
UC Davis
UC Davis Previously Published Works

Title
Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens

Permalink
https://escholarship.org/uc/item/7xh567t2

Journal
PLOS Pathogens, 10(6)

ISSN
1553-7366

Authors
Gortazar, Christian
Reperant, Leslie A
Kuiken, Thijs
et al.

Publication Date
2014

DOI
10.1371/journal.ppat.1004129
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xh567t2
https://escholarship.org/uc/item/7xh567t2#author
https://escholarship.org
http://www.cdlib.org/


Pearls

Crossing the Interspecies Barrier: Opening the Door to
Zoonotic Pathogens
Christian Gortazar1*, Leslie A. Reperant2, Thijs Kuiken2, José de la Fuente1,3, Mariana Boadella1,
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Zoonotic Pathogens

The number of pathogens known to infect humans is ever

increasing. Whether such increase reflects improved surveillance

and detection or actual emergence of novel pathogens is unclear.

Nonetheless, infectious diseases are the second leading cause of

human mortality and disability-adjusted life years lost worldwide

[1,2]. On average, three to four new pathogen species are detected

in the human population every year [3]. Most of these emerging

pathogens originate from nonhuman animal species.

Zoonotic pathogens represent approximately 60% of all known

pathogens able to infect humans [4]. Their occurrence in humans

relies on the human-animal interface, defined as the continuum of

contacts between humans and animals, their environments, or their

products. The human-animal interface has existed since the first

footsteps of the human species and its hominin ancestors 6–7 million

years ago, promoting the prehistoric emergence of now well-

established human pathogens [5]. These presumably include

pathogens with roles in the origin of chronic diseases, such as human

T-lymphotropic viruses and Helicobacter pylori, as well as pathogens

causing major crowd diseases, such as the smallpox and measles

viruses and Bordetella pertussis [5,6]. Since prehistory, the human-

animal interface has continued to evolve and expand, ever allowing

new pathogens to access the human host and cross species barriers [5].

Species Barriers

The suitability of any species to act as a host to a particular

pathogen varies due to both host species– and pathogen-

dependent factors, which define the species barriers. The species

barriers separating nonhuman animal species from humans and

thus of concern for zoonotic pathogens are the focus of this paper.

However, the proposed conceptual framework is applicable to any

host-pathogen system.

The species barriers separating nonhuman animal species from

humans represent a major hurdle for effective exposure to,

infection by, and subsequent spread of zoonotic pathogens among

humans [7]. Accordingly, these species barriers can be divided into

three largely complementary sets. First, the interspecies barrier

determines the nature and level of human exposure to zoonotic

pathogens. Second, the intrahuman barrier determines the ability

of zoonotic pathogens to productively infect a human host and

effectively cope with the immune response. Third, the interhuman

barrier determines the ability of zoonotic pathogens to efficiently

transmit among humans, causing outbreaks, epidemics, or

pandemics. Zoonotic pathogens may cross, more or less efficiently,

one or more of these sets of barriers. Only pathogens that cross all

barriers have the potential to sustainably establish in the human

population.

Identifying the factors allowing pathogens to cross each of these

three sets of barriers is essential to mitigate burdens of known and

future emerging zoonotic pathogens. The interspecies barrier, by
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its nature, involves ecological processes driving animal and human

population dynamics and interspecies contact. Prior attempts to

define these factors or drivers started as early as 1992 [8]. Recent

contributions in this field underlined the importance of landscape

change and ecological alteration (e.g., [9–11]). Here, we build on

these earlier studies to focus on identifying the factors affecting the

interspecies barrier from a more holistic perspective, with the aim

of developing a simple framework that classifies factors into a

limited number of mutually exclusive categories acting at distinct

spatial and temporal scales.

Conceptual Framework for Pathogen Emergence
at the Interspecies Barrier

The emergence of zoonotic pathogens in humans is dependent

on interactions between humans and infected animal reservoir

and/or vector hosts or their environment (Figure 1, center). The

extent of such interactions is influenced by the prevalence of

zoonotic pathogens in the animal reservoir or vector populations,

which is in turn influenced by these populations’ health and

immune status. In addition, the population dynamics of humans,

animal reservoirs, and vectors drive ecological processes that

govern pathogen abundance and spread, both within and among

species [12]. Increased exposure of humans to animal pathogens

can result from changes in the dynamics of any of these

populations (Figure 1, inner circle). These changes can be divided

into three categories: first, increased interspecies contact between

humans and the animal reservoir and/or vector; second,

population growth or aggregation of humans, animal reservoir,

and/or vector; and third, their geographic range expansion, at

least where this expansion involves overlapping ranges. Changes in

one aspect of human, animal reservoir, or vector population

dynamics may affect another; for example, population growth may

accompany range expansion.

Factors influencing these changes in human, animal reservoir,

and vector population dynamics may themselves be divided into

two sets of drivers, acting at distinct scales. First, ‘‘proximate

drivers’’ occurring at the local landscape scale are direct

determinants of changes in human, animal reservoir, and vector

population dynamics (Figure 1, middle circle; Table 1). These

drivers may include habitat suitability, food and water resource

availability, and short- or long-distance movements. The extent to

Figure 1. Framework for the classification of drivers of human exposure to animal pathogens (interspecies barrier). See text for more
details.
doi:10.1371/journal.ppat.1004129.g001
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which changes in these proximate drivers affect human, animal

reservoir, and vector population dynamics depends greatly on the

ecology of the species under consideration. For example, changes

in habitat may favor generalist species but may drive specialist

species to local extinction.

Second, ‘‘ultimate drivers’’ occurring at broader (regional or

global) geographic scales temporally precede and govern changes

in proximate drivers (Figure 1, outer circle; Table 1). These drivers

include climate, land use, and animal management. Changes in

these ultimate drivers may be either anthropogenic (human

caused) or ‘‘natural.’’ They can promote changes in one or more

proximate drivers. For example, changes in land use may affect

both habitat suitability and availability of food and water.

Together, the above framework allows the proposed underlying

factors affecting the interspecies barrier to be categorized

systematically (Figure 2).

Gaps in Current Knowledge of the Ecology of
Zoonotic Pathogens

The proposed framework helps identify essential gaps in our

understanding of the chain of emergence of zoonotic pathogens in

humans and, in particular, of ecological processes underlying

crossing of the interspecies barrier. Major gaps include character-

ization of the relationships between environmental conditions,

especially climate and weather, and host and/or vector population

dynamics, as well as exploration of pathogen survival and

propagation in the environment. Recent studies have aimed at

addressing such issues using novel approaches [13] and are

essential in order to detect and predict associations between

drivers such as climate change or weather variability and pathogen

emergence [14,15]. The current focus in ecology addresses

primarily single host-pathogen systems and needs to be expanded

to a multihost, multipathogen perspective. Interactions between

host, vector, and pathogenic and nonpathogenic infectious agents

likely play important roles in the dynamics of zoonotic pathogens

at the human-animal interface [14]. Lastly, systematic assessment

of actual human exposure to zoonotic pathogens, e.g., by serology,

is lacking, calling for a more holistic approach to understanding

the complete chain of emergence. Most evidence for the role of

anthropogenic changes, e.g., encroachment into natural habitats,

on zoonotic pathogen emergence is anecdotal or indirect and

generally biased towards developed countries.

Future Perspectives

The identification of a limited number of mutually exclusive

drivers of zoonotic pathogen emergence and of current knowledge

gaps is essential to improve risk assessment and prevention

measures. The links between pathogen emergence in humans and

their underlying factors are typically speculative and associative and

usually only account for a short section of the chain of emergence.

Overall, knowledge of causal relationships between changes in

population dynamics or interspecies contact, on the one hand, and

pathogen emergence in humans, on the other, is fragmentary and

incomplete at best. Existing studies in this area generally are limited

in scope and typically lack quantitative assessment of human

exposure to zoonotic pathogens at the human-animal interface.

The above proposed framework helps in understanding the

common mechanisms behind disease emergence by linking

pathogen emergence in humans to distinct and well-defined

Table 1. Drivers for overcoming the interspecies barrier.

Ultimate Drivers Proximate Drivers

Climate variability and change Movement/migration

El Niño-Southern Oscillation and North Atlantic Oscillation Displacement (e.g., due to flooding or habitat destruction)

Warming; season extension; extremes in heat and cold Inhibited migration (e.g., due to fencing)

Flooding Human urban migration

Drought Habitat change

Land-use change Improved habitat (e.g., for invertebrate vectors due to extension of breeding season)

Deforestation Loss of natural habitat (e.g., for bats due to deforestation)

Pasture to cropland Habitat fragmentation

Intensification of crop production Food and water change

Reforestation and agricultural abandonment Increased food (e.g., for waterbirds due to intensification of crop production or for deer due to
winter feeding)

Urbanisation Changed food (e.g., for dairy cattle due to intensification of livestock production or for humans
due to intensification of livestock and crop productions as well as changes in food manufacturing
and consumption practices)

Animal-management change Water contamination

Free-living

Changes in harvesting/culling

Conservation measures and translocations

Feeding

Fencing of natural habitat

Domestic

Intensification of livestock production

Increasing trade of animals and animal products

doi:10.1371/journal.ppat.1004129.t001
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proximate and ultimate drivers. Hence, it may be used to further

identify and quantify associations, causal relationships, and risks

between ecological changes and pathogen emergence. In the full

sense of the One Health concept, it can serve to help optimize

efforts to manage disease emergence and spread in the interests of

humans, food safety, and biodiversity.
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