,s. In this

case, the new Ỹ3,s and X̃3,s are

Ỹ3,s =

[
y′1a3,sδs,1 . . . y′T a3,sδs,T m′3,sL3,s

ρs√
V3

]
X̃3,s =

[
x′0δs,1 . . . x′T−1δs,T L3,s

I(3)13√
V3

]

Table 1.2 summarizes the priors for each parameter together with its corresponding hyper-

parameters. Combining the above prior distributions with the Gaussian likelihood function, I

simulate the posterior distribution of this sign-restricted 2-state Markov-switching SVAR model

by my MCMC algorithm. I tune the Metropolis-Hasting acceptance rate close to 23.4% as

suggested in the MCMC literature (Roberts & Rosenthal (2001)).16 In all of the applications, I

simulate 1,000,000 draws and discard the first 500,000 draws. For convergence diagnostics, I

visually inspect the trace plots and autocorrelation functions of all parameters. As an additional

robustness check, I also apply the separated partial means test, as described in Geweke (1999)

and Geweke (2005), to the MCMC outputs. The overall results suggest that the algorithm does

have good mixing properties.17

16To tune the Metropolis-Hasting algorithm that generates As, I use the procedure in subsection 5.4.2 in Baumeister
& Hamilton (2015). Also, I randomly generate initial values for other parameters from their priors and initial values
for the hidden states from the Bernoulli distribution.

17I use the first 10% and the last 50% of the MCMC outputs for the separated partial means tests. Out of 100
parameters of the baseline model, the test rejects the null hypothesis of equal means for only one parameter in the lag
coefficient matrix. Diagnostic results for other MCMC outputs are qualitatively similar.
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Table 1.2: Prior distributions of the baseline model: Symmetric priors. This table shows
the prior distribution of As, Ds, Bs, and P together with their hyper-parameters. For Student t
and Asymmetric t distributions, the location parameter refers to the mode. For Beta, Gamma,
and Normal distributions, the location parameter is the mean and the scale parameter is the
standard deviation.

Parameter Meaning Location Scale Skew Sign restriction
Priors for contemporaneous coefficients of As and elements of A−1

s

Student t distribution with 3 degrees of freedom

αs
s Effect of π on supply 2 0.4 – αs

s ≥ 0
βd

s Effect of π on demand 0.75 0.4 – None
γd

s Effect of r on demand -1 0.4 – γd
s ≤ 0

ψ
y
s Fed response to y 0.5 0.4 – ψ

y
s ≥ 0

ψπ
s Fed response to π 1.5 0.4 – ψπ

s ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρs Interest rate smoothing 0.5 0.2 – 0≤ ρs ≤ 1

Asymmetric t distribution with 3 degrees of freedom

h1,s Part of det(As) -0.1 1 -4 None
h2,s Output response to monetary shock -0.3 0.5 -2 None

Priors for structural variances Ds|As

Gamma distribution

d−1
ii,s Reciprocal of variance 1/

(
a′i,sŜai,s

)
) 1/

(√
2a′i,sŜai,s

)
– dii,s > 0

Priors for lag coefficients Bs|As,Ds

Normal distribution

bi,s Lagged coefficients of equation i η′ai,s
√

dii,sMi – None
In addition,
b33,s Third element of monetary equation ρs

√
d33,s/10 – None

Priors for transition probabilities P

Beta distribution with α = 1 and β = 1

ps′,s Transition probability from s to s′ 0.5 0.3 – 0≤ ps′,s ≤ 1
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Discussion of estimation results of the baseline model

After having the MCMC draws, we need a normalization rule to distinguish regime 1

from regime 2 because the unnormalized posterior distribution is by construction bimodal. To

that end, Figure 1.1 plots the output gap, inflation, and interest rates with recession shading from

the NBER. A closer look reveals that recessions are associated with more volatile interest rates,

inflation, and the output gap, thus natural proposals for a normalization rule are to use either the

constants, the shock variances, or the transition probabilities.

Figure 1.1: Plots of the output gap, inflation, and fed funds rates. Output gap is the log
difference between real and potential GDP, multiplied by 100. Inflation rate is the log difference
between the Y/Y change of the PCE index, multiplied by 100. Fed fund rates is Effective Federal
Funds Rate. Shaded area indicates NBER recession periods. More detailed descriptions and
data sources are in Appendix A.3.

Figure 1.2 displays some exploratory analyses corresponding to three different normaliza-

tion rules. The first, second, and third row are exemplary scatter plots of certain model parameters

against the (log) variances of monetary shock (ln(d33)), the constant of the first structural equation

(ks), and the probability of staying in regime 2 (p22) respectively. Since recessions are associated
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with lower-than-average GDP growths, one might think that the constant ks would isolate the

two regimes. However, the second row of Figure 1.2 shows that it is not the case. In fact, only

the monetary policy shock variances can separate the two regimes, and thus I normalize regime

1 as the regime with the low variance and regime 2 as the one with the high variance. My

normalization rule is thus

d33,1 < d33,2

I label the first regime as the ”expansion” regime and the second one as the ”recession” regime.

This rule is also easy to apply: after having all the MCMC draws from the unnormalized posterior

distribution, we only need to swap parameters between the two states when the constraint is

violated.

How well does my model identify actual recessions? Figure 1.3 reports the smoothed

probabilities of the ”recession” regime, averaging over all results calculated from each draw of

the posterior distribution. Overall, the model captures many recessions, including the beginning

of the Great Recession. However, it overestimates the probability of recessions during some

periods in the 70s and 80s, while underestimates this probability in the last two recessions before

the Great Recession.

How long is a recession or an expansion expected to last? Figure 1.4 plots the prior and

posterior distributions for the transition probabilities. The data are highly informative for those

parameters even when I use uninformative priors (e.g. uniform distributions over (0,1)). The

average transition probability from recessions to expansions is about 0.2, whereas the average

transition probability from expansions to recessions is about 0.05. Therefore, my model implies

that on average, recessions last 5 quarters, whereas expansions last 20 quarters.18

18Define D as the duration of state i, then from Kim & Nelson (1999), E(D) =
1

1− pii
.
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Figure 1.2: Normalization rules for the baseline model. This figure shows scatter plots
from the unnormalized MCMC output of the baseline model against three candidates for the
normalization rules. From top to bottom, the three candidates are the natural log of the monetary
shock variance (ln(d33)), the constant of the first equation (ks), and the probability of staying in
state 2 (p22). From left to right, the variables on the vertical axes are the effect of π on supply
(αs), the natural log of the supply shock variance (ln(d11)), and the probability of staying in
state 1 (p11).
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Figure 1.3: Smoothed probabilities of recession from the baseline model. This figure shows
the smooth probabilities of recessions from the baseline model. The recession regime is defined
as the regime that has a larger structural shock variance for the Fed Fund rate. For each draw
from the posterior distribution, I calculate the smoothed probabilities by the Hamilton filter,
and then I take the mean of the smoothed probabilities across all models. The sample period is
1954Q3 to 2007Q4.
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Figure 1.4: Prior and posterior distributions of transition probabilities of the baseline
model. This figure shows the prior and posterior distributions of the transition probabilities (i.e.
elements of the matrix P) of the baseline model. The prior distributions are the red curves, and
the posterior distributions are the blue histograms. The sample period is 1954Q3 to 2007Q4.
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Furthermore, the posterior distributions also reveal some differences between parameters

across the two regimes. Figure 1.5 highlights the most significant difference between recessions

and expansions: the variances of the structural shocks. It also provides further support for

the normalization rule. Although the model is normalized by the variance of the monetary

policy shock, all six posterior distributions are unimodal with those in recessions exhibit larger

magnitudes than those in expansions.

Figure 1.5: Posterior distributions of the structural shock variances of the baseline model.
This figure shows the posterior distributions of the structural shock variances of the baseline
model (i.e. elements of the matrix D1 and the matrix D2). The sample period is between 1954Q3
and 2007Q4.

Notwithstanding, the rest of the structural parameters are mostly comparable. Figures

1.6 and 1.7 summarize the prior and posterior distributions for the contemporaneous parameters

in recessions and expansions respectively, while Table 1.3 reports the median values of the

estimated parameters together with their 95% credible set. In general, the posterior distributions

of parameters in the recession regime have a wider spread because there are fewer observations for
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recessions than expansions during the sample period. The most notable difference is the posterior

distribution of ρ, the interest rate smoothing parameter. The one associated with the recession

regime has a wider spread and a lower mode value than its counterpart in the expansion regime.

This result suggests that monetary policy is less persistent during recessions, perhaps because

monetary authorities need to change their policy more abruptly to counter the recessionary effects.

Table 1.3: Estimation results: baseline model. This table shows the estimated value for
parameters in As, Ds, Bs and P in the baseline model. It shows the median value of the posterior
distribution of the parameters together with their 95% credible sets in parentheses.

Estimated parameters
Parameter Estimated values Parameter Estimated values Meaning

αs
1 2.5 αs

2 2.7 Effect of π on supply
(1.6 , 5.8) (1.8 , 6.8)

βd
1 -1.3 βd

2 -0.4 Effect of π on demand
(-2.6 , -0.2) (-2.5 , 0.7)

γd
1 -0.7 γd

2 -0.5 Effect of r on demand
(-1.4 , -0.1) (-1.2 , -0.04)

ψ
y
1 1.1 ψ

y
2 1.5 Fed response to y

(0.7 , 1.9) (0.5 , 3.8)
ψπ

1 1.7 ψπ
2 1.5 Fed response to π

(1.1 , 2.6) (0.7 , 2.7)
ρ1 0.6 ρ2 0.4 Interest rate smoothing

(0.5 , 0.8) (0.1 , 0.7)
d11,1 1.1 d11,2 2.8 Supply shock variance

(0.7 , 4.2) (1.3 , 13.4)
d22,1 1.0 d22,2 3.8 Demand shock variance

(0.6 , 2.1) (1.4 , 11.2)
d33,1 0.2 d33,2 3.2 Monetary shock variance

(0.1 , 0.3) (1.8 , 7.1)
p11 0.95 p12 0.24 Transition probabilities

(0.89 , 0.99) (0.08 , 0.45)
p21 0.05 p22 0.76 Transition probabilities

(0.01 , 0.11) (0.55 , 0.92)

Due to the similarity of the structural parameters, the SIRFs between the two regimes also

show little difference. Figure 1.8 shows the SIRFs associated with recessions and expansions.

The median point estimates of the SIRFs are close to each other even though there is much more
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Figure 1.6: Prior and posterior distributions of contemporaneous structural parameters
in state 1 of the baseline model. This figure shows the prior and posterior distributions of
contemporaneous structural parameters (i.e. elements of the matrix A1) of the baseline model.
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2007Q4.
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Figure 1.7: Prior and posterior distributions of contemporaneous structural parameters
in state 2 of the baseline model. This figure shows the prior and posterior distributions of
contemporaneous structural parameters (i.e. elements of the matrix A2) of the baseline model.
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2007Q4.
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uncertainty during recessions. In particular, the posterior medians in the third column show that a

monetary policy shock that raises the fed funds rate by one percentage point will decrease the

output gap by 0.5 percentage points and the inflation rate by 0.2 percentage points upon impact

in both regimes.19 The shock appears to have stronger long-run effects on the inflation rate and

less persistent effects on the fed funds rate in recessions, however, those median estimates are

subject to considerable uncertainty. Thus, my empirical evidence suggests that the structural

coefficients do not change much across regimes, and hence, the propagation of shocks are similar

during recessions and expansions. This result stands in contrast with the literature supporting the

asymmetric effects of monetary policy.

Bayes factor test for regime changes

Given the estimation result, is the 2-state Markov-switching SVAR an improvement over

linear sign-restricted SVAR? To answer that question, I calculate the Bayes factor between the 2-

state Markov-switching SVAR, M2, and the linear sign-restricted SVAR without regime switches,

M1.20 Table 1.4 shows the marginal likelihood for each model together with the test statistics.

For ease of computation and comparison with the frequentist likelihood ratios, I calculate my

statistics as two times the log transformation of the Bayes factor. The results are also robust to

different computational methods.

How high does the Bayes factor have to be before we decide that model M2 is a better

description of the data than model M1? Jeffreys (1967) emphasizes that the Bayes factor is a guide

to decision making, and thus the meaning of its magnitude depends on the application. In some

situations, decision-makers might want to see a very high number for the Bayes factor before they

reject the baseline model.21 Table 1.5 shows a modified version of Jeffrey’s guideline proposed

19I normalize the SIRFs for the monetary policy shock but I leave the SIRFs for the other two shocks intact. Thus,
the first and second column of Figure 1.8 still show the effects of one unit increase of the supply and demand shock
respectively.

20This model is similar to that of Baumeister & Hamilton (2018), except that my sample period is longer.
21”... (The Bayes factor) is not a physical magnitude. Its function is to grade the decisiveness of the evidence.

It makes little difference to the null hypothesis whether the odds are 10 to 1 or 100 to 1 against it, and in practice
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Figure 1.8: SIRFs comparison between state 1 and state 2: baseline model. This figure
shows the estimated SIRFs of the sign-restricted 2-state MS-SVAR model. The sample period is
1954Q3 to 2007Q4. The solid blue line is the median SIRF of state 1, while the dashed red line
is the median SIRF of state 2. The shaded blue region is the 95 percent credible set for state 1,
while the shaded red region is the 95 percent credible set for state 2.

Table 1.4: Bayes factor test of regime change. This table shows the natural log of the marginal
likelihoods for the baseline (M1) and alternative model (M2), together with their difference. The
alternative model is the sign-restricted 2-state MS-SVAR model, whereas the baseline model
is the linear sign-restricted SVAR model without changes in regime. ”Geweke” refers to the
method proposed by Geweke, 1999, and ”SWZ” refers to the one proposed by Sims, Waggoner
& Zha, 2008. The parameter τ specifies the level of truncation of the posterior distribution. A
value for τ of 0.5 means that 50% of the posterior draws are used, and a value for τ of 0.9 means
that 90% of the posterior draws are used.

Test of regime change-Bayes’ factor
lnP(YT |M1) lnP(YT |M2) 2× (lnP(YT |M2)− lnP(YT |M1))

Geweke (τ = 0.5) -643 -594 98
Geweke (τ = 0.9) -643 -593 98
SWZ (τ = 0.5) -644 -597 96
SWZ (τ = 0.9) -645 -596 98
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in Kass & Raftery (1995). It describes different values of the test statistics, their corresponding

Bayes factors, and their interpretation.22 In this case, the test statistic is almost 100. Thus,

according to Jeffreys’ criteria, there is very strong evidence that the 2-state Markov-switching

sign-restricted SVAR is a better description of the data than the alternative model.

Table 1.5: Jeffrey’s criteria for model selection, originally proposed by Jeffreys, 1967. I use
the modified version in Kass & Raftery, 1995. The Bayes factor, B21, is the ratio of the marginal
likelihood of the alternative model (i.e. M2) to the marginal likelihood of the baseline model (i.e.
M1). When the prior belief is that the probabilities of the two models are equal, the Bayes factor
is also the odds ratio between the alternative and baseline models.

Jeffrey’s criteria
2log(B21) B21 Evidence against M1

0 to 2 1 to 3 Not worth more than a bare mentioning
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

1.3.3 A regime-switching sign-restricted SVAR model of monetary policy

augmented with NBER recession indicator

Because the smoothed probabilities in Figure 1.3 do not coincide precisely with NBER

recessions and expansions, some may be concerned about my interpretation of the two regimes.

As a robustness check, I augment the baseline model by NBER recession dates as an additional

indicator. Here I discuss my priors for the quality of the indicator and present the estimation

results.

no difference at all whether they are 104 or 1010 to 1 against it. In any case whatever alternative is most strongly
supported will be set up as the hypothesis for use until further notice.” (Jeffreys, 1967, Appendix B)

22Simulations from Efron, Gous, Kass, Datta & Lahiri (2001) suggests that Jeffrey’ scale generally are more
conservative than the frequentist p-value.
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Priors for the quality of the NBER recession indicator

The addition of the NBER recession indicator adds four new parameters corresponding to

elements of the matrix G. Let Z denote the NBER indicator, the regime indicator matrix is

G =

P(Zt = 1|St = 1) P(Zt = 1|St = 2)

P(Zt = 2|St = 1) P(Zt = 2|St = 2)

=

g11 g12

g21 g22


Recall that each element of the matrix G represents the information in Z about the regime. Since

I don’t want to exert any strong belief about the quality of information, I use the Dirichlet(1,1)

distribution for each column of that matrix. It is equivalent to use a uniform distribution over

(0,1) as the prior for each element. As in the general formulation, I assume independent priors

across columns. Formally, the priors are

P(G) = P(g11,g21)P(g12,g22)

(g11,g21)∼ D(1,1)

(g12,g22)∼ D(1,1)

Table 1.6 shows the prior distributions of the baseline model augmented with the NBER recession

indicator. It is similar to that of the baseline model, Table 1.2, except now we have four additional

parameters from the regime indicator matrix, G.

Discussion of estimation results of the model using NBER recession indicator

I use the same normalization rule as that of the baseline model (that is, d33,1 < d33,2) and

label regime 1 as expansion and regime 2 as recession. Figure 1.9 shows the prior and posterior

distributions for elements of matrix G. Even with uniform priors, the NBER indicator is valuable

in separating the two regimes. The posterior of g11 notably concentrates closer to 1 than that of
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Table 1.6: Prior distributions of the model with the NBER recession indicator. This table
shows the prior distribution of As, Ds, Bs, P, and G, together with their hyper-parameters. For
Student t and Asymmetric t distributions, the location parameter refers to the mode. For Beta,
Gamma, and Normal distributions, the location parameter is the mean and the scale parameter is
the standard deviation.

Parameter Meaning Location Scale Skew Sign restriction
Priors for the contemporaneous coefficients of As and elements of A−1

s

Student t distribution with 3 degrees of freedom

αs
s Effect of π on supply 2 0.4 – αs

s ≥ 0
βd

s Effect of π on demand 0.75 0.4 – None
γd

s Effect of r on demand -1 0.4 – γd
s ≤ 0

ψ
y
s Fed response to y 0.5 0.4 – ψ

y
s ≥ 0

ψπ
s Fed response to π 1.5 0.4 – ψπ

s ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρs Interest rate smoothing 0.5 0.2 – 0≤ ρs ≤ 1

Asymmetric t distribution with 3 degrees of freedom

h1,s Part of det(As) -0.1 1 -4 None
h2,s Output response to monetary shock -0.3 0.5 -2 None

Priors for the variances of structural shocks Ds|As

Gamma distribution

d−1
ii,s Reciprocal of variance 1/

(
a′i,sŜai,s

)
) 1/

(√
2a′i,sŜai,s

)
– dii,s > 0

Priors for the lag coefficients Bs|As,Ds

Normal distribution

bi,s Lagged coefficients of equation i η′ai,s
√

dii,sMi – None
In addition,
b33,s Third element of monetary equation ρs

√
d33,s/10 – None

Priors for the transition probabilities P

Beta distribution with α = 1 and β = 1

ps′,s Transition probability from s to s′ 0.5 0.3 – 0≤ ps′,s ≤ 1

Priors for the regime indicator matrix G

Beta distribution with α = 1 and β = 1

gs′,s
Probability that the indicator is s′

when the state is s 0.5 0.3 – 0≤ gs′,s ≤ 1
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g22 because there are more observations in expansions than in recessions. The most significant

difference from the baseline model is seen in Figure 1.10, which shows the smoothed probabilities

of recession (i.e. regime 2); almost every peak of the smoothed probabilities now coincides with

the recession shading from the NBER.

Figure 1.9: Prior and posterior distributions of elements of G. This figure shows the prior
and posterior distributions of elements of the regime indicator matrix, G. The prior distributions
are the red curves, and the posterior distributions are the blue histograms. The sample period is
1954Q3 to 2007Q4.

Is the NBER indicator informative about the two regimes? To answer that question, I

estimate another model where the NBER indicator is restricted to be uninformative. Technically,

I restrict the columns of the matrix G to be the same as follows

G =

P(Zt = 1|St = 1) P(Zt = 1|St = 2)

P(Zt = 2|St = 1) P(Zt = 2|St = 2)

=

 g g

1−g 1−g


The Bayes factor between the unrestricted model and the restricted model will tell us whether
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the indicator is informative. Table 1.7 shows the Bayes factor test for the informativeness of the

regime indicator. According to the test statistics and the Jeffrey’s criteria, there is very strong

evidence that the NBER indicator is informative.

Table 1.7: Bayes factor test of the informativeness of the regime indicator. This table shows
the natural log of the marginal likelihoods for the baseline (M1) and alternative model (M2),
together with their difference. The alternative model is the sign-restricted 2-state MS-SVAR
model with the regime indicator, whereas the baseline model is the sign-restrictied 2-state
MS-SVAR model where the regime indicator is restricted to be uninformative. ”Geweke” refers
to the method proposed by Geweke, 1999, and ”SWZ” refers to the one proposed by Sims,
Waggoner & Zha, 2008. The parameter τ specifies the level of truncation of the posterior
distribution. A value for τ of 0.5 means that 50% of the posterior draws are used, and a value for
τ of 0.9 means that 90% of the posterior draws are used.

Test of informativeness of the regime indicator-Bayes’ factor
lnP(WT |M1) lnP(WT |M2) 2× (lnP(WT |M2)− lnP(WT |M1))

Geweke (τ = 0.5) -677 -649 57
Geweke (τ = 0.9) -677 -648 57
SWZ (τ = 0.5) -680 -652 57
SWZ (τ = 0.9) -679 -651 56

Lastly, Table 1.8 summarizes the new estimation results. Despite better identification

of the two regimes, the estimated parameters are versy similar to those of the baseline model.

The resulting SIRFs, as shown in Figure 1.11, are comparable across the two regimes. Thus,

even when the model is augmented with the NBER indicator, monetary policy shocks still have

symmetric effects during recessions and expansions.
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Table 1.8: Estimation results: model with regime indicator. This table shows the estimated
value for parameters in As, Ds, Bs, P, and G in the model with regime indicator. It shows the
median value of the posterior distribution of the parameters together with their 95% credible
sets in parentheses.

Estimated parameters
Parameter Estimated values Parameter Estimated values Meaning

αs
1 2.4 αs

2 2.6 Effect of π on supply
(1.6 , 4.7) (1.7 , 5.3)

βd
1 -1.0 βd

2 -0.4 Effect of π on demand
(-2 , -0.2) (-2.1 , 0.7)

γd
1 -0.7 γd

2 -0.5 Effect of r on demand
(-1.4 , -0.1) (-1.3 , -0.04)

ψ
y
1 1.1 ψ

y
2 1.5 Fed response to y

(0.6 , 2.1) (0.5 , 3.8)
ψπ

1 1.6 ψπ
2 1.6 Fed response to π

(1 , 2.5) (0.7 , 2.6)
ρ1 0.7 ρ2 0.3 Interest rate smoothing

(0.5 , 0.8) (0.1 , 0.7)
d11,1 1.1 d11,2 2.6 Supply shock variance

(0.6 , 3.2) (1.3 , 8.8)
d22,1 0.9 d22,2 3.3 Demand shock variance

(0.5 , 1.7) (1.3 , 9.4)
d33,1 0.2 d33,2 2.8 Monetary shock variance

(0.2 , 0.3) (1.7 , 5.9)
p11 0.95 p12 0.23 Transition probabilities

(0.90 , 0.98) (0.11 , 0.39)
p21 0.05 p22 0.77 Transition probabilities

(0.02 , 0.10) (0.61 , 0.89)
g11 0.99 g12 0.30 Elements of regime indicator matrix

(0.97 , 1.00) (0.15 , 0.49)
g21 0.01 g22 0.70 Elements of regime indicator matrix

(0.00 , 0.03) (0.51 , 0.85)
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Figure 1.10: Smoothed probabilities of recession from the model with NBER recession
indicator. This figure shows the the smooth probabilities of recessions from the baseline model
augmented with the NBER recession indicator. The recession regime is defined as the regime
that has a larger structural shock variance for the Fed Fund rate. For each draw from the posterior
distribution, I calculate the smoothed probabilities by the Hamilton filter, and then I take the
mean of the smoothed probabilities across all models. The sample period is 1954Q3 to 2007Q4.
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Figure 1.11: SIRFs comparison between state 1 and state 2: model with NBER recession
indicator. This figure shows the estimated SIRFs of the sign-restricted 2-state MS-SVAR model
augmented with the NBER recession indicator. The sample period is between 1954Q3 and
2007Q4. The solid blue line is the median SIRF of state 1, while the dashed red line is the
median SIRF of state 2. The shaded blue region is the 95 percent credible set for state 1, while
the shaded red region is the 95 percent credible set for state 2.
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1.3.4 A regime-switching sign-restricted SVAR model of monetary policy

augmented with NBER recession indicator and asymmetric priors

Here I explore whether the conclusion would change if we estimate the previous model

with asymmetric priors, starting with a strong prior expectation that monetary policy is stronger

in one regime. This specification uses both the NBER recession indicator to help identify the

two states and a prior belief that the economic relationship and mechanism of the two states are

different.

Asymmetric priors for the contemporaneous parameters

The literature points out several reasons why conventional monetary policy might produce

asymmetric effects due to structural changes in the economy during recessions and expansions.

One dominant channel is via the change in the intertemporal elasticity of substitution (IES): a

higher IES implies stronger effects of monetary policy. This channel will be incorporated as

priors on the contemporaneous parameters of the two states. In particular, I use asymmetric priors

on the responses of output demand to inflation
(
βd

1,β
d
2
)

and the responses of output demand to

interest rate
(
γd

1,γ
d
2
)
. I set the modes of βd

2 and γd
2 to be twice as large as their counterparts in

absolute magnitude while leaving the rest of the priors the same as the previous specification with

the NBER recession indicator.23

Table 1.9 summarizes the asymmetric prior distributions. Intuitively, the priors are that

in one regime, output demand responds more to the interest rate and inflation. In that regime, a

monetary policy shock that raises the fed funds rate by one percentage point will, on average,

decrease the output gap by 1.5 percentage points and the inflation rate by 0.7 percentage points

upon impact. In the other regime, a similar shock will lower both the output gap and inflation by

0.8 percentage points and 0.4 percentage points respectively.

23Baumeister & Hamilton (2018) use 0.5 for the IES to derive the prior modes for βd and γd . Under the same
assumptions, doubling the modes of βd and γd is equivalent to using 1 for the IES.
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Table 1.9: Prior distributions of the model with NBER recession indicator and asymmet-
ric priors. This table shows the prior distributions of As together with their hyper-parameters.
For Student t distribution, the location parameter refers to the mode. For Beta distribution, the
location parameter is the mean and the scale parameter is the standard deviation. The prior
distributions of A−1

s , Ds, Bs, P, and G are similar as those of the model augmented with NBER
recession indicator.

Parameter Meaning Location Scale Skew Sign restriction
Asymmetric priors for contemporaneous coefficients, p1 (.)

Student t distribution with 3 degrees of freedom

βd
s Effect of π on demand 0.75 0.4 – None

γd
s Effect of r on demand -1 0.4 – γd

s ≤ 0

Asymmetric priors for contemporaneous coefficients, p2 (.)

Student-t distribution with 3 degrees of freedom

βd
s Effect of π on demand 1.5 0.4 – None

γd
s Effect of r on demand -2 0.4 – γd

s ≤ 0

Symmetric priors for contemporaneous coefficients

Student t distribution with 3 degrees of freedom

αs
s Effect of π on supply 2 0.4 – αs

s ≥ 0
ψ

y
s Fed response to y 0.5 0.4 – ψ

y
s ≥ 0

ψπ
s Fed response to π 1.5 0.4 – ψπ

s ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρs Interest rate smoothing 0.5 0.2 – 0≤ ρs ≤ 1
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A straightforward application of the permutation sampler no longer works because the

posterior distribution is now asymmetric even though it can still be multimodal. A simple way

to accommodate such situations is to use a mixture prior as recommended by Kaufmann &

Frühwirth-Schnatter (2002). Specifically, the following mixture prior allows us to express the

prior belief that monetary policy exerts stronger effects in one regime without stating which

regime this will be.

P(As) =
1
2

2

∑
u=1

p(αs
s) pu

(
β

d
s

)
pu

(
γ

d
s

)
p(ψy

s) p(ψπ
s ) p(ρs) p(h1,s)

ζh1,s p(h2,s)
ζh2,s for s = 1,2

(1.44)

Because this mixture prior is still symmetric, the estimation procedure remains the same.

Discussion of estimation results of the model using NBER indicator and asymmetric priors

I use the same normalization rule as that of the baseline model (that is, d33,1 < d33,2) and

label regime 1 as expansion and regime 2 as recession. Table 1.10 shows the estimation results,

while Figure 1.12 shows the corresponding SIRFs for the two regimes. Despite the asymmetric

priors that imply monetary policy to be more powerful in one regime, both the point estimates

of the structural parameters and the SIRFs are essentially the same to that of the model with

symmetric priors. Thus, the evidence in the data that monetary policy has similar effects during

recessions and expansions is strong enough to override a strong prior belief that monetary policy

has asymmetric effects.
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Table 1.10: Estimation results of the model with NBER recession indicator and asymmet-
ric priors. This table shows the estimated value for parameters in As, Ds, Bs, P, and G in the
model with regime indicator and asymmetric priors. It shows the median value of the posterior
distribution of the parameters together with their 95% credible sets in parentheses.

Estimated parameters
Parameter Estimated values Parameter Estimated values Meaning

αs
1 2.3 αs

2 2.6 Effect of π on supply
(1.6 , 4.5) (1.7 , 5.1)

βd
1 -1.0 βd

2 -0.4 Effect of π on demand
(-2.0 , -0.2) (-2.1 , 0.7)

γd
1 -0.7 γd

2 -0.5 Effect of r on demand
(-1.5 , -0.1) (-1.3 , -0.04)

ψ
y
1 1.1 ψ

y
2 1.5 Fed response to y

(0.6 , 2.0) (0.5 , 3.7)
ψπ

1 1.6 ψπ
2 1.6 Fed response to π

(1.0 , 2.5) (0.8 , 2.6)
ρ1 0.7 ρ2 0.3 Interest rate smoothing

(0.4 , 0.8) (0.1 , 0.7)
d11,1 1.1 d11,2 2.6 Supply shock variance

(0.6 , 3.0) (1.3 , 8.5)
d22,1 0.9 d22,2 3.3 Demand shock variance

(0.5 , 1.8) (1.3 , 9.6)
d33,1 0.24 d33,2 2.8 Monetary shock variance

(0.17 , 0.36) (1.7 , 5.9)
p11 0.95 p12 0.23 Transition probabilities

(0.90 , 0.98) (0.11 , 0.39)
p21 0.05 p22 0.77 Transition probabilities

(0.02 , 0.10) (0.61 , 0.89)
g11 0.99 g12 0.30 Elements of regime indicator matrix

(0.97 , 1.00) (0.15 , 0.49)
g21 0.01 g22 0.70 Elements of regime indicator matrix

(0.00 , 0.03) (0.51 , 0.85)
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Figure 1.12: SIRFs comparison between state 1 and state 2: model with NBER recession
indicator and asymmetric priors. This figure shows the estimated SIRFs of the sign-restricted
2-state MS-SVAR model with asymmetric prior. The sample period is 1954Q3 to 2007Q4. The
solid blue line is the median SIRF of state 1, while the dashed red line is the median SIRF of
state 2. The shaded blue region is the 95 percent credible set for state 1, while the shaded red
region is the 95 percent credible set for state 2.
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1.4 Conclusion

Macroeconomists are increasingly using more robust methods to identify and estimate

dynamic causal effects. Identification by sign restrictions is a promising method emerging

from this research agenda. My paper contributes to this rising literature by developing a novel

MCMC algorithm to estimate regime-switching SVAR models identified by sign restrictions.

This approach offers three improvements over current practices. First, it can impose both sign

restrictions and conventional identification strategies. Second, it incorporates priors about both

structural parameters and hidden states explicitly without relying on draws from the uniform

Haar distribution to rotate the reduced-form VAR, a practice known to impose implicit priors

on the dynamic causal effects. Lastly, it accounts for the label-switching problem of Bayesian

estimation, which has largely been ignored in the previous econometric literature.

In the empirical application, I revisited the literature on asymmetric effects of conventional

monetary policy over the business cycle by estimating a sign-restricted 2-state Markov-switching

SVAR model of the output gap, inflation, and interest rate. Although the analysis reveals that

the Markov-switching SVAR is a better description of the data than the linear one, the major

difference between the two regimes appears to be the variances of their structural shocks instead

of other structural parameters. My results suggest that previous work exaggerated changes in

coefficients because it neglected changes in variances of structural shocks. I find that monetary

policy tightening reduces output and inflation by similar magnitudes in both recessions and

expansions. My findings are also robust when the model is augmented with the NBER indicator

and asymmetric priors.
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Chapter 2

Bayesian Inference in Structural Vector

Autoregression with Sign Restrictions and

External Instruments

Abstract

Instrument validity cannot be tested in a just-identified model, and it is not clear what

conclusion to draw when instrument validity is rejected in an over-identified model. In practice

researchers tend to regard instruments as valid when they lead to sensible inferences. This paper

uses Bayesian methods to formalize this idea. I develop a proxy structural vector autoregression in

which prior information from both theory and the empirical literature is incorporated about signs

and magnitudes of certain parameters and equilibrium impacts. I use my method to investigate

the relevance and validity of three popular instruments for monetary policy shocks, developed

by Romer and Romer (2004), Sims and Zha (2006), and Smets and Wouters (2007). I find that

all of them are strongly relevant but only that of Smets and Wouters is valid. Furthermore, the

empirical analysis demonstrates that my framework can combine information from a relevant

and valid instrument with prior information about sign restrictions to improve inference about
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structural impulse-response functions.

2.1 Introduction

Starting with Sims (1980), empirical macroeconomists have been developing new robust

identification strategies to perform dynamic causal inference in structural vector autoregressions

(SVARs). As conventional identifying assumptions have come under intense scrutiny (Ramey

(2016), Nakamura & Steinsson (2018)), identification by instrumental variables has emerged

as a more credible method for causal analysis. The method, also known as Proxy SVAR, was

popularized by Stock & Watson (2012a) and Stock & Watson (2018), Mertens & Ravn (2013),

Gertler & Karadi (2015), and has been applied to a wide variety of settings.

Is Proxy SVAR really more credible? Its central premise is that imperfect measures

can be used as instruments for the true shocks.1 The key identifying assumptions are that the

instruments are correlated with the true shocks (relevance) and uncorrelated with other structural

shocks (validity).2 Although the relevance assumption can be formally tested (Stock & Watson

(2018)), the validity assumption is often defended by ad hoc arguments. Stock & Watson (2012a)

provide suggestive evidence showing that this assumption might fail to hold for the majority of

instruments in macroeconomics. However, without further information, the data cannot tell us

whether this assumption holds for any particular instrument.

How, then, can researchers select a good instrument among many potentially invalid

instruments? I propose to evaluate both instrument relevance and validity by using a subjective

Bayesian approach that incorporates information from both theory and the empirical literature in

1Examples of such instruments are Hamilton (2003), Kilian (2008), Arezki, Ramey & Sheng (2017) (oil shocks)
, Romer & Romer (2010), Ramey (2011), Fisher & Peters (2010) (fiscal policy shocks), and Gürkaynak, Sack &
Swansonc (2005), Romer & Romer (2004) (monetary policy shocks).

2In this paper, I use the terminology in Hamilton (1994b). In some other texts, such as Stock & Watson (2012b),
the authors define a valid instrument as an instrument that is relevant and exogenous. Their definition of instrument
relevance is the same as mine, and their definition of instrument exogeneity is equivalent to my definition of
instrument validity.
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the form of sign restrictions. The literature on sign restrictions are pioneered by Uhlig (2005),

Faust (1998), and Canova & De Nicolo (2002), and it has increasingly gained popularity with many

recent contributions, including Rubio-Ramı́rez, Waggoner & Zha (2010), Arias, Rubio-Ramı́rez

& Waggoner (2018b), Arias, Caldara & Rubio-Ramı́rez (2019), Antolı́n-Dı́az & Rubio-Ramı́rez

(2018), and Baumeister & Hamilton (2015), Baumeister & Hamilton (2018), and Baumeister

& Hamilton (2019). The surge in popularity is due to the fact that sign restrictions are more

consistent with economic theory and thus more robust to model misspecification. My paper

suggests using the identifying assumptions from sign restrictions to evaluate the underlying

assumption of the instruments.

To implement the idea, I generalize the SVAR framework of Baumeister & Hamilton

(2015) to incorporate both sign restrictions and external instruments. Investigation of the validity

and relevance assumptions will then be framed as a model selection problem. In particular,

instrument validity is investigated by a Bayesian model comparison between a model where

the validity assumption holds and one where it does not. If the data favor the first model, the

instruments are judged to be valid, otherwise, they are invalid. Similarly, the method can be used

to evaluate the relevance assumption.

I apply the technique to analyze the relevance and validity of three monetary policy

instruments, proposed by Romer & Romer (2004), Sims & Zha (2006), and Smets & Wouters

(2007).3 I first use various tests of overidentifying restrictions in a frequentist Proxy SVAR

framework to demonstrate that at least some of the instruments are invalid and to illustrate the

inability of existing methods to differentiate valid instruments from invalid ones. Then, I use the

sign-restricted SVAR proposed by Baumeister & Hamilton (2018) as a benchmark to evaluate the

underlying assumptions of those instruments. My main finding is that all three instruments are

strongly relevant, but only the Smets-Wouters instrument is valid. The reason is that the Romer-

3The instrument of Romer & Romer (2004) is constructed by the narrative method, that of Sims & Zha (2006) is
estimated from a Markov-switching SVAR model, and that of Smets & Wouters (2007) comes from a medium-scale
DSGE model.
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Romer and Sims-Zha instruments are highly correlated with both monetary and demand shocks

identified from the sign-restricted SVAR. This finding sheds light on Stock & Watson (2012a)’s

observation that monetary and fiscal policy shocks, identified by their respective instruments, are

highly correlated with each other.

Furthermore, the empirical application establishes that a Bayesian framework can use

instruments to identify structural shocks just as in conventional approaches. I first use Romer

& Romer (2004)’s specification to study the dynamics of macro aggregates in response to a

monetary shock. Then I show that the sign-restricted SVAR augmented with the instrument

produces structural impulse-response functions (SIRFs) with similar patterns. In particular, I find

that both the output gap and inflation have hump-shaped responses following a monetary policy

shock. This finding is consistent with those from previous literature as surveyed in Ramey (2016).

My paper is the first to evaluate the instrument relevance and validity assumptions by

sign restrictions, and in doing so, it addresses three strands of literature. First is the econometric

literature on SVAR identified by sign restrictions and instrumental variables. The major distinction

between my framework and others is that mine transparently and flexibly incorporates both sign

restrictions and instrumental variables. In contrast to Arias, Rubio-Ramı́rez & Waggoner (2018a),

Ludvigson, Ma & Ng (2017), and Braun & Brüggemann (2017), I use explicit priors and sign

restrictions to estimate the SVAR parameters directly without using draws of the rotation matrix

to convert the reduced-form VAR, a practice known to impose implicit priors on the dynamic

causal effects (Baumeister & Hamilton (2015), Wolf (2018), Watson (2019)). Moreover, my

method can easily use multiple proxies to identify a single shock, a common objective which

cannot be achieved using Arias, Rubio-Ramı́rez & Waggoner (2018a)’s algorithm. Compared

to the robust Bayesian method of Giacomini, Kitagawa & Read (2019), my parameterization

makes better use of information from the previous literature because the SVAR parameters have

economic interpretation. Relative to other approaches in Bayesian Proxy SVAR, my method not

only enjoys all the advantages over the frequentist counterpart as discussed in Caldara & Herbst
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(2019), Bahaj (2014), and Drautzburg (2016) but it also use sign restrictions and informative

priors on various model quantities to improve causal inference.

Second, my paper contributes to the econometric literature on instrumental variable re-

gression with imperfect instruments. Early work, such as Conley, Hansen & Rossi (2012), Nevo

& Rosen (2012), and Chan & Tobias (2015), relaxed the validity assumption by allowing the

instruments to have a small, direct effect on the dependent variable. Although those papers

acknowledge that the instrument validity is likely violated, none of them attempts to formally in-

vestigate that assumption.4 More recently, Ludvigson, Ma & Ng (2017) and Braun & Brüggemann

(2017) consider sign-restricted SVAR models with external instruments where they restrict the

correlations between the structural shocks and the instruments. Because of independent evidence

that many instruments are likely invalid, using the instruments to restrict the model could remove

many good models from the identified set and negatively affect inference. In contrast to their

papers, I recommend researchers first use sign restrictions to evaluate the underlying assumptions

of the instruments, and only incorporate those that have passed the first stage in the final model.

Finally, my paper contributes to the literature that aims to shrink down the identified set

by incorporating more credible information. Tamer (2010) points out that the identified set in

a partially-identified model is often too large to be useful for policy analysis. Consequently, a

large literature has tried to incorporate information that help sharpen the identified set, including

Ludvigson, Ma & Ng (2017), Braun & Brüggemann (2017), Arias, Rubio-Ramı́rez & Waggoner

(2018a), Antolı́n-Dı́az & Rubio-Ramı́rez (2016), Amir-Ahmadi & Drautzburg (2017), and Amir-

Ahmadi & Uhlig (2015). Relative to these papers, I directly model the structural shocks as a

linear function of exogenous variables, and hence I can flexibly incorporate many different type

of information and exogenous factors. Although my empirical application only uses information

from the current value of the instrument, the algorithm can implement sign restrictions on the

effect of the instruments on the structural shocks as suggested by Gafarov (2014) or incorporate

4Piffer (2017) and Lanne & Luoto (2016) propose Bayesian methods to assess the validity of sign restrictions,
but those papers do not discuss instrumental variables.
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lags of the instruments to deal with anticipation in rational expectation models as illustrated in

Noh (2018).

The rest of this paper is organized as follows. Section 2.2 describes the framework and

estimation strategy. Section 2.3 applies the method to investigate the relevance and validity of

three monetary policy instruments. Section 2.4 briefly concludes. Additional technical details are

shown in the appendices.

2.2 Sign-restricted SVAR with instrumental variables

2.2.1 Model Description

Suppose that the dynamics of the data are summarized by a SVAR(p)

Ayt = k+B1yt−1 +B2yt−2 + · · ·+Bpyt−p +ut

ut ∼ i.i.d N (0,D∗)

where yt and ut are (n×1) vector of observed variables and structural shocks at time t. A is

an (n×n) matrix that governs contemporaneous relationship between observed variables, Bi

(i = 1, . . . , p) is an (n×n) matrix of lag coefficients, and D∗ is an (n×n) diagonal covariance

matrix of the structural shocks. For simplicity, the model is rewritten as

Ayt = Bxt−1 +ut (2.1)

where B≡
[

B1 B2 . . . Bp k
]

is [n× (np+1)] matrix,

and xt−1 =

[
y′t−1 y′t−2 . . . y′t−p 1

]′
is [(np+1)×1] vector.

Suppose we want to incorporate a (q×1) vector of instruments, zt =
[
z(1)t ,z(2)t , ...,z(q)t

]
,
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into the model. We can use the linear projection of the structural shocks on these instruments

ut = Czt +wt (2.2)

wt ∼ i.i.d N (0,D) (2.3)

where C is a (n×q) matrix that governs the relationship between the instruments and the

endogenous variables, and D is again assumed to be diagonal. The general model with the

instruments can be written as

Ayt = Bxt−1 +Czt +wt (2.4)

Depending on different specifications of C and the choice of the instruments zt , model (2.4) can

be used to (1) identify one structural shock by one instrument, (2) identify one structural shock

by multiple instruments, (3) identify multiple structural shocks by multiple instruments, or (4)

incorporate both the current and lagged values of the instruments and other exogenous factors.

The general model (2.4) nests three important special cases regarding the instrument

properties. Without loss of generality, suppose we use all instruments to identify the last structural

shock in the system. First, if the instruments are irrelevant but valid, C will be restricted to be

identically zero. On the other extreme, if we have relevant but invalid instruments, C will be

totally unrestricted. Lastly, relevant and valid instruments will restrict the elements of the C

matrix to be

C =

 0
(n−1)×q

cn
1×q

 (2.5)

This structure of the matrix C ensures that the instruments are correlated with only one structural

shock (relevant instruments) but not with other shocks (valid instruments).
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2.2.2 Discussion

This section briefly discusses the identification problem in SVAR, how researchers use

instrumental variables to identify the dynamic causal effects, and how they can use the identifying

assumptions from sign restrictions to evaluate the instrument relevance and validity assumptions.

The SVAR(p) described in (2.1) admits a reduced-form VAR(p) representation

yt = ΠΠΠ1xt−1 + εεεt (2.6)

where ΠΠΠ1 = A−1B and εεεt ∼ N (0,ΩΩΩ∗) with ΩΩΩ
∗ = A−1D∗

(
A−1)′. These parameters are identified

from the data and can be consistently estimated by the Ordinary Least Squares (OLS) method.

Nevertheless, the parameters A, B, and D∗ are generally not identified because A and D∗ may

have more parameters than the reduced-form covariance matrix, ΩΩΩ
∗. Conventional approaches,

such as exclusion restrictions, use quantitative restrictions to achieve point-identification. For

example, researchers can normalize the elements of the matrix D∗ to one and set the matrix A to

be lower-triangular. Those restrictions impose a particular causal order among the endogenous

variables, and hence they are both conceptually and empirically controversial (Ramey (2016),

Nakamura & Steinsson (2018)).

Identification by instrumental variables has become a promising alternative recently. To

understand the method, consider the reduced-form representation of the SVAR(p) with instrumen-

tal variables in (2.4)

yt = ΠΠΠ1xt−1 +ΠΠΠ2zt + et (2.7)

where ΠΠΠ1 = A−1B, ΠΠΠ2 = A−1C, and et ∼ N (0,ΩΩΩ) with ΩΩΩ = A−1D
(
A−1)′. Let A−1 = ΨΨΨ =[

ψψψ1 ψψψ2 . . . ψψψn

]
and consider the specification of C described in (2.5), we have

ΠΠΠ2zt = ΨΨΨCzt = ψψψ
ncn,1z(1)t +ψψψ

ncn,2z(2)t + · · ·+ψψψ
ncn,qz(q)t
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If the instruments are relevant and valid, they will identify the last column of A−1, ψψψn , up to

some scale factors. The last column of A−1 will then be used to infer the dynamic causal effects

of the last structural shocks on other macro aggregates. On the other hand, if C does not satisfy

the restrictions in (2.5), the instruments will only identify some non-linear combinations of the

structural parameters and hence be useless for dynamic causal inference.

Although instrument validity is crucial to the success of this approach, existing methods

have little to say about its legitimacy. When researchers have only one instrument, they cannot

determine whether the matrix C, now a vector, satisfies the restrictions in (2.5). Consequently,

they often must rely on ad hoc arguments to argue that the instrument is ”plausibly exogenous”.

And although those restrictions can be tested when researchers use more than one instruments

to identify a structural shock, it is not clear what conclusion to draw about the validity of any

particular instrument without further information.

Nevertheless, in many cases, researchers do have other identifying assumptions from

theory and the empirical literature about reasonable magnitudes and signs of different model

quantities. These assumptions can be incorporated as prior belief and sign restrictions on the

elements of A or A−1. Because sign restrictions are grounded in economic theory and robust

to model misspecification, this paper proposes to use them as overidentifying assumptions in

order to formally test the underlying assumptions of the instruments. To see the intuition of my

approach, consider the problem of a researcher who has some doubt about instrument validity.

From the Bayesian point of view, her belief after seeing the data can be expressed as an odds

ratio between two models: a model where the instrument is valid, and a model where it is not.

Conditional on the data, if the first model is more likely than the second, she will conclude that

the instrument is valid. Whereas, if the first model is less likely, she will conclude that it is

not. Similarly, instrument relevance can be formally assessed by comparing a model where the

instrument is assumed to be valid and relevant with a model where the instrument is assumed to

be irrelevant.
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Formally, let M0 be a special case of (2.4) where the matrix C is identically zero, M1

be the model where the matrix C satisfies the restrictions in (2.5), and M2 be the model where

the matrix C is left unrestricted. Thus, M0 imposes the restrictions that the instruments are not

relevant, M1 imposes the restrictions that the instruments are valid, and M2 does not impose any

restriction. If a Bayesian model comparison favors M1 over M0, the instruments are judged to

be relevant. Similarly, if a Bayesian model comparison favors M1 over M2, the instruments are

deemed to be valid.

The robustness of sign restrictions and prior belief play important roles in the success

of this method. Wolf (2016) cautions that sign restrictions might identify both the true shocks

and mixtures of other shocks that have different dynamics, while Paustian (2007), Canova &

Paustian (2011), and Gafarov (2014), and Wolf (2018) assert that the sign-restricted SVAR is

more robust and delivers the correct causal inference if researchers are willing to impose an

appropriate number of sign restrictions. The required number of sign restrictions would depend

on a particular application. In any case, I note that my algorithm can flexibly accommodate

sign restrictions in both structural parameters, A and C, and impact effects of structural shocks,

A−1, along with other conventional identifying strategies like short-run and long-run restrictions.

Furthermore, in set-identified models such as sign-restricted SVARs, inference is sensitive to prior

belief even in large sample. In particular, there exists quantities of which there is no Bayesian

updating (Lindley (1957), Poirier (1998)), and Bayesian credible set no longer satisfy frequentist

coverage even with infinite amount of data (Moon & Schorfheide (2012)).5 Following Baumeister

& Hamilton (2015), I acknowledge and deal with this problem by using explicit, informative

priors carefully constructed from both theory and practice.

5Inference in set-identified SVAR is a growing area of research with many notable works, including Gafarov,
Meier & Olea (2018), Gafarov, Meier & Olea (2016), Granziera, Moon & Schorfheide (2018), Giacomini, Kitagawa
& Volpicella (2017), Giacomini & Kitagawa (2015), Plagborg-Møller (2019), Plagborg-Møller & Wolf (2017),
Barnichon, Matthes & Ziegenbein (2016), and Baumeister & Hamilton (2018).

65



2.2.3 MCMC Algorithm for Estimation

This section describes the priors, the likelihood, and the MCMC algorithm to simulate

from the posterior distributions in details. For estimation purposes, the joint prior of (A,B,C,D)

can be decomposed as

P(A,B,C,D) = P(A,C)P(D|A,C)P(B|A,C,D) (2.8)

I allow arbitrary priors on parameters of A,C and employ natural conjugates for the two condi-

tional priors P(D|A,C) and P(B|A,C,D) to ease computation of the posteriors P(A,B,C,D|YT ).

Specifically, I use independent inverse-Gamma priors for the variances of the structural shocks

p
(

d−1
ii |A,C

)
∼ Γ(κi,τi) (2.9)

P(D|A,C) = Π
n
i=1 p

(
d−1

ii |A,C
)

(2.10)

where Γ(κi,τi) denotes the Gamma distribution with parameters κi and τi. For the lag parameters,

I use multivariate normal priors that are independent across equations

P(bi|A,C,D)∼ N (mi,diiMi) (2.11)

P(B|A,C,D) = Π
n
i=1P(bi|A,C,D) (2.12)

where N (mi,diiMi) denotes the multivariate normal distribution with mean mi and covariance

matrix diiMi. The overall prior is

P(A,B,C,D) = P(A,C)Π
n
i=1 p

(
d−1

ii |A,C
)

Π
n
i=1P(bi|A,C,D) (2.13)

I condition on the instrumental variables in the estimation and make use of the conditional
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likelihood, which is 6

P(YT |A,B,C,D,ZT ) = (2π)−T n/2 det |A|T det |D|−T/2×

exp

[
−(1/2)

T

∑
t=1

(Ayt−Czt−Bxt−1)
′D−1 (Ayt−Czt−Bxt−1)

] (2.14)

Given the priors and the likelihood, the posteriors will be characterized by Bayes’ rule. The joint

posterior of A and C is calculated by the random-walk Metropolis-Hasting algorithm, while the

posteriors of B and D are their respective natural conjugates. The estimation procedure is stated

formally below.

Proposition 1. Let the priors be given as in (2.8)-(2.13) and the likelihood function be

given as in (2.14). Moreover, let a′i denote the i-th row of A, c′i denote the i-th row of C, Pi denote

the Cholesky factor of M−1
i = PiP′i. Then, the posteriors are

P(A,B,C,D|YT ,ZT ) = P(A,C|YT ,ZT )Π
n
i=1 p

(
d−1

ii |A,C,YT ,ZT

)
Π

n
i=1P(bi|A,C,D,YT ,ZT )

(2.15)
6The motivation for using conditional likelihood is provided in Appendix B.1.

67



with

P(A,C|YT ,ZT ) =
kT P(A,C)

[
det
(
AΩ̂A′

)]T/2

Πn
i=1 [2τ∗i /T ]κ

∗
i

(2.16)

p
(

d−1
ii |A,C,YT ,ZT

)
∼ Γ(κ∗i ,τ

∗
i ) (2.17)

P(bi|A,C,D,YT ,ZT )∼ N (m∗i ,diiM∗i ) (2.18)

Ω̂ΩΩ === T−1
T

∑
t=1

ε̂εεt ε̂εε
′
t (2.19)

ε̂εεt = yt− Φ̂xt−1 (2.20)

Φ̂ΦΦ =

(
T

∑
t=1

ytx′t−1

)(
T

∑
t=1

xtx′t−1

)′
(2.21)

κ
∗
i = κi +(T/2) (2.22)

τ
∗
i = τi +(ζ∗i /2) (2.23)

ζ
∗
i =

(
Ỹ′iỸi

)
−
(
Ỹ′iX̃i

)(
X̃′iX̃i

)−1 (X̃′iỸi
)

(2.24)

m∗i =
(
X̃′iX̃i

)−1 (X̃′iỸi
)

(2.25)

M∗i =
(
X̃′iX̃i

)−1 (2.26)

Ỹi =

[
y′1ai− c′izi1 . . . y′T ai− c′iziT m′iPi

]′
(2.27)

X̃i =

[
x′0 . . . x′T−1 Pi

]′
(2.28)

The differences between this proposition and that in Baumeister & Hamilton (2015) are equations

(2.16) and (2.27). In particular, the target for the Metropolis-Hasting algorithm in (2.16) takes

into account the priors for the matrix C, and (2.27) redefines Ỹi to account for the instrumental

variables zi. The estimation procedure and its proof are identical to those in their paper.
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2.2.4 Bayesian Model Comparison

Bayes factor

Bayesian model comparison is used to evaluate instrument relevance and validity. Gener-

ally, a Bayesian model comparison between model k and k′ is done by calculating the posterior

odds ratio, showing which model is more likely now that we have seen the data.7 This can be

written as the product of the Bayes factor and the prior odds ratio.

P(Mk|YT ,ZT )

P(Mk′|YT ,ZT )
=

P(YT |ZT ,Mk)

P(YT |,ZT ,Mk′)

P(Mk)

P(Mk′)
(2.29)

Suppose before seeing the data, we assume model k is as likely as model k′, then the prior odds

ratio (i.e. P(Mk)/P(Mk′)) will be one and equation (2.29) simplifies to

P(Mk|YT ,ZT )

P(Mk′ |YT ,ZT )
=

P(YT |ZT ,Mk)

P(YT |,ZT ,Mk′)
(2.30)

The quantity on the right-hand side of equation (2.30) is the so-called Bayes factor, which

is the ratio of two marginal likelihoods. The Bayes factor between model k and model k′ is

denoted as

Bk,k′ =
P(Mk|YT ,ZT )

P(Mk′|YT ,ZT )
=

P(YT |ZT ,Mk)

P(YT |,ZT ,Mk′)

The Bayes factor shows how likely model k is relative to model k′. For example, the value of two

means that model k is twice as likely as model k′ after the data are observed.

7Since I condition on the instruments, they don’t affect the calculation of the odds ratio. Appendix B.1 provides
more details.
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Marginal likelihood estimation

The Bayes factor is the ratio of two high dimensional integrals. Let θθθ denote all unknown

parameters. The marginal likelihood of model k is defined as

P(YT |ZT ,Mk) =
∫

P(YT |θθθ,ZT ,Mk)P(θθθ|Mk)dθθθ (2.31)

where P(YT |θθθ,ZT ,Mk) is the likelihood of model Mk, and P(θθθ|Mk) is the prior, which is assumed

to be independent of ZT .8 Let f (θθθ) be a known multivariate density function of θθθ. Bayes’ theorem

implies that

1
P(YT |ZT ,Mk)

=
∫ f (θθθ)

P(YT |θθθ,ZT ,Mk)P(θθθ|Mk)
P(θθθ|YT ,ZT ,Mk)dθθθ

Thus, a natural estimator for the marginal likelihood from the posterior draws would be

P̂(YT |ZT ,Mk) =

[
1

N0

N0

∑
n0=1

f (θθθn0)

P(YT |θθθn0,ZT ,Mk)P(θθθn0 |Mk)

]−1

(2.32)

where N0 is the number of posterior draws after discarding the burn-in sample. The choice of

f (θθθ) is important in the calculation of the marginal likelihood. For instance, if we choose f (θθθ)

to be the prior distribution (i.e. f (θθθ) = P(θθθ|Mk)), we will have a harmonic mean estimator

P̂HMM (YT |ZT ,Mk) =

[
1

N0

N0

∑
n0=1

1
P(YT |θθθn0,ZT ,Mk)

]−1

However, this estimator has infinite variance and is numerically inefficient. For the method to

work well, f (θθθ) needs to be a good approximation of the posterior distribution and has a thinner

tail than the posterior kernel, P(YT |θθθ,ZT ,Mk)P(θθθ|Mk), to ensure convergence of the Monte

Carlo average. Geweke (1999) proposes to use a truncated normal distribution, while Sims,

Waggoner & Zha (2008) constructs a more sophisticated choice for f (θθθ). Appendix B.2 describes

8θθθ= (vec(A) ,vec(B) ,vec(C) ,vec(diag(D)))′
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those two choices in details.

2.3 Application: Three instruments for monetary shock

This section applies the above method to investigate the relevance and validity of three

instruments for monetary shocks. It also shows how my method can combine information from a

relevant and valid instrument with sign restrictions to improve dynamic causal inference in SVAR.

I first describe the data then present the analysis from both frequentist and Bayesian perspectives

to illustrate the benefits of my approach.

2.3.1 Data Description

The data are publicly available and are described in detail in Appendix B.3. Macroeco-

nomic time series are downloaded from FRED, while monetary policy instruments are collected

from Mark Watson and Yuriy Gorodnichenko’s website.9 The sample period is 1954Q3 to

2008Q4. Four quarterly time series are used: real GDP, real potential GDP, personal consumption

expenditures deflator (PCE deflator), and effective federal funds rate. The output gap is calculated

as the log difference between real and potential GDP, and the inflation rate is computed as the

Y/Y change of the PCE deflator. The instruments are similar to those in Stock & Watson (2012a);

they come from Romer & Romer (2004)’s narrative method, Smets & Wouters (2007)’s DSGE

model, and Sims & Zha (2006)’s Markov-Switching SVAR. Missing values of the instruments

are replaced with zeros as done in Romer & Romer (2004).

Figure 2.1 plots the macroeconomic aggregates and the instruments. It shows that both

macroeconomic variables and monetary policy instruments are less volatile after the 1980s, which

is consistent with Stock & Watson (2002)’s documentation of the Great Moderation. A dampening

in the volatility of monetary policy instruments is also consistent with Ramey (2016)’s observation
9As a robustness check, I also consider two other updated Romer-Romer monetary policy instruments from

Wieland & Yang (2015) The results are qualitatively the same.

71



that monetary policy has been conducted in a more systematic manner after 1980, and thus true

monetary policy surprises are hard to identify from the data.

Table 2.1 shows the summary statistics of the data, and Table 2.2 displays the pairwise

cross-correlation of the instruments. Table 2.2 paints a similar picture to that in Stock & Watson

(2012a), namely monetary policy instruments are not all highly correlated with each other. The

Romer-Romer instrument appears to be highly correlated with Sims-Zha instrument and less

correlated with that of Smets-Wouters. Although the correlations between instruments are not the

same as the correlations between their predictive shocks, their lack of correlation is suggestive

evidence that they might not identify the same shock. One possible explanation is that different

instruments capture different dimensions of monetary policy shocks, and another explanation

is that some of the instruments are contaminated by other contemporaneous shocks and hence

invalid. In the following investigation, I will assume that all three monetary policy instruments

identify the same monetary policy shock and use a sign-restricted SVAR model to study the latter

explanation.

Table 2.1: Summary statistics. This table shows the summary statistics of the variables in
the empirical application. Descriptions of the data and their availability are explained in the
text. There are 218 quarterly observations for each variable in the period between 1954Q3 and
2008Q4. The units are all in percentage points.

Summary statistics
Variables Mean Standard Deviations Minimum Maximum
Output gap -0.5 2.2 -7.6 5.5
Inflation rates 3.4 2.3 -0.2 10.9
Fed Funds rates 5.6 3.3 0.5 17.8
Romer-Romer monetary instrument 0.0 0.5 -4.1 2.5
Sims-Zha monetary instrument 0.0 2.4 -15.3 14.9
Smets-Wouters monetary instrument -0.2 0.9 -3.6 4.8
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Figure 2.1: Output gap, inflation, fed funds rates, together with Romer-Romer, Sims-Zha,
and Smets-Wouters instruments. Output gap is the log difference between real and potential
GDP, multiplied by 100. Inflation rate is the log difference between the Y/Y change of the PCE
deflator, multiplied by 100. Fed funds rates is the Effective Federal Funds Rate. Romer and
Romer’s instruments are the residuals from the regression between shocks constructed by the
narrative methods on the Fed’s Greenbook forecasts of output and inflation. Sims and Zha’s
instruments are shocks constructed from the VAR that includes Markov-Switching variances
and no time-varying parameters. Smets and Wouters’ instruments are interest rate shocks as
calculated from Smets and Wouters’ DSGE model. Shaded area indicates NBER recession
periods. More detailed descriptions and data sources are in Appendix B.3.
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Table 2.2: Cross-correlations: This table shows the cross-correlation of the instruments for
monetary policy shocks. Descriptions of the data and their availability are explained in the text.

Cross-correlations of the instruments (1954Q3-2008Q4)
Variables Romer-Romer instrument Sims-Zha instrument Smets-Wouters instrument

Romer-Romer instrument 1.00
Sims-Zha instrument 0.76 1.00
Smets-Wouters instrument 0.37 0.44 1.00

2.3.2 Proxy SVAR and tests of overidentifying restrictions

This section uses frequentist methods to analyze instrument relevance and validity. To

implement the Proxy SVAR, Stock & Watson (2018) recommend the following IV regression

yt = α0 +α1rt +b′xt−1 + εt

rt = γ0 + c′zt +d′xt−1 +ζt

where yt is the output gap, rt is the effective fed funds rate, zt =
(
z1t ,z2t , . . . ,zqt

)′ is a (q×1)

vector of monetary shocks instruments, and xt−1 =
(
y′t−1,y

′
t−2, . . . ,y

′
t−p
)′is a (k×1) vector of

lag variables in the VAR. Let ut =
(
us

t ,u
d
t ,u

m
t
)

denote the supply shock, the demand shock, and

the monetary policy shocks respectively. Stock & Watson (2018) show that we can consistently

estimate α1 and use it to study the dynamic causal effect of monetary policy shock on the output

gap under three assumptions

1. Instrument relevance: E(um
t zt) 6= 0

2. Instrument validity: E(us
t zt) = 0 and E

(
ud

t zt
)
= 0

3. Invertibility: vt = Qut where vt is the innovations in the reduced-form VAR and Q is a

(3×3) rotation matrix

Assumption (1) and (2) are standard assumptions in IV regressions to achieve consistency of the

estimator, while assumption (3) is required in the SVAR setting to ensure that α1 can be used
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to infer the dynamic effect of monetary policy shock. Intuitively, assumption (3) means that

monetary policy shocks can be recovered from the current and past information of the output gap,

inflation, and fed funds rate. Although Stock & Watson (2018) caution that invertibility might fail

when the variables in the VAR are not sufficient to account for the Fed information set or when

economic agents are forward-looking, Wolf (2018) shows that monetary policy shocks are nearly

invertible even for a standard three-variable VAR. In this application, I will only focus on (1) and

(2).

To analyze instrument relevance, I first estimate the above IV regression and let each in-

strument enter one by one. Table 2.3 reports the partial R-squared, F-statistics, heteroskedasticity-

robust F-statistics, and their corresponding p-values for all three instruments.10 Both the normal

and robust F-statistics are significantly higher than 10, and their p-values are indistinguishable

from zero. Thus, the empirical evidence suggests that all three instruments are strong. I note that

the first-stage F-statistics are higher than those found in Stock & Watson (2012a). One potential

explanation is that their study employs a Factor-SVAR model with more than 200 macroeconomic

time series whereas my model only has three time series.

Table 2.3: First-stage statistics in SVAR-IV model. This table shows the partial R-squared,
F-statistics, Robust F-statistics, and their corresponding p-values in the first-stage regression of
the SVAR-IV model. The p-values for both F-statistics and Robust F-statistics are both close to
0, thus I only show one column for both.

First-stage F-statistics for three different instruments (1954Q3-2008Q4)
Variables Partial R-squared F-statistics Robust F-statistics p-values

Romer-Romer shocks 0.37 119 19 0.00
Sims-Zha shocks 0.57 262 34 0.00
Smets-Wouters shocks 0.50 203 52 0.00

Next, I use tests of overidentifying restrictions to investigate the validity of the instruments.

I conduct two separate exercises. The first uses all three instruments at once, and the second

10The partial R-squared measures how much the variation in the dependent variable is explained by the variation
of the instruments excluded other exogenous variables.
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uses two instruments at a time. I use three different tests, which are developed by Sargan (1958),

Basmann (1960), and Wooldridge (1995). The first two tests assume that the error-terms are

i.i.d., whereas the last one controls for heteroskedastic errors. The null hypothesis is that all three

instruments are valid. Table 2.4 reports the test statistics and their corresponding p-values for the

first exercise. The Sargan’s score and the Basmann’s test deliver p-values that are close to zero,

while the Wooldrige’s score has a p-value around 6%. Hence, the overall results suggest that at

least one instrument is invalid.

Table 2.4: Test of overidentifying restrictions in SVAR-IV model-all three instruments.
This table shows the test statistics from three different tests of overidentifying restrictions:
Sargan (1958), Basmann (1960), and Wooldridge (1995), together with their corresponding
p-values.

Test of overidentifying restrictions-all three instruments
Test Statistics p-values

Sargan’s score 10.81 0.0045
Basmann’s test 10.53 0.0052
Wooldrige’s score 5.62 0.0601

Table 2.5 summarizes the results from the second exercise and sheds new light on the first

results. All three tests fail to reject the null hypothesis when the Romer-Romer and Sims-Zha

instruments are used together, however, they strongly reject for the other two cases. A failure to

reject in overidentifying-restriction tests does not imply that the instruments are valid but only

implies that the IV estimates from those instruments are similar to each other. Thus, the results

suggest that the Romer-Romer and Sims-Zha instruments deliver similar IV estimates, which are

different from those estimated by the Smets-Wouters instrument.

In summary, frequentist evidence reveals that all three instruments are strong but at least

one of them is not valid. However, they cannot say which instrument is valid and which one is not

because the null hypothesis that only one instrument is valid is untestable under the frequentist

paradigm.
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Table 2.5: Test of overidentifying restrictions in SVAR-IV model-two instruments. This
table shows the test statistics from three different tests of overidentifying restrictions: Sargan
(1958), Basmann (1960), and Wooldridge (1995), together with their corresponding p-values.

Test of overidentifying restrictions-two instruments
Romer-Romer/Sims-Zha Romer-Romer/Smets-Wouters Sims-Zha/Smets-Wouters

Test Statistics p-values Statistics p-values Statistics p-values

Sargan’s score 0.11 0.74 7.17 0.01 13.05 0.00
Basmann’s test 0.11 0.75 6.90 0.01 12.92 0.00
Wooldrige’s score 0.14 0.71 4.10 0.04 9.27 0.00

2.3.3 A Bayesian proxy SVAR of monetary policy

This section applies my Bayesian approach to investigate instrument relevance and validity.

I first introduce the trivariate system of monetary policy in Baumeister & Hamilton (2018) which

consists of the output gap, inflation, and nominal fed funds rate. Let yt be the output gap, πt

be the inflation rate, rt be the effective fed funds rate, zt be the monetary policy instrument (i.e.

Romer-Romer instrument, Sims-Zha instrument, or Smets-Wouters instrument), and xt−1 be

the vector of lag variables in the SVAR, the model is characterized by the following structural

equations

1) The Phillips curve:

yt = ks +α
s
πt +[bs]′ xt−1 +us

t (2.33)

2) The aggregate demand equation:

yt = kd +β
d
πt + γ

drt +
[
bd
]′

xt−1 +ud
t (2.34)

3) The Monetary Policy Rule:

rt = km +(1−ρ)ψ
yyt +(1−ρ)ψ

π
πt ++ρrt−1 +[bm]′ xt−1 +um

t (2.35)

I impose four sign restrictions on the structural parameters: (1) the Phillips curve is downward
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sloping (αs > 0), (2) raising interest rate will not stimulate aggregate demand
(
γd < 0

)
, (3) the

Fed will raise interest rate when the inflation rate is higher than its target(ψy > 0) or the output gap

is higher than its potential (ψπ > 0), and (4) the Fed wants to increase its interest rate smoothly

over time (0 < ρ < 1). I do not use any prior on the impact effect of monetary policy shocks

on those three variables because these effects should be identified by the instruments. Together,

equation (2.33), (2.34), and (2.35) constitute the baseline model M0 where the instrument is

irrelevant.

If one has an instrument for monetary policy shock, one can model the monetary policy

shock as

4) Monetary Policy shock:

um
t = χ

mzt +wm
t (2.36)

where χm measures the effect of the instrument on the monetary policy shock, and wm is the part

of the monetary policy shock that is orthogonal to the instrument as well as other shocks in the

system. Equation (2.33), (2.34), (2.35), and (2.36) constitute the first alternative model M1 where

the instrument is assumed to be valid.

Furthermore, if one has doubt about the validity of the instrument, one can investigate

that assumption by augmenting model M1 with two additional equations

5) Supply shock:

us
t = χ

szt +ws
t (2.37)

6) Demand shock:

ud
t = χ

dzt +wd
t (2.38)

where χs and χd measure the effects of the instruments on supply and demand shocks respectively.

If either χs or χd is different from zero, that will be evidence against instrument validity. The

shocks wm, ws, and wd are assumed to be orthogonal to each other as in the general formulation.

Thus, the model where the instrument is allowed to be invalid, M2, is summarized by six equations
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(2.33), (2.34), (2.35), (2.36), (2.37), and (2.38).

Priors for contemporaneous coefficients and shocks

This section discusses the priors for the contemporaneous parameters and the coefficients

in the monetary, supply, and demand shock equations. I assume that the structural parameters in

A,C are independent of each other. In particular, the priors are

1. Baseline model where the instruments are restricted to be irrelevant (M0):

P(A,C) = p(αs) p
(

β
d
)

p
(

γ
d
)

p(ψy) p(ψπ) p(ρ)

2. Model where the instrument is assumed to be valid and generally relevant (M1):

P(A,C) = p(αs) p
(

β
d
)

p
(

γ
d
)

p(ψy) p(ψπ) p(ρ) p(χm)

3. Model where the instrument is allowed to be invalid (M2):

P(A,C) = p(αs) p
(

β
d
)

p
(

γ
d
)

p(ψy) p(ψπ) p(ρ) p(χs) p
(

χ
d
)

p(χm)

I follow Baumeister & Hamilton (2018) in using additional prior information about elements of

A and do not repeat their motivations in this paper. My main innovation here is the specification

of the matrix C. I set the priors for all elements of C to be centered at zero with a small variance.

I use symmetric priors because it is hard to tell how the instruments will affect the structural

shocks before seeing the data. Also, because the main interest is whether those parameters are

different from zero, a tight prior centered at zero will help avoid the Bartlett-Jeffreys-Lindley’s

paradox (Jeffreys (1967), Lindley (1957), Bartlett (1957)). The phenomenon occurs when a sharp

null hypothesis is rejected by frequentist methods but nonetheless received a high posterior odds
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based on a Bayesian analysis with small prior probability for the null and diffuse prior for the

alternative. To avoid this apparent disagreement between frequentist and Bayesian approaches,

Kass & Raftery (1995) recommend using a proper prior with small scale for the tested parameter,

essentially ruling out the use of improper priors. In this application, I set the prior belief for χm

to be a student t distribution centered at 0 with scale 0.2 and 3 degrees of freedom in model M1.

This prior is proper, has a small variance, and allows for the possibility of a weak instrument.

Similarly, I use that same prior for all three parameters χs, χd , and χm in model M2. Thus, these

proper priors allow for the possibility of an invalid instrument.

Priors for the covariance matrix

This section describes the prior for B,D conditional on A,C. They are similar for all three

models. As in the general formulation, I set the prior belief for elements of the covariance matrix

to be independent from each other

P(D|A,C) =
3

∏
i=1

p
(

d−1
ii |A,C

)
where each of the element dii follows an inverse-Gamma distribution

p
(

d−1
ii |A,C

)
=


τ

κi
i

Γ(κi)

(
d−1

ii

)ki−1
exp
(
−τid−1

ii

)
for d−1

ii ≥ 0,

0 otherwise,

In this specification,
κi

τi
is the prior mean for d−1

ii , and
κi

τ2
i

is the prior variance. Since the prior of

the variances should reflect the scale of the data, I first fit three univariate AR(4) model to the

data

yt = β10 +∑
4
i=1 β1iyt−i + e1t

πt = β20 +∑
4
i=1 β2iπt−i + e2t

rt = β30 +∑
4
i=1 β3irt−i + e3t
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Then, I calculate the fitted residuals from those regressions: êt =

[
ê1t ê2t ê3t

]′
, and estimate

the sample covariance matrix:

Ŝ =
1
T

∑
T
t=1 êt ê′t

Finally, I set κi = 2 for all i, which gives my prior a weight that equals to four observations of the

data in the posterior. Next, I set the prior mean for d−1
ii to be the reciprocal of the ith diagonal

element of AŜA. In sum, the prior density for elements of the covariance matrix will be

p
(

d−1
ii |A,C

)
∼ Γ

(
2,2a′iŜai

)
Priors for the lag coefficients

I set the priors for the structural lag coefficients in such a way that the reduced-form lag

coefficients are consistent with a Minnesota prior. Specifically, the priors for lag coefficients are

assumed to be independent across equations

P(B|A,C,D) =
3

∏
i=1

P(bi|A,C,D)

where P(bi|A,C,D)∼N (mi,diiMi). For the mean, I set mi (α) = η′ai where η=

[
I3 03×10

]
.11

And for the covariance matrix Mi, let
√

sii be the estimated standard deviation of the AR(4) that

11Note that if the reduced-form lag coefficients (Φ) follow the Minnesota prior (meaning E(ΦΦΦ) = η). Then,
E(B|A) = E(AΦ|A) = AE(Φ|A) = ηA. Thus, if the prior for the reduced-form lag coefficients are the Minnesota
prior, then the prior for the lag coefficients in the structural model are normal with mean mi (α) = η′ai.
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fits to variable i. I define:

v′1 =
[

1
12λ1

1
22λ1

1
32λ1

1
42λ1

]
v′2 =

[
s−1

11 s−1
22 s−1

33

]

v3 = λ
2
0

v1v2

λ2
3


Then, Mi will be the diagonal matrix whose row r column r element is the rth element of v3:

Mi,rr = v3r. Intuitively, we are letting coefficients on higher lags to shrink to zero by setting

decreasing values for diagonal elements of Mi. The hyper-parameter λ0 captures how much

confidence we have in the prior. A higher value implies a higher variance and less confidence. The

hyper-parameter λ1 governs how quickly the coefficients shrink to zero. And the hyper-parameter

λ3 describes the confidence in the prior for the constant, the higher the value, the less confidence

we have. I set λ0 = 0.2 , λ1 = 1 , and λ3 = 100.

In addition, the third element of the monetary policy rule equation is expected to be close

to ρ. This prior information is captured using a prior for the third element of b3 as follows

ρ = I(3)13 b3 + v3 (2.39)

where v3 ∼ N (0,d33V3) and I(3)13 is the third row of I13. The variance parameter, V3, reflects the

strength of the belief in the sense that the smaller V3 is, the more likely that parameter is close to

ρ. In the application, I set V3 = 0.1. To estimate the model with this information, the new Ỹ3 and
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X̃3 are modified as

Ỹ3 =

[
a′3y1−χmz1 . . . a′3yT −χmzT m′3P3

ρ√
V3

]′
X̃3 =

[
x0 . . . xT−1 P3

I(3)13√
V3

]′

Tables 2.6, 2.7, 2.8 provide complete summaries for the priors of model M0, M1, and M2

respectively.

Table 2.6: Prior distributions of the baseline model (M0). This table shows the prior distri-
bution of A, D, and B together with their hyper-parameters. For Student t distributions, the
location parameter refers to the mode. For Beta, Gamma, and Normal distributions, the location
parameter is the mean and the scale parameter is the standard deviation.

Parameter Meaning Location Scale Skew Sign restriction
Priors for contemporaneous coefficients of A

Student t distribution with 3 degrees of freedom

αs Effect of π on supply 2 0.4 – αs ≥ 0
βd Effect of π on demand 0.75 0.4 – None
γd Effect of r on demand -1 0.4 – γd ≤ 0
ψy Fed response to y 0.5 0.4 – ψy ≥ 0
ψπ Fed response to π 1.5 0.4 – ψπ ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρ Interest rate smoothing 0.5 0.2 – 0≤ ρ≤ 1

Priors for structural variances D|A

Gamma distribution

d−1
ii Reciprocal of variance 1/

(
a′iŜai

)
) 1/

(√
2a′iŜai

)
– dii > 0

Priors for lag coefficients B|A,D

Normal distribution

bi Lagged coefficients of equation i η′ai
√

diiMi – None
In addition,
b33 Third element of monetary equation ρ

√
d33/10 – None
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Table 2.7: Prior distributions of the model with a relevant and valid instrument (M1). This
table shows the prior distribution of A, D, B, and C together with their hyper-parameters. For
Student t distributions, the location parameter refers to the mode. For Beta, Gamma, and
Normal distributions, the location parameter is the mean and the scale parameter is the standard
deviation.

Parameter Meaning Location Scale Skew Sign restriction
Priors for contemporaneous coefficients of A

Student t distribution with 3 degrees of freedom

αs Effect of π on supply 2 0.4 – αs ≥ 0
βd Effect of π on demand 0.75 0.4 – None
γd Effect of r on demand -1 0.4 – γd ≤ 0
ψy Fed response to y 0.5 0.4 – ψy ≥ 0
ψπ Fed response to π 1.5 0.4 – ψπ ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρ Interest rate smoothing 0.5 0.2 – 0≤ ρ≤ 1

Priors for coefficients of C

Student t distribution with 3 degrees of freedom

χm Effect of z on um 0 0.2 – None

Priors for structural variances D|A,C

Gamma distribution

d−1
ii Reciprocal of variance 1/

(
a′iŜai

)
) 1/

(√
2a′iŜai

)
– dii > 0

Priors for lag coefficients B|A,C,D

Normal distribution

bi Lagged coefficients of equation i η′ai
√

diiMi – None
In addition,
b33 Third element of monetary equation ρ

√
d33/10 – None

84



Table 2.8: Prior distributions of the model with a relevant but invalid instrument (M2).
This table shows the prior distribution of A, D, B, and C together with their hyper-parameters.
For Student t distributions, the location parameter refers to the mode. For Beta, Gamma, and
Normal distributions, the location parameter is the mean and the scale parameter is the standard
deviation.

Parameter Meaning Location Scale Skew Sign restriction
Priors for contemporaneous coefficients of A

Student t distribution with 3 degrees of freedom

αs Effect of π on supply 2 0.4 – αs ≥ 0
βd Effect of π on demand 0.75 0.4 – None
γd Effect of r on demand -1 0.4 – γd ≤ 0
ψy Fed response to y 0.5 0.4 – ψy ≥ 0
ψπ Fed response to π 1.5 0.4 – ψπ ≥ 0

Beta distribution with α = 2.6 and β = 2.6

ρ Interest rate smoothing 0.5 0.2 – 0≤ ρ≤ 1

Priors for coefficients of C

Student t distribution with 3 degrees of freedom

χs Effect of z on us 0 0.2 – None
χd Effect of z on ud 0 0.2 – None
χm Effect of z on um 0 0.2 – None

Priors for structural variances D|A,C

Gamma distribution

d−1
ii Reciprocal of variance 1/

(
a′iŜai

)
) 1/

(√
2a′iŜai

)
– dii > 0

Priors for lag coefficients B|A,C,D

Normal distribution

bi Lagged coefficients of equation i η′ai
√

diiMi – None
In addition,
b33 Third element of monetary equation ρ

√
d33/10 – None
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Estimation results for the baseline model

Combining the prior and the likelihood, the baseline model M0 is estimated by the

modified Baumeister-Hamilton algorithm, which is summarized in the proposition 1 above.12

Figure 2.2 displays the prior and posterior distributions of contemporaneous parameters of the

matrix A. For each panel, the red curves represent the prior, and the blue histograms represent the

posterior. The prior and posterior distributions of βd and ψy are significantly different, while they

are quite similar for the rest of the parameters, suggesting a lack of identification.

Figure 2.2: Prior and posterior distributions of contemporaneous structural parameters
of the baseline model (M0). This figure shows the prior and posterior distributions of contem-
poraneous structural parameters (i.e. elements of A matrix) of the baseline model (M0). The
prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2008Q4. The posterior distributions are approximated by the
Metropolis-Hasting algorithm with 2,000,000 draws and 1,000,000 burn-in samples.

Thus, the data are informative about the effect of inflation on aggregate demand (βd) and

the effect of the output gap on the fed funds rates (ψy), but they are uninformative about other

12In all of the applications, I simulate 2,000,000 draws by the Metropolis-Hasting algorithm and discard the first
1,000,000 draws in order to ensure convergence of the Markov Chain.
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structural parameters. In particular, the data suggest that higher inflation will reduce aggregate

demand and the Fed has a stronger reaction to a positive output gap than we initially believe.

The estimation results are mostly similar to those in Baumeister & Hamilton (2018), however,

they found a smaller effect of inflation rate on aggregate demand and a smoother policy reaction

function. The discrepancy can be explained by my different sample period that runs from 1954Q3

to 2008Q4 and includes the Volcker era of aggressive monetary policy and high inflation, while

Baumeister & Hamilton (2018) restrict their sample to the Great Moderation period.

Bayesian investigation of instrument relevance

To formally investigate instrument relevance, I estimate model M1 for each instrument

and compute the Bayes factor with respect to M0. Because the only difference between M0 and

M1 is the use of the instrument in the latter model, the odds ratio is the indication for instrument

relevance. Figures 2.3, 2.4, and 2.5 report the prior and posterior distributions of contemporaneous

structural parameters together with the one that captures instrument relevance (χm) for the Romer-

Romer, Sims-Zha, and Smets-Wouters instruments, respectively. In all those figures, the posterior

distributions of the parameter χm are far away from zero and more concentrated than the prior,

confirming that all three instruments are highly correlated with the monetary policy shock in the

baseline model M0.

Having a valid and relevant instrument also provides more identifying power to the models,

and in this case, the instruments provide more information about the effect of the interest rate

on aggregate demand (γd) and the inertia of the fed funds rate (ρ). In particular, the posterior

distributions of γd are more concentrated near zero, suggesting a negative but small effect of the

interest rate on aggregate demand. Also, the posterior distributions of ρ are more concentrated

around higher values, implying that the Fed does have a desire to implement gradual change in its

interest rate policy. This implication is different from that of the baseline model because most of

the interest rate volatility in the Volcker era is now captured by the instruments.
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Figure 2.3: Prior and posterior distributions of structural parameters of the alternative
model (M1) with the Romer-Romer instrument. This figure shows the prior and posterior
distributions of contemporaneous structural parameters and parameters associated with the
instrumental variable (i.e. elements of A,C matrices) of the alternative model where the
instrument is valid (M1). The instrument is the monetary policy shocks originally constructed
by Romer & Romer (2004) and updated by Coibion, Gorodnichenko, Kueng & Silvia (2017a).
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2008Q4. The posterior distributions are approximated by the
Metropolis-Hasting algorithm with 2,000,000 draws and 1,000,000 burn-in samples.
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Figure 2.4: Prior and posterior distributions of structural parameters of the alternative
model (M1) with the Sims-Zha instrument. This figure shows the prior and posterior distribu-
tions of contemporaneous structural parameters and parameters associated with the instrumental
variable (i.e. elements of A,C matrices) of the alternative model where the instrument is not
valid (M1). The instruments are the monetary policy shocks estimated from Sims & Zha (2006)’s
regime-switching SVAR and used in Stock & Watson (2012a). The prior distributions are the
red curves, and the posterior distributions are the blue histograms. The sample period is 1954Q3
to 2008Q4. The posterior distributions are approximated by the Metropolis-Hasting algorithm
with 2,000,000 draws and 1,000,000 burn-in samples.
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Figure 2.5: Prior and posterior distributions of structural parameters of the alternative
model (M1) with the Smets-Wouters instrument. This figure shows the prior and posterior
distributions of contemporaneous structural parameters and parameters associated with the
instrumental variable (i.e. elements of A,C matrices) of the alternative model where the
instrument is not valid (M1). The instruments are interest rate shocks estimated from the
medium-scale DSGE model of Smets & Wouters (2007) and used in Stock & Watson (2012a).
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2008Q4. The posterior distributions are approximated by the
Metropolis-Hasting algorithm with 2,000,000 draws and 1,000,000 burn-in samples.
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Table 2.9 reports the marginal likelihood of the baseline model M0, the alternative model

M1, and the test statistics. For each instrument, I calculate the marginal likelihood using four

different methods. In the first two methods, I use Geweke (1999)’s proposal, and in the remaining

two, I use Sims, Waggoner & Zha (2008)’s. Since both methods estimate the marginal likelihood

from the truncated posterior distributions, I follow Herbst & Schorfheide (2015) and use two

different levels of truncation, as represented by the value of the parameter τ. A value for τ of

0.5 means that we use 50% of the posterior draws and a value for τ of 0.9 means that we use

90% of the posterior draws. Table 2.9 shows that the estimates of the marginal likelihood and test

statistics are robust to different methods.

Table 2.9: Bayesian test for instrument relevance. This table shows the marginal likelihood
for the alternative and the baseline model, together with their difference. The baseline model,
M0, is the sign-restricted SVAR model estimated without using any external instrument, and the
alternative model, M1, is the sign-restricted SVAR model estimated with the instrument. Each
instrument is entered one by one into the model. ”Geweke” refers to the method proposed by
Geweke (1999), and ”SWZ” refers to the one proposed by Sims, Waggoner & Zha (2008). The
parameter τ specifies the level of truncation of the posterior distribution. A value for τ of 0.5
means that 50% of the posterior draws are used, and a value for τ of 0.9 means that 90% of the
posterior draws are used.

Test of instrument relevance-Bayesian approach
P(YT |ZT ,M0) P(YT |ZT ,M1) 2× (P(YT |ZT ,M1)−P(YT |ZT ,M0))

Romer-Romer instrument

Geweke (tau=0.5) -684 -662 44
Geweke (tau=0.9) -684 -662 45
SWZ (tau=0.5) -686 -664 45
SWZ (tau=0.9) -685 -663 44

Sims-Zha instrument

Geweke (tau=0.5) -684 -650 68
Geweke (tau=0.9) -684 -650 68
SWZ (tau=0.5) -686 -653 67
SWZ (tau=0.9) -685 -653 65

Smets-Wouters instrument

Geweke (tau=0.5) -684 -588 192
Geweke (tau=0.9) -684 -588 191
SWZ (tau=0.5) -686 -590 193
SWZ (tau=0.9) -685 -590 191
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How high does the Bayes factor have to be before we decide that model k is a better

description of the data than model k′? Jeffreys (1967) emphasizes that the Bayes factor is a guide

to decision making, thus its exact magnitude depends on the application. In some situations,

decision makers might want to see a very large number of the Bayes factor before they reject

the baseline model.13 Table 2.10 reports a modified version of Jeffrey’s guideline as presented

by Kass & Raftery (1995). It describes different values of the test statistics, their corresponding

Bayes factors, and the suggested interpretation. For ease of computation and comparison with the

frequentist likelihood ratios, the statistics are calculated as two times the log transformation of

the Bayes factor as shown in the first column of the table.

Table 2.10: Jeffrey’s criteria for model selection, originally proposed by Jeffreys (1967). I
use the modified version in Kass & Raftery (1995). The Bayes factor, Bk,k′ , is the ratio of the
marginal likelihood of the model Mk to the marginal likelihood of the model Mk′ . When the
prior belief is that the probabilities of the two models are equal, the Bayes factor is also their
odds ratio.

Jeffrey’s criteria
2log(Bk,k′) Bk,k′ Evidence against Mk′

0 to 2 1 to 3 Not worth more than a bare mentioning
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

According to Jeffreys’ criteria from Table 2.10, there is very strong evidence that the

instruments are relevant. For example, the test statistics for the Romer-Romer instrument are

in the range of 44-45. It means that if a researcher’s prior belief is that there is 50% chance

the instrument is relevance, after seeing the data, she will revise her odd of the instrument

being relevance to more than three billion to one. The test statistics for Sims-Zha’s instrument

and Smets-Wouters one have even higher values. These results are qualitatively similar to the

13”... (The Bayes factor) is not a physical magnitude. Its function is to grade the decisiveness of the evidence.
It makes little difference to the null hypothesis whether the odds are 10 to 1 or 100 to 1 against it, and in practice
no difference at all whether they are 104 or 1010 to 1 against it. In any case whatever alternative is most strongly
supported will be set up as the hypothesis for use until further notice.” (Jeffreys, 1967, Appendix B)
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frequentist evidence in Table 2.3, namely all the instruments are strong but the Romer-Romer one

is weaker than the others.

Bayesian investigation of instrument validity

To investigate instrument validity, I first estimate model M2, which is the model where both

relevance and validity of the instrument are in doubt. Figures 2.6, 2.7, and 2.8 report the prior and

posterior distributions for the contemporaneous structural parameters and those associated with the

Romer-Romer, Sims-Zha, and Smets-Wouters instrument, respectively. Posterior distributions for

χm are similar to those of M1, while those for χs and χd are different from their priors, suggesting

that the data are also informative about those parameters. Specifically, posterior distributions of

χs tend to concentrated around zero, and those of χd appear to have more mass in the positive

support. Thus, the analysis suggests that the instruments are likely to be invalid. Consequently,

they no longer provide as much identification power as before. Posterior distributions for ρ are

still concentrated around the interval 0.4 to 0.8, however, these of γd are no longer skewed toward

zero as much as those seen in the model M1.

The frequentist tests of overidentifying restrictions, previously reported in Table 2.4 and

Table 2.5, also suggest that at least one instrument is invalid, but they can’t tell which instrument

is valid and which one isn’t. The Bayesian approach, on the other hand, allows us to make

that determination. Table 2.11 reports the marginal likelihood for each model. The last column

of Table 2.11 shows the test statistics for different instruments. Here, the tests do have the

power to differentiate instruments based on their validity. For instance, the test statistics for the

Romer-Romer instrument is between 7 and 9 across all four methods, suggesting that there is

strong evidence that the Romer-Romer instrument is not valid. If a researcher has a prior belief

that there is 50% chance the instrument is invalid, after seeing the data, she has to revise the odds

of the instrument being invalid to about 50 to 1. Similarly, the test statistics for the Sims-Zha

instrument is between 4 and 7, and thus there is positive to strong evidence that the instrument
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Figure 2.6: Prior and posterior distributions of structural parameters of the alternative
model (M2) with the Romer-Romer instrument. This figure shows the prior and posterior
distributions of contemporaneous structural parameters and parameters associated with the
instrumental variable (i.e. elements of A,C matrices) of the alternative model where the
instrument is not valid (M2). The instruments are monetary policy shocks originally constructed
by Romer & Romer (2004) and updated by Coibion, Gorodnichenko, Kueng & Silvia (2017a).
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2008Q4. The posterior distributions are approximated by the
Metropolis-Hasting algorithm with 2,000,000 draws and 1,000,000 burn-in samples.
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Figure 2.7: Prior and posterior distributions of structural parameters of the alternative
model (M2) with the Sims-Zha instrument. This figure shows the prior and posterior distribu-
tions of contemporaneous structural parameters and parameters associated with the instrumental
variable (i.e. elements of A,C matrices) of the alternative model where the instrument is not
valid (M2). The instruments are the monetary policy shocks estimated from Sims & Zha (2006)’s
regime-switching SVAR and used in Stock & Watson (2012a). The prior distributions are the
red curves, and the posterior distributions are the blue histograms. The sample period is 1954Q3
to 2008Q4. The posterior distributions are approximated by the Metropolis-Hasting algorithm
with 2,000,000 draws and 1,000,000 burn-in samples.
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Figure 2.8: Prior and posterior distributions of structural parameters of the alternative
model (M2) with the Smets-Wouters instrument. This figure shows the prior and posterior
distributions of contemporaneous structural parameters and parameters associated with the
instrumental variable (i.e. elements of A,C matrices) of the alternative model where the
instrument is not valid (M2). The instruments are interest rate shocks estimated from the
medium-scale DSGE model of Smets & Wouters (2007) and used in Stock & Watson (2012a).
The prior distributions are the red curves, and the posterior distributions are the blue histograms.
The sample period is 1954Q3 to 2008Q4. The posterior distributions are approximated by the
Metropolis-Hasting algorithm with 2,000,000 draws and 1,000,000 burn-in samples.
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is not valid. On the other hand, the test statistics for the Smets-Wouters instrument suggest that

there is no significant evidence against the claim that the instrument is valid. Even if we use the

most conservative number from table 2.11, the posterior odd against the claim of validity is only

about 3 to 1. Therefore, the Bayesian approach suggests that the Romer-Romer and Sims-Zha

instruments are invalid, whereas the Smets-Wouters instrument is valid.

Table 2.11: Bayesian test for instrument validity: This table shows the marginal likelihood
for the alternative and the baseline model, together with their difference. The baseline model,
M1, is the sign-restricted SVAR model estimated with the external instrument entered the third
equation, and the alternative model, M2, is the sign-restricted SVAR model estimated with
the instrument entered all three equations. The test is performed for one instrument at a time.
”Geweke” refers to the method proposed by Geweke (1999), and ”SWZ” refers to the one
proposed by Sims, Waggoner & Zha (2008). The parameter τ specifies the level of truncation of
the posterior distribution. A value for τ of 0.5 means that 50% of the posterior draws are used,
and a value for τ of 0.9 means that 90% of the posterior draws are used.

Test of instrument validity-Bayesian approach
P(YT |ZT ,M1) P(YT |ZT ,M2) 2× (P(YT |ZT ,M2)−P(YT |ZT ,M1))

Romer-Romer instrument

Geweke (tau=0.5) -662 -659 7
Geweke (tau=0.9) -662 -658 7
SWZ (tau=0.5) -664 -660 9
SWZ (tau=0.9) -663 -659 8

Sims-Zha instrument

Geweke (tau=0.5) -650 -649 4
Geweke (tau=0.9) -650 -648 4
SWZ (tau=0.5) -653 -650 6
SWZ (tau=0.9) -653 -649 7

Smets-Wouters instrument

Geweke (tau=0.5) -588 -588 0
Geweke (tau=0.9) -588 -588 1
SWZ (tau=0.5) -590 -590 0
SWZ (tau=0.9) -590 -589 1
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2.3.4 Combining a relevant and valid instrument with sign restrictions

Replication of Romer and Romer (2004)’s specification

This section replicates the main regression in Romer & Romer (2004) to gain insight into

the instruments’ information content. One would expect that if the instruments have relevant

information about the response of the output gap in a simple regression, it will be useful for

identification in the sign-restricted SVAR. In their study, Romer & Romer (2004) use the following

regression with monthly data

∆yt = α0 +
11

∑
k=1

αkDk +
24

∑
i=1

βi∆yt−i +
36

∑
j=1

c jSt− j + et (2.40)

where y is the log of industrial production, D is monthly dummies, and S is the Romer-Romer

monetary policy shocks. In their specification, they assume that monetary policy instrument

doesn’t affect industrial production within a month. As pointed out in Hamilton (2017), equation

(2.40) is equivalent to a two-variable VARX(36) with restrictions on the lag parameters. Because

I have quarterly data, I will use a VARX(12) with restrictions on the lag parameters as follow
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(2.41)

where y is the output gap, D is the quarterly dummies, and S is the monetary policy instrument,

which is either that of Romer-Romer, Sims-Zha, or Smets-Wouters. For each instrument, I replace

missing values with zero as done in Romer & Romer (2004) and estimate equation (2.41) with

data from 1954Q3 to 2008Q4.

Figure 2.9 reports the SIRFs of output gap to one unit increase in the instruments together

with their corresponding 95% confidence interval.14 The patterns of response for all three

14Generally, one unit increase in the instrument doesn’t translate to one percentage point increase in the fed funds
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instruments are similar to that of Romer & Romer (2004), namely all SIRFs show a U-shape

response of output gap to a contractionary monetary policy shock.15 Thus, all three instruments

deliver evidence that contractionary monetary policy shocks reduce the output gap.

Figure 2.9: Replication of Romer-Romer (2004)’s regression with data from 1954Q3 to
2008Q4. This figure shows the impulse response function (IRF) of the output gap to one unit
increase of the monetary policy instrument together with their 95 percent confidence interval.
The three different monetary policy instruments are those of Romer & Romer (2004), Sims &
Zha (2006), and Smets & Wouters (2007).

However, there are still some significant differences in the SIRFs in Figure 2.9. The SIRF

estimated from the Smets-Wouters instrument suggests a faster response of output gap to interest

rate shock than those estimated from the Romer-Romer and Sims-Zha instruments. In particular,

the Smets-Wouters instrument implies a peak effect about one year after the shock, whereas those

implied from Romer-Romer and Sims-Zha happen about two years after the shock. Moreover,

rate. Nakamura & Steinsson (2018) makes a similar observation.
15Instruments of monetary policy shocks and fed funds rates are positively correlated. Thus, an increase in the

measures will be equivalent to a contractionary monetary policy shock.
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although the magnitudes of those SIRFs are quite similar, their confidence intervals are not the

same. Specifically, the SIRFs of Smets-Wouters and Sims-Zha instruments appear to be more

precisely estimated than that of the Romer-Romer instrument.

In summary, although the empirical results from different instruments are qualitatively

similar, there are still some significant differences regarding their practical implications. In light

of previous evidence about instrument validity, I will only consider the Smets-Wouters instrument

in the following section.16

Estimation results for the model with a relevant and valid instrument

In this section, I estimate model M1 with the Smets-Wouters instrument from 1954Q3 to

2008Q4. The SIRFs are then compared with the baseline model M0 where I don’t incorporate the

instrument. I report the median SIRFs together with their 95 percent credible set. Baumeister &

Hamilton (2018) shows that this is an optimal inference if one assumes an absolute-value loss

function regarding the SIRFs. Nonetheless, my credible set is not directly comparable to the

above results from Romer-Romer’s regression since their 95 percent confidence interval will tend

to be larger than the 95 percent credible set in models that are only set-identified.

Since the main interest is in the effect of a monetary policy shock, I first focus on the

results for the SIRFs of a contractionary monetary policy shock. Figure 2.5 shows the posteriors

of the sign-restricted SVAR with the Smets-Wouters instrument. Besides χm, γd is also identified

from the data since the posterior is highly concentrated around zero. To see the implication of

this result, recall that the contemporaneous matrix is

16I also perform a similar analysis for the period of the Great Moderation. The U-shape pattern disappears.
The evidence seems to depend mostly on the relationship between monetary policy and output before the Great
Moderation period. The plots of the instruments suggest that most of their variations come from the Paul Volcker
Era. These findings are similar to those of Coibion (2012), which found that the results of Romer & Romer (2004)
are sensitive to the inclusion of the nonborrowed reserve targeting, 1979-1982. As Ramey (2016) points out, the
consensus view is that monetary policy has been conducted more systematically in the recent period, thus pure
monetary policy shocks are harder to identify and most of what we classify as ”shocks” are just information effects
from the Fed.
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A =


1 −αS 0

1 −βd −γd

−(1−ρ)ψy −(1−ρ)ψπ 1


which implies that the matrix for impact effect is
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]
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where |A|= αs [1− γd (1−ρ)ψy]− [βd + γd (1−ρ)ψπ

]
. When γd = 0, this matrix becomes

A−1 =
1

αs−βd


−βd αs 0

−1 1 0

−(1−ρ)
(
ψπ +βdψy) (1−ρ)(ψπ +αsψy) αs−βd


In this case, a one unit increase of the monetary policy shock, um, increases the fed funds rate by

one percentage point upon impact and have no contemporaneous effect on output and inflation.

This implication is similar to the ”recursive assumptions” in the literature, which states that

monetary policy shock doesn’t affect the output gap and inflation contemporaneously.

The above implication is verified from Figure 2.10, which shows the SIRFs of the output

gap, inflation, and fed funds rate to a one unit increase of the monetary policy shock. This figure

shows that the estimated SIRFs from the sign-restricted SVAR with external instrument tend to

have a tight 95 percent credible sets, especially upon impact. Also, the impact effects on the

output gap and inflation are closer to zero than the baseline model as suggested by the above

derivation. The median SIRF shows that a contractionary monetary policy shock decreases the

output gap for about two years after impact with the trough effect is around -0.3 percent. Then, the
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effect gets smaller and completely dies out about five years after. Thus, the sign-restricted SVAR

with external instruments delivers a SIRF that has a similar shape to that of the Romer & Romer

(2004)’s regression in Figure 2.9. This dynamic is also found in previous empirical literature but

is different from that of Baumeister & Hamilton (2018)’s specification, which suggests a large,

negative effect upon impact and dies out gradually over the next three years.17

Figure 2.10: SIRFs of monetary shocks estimated with the Smets-Wouters instrument.
This figure shows the estimated SIRFs of the sign-restricted SVAR augmented with the Smets-
Wouters instrument together with that of the baseline model. The sample period is 1954Q3 to
2008Q4. The solid blue line is the median SIRF of the baseline model, and the dashed red line
is the median SIRF for the model augmented with the instrument. The shaded blue region is
the 95 percent credible set for the baseline model, and the shaded red region is the 95 percent
credible set for the model augmented with the instrument.

Figure 2.11 shows the full result of all the SIRFs. Besides SIRFs for the monetary policy

shock, I also show the SIRFs for the demand and supply shock. However, the results suggest that
17For example, Ramey (2016) studies the effect of monetary policy shock on industrial production using various

specifications and found similar dynamics across all specification when the sample includes earlier observations in
the 1970s. Her findings are shown in Figure 3.1, 3.2, and 3.3. She uses Christiano, Eichenbaum & Evans (1999)’s
model, Coibion (2012)’s model, Jordà (2005)’s local projection method, proxy SVAR with Romer-Romer instrument,
and proxy SVAR with high-frequency identification as in Gertler & Karadi (2015).
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the instrument is not useful for shrinking down the identified set of these two shocks. The most

significant difference is in the SIRF of inflation in response to the demand shock, in which the

augmented model suggests a stronger response of inflation relative to that of the baseline model.

This result is not surprising since the instrument is designed for monetary policy shock, and the

previous identification analysis suggests that this instrument only provides information about the

SIRFs of the monetary policy shock.

Figure 2.11: SIRFs comparison between the sign-restricted SVAR augmented with Smets-
Wouters instrument and the baseline model. This figure shows the estimated SIRFs of the
sign-restricted SVAR augmented with the Smets-Wouters instrument together with those of the
baseline model. The sample period is 1954Q3 to 2008Q4. The solid blue line is the median SIRF
of the baseline model, and the dashed red line is the median SIRF for the model augmented with
the instrument. The shaded blue region is the 95 percent credible set for the baseline model, and
the shaded red region is the 95 percent credible set for the model augmented with the instrument.

In summary, the analysis shows that my method can incorporate information from a

relevant and valid instrument to improve inference of the dynamic causal effects. In this example,

I use the instrument to identify the SIRFs of the monetary policy shocks, and I use the sign
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restrictions to identify the SIRFs of the supply and demand shocks. My results for the SIRFs of

the monetary policy shock are qualitatively similar to those from the frequentist procedure in

Romer & Romer (2004).

2.4 Conclusion

Identifying dynamic causal effects by external instruments is increasingly popular in

empirical macroeconomics. However, its key identifying assumption, instrument validity, is either

untestable in a just-identified model or fails to hold in some special cases when it is formally

tested. Conventionally, researchers often defend that assumption by relying on ad hoc arguments

to say that their instruments are ”plausibly exogenous”, but without a formal method to analyze

instrument validity, they are simply advocating to replace incredible identification assumptions

with untestable ones. The problem arises because existing econometric techniques cannot evaluate

the validity assumption in a just-identified model nor can they say much about the validity of any

particular instrument in an over-identified model. This paper aims to fill that gap.

I propose to use identifying assumptions from a sign-restricted SVAR as a benchmark to

evaluate the underlying assumptions of the instrument. I first generalize the sign-restricted SVAR

model developed by Baumeister & Hamilton (2015) to incorporate instrumental variables. Then, I

show that my framework enables researchers to formally investigate the instrument relevance and

validity assumptions by incorporating information from both theory and the empirical literature.

In addition, my framework can combine information from relevant and valid instruments to

improve inference in sign-restricted SVAR models. This latter contribution is of interest to

practitioners who want to incorporate sign restrictions into a Proxy SVAR.

In the empirical application, I use the sign-restricted SVAR model of Baumeister &

Hamilton (2018) to investigate the relevance and validity assumptions of three popular instruments

for monetary shocks, proposed by Romer & Romer (2004), Sims & Zha (2006), and Smets &
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Wouters (2007). My method not only replicates results from standard frequentist procedures,

namely that the instruments are strong but all of them might not be valid, but it also differentiates

valid from invalid instruments. In particular, I conclude that the Smets-Wouters instrument

is valid, while the other two are not. Moreover, when the instrument is strong and valid, the

framework delivers improved inferences for the SIRFs. I find that the SIRFs of the output gap

follow a U-shape pattern in response to a contractionary monetary policy shock, and the effect

reaches its maximum about one year after the shock then persists in the next four years. This

finding is largely in line with the previous literature using external instruments, suggesting that

my framework can incorporate information efficiently in practice.
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Chapter 3

High-dimensional models and imperfect

identifying information

Abstract

Current development in high-dimensional statistics fails to address the main interest of

economists: causal inference with credible assumptions. I first review the literature on high-

dimensional linear regression models and dynamic factor models. Then, I develop several new

Bayesian numerical algorithms that combine the techniques in high-dimensional statistics with

recent advances in dynamic causal inference. In particular, I discuss how to make causal state-

ments from a high-dimensional structural model when researchers have doubts about identifying

assumptions. Finally, I extend those algorithms to the case of Markov-switching models to

accommodate nonlinearities in economic time series.
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3.1 Introduction

Fueled by recent innovations in computing and data collection, empirical macroeconomists

are increasingly interested in new methods that can work with large data set, also known as ”Big

Data” (Hamilton (2006), Varian (2014), Ng (2017)). Examples of those data include disaggregated

time series at the national level (McCracken & Ng (2016)), panel data across countries (Koop

(2017)), and large data set from financial markets (Heaton, Polson & Witte (2016)). Economists

are attracted to high-dimensional models with Big Data because they offer several advantages

over traditional low-dimensional ones. First, they help reduce the omitted variable bias and model

misspecifications in both forecasting and causal inference (Stock & Watson (2016)). Second,

they validate economic theories that suggest most macroeconomic variables are driven by a few

structural shocks (Sargent & Sims (1977)). Third, they improve the quality of real-time forecasts

that aid the decision-making processes (Bańbura, Giannone, Modugno & Reichlin (2013)).

Despite the rise in popularity of Big Data, critics argue that their proponents have neglected

the most important problem in economics: the identification problem. Economists always need

identifying assumptions to convert observed correlations to causal relationship (Ramey (2016)).

To that end, Big-Data practitioners often argue that they have solved that problem by using a

large set of controlled variables, but critics, such as Charles Manski, are quick to point out that

conditional exogeneity is hardly a convincing assumption (Tamer (2019)). Unfortunately, this

serious matter receives little attention and most recent contributions in the macro time-series

literature has instead focused on forecasting (Diebold, Ghysels, Mykland & Zhang (2019)).

The main contribution of this paper is to show how credible and robust causal inference is

achieved by combining development in high-dimensional statistics with state-of-the-art identi-

fication strategies from economics. In particular, I develop several new Markov Chain Monte

Carlo (MCMC) algorithms that could transparently incorporate both the identifying assumptions

and researchers’ doubt in a high-dimensional structural model, including both the structural
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vector autoregression (SVAR) and the structural dynamic factor model (SDFM). This identifying

framework, developed by Baumeister & Hamilton (2015), has been shown to be a strict gener-

alization of many conventional identification methods, and this paper is the first to implement

it in the high-dimensional settings. Compared to the previous literature, such as Del Negro

& Otrok (2007) and Amir-Ahmadi & Uhlig (2015), my procedure transparently incorporates

priors and sign restrictions without using draws from the uniform Haar distribution to rotate

the reduced-form covariance matrix, a practice known to impose implicit priors on the dynamic

causal effects (Baumeister & Hamilton (2018), Baumeister & Hamilton (2019), and Watson

(2019)).

The rest of this paper is organized as follows. Section 3.2 surveys the literature on

high-dimensional linear regression models. Section 3.3 reviews the literature on dynamic factor

models. Both sections focus on the Bayesian perspective. Then, section 3.4 presents several new

MCMC algorithm to estimate high-dimensional structural models identified by sign restrictions,

both linear and nonlinear ones. Section 3.5 concludes with directions for future research.

3.2 Review of high-dimensional linear regression models

One popular method to work with Big Data is to use a high-dimensional linear regression

model. The literature is rising with many notable contributions, for instance De Mol, Giannone &

Reichlin (2008), Bańbura, Giannone & Reichlin (2010), Giannone, Lenza & Primiceri (2015),

Giannone, Lenza & Primiceri (2017), and Korobilis & Pettenuzzo (2019). The main idea is to

develop priors that induce some forms of shrinkage on the coefficients with preferences given to

those that are computationally convenient and satisfy certain optimal criteria.

Model description. To fix ideas, we will consider a typical high-dimensional linear
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regression model

y = Xθθθ+ εεε (3.1)

εεε∼ N
(
0,σ2I

)
(3.2)

where y and εεε are (T ×1) vectors of observed variables and innovations. X is an (T × k) vector

of independent variables, θθθ is an (k×1) vector of coefficients, σ2 is the variance. Since we are

dealing with a high-dimensional linear regression model, we have k >> T .

A Bayesian’s goal is to either analytically characterize or numerically simulate from the

posterior distribution, which is proportional to the product of the prior and the likelihood by

Bayes’ rule. The choice of the Gaussian likelihood in (3.2) is generally uncontroversial and can

be easily extended to the case of a fatter tail distribution such as the Student t distribution. Hence,

most of the current research has focused on the choice of the priors for the high-dimensional

vector of coefficients θθθ in (3.1). I discuss next some of the popular choices for those priors.

Normal prior. One conventional prior for a linear regression model is the normal prior

θθθ∼ N
(
θ̄, Σ̄ΣΣ
)

where θ̄ and Σ̄ΣΣ are the prior means and covariance matrix. Researchers use those hyperparameters

to incorporate additional information to improve the model’s forecasting performance. For

example, in a time-series setting, the so-called Minnesota prior of Litterman (1986) and Doan,

Litterman & Sims (1984) shrinks the coefficients of the model toward random-walk behavior.

Because this prior is a natural conjugate prior for the normal likelihood, the posterior distribution

is analytically characterized and easy to simulate from. Bańbura, Giannone & Reichlin (2010)

leverage this advantage and use a version of the Minnesota prior to estimate a large VAR with up

to 131 variables. Nevertheless, in high-dimensional settings, researchers often don’t have enough

information about the relationship between various predictors to impose reasonable constraints
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and shrinkage. Hence, users of this prior often end up with models that have high posterior

variances and deteriorated forecasting power. To address this problem, Giannone, Lenza &

Primiceri (2015) suggest an empirical Bayes approach to estimate the shrinkage hyperparameters,

but they have only tested their method with a medium-scale VAR with 22 variables. Thus, it is

still unclear whether practitioners can successfully use this class of prior in high-dimensional

settings.

Spike-and-slab prior. Mitchell & Beauchamp (1988) develop one of the earliest and

most influential priors in the literature: the spike-and-slab prior. They suggest to use a mixture

prior to represent the belief that the model parameter can either be zero (spike) or come from

some proper distributions (slab). Assuming that the parameters are independent a priori, the prior

can be written as

θθθ∼
k

∏
i=1

(pi×δ0 (θi)+(1− pi) f (θi))

where pi is the probability that the parameter θi is zero, δ0 (.) is the Dirac Delta function, and

f (.) can be an arbitrary probability distribution. Depending on the applications, researchers often

vary on their choices of f (.). For example, Mitchell & Beauchamp (1988) originally propose to

use the uniform distribution, while Giannone, Lenza & Primiceri (2017) recently suggest to use

the normal distribution. Despite the intuitive appeal of the prior, the Dirac Delta function makes

it challenging to compute the posterior in high-dimensional models.

Stochastic search variable selection (SSVS) prior. George & McCulloch (1993) sug-

gest the SSVS prior as a replacement for the computationally challenging spike-and-slab prior.

Their idea is that a normal distribution centered at zero with a small variance is a good approx-

imation for the Diract Delta function, and hence, they recommend to use a mixture of normal

distributions: one with small and one with large variance. The prior can be written in the
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hierarchical form as

θθθ∼
k

∏
i=1

(
γi×N

(
0,τ2

i
)
+(1− γi)N

(
0,c2

i τ
2
i
))

γi ∼ Bernoulli(pi)

This hierarchical representation of the prior facilitates the use of the Gibbs sampler, and thus

gives it advantage over the spike-and-slab prior. Researchers mostly embrace the feature that

variable selection is done automatically and they have extend the SSVS priors to a wide range of

settings. For instance, Korobilis (2013) develops Gibbs samplers to estimate high-dimensional

linear and nonlinear VAR with SSVS prior, and Jochmann, Koop & Strachan (2010) apply this

prior to a high-dimensional VAR whose parameters subjected to unknown number of structural

breaks. Nevertheless, the most serious setback of this approach is that there is no guarantee the

sampler has visited every possible model specifications. Indeed, as the dimension (k) of the model

increases, the number of possible models (i.e. 2k) quickly exceeds the number of draws that can

practically be done. This fact raises questions about attempt to use this prior to select a correct

structural VAR without any additional economic information as in George, Sun & Ni (2008).

LASSO prior. Motivated by the popularity of the LASSO introduced by Tibshirani

(1996), Park & Casella (2008) propose mixture distributions of normal and exponential priors.

The resulting priors on the coefficients are Laplace distributions, which are equivalent to the

LASSO’s L1 penalty on the likelihood function. The joint prior is written as

p(θθθ) =
k

∏
i=1

p(θi)

θi|τ2
i ,σ

2 ∼ N
(
0,τ2

i σ
2)

τ
2
i |λ∼ exp

(
λ2

2

)

Similarly to that of the SSVS prior, the posterior distribution of the LASSO prior can be easily
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simulated from a Gibbs sampler. In addition, the Bayesian approach automatically provides

finite sample characterization of the parameters and other quantities of interest. Belmonte, Koop

& Korobilis (2014) extend this prior to time-varying parameter models and find successes in

forecasting EU Area’s inflation. However, when the predictors are highly collinear, the LASSO

tends to produce poor predictions, which are dominated by those of ridge regression even in the

low-dimensional settings.

Elastic net prior. To deal with the shortcomings of the LASSO, Zou & Hastie (2005)

introduce the elastic net method. The elastic net penalty is basically a combination of the LASSO

L1-penalty and the ridge-regression L2-penalty. Although the elastic net is originally proposed as

a frequentist method, its Bayesian counterpart and the corresponding Gibbs sampler have been

developed by Li, Lin, et al. (2010). In particular, the elastic net prior is

p(θθθ) =
k

∏
i=1

p(θi)

θi|τi,σ
2 ∼ N

(
0,
(

λ2

σ2
τi

τi−1

)−1
)

τi|σ2 ∼ T G
(

1
2
,
8λ2σ2

λ2
1

,(1,∞)

)
σ

2 ∼ 1
σ2

where λ1 and λ2 are the user-specified hyper-parameters, and T G(., .,(1,∞)) is the truncated

Gamma distribution with support over (1,∞).

Horseshoe prior. Most shrinkage priors, such as the LASSO prior, aim to reduce the noise

in the data by shrinking all coefficients to zero. However, by having only one hyperparameter that

controls the amount of shrinkage, they often miss out on large signals. To strike a balance in this

trade-off, Carvalho, Polson & Scott (2010) introduce a new prior that can efficiently separate the
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signal from the noise. This prior, also known as the horseshoe prior, is written as

p(θθθ) =
k

∏
i=1

p(θi)

θi|λi,τ∼ N
(
0,τ2

λ
2
i
)

τ∼C+ (0,1)

λi ∼C+ (0,1)

where C+ (0,1) is the half-Cauchy prior, whose support is the positive real line, with location

parameter 0 and scale parameter 1. The parameter τ controls the global shrinkage of all the

coefficients toward zero, whereas λi allows any local signal from the ith observation to be

captured efficiently. A clear advantage of this prior is that there is no need for user-specified

hyperparameters. Moreoever, as documented in Polson & Scott (2010), Polson & Sokolov (2019),

Bhadra, Datta, Polson & Willard (2019), and Bhadra, Datta, Polson & Willard (2016), this

state-of-the-art prior enjoys many optimal theoretical properties and outperforms the LASSO in

many instances. Notwithstanding, its application in economics is still limited with mixed results.

In terms of forecasting, Follett & Yu (2019) develops a Gibbs sampler to implement this prior in

a high-dimensional VAR and find favorable results, while Cross, Hou & Poon (2020) argue that

this prior is no better than the conventional Minnesota prior or SSVS prior.

3.2.1 Prior evaluation

With a plethora of possible prior choices, how could one choose between different priors?

Prior choice is important in high-dimensional Bayesian statistics since it will have significant

effects on the posterior. There are two concerns: first, the effect of priors might not be washed

away even with infinite amount of data (Ghosal & Van der Vaart (2017)), and second, seemingly

objective priors on the parameters might be highly informative on their nonlinear transformations
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which are the objects of interest (Efron (1973)). Current research has tried to come up with new

priors that resolve those two problems.

To deal with the first concern, researchers have often evaluated priors based on frequentist

criteria such as posterior consistency, the ability of the posterior to concentrate its mass in the

true model asymptotically. For example, Sparks, Khare & Ghosh (2015) provide necessary

and sufficient conditions for the posterior consistency under different g-priors, while Ghosh,

Khare & Michailidis (2019) investigate regularity conditions for posterior consistency of a high-

dimensional Bayesian VAR model. Polson & Scott (2010) review many popular global-local

shrinkage priors, and they introduce a new asymptotic framework to facilitate their comparisons.

Researchers have also used other criteria such as risk and rate of convergence (Castillo, Schmidt-

Hieber & Van der Vaart (2015), van der Pas, Szabó & van der Vaart (2017)). Nevertheless, many

Bayesians still find it unsatisfying to evaluate a Bayesian procedure with frequentist criteria

(Consonni, Fouskakis, Liseo & Ntzoufras (2018)).

For economists who are interested in causal inference, the second concern is more serious

because it implies that there might be implicit assumptions the users are not aware of. Ideally,

one wants to rely on economic theory and empirical literature to guide one’s prior, but it is hard to

incorporate economic theory in high-dimensional settings. The issue of objective priors for low-

dimensional models have been studied extensively and reviewed in many papers (Berger, Pericchi,

Ghosh, Samanta, De Santis, Berger & Pericchi (2001)), however, there is still limited research

for sparsity-induced priors in high dimensional models. Bernardo, Bayarri, Berger, Dawid,

Heckerman, Smith & West (2003), Ghosh (2011), Consonni, Fouskakis, Liseo & Ntzoufras

(2018), and Polson & Scott (2010) are some of the attempts to come up with different criteria

for a ”good” prior. Currently, the most promising approach seems to be the horseshoe prior of

Carvalho, Chang, Lucas, Nevins, Wang & West (2008). The horseshoe prior not only does a good

job at separating signal from the noise, it also has a special property known as ”regular variation”,

which is preserved under nonlinear transformation (Bhadra, Datta, Polson & Willard (2016)).
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Hence, the horseshoe priors can be said to be ”non-informative” in both the original parameters

and their nonlinear transformations, which are the objects of interest.

3.2.2 Posterior computation

Given the choice of priors, how could one compute the posterior distributions? For

most of the priors introduced previously, researchers can efficiently simulate from the posterior

distributions with the help of the Gibbs sampler. However, computation is always a challenge

in high-dimensional setting. In general, researchers need to use numerical methods such as

MCMC, Sequential Monte Carlo (SMC), Approximate Bayesian Computation (ABC), variational

inference, or some combinations of them. The disadvantage of these methods is that they are

difficult to implement in large models, or in other words, they are not scalable.

To facilitate computation, current research tries to impose specific structure into either the

models or the priors so that the computation can be simplified without adversely affecting the

quality of the inference. The preference is either for priors that results in posteriors that can be

characterized analytically or can be approximated by simpler distributions. For example, Bańbura,

Giannone & Reichlin (2010) suggest to use the Minnesota priors because the posterior can be

characterized analytically. Koop, Korobilis & Pettenuzzo (2019) survey many papers where

researchers impose particular structure on the covariance matrices to simplify the computation.

West (2013) advocates forgetting factors as a way to use natural-conjugate analysis in nonlinear

models. The advantage of these proposals are that they are more computationally efficient,

however, those methods can only accommodate specific kinds of priors. In addition, researchers

should be aware that certain techniques might impose implicit causal orders among the variables.

For example, the popular decouple/recouple technique of West (2020) in high-dimensional time-

varying parameter models is basically equivalent to the ”recursive assumption” which is widely

criticized in economics (Ramey (2016), Nakamura & Steinsson (2018), Bognanni (2018)).
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3.2.3 Empirical findings

Empirically, Bayesian shrinkage methods are shown to perform just as well as their

frequentist counterparts and competing methods. For example, Park & Casella (2008) and Li,

Lin, et al. (2010) show that the Bayesian LASSO and the Bayesian Elastic Net have similar

performance as their frequentist counterparts when they are applied to real data. Using economic

data, Bańbura, Giannone & Reichlin (2010) shows that a large Bayesian VAR with the Minnesota

prior outperforms the FAVAR in forcasting. De Mol, Giannone & Reichlin (2008) provide further

empirical evidence to show that Bayesian shrinkage methods with ridge-regression and LASSO

penalty perform similarly to the Principal Component analysis. Those authors argue that their

results are due to the fact that most macroeconomic time series are collinear, and hence, a few

time series are good enough to capture most variation in the data.

3.3 Review of dynamic factor models

One serious criticism against the use of sparse high-dimensional linear regression models

in economics is that they lack economic foundation. Critics have pointed out that economic

theories generally do not support the assumption of sparsity (Giannone, Lenza & Primiceri

(2017), Stock & Watson (2018), Tamer (2019)). Instead, economic theories often imply that

most economic variables are moved by a few common shocks (Sargent & Sims (1977)), and

hence dynamic factor models (DFM) are usually preferred as a tool for Big Data analysis.

Most important, DFMs can easily accommodate many identification strategies used in lower-

dimensional VAR (Stock & Watson (2016)). Bai & Ng (2008), Stock & Watson (2011), and Stock

& Watson (2016) already survey the literature from the frequentist perspectives comprehensively,

thus I will focus on the Bayesian literature in this section.
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3.3.1 Motivation for dynamic factor models

Dynamic factor models are introduced to the economic literature by Geweke (1977) and

Sargent & Sims (1977). Its central idea is to use a factor structure to reduce the dimension of high-

dimensional parameters, which could be either regression coefficients or elements of covariance

matrices. Otrok & Whiteman (1998) provides the first Bayesian treatment in economics, and

since then, economists have applied the technique to a wide variety of settings, including the

study of the housing market (Del Negro & Otrok (2007)), coincident index for economic activity

(Stock & Watson (1991)), international business cycle (Del Negro & Otrok (2008), Kose, Otrok

& Whiteman (2003), Crucini, Kose & Otrok (2011)), and various financial applications (Aguilar

& West (2000), Omori, Chib, Shephard & Nakajima (2007)). An important special case of DFM

is the factor-augmented VAR (FAVAR) models developed by Bernanke, Boivin & Eliasz (2005).

This class of model generates a large literature on its own with many interesting applications. For

example, Amir-Ahmadi & Uhlig (2009) and Amir-Ahmadi & Uhlig (2015) use FAVAR models

identified by sign restrictions to study the effect of monetary policy shocks.

Practitioners also prefer DFMs over other approaches because economic relations change

over time and they can leverage the large, well-developed literature on nonlinear DFMs. For

instance, Kim & Nelson (1999) develop algorithms to estimate Markov-switching state space

model, while Aguilar & West (2000), Kastner, Frühwirth-Schnatter & Lopes (2014)) and Kast-

ner, Frühwirth-Schnatter & Lopes (2017) examine models with stochastic volatility. Other

innovations include dynamic graphical and matrix models (Carvalho & West (2007), Carvalho,

West & Bernardo, 2007, Wang & West (2009)), dynamic matrix models for stochastic volatility

(Fox & West (2011)), time-varying sparsity modelling (Nakajima & West (2012), Nakajima &

West, 2013), and nonlinear dynamical system (Bonassi, You & West (2011)). West (2013) and

Gamerman & Salazar (2013) provide a comprehensive review on the subject.

Why should economists pay attention to Bayesian analysis of dynamic factor models

given the well-developed frequentist literature? The answer is that Bayesian methods (1) provide
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more accurate characterization of statistical uncertainty, (2) can be extended easily to incorporate

nonlinearity, and (3) can incorporate many state-of-the-art identification strategy as shown in

the next section. To elaborate on the first point, frequentist estimation of DFMs often follows a

two-step process, and hence it is subject to the generated-regressor problem. On the other hand,

Bayesian approaches simulate the joint distribution of both the factors and the parameters, thus

providing better characterization of statistical uncertainty. Second, the two-step process cannot

be extended to nonlinear models such as time-varying parameter models and Markov-switching

models. In these settings, the factors estimated from the first step are no longer consistent, and

it is unclear how to to extend the two-step process to accommodate for nonlinearity. It is not a

problem for Bayesian analysis as can be seen in the large Bayesian literature in time-varying

parameter models with stochastic volatility and Markov-switching state-space models.

3.3.2 Econometric issues of dynamic factor models

To fix idea, suppose the dynamic of the data can be summarized by the following state-

space representation

Yt = ΛΛΛFt + εεεt (3.3)

Ft = ΦΦΦFt−1 +vt (3.4)

εεεt ∼ N (0,C) (3.5)

vt ∼ N (0,ΩΩΩ) (3.6)

E
(
εεεtvvv′s

)
= 0 ∀t,s (3.7)

In the measurement equation (3.3), Yt is a high-dimensional (k×1) vector of observed macroe-

conomic time series. εεεt is a high-dimensional (k×1) vector which represents either measurement

errors or idiosyncratic shocks to each time series. Ft is a (r×1) low-dimensional vector which

might consists of either unobserved factors or some elements of the observed time series and
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unobserved factors. ΛΛΛ is a (k× r) matrix of factor loading. And finally, C is a (r× r) covariance

matrices. In the transition/state equation (3.4), ΦΦΦ is an (r× r) matrix that governs the dynamic of

the factors, and ΩΩΩ is an (r× r) covariance matrix.

Given this model, two important questions in the literature are (1) how to choose the

number of factor and how to estimate the model. The frequentist treatment of dynamic factor

models and more generally state-space models are thoroughly reviewed in Hamilton (1994a),

Hamilton (1994b), Durbin & Koopman (2012) and Stock & Watson (2016), thus I will focus on

Bayesian methods.

First, from the Bayesian perspective, the most popular technique to determine number

of factors would be to use Bayesian model comparisons between models with different factors.

More advance techniques include the use of Reversible Jump MCMC (Green (1995)), bridge

sampling (Meng & Wong (1996))), and variable selection priors (George & McCulloch (1993)).

Applications of such techniques can be seen in Carvalho, Chang, Lucas, Nevins, Wang & West

(2008) and Frühwirth-Schnatter & Lopes (2010).

Second, to estimate the model, most Bayesians use MCMC methods such as the Gibbs

sampler. Gibbs sampling is convenient in this application because of two facts: (1) conditioning

on the factors, both the measurement and transition equations are linear and can be dealt with

easily using standard methods, and (2) conditioning on all model parameters, the distribution

of the factors can be computed using the Kalman filter. Researchers often vary on how to do

each step. For example, to sample the hidden factors, Carlin, Polson & Stoffer (1992) introduce

single-move Gibbs sampling, while Carter & Kohn (1994) propose multi-move Gibbs sampling

where they make use of the joint distribution of all the factors. Another problem with the Gibbs

sampling in this kind of model is that the factors and the factor loadings are sometime highly

correlated, which leads to an inefficient sampler. To deal with this problem, Simpson, Niemi

& Roy (2017) use the insight from Yu & Meng (2011) and develop a technique to increase the

efficiency of MCMC algorithm in factor models.
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Finally, Bayesian methods can be extended easily to deal with nonlinearity. Although there

are some sophisticated models where researchers have to use some computationally intensive

methods such as SMC and ABC, MCMC is still sufficient for most models. For example, the

Gibbs sampler for Markov-switching state space model of Kim, Shephard & Chib (1998) only

has one additional step: first, we sample the discrete hidden states with the help of the Hamilton

filter; then, conditioning on the hidden states, the rest of the unknown parameters and factors can

be simulated as in the linear cases. MCMC methods for time-varying parameters models with

stochastic volatility are discussed extensively in Chib, Nardari & Shephard (2002), Chib, Nardari

& Shephard (2006), Frühwirth-Schnatter (2006), Shephard (1994).

3.4 Algorithms for sign-restricted models in a data-rich envi-

ronment

Recent advances in high-dimensional statistics have focused on reduced-form models for

the purpose of improving forecasting performance, but economists are mostly interested in causal

inference. To go from a reduced-form models to a structural model, economists need identifying

assumptions. Practitioners of Big Data’s techniques often rely on the conditional exogeneity or

recursive assumptions, but those are rarely convincing assumptions in economics.

In this section, I show how researchers can combine state-of-the-art identification strategies

and recent advances in the high-dimensional statistic literature for the purpose of causal inference

in a high-dimensional settings. The good news is that most of the identification strategy from

economists can be extended to the case of high-dimensional settings with little modifications. The

key insight is to bypass the reduced-form representation of the data and use Bayesian methods to

work directly with the structural models as advocated by Baumeister & Hamilton (2015).

The most straightforward method to incorporate Big Data into a structural model is the

two-step processes described by Stock & Watson (2016): first, we use Principal Component
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analysis to estimate some factors that summarize essential features of the data, then, we treat the

estimated factors as observations and estimate the rest of the parameters. This method is justified

because under certain regularity conditions, the estimated factor is shown to be a consistent

estimates of the true factors. The advantage of this approach is that it can be implemented using

existing algorithm, such as the Baumeister-Hamilton algorithm for sign-restricted SVAR models.

The disadvantages are that we might mischaracterize the uncertainty because of our treatment of

the factors as known, and it is unclear how to do it in the presence of structural instability.

To avoid those problems, I will describe several Bayesian algorithms that can jointly

estimate both the factors and the parameters in the data-rich environment. These algorithms

accurately represent the uncertainty in both the estimated factors and the parameters, and they can

be extended easily to the cases of time-varying parameter models. First, I start with linear high-

dimensional SVAR models, linear dynamic factor models, and then I proceed to their extensions

to the case of Markov-switching models.

3.4.1 High-dimensional SVAR models with imperfect identifying informa-

tion

Suppose that the dynamics of the data are summarized by a high-dimensional SVAR

model

Ayt = Bxt−1 +ut (3.8)

ut ∼ i.i.d N (0,D) (3.9)

where yt and ut are (n×1) vectors of observed variables of interest and structural shocks at

time t, while xt−1 is a (k×1) vector of independent variables. A is an (n×n) matrix that

governs contemporaneous relationships between the variables of interest, B is an (n× k) matrix

of coefficients, and D is an (n×n) diagonal covariance matrix of the structural shocks. Since we
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are dealing with a high-dimensional SVAR model, we have k >> n.

This structural model admits a reduced-form representation

yt = ΦΦΦxt−1 + εεεt (3.10)

εεεt ∼ i.i.d N (0,ΩΩΩ) (3.11)

where ΦΦΦ = A−1B is the matrix of reduced-form coefficients, ΩΩΩ = A−1D
(
A−1)′ is the reduced-

form covariance matrix, and εεεt is a vector of reduced-form shock at time t.

MCMC algorithms for model estimation

The literature on high-dimensional statistics mostly develops methods to estimate the

reduced-form representation as described in (3.10) and (3.11), whereas for the purpose of causal

inference, economists are mostly interested in the structural model as described in (3.8) and (3.9).

The key observation to estimate the structural form is that conditioning on A, the rest of the

model parameters can be simulated from methods already developed in the statistic literature. In

particular, a general Gibbs sampling algorithm can proceed as follows.

MCMC Algorithm 1.We start the algorithm with random initial values
(

A(0),B(0),D(0)
)

.

Suppose we are at the mth iteration with parameters
(

A(m),B(m),D(m)
)

and we want to draw

parameters
(

A(m+1),B(m+1),D(m+1)
)

in the (m+1)th step. We do so using the following steps

1. Step 1: Draw the structural parameters, A(m+1), from the conditional posterior distribution

A|B,D,YT .

2. Step 2: Draw the parameters of the covariance matrix, D(m+1), from the conditional

posterior distribution D|A,B,YT .

3. Step 3: Draw the parameters of the coefficient matrix, B(m+1), from the conditional

posterior distribution B|A,D,YT .
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In general, with an arbitrary prior for A and a Gaussian likelihood, step 1 can be implemented by

any generic algorithm such as the Metropolis-Hasting algorithm and its variation. To facilitate

computation in step 2, we could use a natural-conjugate prior, such as the inverse-Gamma

distribution. Finally, after getting a draw for A and D, we could apply any technique developed in

the previous literature for step 3.

With some special priors, the above algorithm can be simplified further to arrive at more

efficient algorithm. The next section will describe two such priors and their corresponding

algorithms, namely the Bayesian LASSO priors and the SSVS priors.

Bayesian Lasso

Priors. To regulate the parameter in the high-dimensional matrix B, we will introduce the

vector of regulating parameters ηηη. In particular, the joint prior can be decomposed as

P(A,B,D,ηηη) = P(ηηη)P(A|ηηη)P(D|A,ηηη)P(B|A,D,ηηη)

We will allow the prior for each element ηi j to be independent from each other and exponentially

distributed: P(ηηη) = ∏
n
i=1 ∏

k
j=1 p

(
ηi j
)
= ∏

n
i=1 ∏

k
j=1

λ2

2
exp
(
−λ2

2
η2

i j

)
. Prior for the contempo-

raneous parameters, P(A|ηηη), can be arbitrary. Because the elements in the matrix A represents

some economic quantities, they should not depend on ηηη. Thus, we could set P(A|ηηη) = P(A).

There is also no reason why the prior for the variance matrix D has to depend on ηηη. Thus,

we will let the parameters for the covariance matrix D to be independent from each other

and use the standard Inverse-Gamma distribution. Hence, P(D|A,ηηη) = ∏
n
i=1 p(dii|A) where

p(dii|A)∼ Inverse-Gamma (κi,τi) for i = 1, . . . ,n. Finally, unlike Baumeister and Hamilton’s
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papers, we will use independent priors for every elemennts of the matrix B. In particular, we have

P(B|A,D,ηηη) =
n

∏
i=1

p(bi|D,A,ηηη)

=
n

∏
i=1

k

∏
j=1

p
(
bi j|D,A,ηηη

)
=

n

∏
i=1

k

∏
j=1

N
(
mi j,diiη

2
i j
)

MCMC Algorithm 2. Given the prior and the likelihood, the posterior distribution can

be simulated using the collapsed Gibbs sampler.We start the algorithm with random initial values(
ηηη(0),A(0),B(0),D(0)

)
. Suppose we are at the mth iteration with parameters(

ηηη(m),A(m),B(m),D(m)
)

and we want to draw parameters
(

ηηη(m+1),A(m+1),B(m+1),D(m+1)
)

in

the (m+1)th step. We do so using the following steps

1. Step 1: Draw the regulating parameters, ηηη, from the conditional posterior distribu-

tion ηηη|A,B,D,YT . In particular, we will draw each
1

η2
i j

from the Inverse-Gaussian(√
λ2dii(

bi j−mi j
)2 ,λ

2

)
for i = 1, . . . ,n and j = 1, . . . ,k.

2. Step 2: Draw the structural parameters, A, from the conditional posterior distribution

A|ηηη,YT by using the target distribution in the Baumeister-Hamilton’s algorithm.

3. Step 3: Draw the parameters of the covariance matrix, D, from D|A,ηηη,YT by using the

posterior distributions in the Baumeister-Hamilton’s algorithm.

4. Step 4: Draw the parameters of the coefficient matrix, B, from the conditional posterior

matrix B|A,D,ηηη,YT . To simulate from the conditional posterior distribution of B, we will
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draw bi from N (m∗i ,diiM∗i ) where

m∗i =
(
X̃′iX̃i

)−1 (X̃′iỸi
)

M∗i =
(
X̃′iX̃i

)−1

X̃i =

[
x′0i . . . x′T−1 P′i

]
Ỹi =

[
y′1ai . . . y′T x′T−1 P′imi

]

Pi =



τi1

τi2

. . .

τik



We will repeat step 1 to 4 for a large number of time (i.e. 2 millions), then we will discard the

first half of the sample and use the second half for subsequent analysis.

Stochastic Search Variable Selection (SSVS)

Priors. To regulate the parameter in the high-dimensional matrix B, we will introduce the

vector of dummy variables γγγ. In particular, the joint prior can be decomposed as

P(A,B,D,γγγ) = P(γγγ)P(A|γγγ)P(D|A,γγγ)P(B|A,D,γγγ)

We will allow the prior for each element γi j to be independent from each other and Bernoulli

distributed: P
(
γi j = 1

)
= 1−P

(
γi j = 0

)
= pi j. And the joint prior is

P(γγγ) = ∏
n
i=1 ∏

k
j=1 pγi j

i j

(
1− pγi j

i j

)
. The prior for the contemporaneous parameters, P(A|γγγ), can be

arbitrary and we will set P(A|γγγ) = P(A). The prior for the covariance matrix, D, is P(D|A,γγγ) =

∏
n
i=1 p(dii|A) where p(dii|A) ∼ Inverse-Gamma (κi,τi) for i = 1, . . . ,n. Finally, we will use
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independent priors for every elements of the matrix B. In particular, we have

P(B|A,D,γγγ) =
n

∏
i=1

p(bi|D,A,γγγ)

=
n

∏
i=1

p(bi|D,A,γγγ)

=
n

∏
i=1

k

∏
j=1

N
(
mi j,diia2

i jτ
2
i j
)

where ai j = 1 if γi j = 0 and ai j = ci j if γi j = 1. Basically, we have a mixture prior for bi j, that is

bi j|γi j ∼
(
1− γi j

)
N
(

mi j,diiτ
2
i j

)
+ γi jN

(
mi j,diic2

i jτ
2
i j

)
.

MCMC Algorithm 3. Given the prior and the Gaussian likelihood, the posterior dis-

tribution can be simulated using the collapsed Gibbs sampler. We start the algorithm with

random initial values
(

γγγ(0),A(0),B(0),D(0)
)

. Suppose we are at the mth iteration with parameters(
γγγ(m),A(m),B(m),D(m)

)
and we want to draw parameters

(
γγγ(m+1),A(m+1),B(m+1),D(m+1)

)
in

the (m+1)th step. We do so using the following steps

1. Step 1: Draw the dummy variables, γγγ, from the conditional posterior distributions

γγγ|A,B,D,YT . The key insight here is that the conditional posterior distributions of the

regulating parameters do not depend of the data. In particular, we will draw each γi j from

the Bernoulli
(

ai j

ai j +bi j

)
for i = 1, . . . ,n and j = 1, . . . ,k where

ai j = p
(
bi j|A,D,γi j = 1

)
p
(
γi j = 1

)
bi j = p

(
bi j|A,D,γi j = 0

)
p
(
γi j = 0

)

2. Step 2, 3, 4: Similar to Algorithm 2.
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3.4.2 Dynamic factor models with imperfect identifying information

A DFM can be cast in a state-space form and estimated using the Gibbs sampler. This

section provides a new algorithm to estimate a state-space model with sign restrictions. Suppose

the dynamic of the data can be summarized by the following state-space model

Yt = ΛΛΛFt + εεεt (3.12)

AFt = BFt−1 +uuut (3.13)

εεεt ∼ N (0,C) (3.14)

ut ∼ N (0,D) (3.15)

E
(
εεεtuuu′s

)
= 0 ∀t,s (3.16)

In the measurement equation (3.12), Yt is a high-dimensional (k×1) vector of observed

macroeconomic time series. εεεt is a high-dimensional (k×1) vector which represents either

measurement errors or idiosyncratic shocks to each time series. Ft is a (r×1) low-dimensional

vector which might consists of either unobserved factors or some elements of the observed time

series and unobserved factors. ΛΛΛ is an (k× r) matrix of factor loading. And finally, C is an (k× k)

covariance matrices.

In the transition/state equation (3.13), A is an (r× r) matrix that governs contemporaneous

relationship between elements of Ft , B are the (r× r) matrices of lag coefficients, and D is an

(r× r) diagonal matrix that represents the variance of the structural shocks. Assumption (3.16)

separates the measurement equation (3.12) and transition equation (3.13) into two different linear

regression equations. Thus, if we know the factors, drawing the rest of the parameters will be

easy.

The above model is a structural model because each equation and innovation in (3.13)

has some economic interpretations. One special issue related to dynamic factor models is how

to assign economic interpretation to the estimated factors. To that end, Stock & Watson (2018)
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recommends the name-factor normalization strategy. Basically, researchers will assign a variable

or set of similar variables to be driven by a particular factor, and thus, allowing the factor to take

on the economic meaning of those variables.

For computational purpose, we also work with the reduced-form equations of (3.13),

which are achieved by multiplying A−1 to both sides of (3.13)

Ft = ΦΦΦFt−1 +vt (3.17)

vt ∼ N (0,ΩΩΩ) (3.18)

where ΦΦΦ = A−1B and ΩΩΩ = A−1D
(
A−1)′

MCMC Algorithm 4. We start the algorithm with random initial values. Suppose

we are at the mth iteration with parameters
(

F(m),ΛΛΛ(m),C(m),A(m),B(m),D(m)
)

and we want to

draw
(

F(m+1),ΛΛΛ(m+1),C(m+1),A(m+1),B(m+1),D(m+1)
)

in the (m+1)th step. We do so using the

following steps

1. Step 1: Draw the structural parameters of the transition equation, A,B,D, from the con-

ditional posterior distribution, A,B,D|F,ΛΛΛ,C,YT , by the Baumeister and Hamilton’s

algorithm.

2. Step 2: Draw the parameters of the state equation ΛΛΛ,C, from the conditional posterior

distribution, ΛΛΛ,C|F,A,B,D,YT , by standard method because this is just a linear regression

when the factors are known.

3. Step 3: Draw the factors F from the conditional posterior distribution, F|ΛΛΛ,C,A,B,D,YT ,

by using the Kalman filter. In particular, assuming that A is invertible. When we condition

on all the model parameters, we can multiply A−1 to both sides of equation (3.13) to

convert it to (3.17). And then, we can apply the Kalman filter to make one draw for F.

The above cycle will be repeated a large number of times to ensure convergence, then half the
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simulated draws are discarded to remove the effect of the initial conditions. The remaining half

will be thought of as draws from the true posterior distribution and used for subsequent analysis.

3.4.3 Extensions to time-varying parameters

Most macroeconomic time series exhibit recurring structural breaks. One common way to

model those events is to allow the model parameters to follow a hidden Markov chain and switch

between different regimes. It is straightforward to extend the above Gibbs sampling algorithms to

this class of models. The key insight is that conditioning on all the parameters, the hidden states

can be sampled efficiently by the multi-move Gibbs sampling and the Hamilton filter. In the next

paragraphs, I will present the algorithm to estimate both the Markov-switching high-dimensional

SVAR models and Markov-switching state-space models.

Markov-switching high-dimensional SVAR models

Suppose that the dynamics of the data are summarized by a N-state Markov-switching

high-dimensional SVAR model

ASt yt = BSt xt−1 +ut

ut |St ∼ N (0,DSt )

P(S1 = s) = µs

P
(
St = s′|St−1 = s

)
= ps′,s

where yt and ut are (n×1) vector of observed variables and structural shocks at time t, while xt−1

is a (k×1) vector of independent variables. ASt is an (n×n) matrix that governs contemporaneous

relationship between observed variables in state St , BSt is an (n× k) matrix of coefficients in state

St , and DSt is an (n×n) diagonal covariance matrix of the structural shocks in state St . Since we

are dealing with a high-dimensional SVAR model, we have k >> n. Let µµµ be the vector of (µs)
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for s = 1, . . . ,N, P be the matrix of
(

ps′,s
)

for s,s′ = 1, . . . ,N, and (ST ) be the vector of hidden

states. The key difference from the linear model is that the parameters of this model depend

on a hidden state, (ST ), which follows a Markov chain with initial probability µµµ and transition

probability matrix P.

Markov-switching state-space models

Suppose that the dynamics of the data are summarized by a N-state state-space model

Yt = ΛΛΛSt Ft + εεεt

ASt Ft = BSt Ft−1 +uuut

εεεt ∼ N (0,CSt )

ut ∼ N (0,DSt )

E
(
εεεtuuu′s

)
= 0 ∀t,s

P(S1 = s) = µs

P
(
St = s′|St−1 = s

)
= ps′,s

Similarly, the key difference between this model and its linear counterpart is that all the model

parameters depend on a hidden Markov chain (ST ). The definitions and interpretations of these

parameters remain the same.

MCMC algorithm to estimate Markov-switching models

The key technique to estimate those models is data augmentation: conditioning on

the states, the model is linear and its parameter can be estimated by the algorithm for linear

model; similarly, conditioning on the model parameters, the hidden states can be sampled by the

multimove Gibbs sampler and the Hamilton filter. Let ∆∆∆ denote all the unknown parameters in all

the states except for those parameters related to the Markov chain. The generic MCMC algorithm
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to estimate both models are described below.

MCMC Algorithm 5. We start the algorithm with random initial values,(
µµµ(0),P(0),∆∆∆(0),(ST )

(0)
)

. Suppose we are at the mth iteration with parameters(
µµµ(m),P(m),∆∆∆(m),(ST )

(m)
)

and we want to draw
(

µµµ(m+1),P(m+1),∆∆∆(m+1),(ST )
(m+1)

)
. We do so

using the following steps

1. Step 1: Draw the structural parameters, ∆∆∆
(m+1), from their conditional posterior distribution

∆∆∆|µµµ(m+1),P(m+1),(ST )
(m),YT

2. Step 2: Draw the initial probabilities, µµµ(m+1), from their conditional posterior distribution

µµµ|G(m+1),P(m),∆∆∆(m),(ST )
(m),YT

Draw the transition probabilities, P(m+1), from their conditional posterior distribution

P|µµµ(m+1),∆∆∆(m),(ST )
(m),YT

3. Step 3: Draw the hidden states,(ST )
(m+1) , from their conditional posterior distribution

ST |µµµ(m+1),P(m+1),∆∆∆(m+1),YT

4. Step 4: Randomly permute all parameters and hidden states using the permutation sampler.

The above cycle is repeated a large number of times to ensure convergence, then half the simulated

draws are discarded to remove the effect of the initial conditions. The remaining half will be

thought of as draws from the true posterior distribution and used for subsequent analysis.

Step 1 in the above algorithm can be implemented using any of the previous algorithm for

linear models. Step 2, 3, and 4 are specifically related to the Markov-switching model. Generally,

for step 2 and 3, we will use the Dirichlet distribution, which is the natural-conjugate distribution

for the vector of probability, to facilitate the computation. Finally, step 4 is necessary to deal with

the label-switching problem in this class of model and ensure convergence of the Gibbs sampler.
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3.5 Conclusion

Big Data presents new exciting opportunities and challenges for economists, but recent

innovations have mostly focused on forecasting and relied mainly on conditional exogeneity as

a main assumption for causal inference. This paper contributes to the literature by developing

several Gibbs sampling algorithms that can combine the latest advances in the statistic literature

with state-of-the-art identification strategy from the economic literature. In particular, I show how

researchers can estimate both a high-dimensional SVAR and a SDFM with imperfect identifying

information, such as sign restrictions.

Going forward, there are many interesting venues for application. For example, economists

are increasingly interested in the heterogeneous effects of macroeconomic shocks and inequality

(Coibion, Gorodnichenko, Kueng & Silvia (2017a), Kaplan, Moll & Violante (2018)) or in the

effect of shocks on some continuous distributions such as income distributions or yield curves

(Chang, Chen & Schorfheide (2018), Kowal, Matteson & Ruppert (2017), Kowal, Matteson &

Ruppert (2019), Kowal & Bourgeois (2020)). Researchers can use a DFM with sign restrictions

as a robust and flexible framework to study those questions empirically.

Chapter 3, in full, is currently being prepared for submission for publication of the material.

Lam Nguyen. The dissertation author was a primary author of this chapter.
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Appendix A

Chapter 1 Appendix

A.1 Hamilton filter

In this Appendix, I describe the forward-backward algorithm for regime-switching model

from Hamilton (1989), also known as the Hamilton filter. A more detailed exposition can be

found in Hamilton (1994b) and Hamilton (2016).

Let ηηηt be an N×1 vector whose s-th element is

f
(
wt |St = s,ΩΩΩt−1;θ6=ST

)
=

1

(2π)
n
2
|As| |Ds|−

1
2 exp

{
−1

2
(Asyt−Bsxt−1)

′D−1
s (Asyt−Bsxt−1)

}
×Π

K
k=1P

(
z(k)t |G(k),St = s

)
And define ξ̂ξξt|t to be an N×1 vector whose s-th element is P

(
St = s|ΩΩΩt−1,θθθ 6=ST

)
. The Hamilton

filter is the following recursion

ξ̂ξξt|t−1 = Pξ̂ξξt−1|t−1

ξ̂ξξt|t =

(
ξ̂ξξt|t−1

⊙
ηηηt

)
1′
(

ξ̂ξξt|t−1
⊙

ηηηt

)
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Each element of ξ̂ξξt|t is equal to the normalized g
(
St |θθθ6=ST ,ΩΩΩt

)
, which is what we need for the

multimove Gibbs sampler. Furthermore, the filter will also give us the value of the likelihood

function conditioning on the parameters because

L(θθθ) =
T

∑
t=1

log f (wt |ΩΩΩt−1;θθθ) =
T

∑
t=1

1′
(

ξ̂ξξt|t−1

⊙
ηηηt

)

Finally, to start the Hamilton filter, we need to specify the initial value, ξ̂ξξ1|0. It can be set to equal

to the vector of unconditional probabilities or can be treated as a separate parameters that reflect

prior belief or are estimated by MLE.

A.2 Bayes Factor and Marginal Likelihood Estimation

The Bayes factor is the ratio of two marginal likelihoods, which are high dimensional

integrals. Let θθθ denote all unknown parameters in our model, the marginal likelihood for model l

is defined as

P(WT |Ml) =
∫

P(WT |θθθl,Ml)P(θθθl|Ml)dθθθl (A.1)

where P(WT |θθθl,Ml) is the likelihood of model Mk, and P(θθθl|Ml) is our prior belief. Equation

(A.1) makes clear that the marginal likelihood is a weighted-average of the likelihood function

over the prior distribution, and hence it is sensitive to our prior choices.1 Although prior sensitivity

is a potential problem when the prior distribution is chosen for technical convenience, it should

not be a problem when the prior is carefully constructed from both theory and empirical literature

as done in this case .
1In contrast, the likelihood ratio is the ratio of two likelihood functions evaluated at their maximizers. Since our

model is only set-identified, it is unclear what the asymptotic distribution of the likelihood ratio will turn out to be.
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Computation of the marginal likelihood is a technically challenging problem due to the

large dimension of θθθ. In this paper, I use the methods proposed by Geweke (1999) and Sims,

Waggoner & Zha (2008). Because I calculate the marginal likelihood for each model separately,

I will drop the notation Ml in our discussion without loss of generality. Let f (θθθ) be a known,

multivariate density function of θθθ, a simple application of Bayes theorem reveals that:

1
P(WT )

=
∫ f (θθθ)

P(WT |θθθ)P(θθθ)
P(θθθ|WT )dθθθ

Therefore, let N0 be the size of the posterior draws after discarding the burn-in sample, a natural

estimator for the marginal likelihood from posterior draws would be

P̂(WT ) =

[
1

N0

N0

∑
n0=1

f (θθθn0)

P(WT |θθθn0)P(θθθn0)

]−1

(A.2)

The choice of f (θθθ) is important in the calculation of the marginal likelihood. If we choose

f (θθθ) to be a prior distribution (i.e. f (θθθ) = P(θθθ)), we will have a harmonic mean estimator

P̂HMM (WT ) =

[
1

N0

N0

∑
n0=1

1
P(WT |θθθn0)

]−1

However, this estimator has infinite variance and numerically inefficient. Indeed, for the method

to work well, f (θθθ) needs to be a good approximation of the posterior distributions and also has a

thinner tail than the posterior kernel P(WT |θθθ)P(θθθ) to ensure convergence of the Monte Carlo

average. Geweke (1999) proposes to use truncated normal distributions, while Sims, Waggoner &

Zha (2008) constructs a more sophisticated choice for f (θθθ). I describe those two choices below.

My description closely follows that of Herbst & Schorfheide (2015).
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A.2.1 Geweke (1999)

Geweke (1999) proposes to use a truncated normal distribution as f (θθθ). Denote θ̄θθ and V̄θθθ

be the mean and covariance matrix of θθθ. Both of those quantities are numerically computed from

the posterior distributions. Geweke’s choice of f (θθθ) is

fGeweke (θθθ) = τ
−1 (2π)−d/2 |V̄θθθ|

−1/2 exp
[
−0.5

(
θθθ− θ̄θθ

)′ V̄−1
θθθ

(
θθθ− θ̄θθ

)]
×I
{(

θθθ− θ̄θθ
)′ V̄−1

θθθ

(
θθθ− θ̄θθ

)
≤ F−1

χ2
d
(τ)
}

which is simply a truncated normal. F−1
χ2

d
(τ) denotes the inverse of the chi-squared distribution

with d degrees of freedom, and the degree of truncation is controlled by τ. The lower value of τ ,

the more outliers will be remove from the posterior draws. In my empirical application, I try two

different values for τ: τ1 = 0.5 and τ2 = 0.9 .

A.2.2 Sims, Waggoner, and Zha (2008)

One shortcoming of the Geweke’s proposal is that the posterior distribution might be

very different from the Gaussian distributions, which will lead to poor estimate of the marginal

likelihood. Sims, Waggoner & Zha (2008) proposes a more sophisticated choice for f (θθθ). Denote

the mode of the posterior distribution as θ̂θθ, we calculate an analog of the covariance matrix that is

centered at the mode of the distribution

V̂θθθ =
1
N

N

∑
i=1

(
θθθ

i− θ̂θθ

)(
θθθ

i− θ̂θθ

)′
Next, define

r (θθθ) =

√(
θθθ− θ̂θθ

)′
V̂−1

θθθ

(
θθθ− θ̂θθ

)
And let ri = r

(
θθθ

i
)

, we construct f (θθθ) in four steps
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Step 1: Construct a heavy-tailed univariate density g(r)

g(r) =


vrv−1

bv−av if r∈ [a,b]

0 otherwise

where

v =
ln(0.1/0.9)
ln(c10/c90)

, a = c1,and b =
c90

0.91/v

(c1,c10,c90 are the first, 10th, and 90th percentiles of the empirical distribution of
{

ri}N
i=1)

Step 2: Define a new density f̃ (r) as

f̃ (r) =
Γ(d/2)

2πd/2
∣∣V

θ̂θθ

∣∣1/2
g(r)
rd−1

where Γ(.) is the Gamma function, d is the dimension of the parameter vector θθθ.

Step 3: Define a truncating function

I(θθθ) = I
(
lnP(YT |θθθ,ZT )P(θθθ)> L1−q

)
× I(r (θθθ) ∈ [a,b])

Then, we approximate the probability that function equal to 1 by simulation as

τ̂ = P̂(I(θθθ) = 1) =
1
J

J

∑
j=1

I
(

θθθ
j
)

where θθθ
j is i.i.d and θθθ

j ∼ f̃ (θθθ).

Step 4: Sims, Waggoner, and Zha’s choice of f (θθθ) is

fSWZ (θθθ) = τ̂
−1 f̃

(√(
θθθ− θ̂θθ

)′
V̂−1

θθθ

(
θθθ− θ̂θθ

))
I(θθθ)

The shortcoming of this method is that it is computationally expensive due to the fact that we

have to estimate τ̂ by simulation.
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A.3 Data Description

The data in this study are publicly available and are downloaded from FRED. In particular,

I use the following five quarterly time series

1. GDPPOT: Real Potential Gross Domestic Product, Billions of Chained 2009 Dollars,

Quarterly, Not Seasonally Adjusted.

2. GDPC1: Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly,

Seasonally Adjusted Annual Rate

3. DPCERD3Q086SBEA (DPCE, for short): Personal consumption expenditures (implicit

price deflator), Index 2009=100, Quarterly, Seasonally Adjusted

4. FEDFUNDS: Effective Federal Funds Rate, Percent, Quarterly Average, Not Seasonally

Adjusted

5. USREC: NBER based Recession Indicators for the United States from the Period following

the Peak through the Trough, +1 or 0, Quarterly, Not Seasonally Adjusted

The sample period is 1954Q3 to 2007Q4 since data for Effective Federal Funds Rate starts

later relative to the first three. Denote y = output gap, π = inflation, and r= fed funds rate. The

variables in the baseline VAR are calculated from those time series as follow :

1. yt = 100× [ln(GDPC1t)− ln (GDPPOTt)]

2. πt = 100× [ln(DPCEt)− ln(DPCEt−4)]

3. rt = FEDFUNDSt

Basically, the output gap is the difference between real and potential output, inflation is Y/Y

change in PCE deflator, and the fed funds rate is the raw data.
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Appendix B

Chapter 2 Appendix

B.1 Motivation for using conditional likelihood

B.1.1 Bayesian estimation

This Appendix shows that we can use conditional likelihood to estimate the model as

long as the prior belief about the distribution of the exogenous variables are independent from the

belief about the structural parameters. Consider the system of two equations:

Ayt = Bxt−1 +Czt +wt

zt = vt

where wt ∼ N (0,D) and vt ∼ N (0,V). D is a diagonal matrix and V is allowed to be non-

diagonal. We can define y∗t = (y′t ,z′t)
′ ,A∗ =

A −C

0 Ir

,D∗ =

D 0

0 V

,B∗ =
B

0

, and xt−1 =

(
y′t−1,y

′
t−2, . . . ,y

′
t−m,1

)′. Then, the system can be rewritten as
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A∗yt = B∗xt−1 +u∗t

Because det |A∗|= det |A|, the full likelihood function will be

P(Y∗T |A∗,B∗,D∗) = = (2π)−T (n+r)/2 det |A∗|T det |D∗|−T/2

× exp

[
−(1/2)

T

∑
t=1

(A∗y∗t −B∗xt−1)
′D∗−1 (A∗y∗t −B∗xt−1)

]

= (2π)−T n/2 det |A|T det |D|−T/2

× exp

[
−(1/2)

T

∑
t=1

(Ayt−Czt−Bxt−1)
′D−1 (Ayt−Czt−Bxt−1)

]

× (2π)−Tr/2 det |V|−T/2 exp

[
−(1/2)

T

∑
t=1

z′tV
−1zt

]

= f (YT |A∗,D∗,B∗,ZT ) f (ZT |V)

If the priors on (A∗,B,D) are independent from those on V, then full system Bayesian

inference for the elements of A∗,B,D will be numerically identical to that based on the conditional

likelihood

P(YT |A∗,D∗,B∗,ZT ) = (2π)−T n/2 det |A|T det |D|−T/2

× exp

[
−(1/2)

T

∑
t=1

(Ayt−Czt−Bxt−1)
′D−1 (Ayt−Czt−Bxt−1)

]

Thus, the expression separates into two independent problems, and the posterior for the elements

of A∗,B,D can be simulated by the Baumeister-Hamilton algorithm as described in the main text.
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B.1.2 Bayesian model comparison

Following the above motivation, this section shows why we can safely ignore the exoge-

nous variable, z, in the calculation of the marginal likelihood. Consider two model k and k′, the

posterior odd ratio can be written as

P(Mk|YT ,ZT )

P(Mk′|YT ,ZT )
=

P(YT |ZT ,Mk)

P(YT |,ZT ,Mk′)

P(ZT |Mk)

P(ZT |Mk′)

P(Mk)

P(Mk′)

where

P(ZT |Mk) =
∫

P(ZT |ΨΨΨ,Mk)P(ΨΨΨ|Mk)dΨΨΨ

P(ZT |Mk′) =
∫

P(ZT |ΨΨΨ,Mk′)P(ΨΨΨ|Mk′)dΨΨΨ

where ΨΨΨ governs the likelihood of ZT . Therefore, as long as P(ZT |ΨΨΨ,Mk) = P(ZT |ΨΨΨ,Mk′) and

P(ΨΨΨ|Mk) = P(ΨΨΨ|Mk′) for every ΨΨΨ in the parameter space, the two marginal likelihood will be

the same and the expression simplifies to

P(Mk|YT ,ZT )

P(Mk′|YT ,ZT )
=

P(YT |ZT ,Mk)

P(YT |,ZT ,Mk′)

P(Mk)

P(Mk′)

B.2 Marginal Likelihood Estimation

This Appendix describes the Geweke (1999) and Sims & Zha (2006) strategy to estimate

the marginal likelihood. As described in the main text, the estimator for the marginal likelihood

for model Mk is

P̂(YT |ZT ,Mk) =

[
1

N0

N0

∑
n0=1

f (θθθn0)

P(YT |θθθn0,ZT ,Mk)P(θθθn0 |Mk)

]−1

(B.1)

The choice of f (θθθ) is important in numerical calculation. Geweke (1999) and Sims & Zha

141



(2006) propose different choices for f (θθθ). The description below closely follows that of Herbst

& Schorfheide (2015).

B.2.1 Geweke (1999)

Geweke (1999) proposes to use a truncated normal distribution as f (θθθ). Particularly,

denote θ̄θθ and V̄θθθ be the mean and covariance matrix of θθθ. Both of those quantities are numerically

computed from the posterior distributions. Then, Geweke’s choice of f (θθθ) is

fGeweke (θθθ) = τ
−1 (2π)−d/2 |V̄θθθ|

−1/2 exp
[
−0.5

(
θθθ− θ̄θθ

)′ V̄−1
θθθ

(
θθθ− θ̄θθ

)]
× I
{(

θθθ− θ̄θθ
)′ V̄−1

θθθ

(
θθθ− θ̄θθ

)
≤ F−1

χ2
d
(τ)
}

which is simply a truncated normal. F−1
χ2

d
(τ) denotes the inverse of the chi-squared distribution

with d degrees of freedom, and the degree of truncation is controlled by τ. The lower value of τ ,

the more outliers will be remove from the posterior draws.

B.2.2 Sims, Waggoner, and Zha (2008)

One shortcoming of the Geweke’s proposal is that the posterior distribution might be

very different from the Gaussian distributions, which will lead to poor estimate of the marginal

likelihood. Sims, Waggoner & Zha (2008) proposes a more sophisticated choice for f (θθθ). Denote

the mode of the posterior distribution as θ̂θθ, then we can calculate an analog of the covariance

matrix that is centered at the mode of the distribution

V̂θθθ =
1
N

N

∑
i=1

(
θθθ

i− θ̂θθ

)(
θθθ

i− θ̂θθ

)′
Next, define

r (θθθ) =

√(
θθθ− θ̂θθ

)′
V̂−1

θθθ

(
θθθ− θ̂θθ

)
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And let ri = r
(

θθθ
i
)

, then we can construct f (θθθ) in four steps

1. Construct a heavy-tailed univariate density g(r)

g(r) =


vrv−1

bv−av if r∈ [a,b]

0 otherwise

where v =
ln(0.1/0.9)
ln(c10/c90)

, a = c1, and b =
c90

0.91/v
.

(c1,c10,c90 are the first, 10th, and 90th percentiles of the empirical distribution of
{

ri}N
i=1)

2. Define a new density f̃ (r) as

f̃ (r) =
Γ(d/2)

2πd/2
∣∣V

θ̂θθ

∣∣1/2
g(r)
rd−1

where Γ(.) is the Gamma function, d is the dimension of the parameter vector θθθ.

3. Define a truncating function

I(θθθ) = I
(
lnP(YT |θθθ,ZT )P(θθθ)> L1−q

)
× I(r (θθθ) ∈ [a,b])

Then, we can approximate the probability that function equal to 1 by simulation as

τ̂ = P̂(I(θθθ) = 1) =
1
J

J

∑
j=1

I
(

θθθ
j
)

where θθθ
j is i.i.d and θθθ

j ∼ f̃ (θθθ).

4. Sims, Waggoner, and Zha’s choice of f (θθθ) is
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fSWZ (θθθ) = τ̂
−1 f̃

(√(
θθθ− θ̂θθ

)′
V̂−1

θθθ

(
θθθ− θ̂θθ

))
I(θθθ)

The shortcoming of this method is that it is quite computationally expensive because we

have to estimate τ̂ by simulation.

B.3 Data Description

The data in this study are publicly available. Macroeconomic time series are down-

loaded from FRED, while monetary policy shocks are collected from Mark Watson and Yuriy

Gorodnichenko’s website . Particularly, I use four quarterly time series from FRED.

1. GDPPOT: Real Potential Gross Domestic Product, Billions of Chained 2009 Dollars,

Quarterly, Not Seasonally Adjusted.

2. GDPC1: Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly,

Seasonally Adjusted Annual Rate

3. DPCERD3Q086SBEA (DPCE, for short): Personal consumption expenditures (implicit

price deflator), Index 2009=100, Quarterly, Seasonally Adjusted

4. FEDFUNDS: Effective Federal Funds Rate, Percent, Quarterly Average, Not Seasonally

Adjusted

The sample period is from 1954Q3 to 2008Q4 since data for Effective Federal Funds Rate starts

later relative to the first three. Denote y= output gap, π= inflation, and r= fed funds rate. The

variables in the baseline VAR will be calculated as follows

1. yt = 100× [ln(GDPC1t)− ln (GDPPOTt)]

2. πt = 100× [ln(DPCEt)− ln(DPCEt−4)]
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3. rt = FEDFUNDSt

Basically, the output gap is the difference between real and potential output, inflation is Y/Y

change in the PCE deflator, and the fed funds rate is just the raw data.

For the choice of monetary policy shocks, I start with the same set of instruments used in

Stock & Watson (2012a). Those four shocks are

1. Romer-Romer shock: Described in Romer & Romer (2004) and downloaded from Yuri

Gorodnichenko’s website. They are residuals from the regression between shocks con-

structed by the narrative methods on the Fed’s Greenbook forecasts of output and inflation.

The orginal data from their paper are from 1969Q1 to 1996Q4. In this study, I use the

updated version constructed by and used in Coibion, Gorodnichenko, Kueng & Silvia

(2017b). I use the quarterly data from their spreadsheet which are available from 1969Q1

to 2008Q4.

2. Smets-Wouters’ shocks: Described in Smets & Wouters (2007) and downloaded from Mark

Watson’s website. They are interest rate shocks as calculated from Smets and Wouters’

DSGE model. The data from Stock & Watson (2012a) study are calculated by King &

Watson (2012). The data are available from 1959Q1 to 2004Q4.

3. Sims-Zha’s shocks: Described in Sims & Zha (2006) and downloaded from Mark Watson’s

website. The data are supplied by Tao Zha. They are shocks constructed from the VAR that

includes Markov-Switching variances and no time-varying parameters. Following Stock &

Watson (2012a), I convert them to quarterly data by taking the monthly average. The data

are available from 1960Q1 to 2003Q1.
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18. Bańbura, M., Giannone, D., Modugno, M. & Reichlin, L. Now-casting and the real-time
data flow. Handbook of Economic Forecasting 2, 195–237 (2013).

19. Bańbura, M., Giannone, D. & Reichlin, L. Large Bayesian vector auto regressions. Journal
of Applied Econometrics 25, 71–92 (2010).

20. Barnichon, R., Matthes, C. & Ziegenbein, A. Theory Ahead of Measurement? Assessing
the Nonlinear Effects of Financial Market Disruptions. Working Paper (2016).

21. Bartlett, M. S. Comment on ”A Statistical Paradox” by DV Lindley. Biometrika 44, 533–
534 (1957).

22. Basmann, R. L. On finite sample distributions of generalized classical linear identifiability
test statistics. Journal of the American Statistical Association 55, 650–659 (1960).

23. Baumeister, C. & Hamilton, J. D. Inference in structural vector autoregressions when the
identifying assumptions are not fully believed: Re-evaluating the role of monetary policy
in economic fluctuations. Journal of Monetary Economics 100, 48–65 (2018).

24. Baumeister, C. & Hamilton, J. D. Sign Restrictions, Structural Vector Autoregressions,
and Useful Prior Information. NBER Working Paper (2014).

25. Baumeister, C. & Hamilton, J. D. Sign restrictions, structural vector autoregressions, and
useful prior information. Econometrica 83, 1963–1999 (2015).

26. Baumeister, C. & Hamilton, J. D. Structural interpretation of vector autoregressions with
incomplete identification: Revisiting the role of oil supply and demand shocks. American
Economic Review 109, 1873–1910 (2019).

147



27. Baumeister, C. & Peersman, G. The role of time-varying price elasticities in accounting for
volatility changes in the crude oil market. Journal of Applied Econometrics 28, 1087–1109
(2013).

28. Belmonte, M. A., Koop, G. & Korobilis, D. Hierarchical shrinkage in time-varying param-
eter models. Journal of Forecasting 33, 80–94 (2014).

29. Belongia, M. T. & Ireland, P. N. A Classical View of the Business Cycle. NBER Working
Paper (2019).

30. Benati, L. & Surico, P. VAR analysis and the Great Moderation. American Economic
Review 99, 1636–52 (2009).

31. Berger, J. O., Pericchi, L. R., Ghosh, J., Samanta, T., De Santis, F., Berger, J. & Pericchi, L.
Objective Bayesian methods for model selection: introduction and comparison. Lecture
Notes-Monograph Series, 135–207 (2001).

32. Bernanke, B. S., Boivin, J. & Eliasz, P. Measuring the effects of monetary policy: a factor-
augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics 120,
387–422 (2005).

33. Bernanke, B. S., Gertler, M. & Gilchrist, S. The financial accelerator in a quantitative
business cycle framework. Handbook of Macroeconomics 1, 1341–1393 (1999).

34. Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D, Smith, A. & West, M.
Bayesian factor regression models in the “large p, small n” paradigm. Bayesian Statistics
7, 733–742 (2003).

35. Bhadra, A., Datta, J., Polson, N. G. & Willard, B. Default Bayesian analysis with global-
local shrinkage priors. Biometrika 103, 955–969 (2016).

36. Bhadra, A., Datta, J., Polson, N. G. & Willard, B. Lasso meets horseshoe: A survey.
Statistical Science 34, 405–427 (2019).

37. Bognanni, M. A Class of Time-Varying Parameter Structural VARs for Inference under
Exact or Set Identification. Working Paper (2018).

38. Bonassi, F. V., You, L. & West, M. Bayesian learning from marginal data in bionetwork
models. Statistical applications in genetics and molecular biology 10 (2011).

39. Boschen, J. F. & Mills, L. O. The relation between narrative and money market indicators
of monetary policy. Economic Inquiry 33, 24–44 (1995).
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