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Abstract

Demand Response-enabled Autonomous Control for Interior
Space Conditioning in Residential Buildings

by

Xue Chen

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David M. Auslander, Chair

Interior space conditioning means heating or cooling building interior space to pro-

vide comfort to occupants. In the modern world, the thermostat is a popular form

utilized in residential and commercial buildings. Although the thermostat industry

has recently matured, the development of new technology provides new opportunities

to interior space conditioning. Motivated by the energy crisis, a demand response-

enabled interior space conditioning system is designed for residential users. The

feature of completely autonomous controls improves the acceptability and usability

of the system.

Built on low-cost, low-power wireless technology, the system uses a disaggregated

set of sensors and actuators. The software adopts a hierarchical layered structure,

providing modularization of functions and semi-independent design. User interfaces

provide easy and instructive interaction to users. The system interacts with the public

utility, houses and their HVAC systems, users and outside climates. Robust adaptive

control is used to address system uncertainties. Validation tools were developed to

evaluate the system.
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As the major contribution of this research to interior space conditioning, super-

visory controls were developed to locate the optimal control settings. Adopting a

hierarchical structure, supervisory controls determine control modes, control strate-

gies/states, and control settings. To meet users' various requirements on utility cost

and thermal comfort, four control strategies/states were designed: the normal strat-

egy, the pre-cooling/pre-heating strategy, the pre-conditioning strategy and the over-

lapping strategy. The supervisory control strategies were realized by hybrid methods.

Expert systems were utilized to choose control mode and control state. Model-based

methods or performance-based methods were adopted in each state to seek optimal

control settings. Results from computer simulations and �eld tests indicate that the

system responds automatically to price signals with appropriate behavior of energy

saving and load shifting. By identifying dynamic signatures of individual houses, the

system is able to adapt its control strategies to a house and its HVAC systems as well

as to the ever-changing outdoor conditions.

In conclusion, the thesis successfully demonstrates an intelligent, adaptive and

autonomous interior space conditioning system under the context of demand response

for residential buildings.

Professor David M. Auslander
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 History of Interior Space Conditioning

Throughout history, one of the biggest challenges we have faced is to create comfort-

able living environments, keeping warm in winter and cooling down in summer. In

ancient days, we approached this target by making �re, building shelters and storing

ice. However, not only do those methods need heavy labor, they lack consistency

in providing desirable living conditions. In the modern world, people have made

signi�cant progress in interior space conditioning with less and less labor.

The development of temperature controls began nearly 400 years ago. The �rst

automated temperature control was invented by Cornelius van Drebbel. In the form

of an electromechanical device, it was used to regulate the temperature of an oven or

a boiler.[1] Thermostats, the modern form of interior space conditioning, was featured

by a furnace regulator called �damper �apper�, invented in 1885 by Albert Butz. It

used a �ap to control air entry (and thus heat output) to a furnace.[2] Almost at the

same time, Warren S. Johnson, a professor at the State Normal School in Whitewater,

Wisconsin, received a patent for the �rst electric room thermostat.[3] Both inventions
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launched the industry of interior space conditioning. They are the origins of two large

companies in this business � Honeywell and Johnson Controls. In 1953 Honeywell

produced the �rst device that usually is recognized as a modern residential thermostat

� the �Round Thermostat�. The iconic thermostat has been a�ecting the design and

the use of residential thermostats for decades in North America.[4]

Starting as a heating regulator, the modern thermostat became more and more

complex and sophisticated with various functionalities.[4] In 1906, Honeywell de-

signed the �rst programmable thermostat with setback settings. The temperature

is set down manually at night and set up automatically by a clock in the morning.

The mechanical clock was substituted by an electric one in 1934. In 1924, the �rst

heating anticipation thermostat was produced, turning o� the heater slightly early

to prevent the space temperature from greatly overshooting the thermostat setting.

With the realization of temperature control, thermostat manufactures put more e�ort

to combined functionalities. In 1995, an advanced thermostat was introduced with

controls for humidi�cation, dehumidi�cation and ventilation, in addition to heating

and cooling. It could also remind occupants to change �lters.

Thermostats were �rst used by residential users. They later became popular in

commercial buildings. Today, the thermostat in large commercial buildings has multi-

ple responsibilities of controls and commissioning, usually monitored by professionals.

It deals with large and complicated heating ventilating and air conditioning (HVAC)

systems. The thermostat for residential or light commercial buildings performs con-

trols on only basic heating and cooling systems autonomously. By interacting with

its friendly and intuitive interface, persons with a little or no professional background

are able to operate it properly.

Developments in technology have eroded some of the aspects of traditional ther-

mostats. The �elds of interest include remote controls, wireless devices, communicat-
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ing with a central controller or public utilities, and intelligence to weather, buildings

and occupants. Meanwhile, due to energy shortages, especially electricity blackouts,

there have been additional demands placed on the interior space conditioning. In

conclusion, the trend of interior space conditioning is towards customizing, adapting,

intelligentizing and optimizing.

1.2 Motivation

Although the thermostat industry has become more mature recently, the development

of technology and its applications provide new opportunities to the next generation

of conditioning systems. There are two sources motivating the revolution of interior

space conditioning. One is the energy crisis, which has become more severe. It requires

optimal controls on HVAC systems to save energy and shift peak loads for electricity.

The other comes from users that have additional requirements to basic heating and

cooling. Personalized features are designed to meet the needs of individual users and

houses. Adaption is necessary to accommodate control strategies to weather changes.

All functions should be implemented automatically. Development in computer science

and wireless communication o�er new instruments to meet the challenges.

1.2.1 Demand Response

Due to the concerns of the energy crisis in recent years, namely, gas and electricity

shortages, government and utility companies are pushing their e�ort to regulate the

use of energy. It is important to note that unlike gas, water or other substance,

electricity can not be stored massively in any form. It needs to be used just after it

is generated and transmitted. Therefore, electricity shortages will occur when supply

can not meet demand. This is usually caused by two reasons: 1) supply shortages: the

3

 PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



failure of electricity generation or transmission systems, which are di�cult to predict

before their occurrences; and 2) critical peak demand of electricity, which is possible

to avoid if o�ering more supply by constructing additional power generation systems

or reducing the peak demand by managing the use of electricity. The construction

of new power plants is considered ine�cient because the critical peak demand occurs

less than 1% of the time in a whole year [5], which means the new plants would only

be needed for a few days per year. Therefore, reducing electricity demand during

shortages is the main instrument to relieve the crisis.

Measures to reduce the demand at shortages are termed �demand response� (DR).

They have the e�ect of adding elasticity to the electricity market. It has been esti-

mated that a mere 2.5% reduction in demand in response to shortages can reduce the

price spikes by 24%.[6]

What then are the main causes of electricity shortages? According to California

energy demand report, the wide use of electricity-driven air conditioners and central

air-conditioning system lead to most of the peaks of electricity consumption in the

summer.[7] Demand response measures can be utilized to mitigate this problem, in-

cluding variable price rates and control mechanisms of thermostats for utility users

to respond to those rates. Variable or dynamic rates are those in which either time or

price are speci�ed in the rate. They are demand-driven, a�ected by weather conditions

and human activity. For example, the electricity price on a hot summer afternoon

would be much higher than that of a midnight during spring. Such a price schedule

encourages customers to reduce their power use or shift use to o�-peak periods during

peak price events, which can result in an overall reduction to their bill.

The DR tari� presents challenging tasks on interior space conditioning. Under the

traditional pricing policy, with a constant rate, thermostats should minimize the total

energy usage. Under the context of DR, the total energy cost should be minimized,
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by trading the time when energy is used. Under particular conditions, it would be

able to guide the users to maintain living comfort without consuming energy for a

certain period.

1.2.2 Autonomous Controls

Before designing control systems for interior space conditioning, we must understand

the problems with the existing technology. The main issue is adoption: if people do

not accept the technology or use it as designed, then it will not achieve the objectives

of energy savings and load shifting. Currently, this is the case for the households in

California that have programmable thermostats. It is estimated that 35% of them do

not use the programming features, but instead put the thermostat in hold mode and

operate it manually [8]. To improve the acceptability and usability of thermostats,

they should be capable of starting up automatically and operating autonomously with

minimal input from the occupants.

First, the interior space conditioning system should perform reasonably well out-

of-the-box with good default of control parameters. The built-in defaults come from

the average thermal performance of common houses. Limited information will be

queried upon installation, such as the location (zip code) and the year the house was

built. From the very beginning that the system runs, it should adapt its control

strategies to the speci�c house, HVAC systems and climate. It needs to learn how

the speci�c house behaves in temperature based on historical data and detect any

changes if they occur. Control parameters would be tuned adaptively with those

learning results. Further, control strategies would be customized based on residents'

preferences on comfort and economics. This enables the system to meet the needs

of individuals better. The most important automation function is to respond the

changes of electricity price automatically. Users do not wish to monitor the dynamic

5
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rates all the time as a �day-trader� of electricity. The control system will adopt

strategies to shed load at high price without signi�cantly sacri�cing users' comfort.

It will also notify users of necessary accommodation to their activity, for example

postponing doing laundry during high price periods. With all these user-oriented

functions, the technology would be more acceptable and more e�ective.

1.3 Overview

Toward automated control under the context of demand response, an interior space

conditioning system was designed and implemented. A wireless communication tech-

nique was adopted to construct a sensing and actuating network. An ad-hoc controller

controlled interior space conditioning. It adapts control strategies to a speci�c house,

HVAC systems, climate, various pricing and users. The system interacts with users

through an intuitive user interface.

The research focuses on the control strategies design and its implementation for

residential houses, while the same strategies could be applied to light commercial

buildings. On one hand the HVAC equipment is relatively simple compared to those

in large commercial and industrial buildings. On the other hand, the system should

be more autonomous and robust without the operation of professionals. Due to the

essence of demand response measures, the control system deals with only electricity-

driven HVAC equipment. It is easy to modify the control strategies for gas heating

systems without gas storage. However, the control system dealing with an HVAC

system with energy storage is not within the scope of this thesis.

The body of the paper is divided into three parts. Chapter 2 is an overview of

the interior space conditioning system. It discusses the working mechanism of the

system, including how the system works and how it interacts with its surroundings.

6
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The system adopted a disaggregated structure, which is completely di�erent from the

current thermostat concept. It is divided into three parts: hardware, controls and

user interface. As other components involved in the system operation, public utility,

houses and human beings are introduced as well. Several technology concepts and

innovation ideas are described, which enable the implementation of control strategies.

Chapter 3 introduces the tools used to validate the design of an interior space

conditioning system. Computer simulation programs mimic the DR variable electric-

ity rates and the thermal behavior of actual houses. They provide quick, convenient

and controllable approaches to evaluate the system. Field tests are another validation

method in which the system runs in a real-life scenario. Test house characteristics

and test conditions are described. The system infrastructure and control strategies

are extensively tested through long-term tests, summer tests and large-scale tests.

The control strategies design and implementation are described in chapter 4. First,

the interior space conditioning is formulated as an optimization problem. Supervisory

control and local control are introduced to solve this problem. This paper focuses on

the development of supervisory controls. Second, the technical background of super-

visory control is described. Typical supervisory control methods are grouped into four

categories. Their advantages and disadvantages compared to other methods are de-

scribed. The detailed design of this particular problem, interior space conditioning,

follows. Hierarchical control structure is adopted. Supervisory control determines

control mode, control state and then temperature setpoint settings sequentially. To

realize the control strategies, hybrid supervisory control methods introduced previ-

ously are applied. In details, a model-free method � expert system splits the big

optimization problem into four problems. Model-based method and performance-

based method are used to perform optimal HVAC control for each sub-problem. The

performances are evaluated by both computer simulations and �eld tests. These re-
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sults provide insights and reveal application constraints for control strategy design

and control methodology.

Chapter 5 summarizes the research work and the thesis contributions.
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Chapter 2

System Working Mechanism

An interior space conditioning system for a residential house, the thermal control

system, works under complex circumstances. It interacts with the following objects:

the occupants, the house and its internal properties, its HVAC systems, the inside

and outside surroundings, and the public utility (usually called �the utility�). Fig-

ure 2.1 shows their interactions. The occupants perceive thermal comfort from the

house surroundings, and feedback their feelings by operating the control system. It

is worth mentioning that a human's thermal comfort is determined by not only in-

door surroundings, but also outside conditions and their activities. With comfort

information provided by users and pricing information delivered from the utility, the

control system adjusts temperature settings to operate HVAC systems. Meanwhile,

the system may also guide users to take actions for the purpose of energy saving, such

as opening or closing windows, although it is not sure whether or not the actions are

taken. In other words, occupants could be �controlled� or �actuated� undirected and

inde�nitely. Finally, the interior space thermal conditions, especially temperature,

are determined by a series of heat transfer processes. The thermal dynamics involve

heat from the HVAC operations, the house and its internal properties, the occupants,
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Figure 2.1: Working Mechanism of Interior Space Conditioning System

and the outdoor weather conditions. Additionally, data about energy consumption

are collected by meters and then sent back to the utility.

In this chapter, all the components involved in the control processes are presented.

First of all, I will introduce the disaggregated infrastructure of the interior space con-

ditioning system. Taking advantage of wireless communication and internet services,

the system is integrated by three sub systems: hardware, controller and user inter-

face. Following that discussion, the other components in the control processes are

described, including the public utility, houses and HVAC systems, and human fac-

tors. These components play signi�cant roles in the design and the performance of

control strategies. Their varieties require robust and adaptive controls.
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2.1 Disaggregated Design for Interior Space Condi-

tioning

The idea of disaggregation is to split a big problem into separate pieces. Therefore, it

is easier to analyze the problem and allows for more �exibility in solving the problem

piece by piece with fewer limitations. The concept of disaggregation has been applied

to many �elds: networking distribution, mobile communications[9], scienti�c compu-

tation, computer processor design, and even in some non-engineering �elds such as

management and politics. A similar concept could also be applied to the interior

space conditioning system.

Instead of being a single device as a traditional thermostat, the interior space

conditioning system could be in the form of a distributed system, formed by several

subsystems:

� Hardware, including sensors and actuator relays, is designed as the physical

interface of the system. Sensors collect data about the environment, the energy

consumption, and the residents, providing necessary information to the con-

troller. Receiving commands from the controller, the actuator relays operate

HVAC systems and possbily other electric appliances.

� Controller, which responds to pricing signals, computes optimal control settings

and sends commands to electrical appliances. To monitor the system and realize

advanced control algorithms, a data management system is used as a part of

the controller.

� User Interfaces, by which the system and users exchange information and inter-

act with each other.
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Figure 2.2: Schematic of the Disaggregated System

The traditional thermostat integrates all of these components in a single device and

runs at one spot. With the idea of disaggregation, these components are spread

inside and outside the house. Basic HVAC controls could be realized in di�erent

forms, and advanced control functions could bene�t from the new infrastructure.

Such design takes advantage of modern technologies like wireless communication and

internet services, enabling convenience and �exibility to system installation and pro-

viding possibilities to improve control performance. Figure 2.2 presents the concept

of disaggregated thermal controls.

Bene�ting from the technology of wireless communication, all subsystems could

be distributed separately, for the purpose of convenience and usefulness. For example,

temperature sensors could be mounted beside a bed in the bedroom or behind a couch

in the living room. On one hand, temperatures at such spots are closer to our living

surroundings than locations where traditional thermostats are installed (e.g., on the
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wall of the kitchen, the living room or the hall way). A more precise evaluation of

thermal comfort could be obtained. On the other hand, the system is able to collect

data from multiple spots, which provides possibilities for advance control strategies.

For instance, multiple sensing at the same location provides redundant information,

enabling the function of fault detection. Data collected in di�erent rooms enable

multi-zone conditioning. So do HVAC actuators. They could be installed without

the limitation of organizing cables to receive control signals. As the key component,

the main controller could be running on a conventional chip or a home computer

as a software program with a wireless receiver. Similarly, without the limitation

of locations, user interfaces could be displayed in various forms: an LCD showing

the major information, a lighting device showing electricity rates and even an alarm

indicating a critical-peak-pricing event.

In addition, the internet provides new opportunities for the evolution of interior

space conditioning. As mentioned above, the main controller could be located at a

computer as a software program. With this, the software actually can be in the form

of an online service running on a remote server. Sensing data and control settings

would be transmitted through high speed internet. Without the limitation of conven-

tional thermostat chips, powerful computation capability could be achieved at remote

servers, enabling the implementation of advanced control algorithms. Moreover, large

database systems could be supported, which are necessary to store historical informa-

tion. Because it is not necessary that the controller be physically accessible to users,

service providers would be able to upgrade or restart the control system software

without going to residential homes. The design of user interface is very innovative,

and it does not need to be physically located at a residence. Using an online service,

it could be available through any type of device as long as there is an internet connec-

tion, such as computers, PDAs and cell phones. Users are able to monitor and modify
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system settings at any time and anywhere. Users can even customize the display with

colors, font size and so on.

From the above description, we see how the concept of interior space conditioning

system is expanded from conventional thermostats. Development of technologies

promotes evolution of the interior space conditioning system, as well as the subsystems

mentioned above.

2.1.1 Multiple Sensing and Actuating

A conventional thermostat merely senses temperature through a thermistor mounted

on the thermostat circuit board. Such limited information restricts the functionalities

and the performance of the control system. There is a need for much more information

via multiple sensing.

First of all, human comfort is a�ected by various factors, in addition to temper-

ature. Of the most signi�cance are humidity, air movement, solar radiation, outdoor

conditions and individual metabolic rate. (Details are in section 2.5.1.) In order

to make a better evaluation of thermal comfort, measuring these conditions is im-

portant. Useful sensing metrics might include temperature, humidity and air speed

throughout the house; outside weather conditions such as temperature and radiation;

and occupants' motions and locations for the estimation of users' activity. The mo-

tion sensing could be utilized in multi-zone conditioning as well. Second, to monitor

energy consumption and HVAC status, power sensing is required. As the feedback to

the control system, these data could be used for fault detection as well. Moreover, an-

alyzing these data enables the prediction of energy cost. Finally, to improve usability

of the system, system information should be obtained via sensing and expressed to

users. For example, in order to inform users to change sensor batteries, the battery

voltages need be sensed. The system is thus far more information-rich than current
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thermostats and has extended command capability.

The sensing metrics accomplished are temperature, battery voltage, relative hu-

midity, motion, outside weather, power usage, and On/O� status.

� Temperature � ubiquitous for the interior space conditioning. The actual sensor

is normally of thermistor or resistance temperature detectors (RTD) type. Both

air temperature (shielded from radiation) and globe temperature (available to

radiative e�ects) are measured.

� Battery voltage � this is a quantity of internal interest. It provides information

for the maintenance of sensors and actuators.

� Relative humidity � important for comfort estimation.

� Motion � used to determine occupancy of various spaces, for multi-zone controls

and activity estimation. It uses a passive infrared motion sensor to detect

changes in infrared radiation when there is movement by an object with a

temperature di�erent than the surroundings.

� Outside weather � Outside weather conditions are needed for comfort evaluation

and temperature pro�le prediction, to determine optimal settings for advanced

control strategies. We measure outdoor temperature, global and di�use solar

radiation, wind direction and wind speed.

� Power usage � measurements of power usage are done for the whole house and

for individual subsystems or appliances. CT metering devices are used.

� ON/OFF status � check HVAC status as the feedback to the controls, for the

purpose of system monitoring and fault detection.
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There are two actuation modules in current use. One is the ON/OFF relay receiving

commands from a central controller to actuate electrical appliances. Another is the

signal light unit to let people know the current cost range for electricity so they can

decide whether or not to run selected appliances such as washing machines. The signal

light uses the tra�c light pattern of red-yellow-green along with an extra light for

critical�peak-pricing or emergency conditions. It is called a partial actuator because

it requires cooperative action on the part of the occupants. For the same reason, it

could also be considered as a form of user interface.

An important technology enabling the multiple sensing and actuating system is

low-power, low-cost wireless communication. The node unit in this wireless system is

called mote. It consists of a low-power microprocessor, a low-power radio transceiver,

and multiple analog or digital input/output channels for sensing and actuation. �The

system architecture uses a central controller and the wireless equivalent of a �star�

network for connectivity to distributed motes.�[10] A �base station� mote connects

to the central controller and one repeater is strategically located elsewhere in the

house to expend the communication ranges. The system has been built on several

di�erent platforms of motes, to which we have migrated as the technology improved,

demonstrating portability of our sensing and control structure. Figure 2.3 shows the

latest type of motes we used � a Moteiv telosb mote. For the details of hardware

construction, please refer to the project reports [10, 11].

In order to achieve maximum demand response e�ectiveness, the hardware design

envisions control or in�uence over many residential electrical subsystems. If in ad-

dition to the control of the HVAC system, as with current thermostats, this system

can control electric hot water heaters, refrigerators, pool pumps, etc., then it will be

able to do a much better job of shedding electrical load as needed for demand re-

sponse without undue disturbance to the occupants. Some of these appliances, such
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Figure 2.3: Moteiv T-mote

as pool pumps, could be controlled directly. For others, such as clothes washers and

dryers, direct control is probably not practical. The actuation in this case would be

occupant-assisted through signaling the occupant via signal lights that tell occupants

when the time is propitious to run these appliances.

2.1.2 Controls

Demand responsive optimization in conjunction with autonomous functionality lead

to a control system with considerable complexity. In order to handle that complexity,

we have adopted a layered design for the control system software[12] (see Figure 2.4).

In a layered design, each layer (in theory) interacts only with the layers above and

below it. This provides for modularization of function and semi-independent design

of each layer.

At both the top and the bottom of the hierarchy are communication modules.

The highest layer connects the public utility and the user interfaces to the controller.

The lowest layer, the Sensing/Actuating layer, maintains communication between the

controller and the hardware sets. And in the middle are layers that determine control

strategies, controller settings and therefore HVAC operations. The Supervisory Layer
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Figure 2.4: Hierarchical Control Structure

is the most complex and critical layer. It receives price information and users' settings

from above and must make decisions about how to best compromise comfort and cost.

Then the compromise is realized by the Local Control Layer. Choices must be made

as to how to manipulate the HVAC system for basic thermal control. As the most

signi�cant contribution of this research, the detailed algorithms in the Supervisory

Layer are described in Chapter 4.

Parallel to the hierarchical structure, a data management system records the data

�ow for several purposes. First, the software development should be generic with

respect to the hardware sets. To enable such independent design, the database stores

hardware information such as mote IDs, calibration information, code versions, main-

tenance dates and so on. The controller downloads the information from database

every time it restarts. Thus, it needs not be modi�ed when we change a broken sensor

or recalibrate a thermister. In addition, information about the speci�c house and its

occupants are saved, including house locations, occupants' schedules and their eco-

nomics preferences input by users. Based on these, the system is able to customize

control strategies for an individual house. Control parameters of the system are saved

as well. A set of default values are used as initial settings and control algorithms up-
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date those values when necessary. With control parameters recorded, even if the

system is restarted, it can still track the latest controls. Those values are useful for

research purposes as well. Finally, real sensing data during the control process need

to be stored into the database for advanced functions (i.e., learning, fault diagnostics,

commissioning). Due to these reasons, a reliable database service including uploading

and downloading data is non-trivial. As mentioned earlier, the database could be run

on a remote server.

2.1.3 User Interfaces

As a main component of interior space conditioning, the user interface works as a

bridge between users and the control device. Although the goals of the user interface

are to display information to users and allow input from users, there are responsibil-

ities other than these to achieve the best acceptability for the system.

The basic display functions are similar to a conventional thermostat � showing

actual indoor temperature, air conditioner/heater status, and electricity rate (in the

context of DR), as well as controller settings such as temperature setpoints and con-

trol mode (cooling/heating/auto/OFF). Advanced thermostats may also display total

energy consumption and scheduled setpoint (programmable thermostat). However,

users are expected to be more informed, receiving real-time energy/cost information.

Pilot programs showed that householders who monitor real-time energy usage can re-

duce total electricity consumption by as much as 10% to 15%[13]. The savings can be

enlarged by reminding users to do maintenance such as change �lters. Thus, systems

with functions of fault detection and commissioning and display diagnostic informa-

tion and the corresponding suggestions are desired. This avoids energy wasting and

improves energy e�ciency. The interface may also guide the user to take bene�cial

actions for the purpose of energy/cost saving, such as opening windows when the
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outside temperature is cooler than the inside temperature on summer nights.

As another end, the user interface allows users to input their preferred temperature

schedules. In addition, users should be able to control HVAC systems manually

through the user interface, although automatic control is dominant. Finally, with

the emergence of DR techniques, the system would like to know users' economic

preferences, or how people would like to balance cost and comfort. For users with a

large budget, the system would make the best e�ort to achieve comfort even when

the electricity rate is high. For users who have a limit budget, the system will apply

strategies to meet their economics requirements. This is important information for

the system to do optimization control. The user interface needs a tool to let users

express their �sensitivity to price�.

Besides all of these functionalities, the system should also educate users and make

sure they understand how the system works. Based on our experience from �eld

tests, using the thermostat properly is crucial for the system to achieve the optimized

performance as designed. Failing to do that, users could not bene�t from the new

technology and energy is wasted. Here are some examples. Some users thought the

AC and heaters work as valves � that setting a large di�erence between the actual

value and reference would speed up the cooling/heating process. When they feel cold

or hot, they modify the temperature setpoint by a big jump and change backward

later, instead of directly setting setpoints to what they prefer. In actuality, the

cooling/heating speed is determined by equipment capacity only, and the temperature

di�erence between actual values and settings has no e�ect. Educating users about this

fact would prevent them from changing settings back and potentially saving energy

if they forget to do so. Another misperception some people have is that keeping the

temperature low on summer afternoons when the house is not occupied saves energy

because the house is cooled down again later in the afternoon when people come
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back. However, this is not accurate. The total energy consumption is larger if the

average temperature is lower. Due to these observations, the system should detect

questionable actions and inform users through user interfaces, so that users could

make better decisions.

To achieve these goals, there are several forms of implementation for user interfaces

at present. A user interface design was developed, prototyped by our research group,

and tested in laboratory environment[14, 15]. See �gure 2.5(a) below. It has most

of the desired functions described above. Our research group tested it in several

�eld tests. We also tested another innovation together with a startup company,

Ecofactor, which provides online services and uses a website as user interface. It shows

historical energy data and plots temperature curves so that users obtain information.

(�gure 2.5(b)) There are also di�erent types of display devices on the market showing

electricity rates, monitoring real-time energy consumptions[16].
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Figure 2.5: User Interfaces

(a) User interface used in �eld tests

(b) User interface for online services
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2.2 Other Issues Involved

During the processes of interior space conditioning, there are several issues involved.

Policy is one of the key components that support the technology. Utility companies

and state regulators o�er necessary instruments to enable the implementation of resi-

dential thermostat controls under the background of DR. Houses, HVAC systems and

users are other factors. Their wide range of varieties challenge the design of a generic

controller. Robustness is required to deal with their uncertainties.

2.2.1 Policy issues

It takes a mix of technology and policy for demand response to meet its potential of

load reducing and shifting. The �rst step into the domain is that the public utilities

have to install smart meters, which support the billing applications dealing with

dynamic rates. Then state regulators and energy marketers need to design dynamic

rates that are bene�cial to the utilities as well as to consumers.

Smart Meters

Smart meters are essential to perform demand response. Although it is a type of

power sensing device, but it is very di�erent from the one mentioned in section 2.1.1.

As a gateway between interior space conditioning system and the public utility, it

collects and delivers information about electric power usage. It allows users to be

charged by not only the amount of electricity consumed but also when it is used.

Currently, there are two types of smart meters: automated meter reading (AMR)

and advanced metering infrastructure (AMI). AMR performs data transition one way

from customers to the utility, AMI enables two-way communication. �AMR imple-

mentations collect real-time customer usage data but do not provide the information
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to the utility in real time�[17]. Instead, AMR meters store the information locally in

the meter itself, and periodically the information is retrieved and sent to utility billing

systems. Such implementation is su�cient to support billing applications and yields

the associated bene�t of reducing meter reading costs. With two-way communica-

tion, AMI is able to deliver real-time information to the public utility and may control

HVAC directly based on consumers' willingness to reduce electricity consumption or

to have their service temporarily interrupted when demand overwhelms the supply. In

other words, it combines the functionalities of a meter and a controller. In addition,

its capabilities allow the utility to monitor real-time power outages and spikes and

to deploy outage management strategies. Table 2.1 compares both types of smart

meters with the current manual meters on their characteristics and applications.

Although there are still questions about legislative issue, cost of meters, data

transmission techniques and manufacturing standards, smart meters are absolutely

one of the necessary solutions to demand response, whatever form they take.

Utility Tari�

To spur activities that have bene�ts of energy savings and peak load shifting, energy

marketers and government regulate the market by using an economy instrument �

price. There are evidences showing that its e�ect is signi�cant. Since 1980, the

state of California maintained the same level of electricity consumption per capita

with a growing economy, while most other states have increasing trends on the same

index[18]. One of the main reasons is that the electricity is far more expensive in

California than most other states. Therefore, it is reasonable to assert that dynamic

rates would have an impact on the way people use electricity and perhaps even help

to lessen the growing need for more electric power and power infrastructure.

In pilot programs around the country, a few forms of DR rates were used[19, 20].
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Table 2.1: Comparison of Utility Meters

System
Feature

Manual Meter Automatic
Meter Reading
(AMR)

Advanced Metering
Infrastructure (AMI)

Meters Electromechanical
analog

Hybrid digital Hybrid or solid-state
digital

Data
recording

Total
consumption

Total
consumption or
time-based

Time-based (usage each
hour or more often)

Data
collection

Manual,
monthly

Drive-by,
periodically
(monthly)

Remote via
communication network,
daily or more often, even
real-time

Primary
applications

Total
consumption
billing

Pricing options
billing

Pricing options,
customer options, utility
operations, emergency
demand response

Key
software
interfaces

Billing and
customer
information
system

Billing and
customer
information
system

Billing and customer
information system;
Customer data display;
Outage management;
Emergency demand
response

Additional
devices
enabled

None Smart
thermostats

Smart thermostats;
In-home displays;
Appliance controllers
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The details are as follows.

� Time of use (TOU) rates. The rates are de�ned as o�-peak, partial-peak (some-

times called mid-peak or shoulder-peak) and peak (on-peak), with a �xed sched-

ule. Sometimes the rates are also called the low, medium and high price in this

thesis. The schedules may be di�erent based on weekday/weekends, holidays

and seasons. It is important to note that TOU is not a type of dynamic rate

because it is predetermined. However, it has the same e�ect of load shifting as

dynamic rates. I include it here as a type of DR rate.

� Critical peak pricing (CPP). As a real-time price schedule, users are noti�ed

one day ahead. It is triggered primarily by peak demand and/or low generation

reserves during summer weekdays. Usually the limit of maximum event number

is pre-determined. Sometimes TOU rates are used as a base for CPP.

� Real-time pricing (RTP). The price of electricity varies as wholesale prices �uc-

tuate over the course of the day. It changes hourly (or even more often) based

on day-ahead forecasts of hourly energy costs. The rates have only been ap-

plied for commerce and industry. Users bene�t if they are able to shift or reduce

energy consumption during high-cost periods.

All above DR policies demonstrated non-trivial e�ects on energy saving and load

shifting under certain conditions[21]. However, there is no particular work showing

what the optimal tari� should be to maximize the bene�t to both users and the public

utility. Obviously, relatively high price for peak load hours will promote electricity

management programs that shift loads to non-peak periods. However, a large peak-to-

o�-peak price ratio in conjunction with long peak durations might increase monthly

bills or worsen users' living conditions. A project with more than 300,000 customer
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participants in Washington demonstrated that many customers under time-of-use

rates actually paid more than their counterparts with traditional �at rates, although

the total consumption decreased by 5% during peak hours[21]. Additionally, the

impact di�erences when applying TOU, CPP and RTP are unclear currently, although

all have potential for load reduction and peak load shifting.

However, this topic is not within the scope of this thesis, but the behavior and the

performance of control strategies are highly related to the utility tari�, including the

type of DR rates, the ratios of di�erent price levels, their schedules and the time left for

users to respond in the case of CPP and RTP. To deal with such undetermined issues,

the optimal control strategies should be generic with respect to these variations. In

this dissertation, a generic system is developed dealing with the tari� of TOU plus

CPP, with notice one day ahead. Di�erent price ratios are deployed to illustrate the

control performance.

2.2.2 House and HVAC Systems

For interior space conditioning, the control object is the thermal conditions inside

a house. Therefore, thermal characteristics of a house and its HVAC equipment

play signi�cant roles in the dynamics processes that determine the indoor conditions,

speci�cally temperature. For instance, a large house has the capacity to store a great

deal of heat, which is mathematically described by a large value of time constant in

the house model so that indoor temperature is slowly a�ected by outdoor conditions.

Thermal characteristics of a house consist of house structure (foundation, number of

stories, etc.), orientation, size, construction material, internal mass, the year built

and the corresponding construction code, and window style, number and directions.

Factors of HVAC equipment include equipment type, capacity or size, years of use,

and �lter changing frequency.
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Figure 2.6: California Residences Distribution

Source: Energy Information Administration, 2001[22]

The variance of these factors is widely distributed in California. Figure 2.6 shows

the distribution of California residential houses based on decade of their construction.

Roughly two-thirds of the occupied existing California housing stock was constructed

before the �rst Title-24 energy standards took e�ect in 1978. And before 1983, dou-

ble paned windows were not required in California. These houses are assumed to be

poorly insulated, with single-pane windows and equipment e�ciencies typical of the

1970s. On the other hand, the newly constructed houses have windows, insulation val-

ues and equipment e�ciency meeting the minimum for Title-24 compliance. In other

words, the thermal performance of the building envelope and HVAC equipments have

improved over time, due to more e�cient window technologies, equipment e�ciencies,

and insulation values mandated by code.

The variety in thermal characteristics causes uncertainties and leads to di�culties
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in the control strategy design. A strategy might work for some types of houses but not

for others. For example, a house with large heat storage capacity is able to bene�t

from the long recovery time when we apply a pre-cooling strategy that cools the

house before peak price time. Yet a house with relatively small mass has few bene�ts

because the indoor temperature recovers quickly when the air conditioner is turned

OFF. Even the same strategy deployed to the same house can perform di�erently

under di�erent circumstances. In the above example, higher outside temperature will

lessen the bene�t of pre-cooling since the recovery time is shorter. Similarly, as the

actuation devices of thermostat controls, HVAC systems have non-trivial impacts on

control performance. An air conditioner of small capacity, an undersized AC, can not

cool the house under extreme weather conditions. That is, the control target cannot

be achieved with an undersized AC on a hot summer afternoon. In this case, to keep

a comfortable living environment, other strategies should be used, such as cooling the

house before the outdoor temperature reaches its peak.

Due to these reasons, there is a need to customize interior space conditioning con-

trollers for individual houses. Unlike commercial buildings where the thermal control

programs are usually designed speci�cally for their complicated building structures

and HVAC equipment, residential thermostats cannot be personalized due to the cost.

Controllers are designed for general use and should work appropriately for all kinds

of houses and HVAC systems automatically. Such autonomous function requires the

controller to recognize thermal characteristics of a house and its HVAC systems, and

also detect changes if they occur. Users are queried to input basic house information

to initialize the identi�cation process at the �rst installation. Then robust and adap-

tive control strategies are applied based on the identi�cations. Simulations and �eld

tests also show the importance of recognizing these di�erences that exist in houses

and HVAC systems (refer to chapter 4). The customized strategies enlarge energy
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and cost savings and improve users' satisfaction.

2.2.3 Human Factors

One important component in interior space conditioning is human beings, the occu-

pants. First, the ultimate goal of the conditioning is to maintain comfortable living

conditions so the performance of the system depends on perceived thermal comfort

to a signi�cant degree. Second, di�erent economic sensitivity of users could a�ect the

choice of optimal control settings signi�cantly. Both of these points are expatiated in

the following sections.

Additionally, human factors include users' impact on house thermal dynamics that

determine indoor temperature. The number of occupants and their behavior would

change internal heat or building envelope. More persons would generate more heat;

building a �re and cooking will heat the house; house cleaning (washing �oors) cools

the house; and opening windows may either heat or cool a house depending on outdoor

conditions. It is important to mention that users' behavior could have mixed e�ects.

Some activity, for example cooking, could change a person's metabolic rate so that

he or she feels comfortable in lower temperature. Meanwhile, the activity of cooking

generates more heat and changes the thermal dynamics of interior space. Finally,

occupancy schedules make a big di�erence in the interior space conditioning. Large

energy savings could be achieved if the control system takes advantage of unoccupied

periods.

All of these human factors pose challenges to the design of the interior space con-

ditioning system and provide opportunities for energy savings and peak load shifting.
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Thermal Comfort

Currently, the typical programmable thermostat on the market has two time periods

and two temperature choices per day corresponding to occupied comfort setpoint and

a setup/setback for unoccupied periods or night times. In this design, it is assumed

that users perceive the same level of comfort at a �xed temperature at any time in

the daytime or night under any weather conditions. This is similar to what is done in

o�ce buildings, for which a thermal comfort standard is established. However, this

standard may not �t for residential sectors. One reason is that residential buildings

are usually naturally ventilated while o�ce buildings are mostly fully or partially

closed. Also, people have more control over ventilating, such as opening windows.

These make a big di�erence on perceived comfort, especially in summer. Further, it

is more �exible for residential users to adapt themselves to surrounding temperature,

such as by adding or reducing clothing. In other words, people in residential houses

have more ability to adapt to indoor temperature based on the outdoor conditions.

This, theoretically, provides a large potential for the control system to save energy

by enlarging temperature ranges for thermal comfort.

Another reason for establishing new standards is that thermal comfort varies

among people. For instance, females often prefer higher room temperatures than

males, and feel both uncomfortably cold and uncomfortably hot more often than

males[23]. Since residential houses can be occupied by fewer people than commer-

cial buildings, which consider the average thermal comfort, individual di�erences on

thermal preference is not negligible for the controls. Due to these reasons, we adopt

di�erent standards to evaluate thermal comfort for residential buildings.

There are six factors that in�uence thermal comfort: air temperature, humidity,

air speed, radiation, metabolic rate (Met), and clothing value (Clo)[24]. In a naturally

ventilated building, we also consider outside conditions, namely temperature and
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humidity. However, limited sensing in the current system platform restricts the way

to evaluate these factors. The new standard needs to be established based on available

information, including sensed indoor temperature, possibly humidity, and outdoor

conditions collected from a weather station.

At present, no thermal comfort standard exists for the residential sector. The

Adaptive Comfort Standard (ACS) from ASHRAE 55-2004 has been suggested as

most appropriate since it is based on buildings with natural ventilations[24, 25]. The

ACS suggests that people adapt to indoor temperature based on the average outdoor

temperature for the previous month. Two studies in residential buildings support this

approach; one with manual thermostat control and the other with a programmable

thermostat showing a seasonal variation in temperature[26, 27]. An example of ACS-

based temperature setpoints for Sacramento, California's climate is shown in �gure

2.7[11]. The default temperature setpoint for occupied homes with an EnergyStar

programmable thermostat is 78F (25.5C); by contrast, in July and August when

the outside temperature reaches 100F (37.8C), the adaptive thermostat temperature

setpoint might drift to 82F (27.8C). Based on ACS, this temperature is expected to

be within the range of comfortable temperatures or comfort zone of most people, and

it also represents a savings in energy.

The ASC only involves users' thermal adaption to outdoor conditions without

considering the individual thermal preference. Ideally, an intelligent thermal control

system is capable of learning this by observing setpoint changes made by users. With

the learning results, it could adjust the setpoint or reset it based on time of day

and day of the week. For example, if a user lowers temperature setpoints around

6 p.m. occasionally, the thermostat should remember this and adjust the setpoint

automatically everyday at 6 p.m. There are several learning methodologies that might

be applied to this problem. But this is not within the scope of this thesis.
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Figure 2.7: ACS-based Temperature Setpoints

Source: DR phase II project report [11]
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Combining ASC and the functionality of thermal comfort preference learning, a

reasonable standard could be established to evaluate thermal comfort numerically.

This is crucial for the control system to make trade-o�s between energy cost and

thermal comfort.

In addition to the six factors mentioned above that in�uence thermal comfort,

people are sensitive to the rate at which temperature shifts. People detect quick

temperature changes, but may not detect small �uctuation of temperature over a long

period. This interesting phenomenon provides opportunities for control systems to

make energy savings. An algorithm called �straw curve� was designed and tested[28].

And it makes appropriate energy savings by slightly modifying setpoint periodically.

Economic Sensitivity

Another human factor is the way people think about money and comfort. In the

context of DR, users' sensitivity to electricity price would a�ect the control decisions

dramatically.

Here is how people make di�erent decisions when responding to price changes. In

a summer afternoon, when price goes up from 20 cents to 50 cents, some families may

turn up the setpoint by 1F or 2F in order to have some cost savings. Some do not

care to pay more to keep the same temperature unless the price is much higher, say

70 cents. Some would like to maintain the maximum comfort regardless of the price.

Instead of modifying setpoints manually every time the price changes, users need the

interior space conditioning system to respond to price signals automatically based on

their own economic preferences. Besides mimicking the operations of human being,

the control system could do an even better job than human beings by calculating

the optimal control settings to minimize cost as well as maximize comfort, through a

complex process of decision making.

34

 PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



To customize the trade-o� between cost and comfort, the �rst step is to get a user's

economic sensitivity. There are several ways to obtain the information from users.

One possibility is to query the total electricity budget for a month. One month's cost

is easily understood by users, but it is hard for a controller to explain this information

and extract users' sensitivity to prices. Another way is to query users their preferred

temperature corresponding to an electricity price or a range of price directly. One

shortcoming of the method is that users might not know the consequences of their

choices: the monthly bill may be di�erent from their expectation. A controller could

compensate for this by making a rough estimation of a monthly bill, although this is

not an easy task. Another drawback is that it needs a certain amount of inputs from

users.

In the current work, we propose to use one variable, the �economics index,� as the

index of economic sense. It is a user-speci�ed term used in the controller optimization.

Ranging from 0 to 1, it equals 1 when users would like to maintain 100% comfort

without considering price. It is 0 when only minimum comfort is maintained, and the

users would like to keep the cost to no more than they would have spent if there were

no increase in price. The default value 0.5 indicates a common case under TOU tari�:

users are sensitive to price when price changes from medium level to high level so that

setpoints are adjusted moderately. To help users understand the use of the economics

index, the corresponding comfort level and cost changes are shown. Users' acceptance

of this method is still under investigation. A detailed algorithm of optimization using

economics index is in Chapter 4.
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Chapter 3

Validation Tools

To validate the hypothesis made in the control strategy design and evaluate the per-

formance of the interior space conditioning system, including infrastructure, hardware

and control strategies, several tools are used including computer simulations and real-

time tests.

Computer programs are able to simulate the whole process of demand-responsive

interior space conditioning, including thermal dynamics of houses and HVAC systems,

behavior of human beings and dynamic rates. Simulations are chosen as validation

methods because �eld testing in a range of real California houses is costly, considering

the expenses to instrument the houses and log data, the long periods of time required

to run the tests, and the variability of weather conditions. Further, because we

are concerned with the load reducing and shifting performances of control strategies

during peak load periods, simulations also provide opportunities to repeat tests using

di�erent controls over the same weather data. In other words, as quick and convenient

instruments, computer simulations provide comparable and controllable results for

system strategy validation and evaluation.

In addition to computer environments, the system was tested in real residential
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houses as well. In the �eld tests, the system interacted with real life scenes for weeks.

Stability and consistency of the system were examined. E�ectiveness and e�ciency

of the control strategies are evaluated. Interesting concerns were raised about the

system design. Furthermore, feedback from volunteer users provided valuable insight

to improve the technology.

3.1 Price Generator

3.1.1 Introduction

As stated in section 2.2.1, the key to promote Demand Response technology to thou-

sands of residential customers is the dynamic electricity price. High price has the

e�ect of regulating electricity demand and avoiding shortages of electrical energy. In-

stead of getting actual price signals from the public utility, such as PG&E and South

California Edison, I developed a simulation tool � a price generator to simulate the

dynamic electricity rates. Two types of price signals are generated: time-of-use rate

with critical-peak price, and dynamic four-level rates. In addition, it is convenient to

modify the price generator to simulate other forms of dynamic rates. Combined with

other simulation instruments, we are able to observe the controller's responses to the

DR tari�.

Here are the de�nitions of two types of rates generated by the price generator.

� Static Time-of-Use Rate with Dynamic Critical-Peak-Price (TOU with CPP):

As the basis of the rates, TOU rates are in �xed schedules, which are reset

seasonally. Added to the base rates, critical peak price (CPP) is dispatched

during medium and high price periods for a maximum of 50 hours per year,

with a non-�xed schedule. CPP signals are delivered in advance by several
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hours.

� Dynamic Four-Level Rate: Dynamic schedules of low, medium, high and critical

peak price are delivered in advance by several hours.

3.1.2 Method

To simulate price signals, a model of electricity rates is developed based on meteorol-

ogy, in particular, temperature, and some randomly-generated events that simulate

the malfunctions or maintenance of electricity generation or transmission systems. It

is important to note that I am not attempting to replicate the pricing procedures

used by public utility companies. The actual procedures of utility pricing are much

more complex. Our goal here is to use a simple model to simulate the complex pro-

cedures and to produce a reasonable-looking price pattern to evaluate interior space

conditioning strategies.

Here is the basic idea of price generator. By analyzing hourly data of outside

temperature and electricity usage using statistical methods, a correlation is observed.

There is an inevitable relationship between electricity usage and electricity retail price

in the context of DR. Based on these observations, models are developed to simulate

these relationships. Randomly-generated events are added into the simulation to

mimic the emergency cases of short-of-energy, such as equipment failures.

The price generator generates price signals in four steps. First, it simulates elec-

tricity loads given outdoor temperatures. I used another simulation tool, Energy-10 1,

to generate hourly electricity usage given outside temperature for a typical California

house. Energy-10 simulates the whole-building energy consumption for 8760 hours per

year, including day lighting, ventilation, air-conditioning/heating and utility loads.

1ENERGRY-10 is a building energy simulation program for small commercial and residential
buildings.[29]
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Figure 3.1: Relations of Temperature and Electricity Loads

(a) Summer Case

(b) Spring/Autumn/Winter
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According to these data, the nonlinear models of electricity loads given temperature

are developed. Because electricity load varies across season, models are developed for

di�erent seasons. Plots in �gure 3.1 are the relationships of outdoor temperature and

electricity loads for summer and spring/autumn/winter. Second, it generates elec-

tricity supply represented by the percentage of power capacity. Randomly-generated

negative impulses simulate the electricity shortage caused by equipment maintenance,

malfunctions or other situations that interrupt the supply. These interruptions might

happen on schedule or unexpectedly. Third, it generates retail price based on de�ned

pricing policies. The ratio of electricity demand and supply re�ects the actual cost

of electricity, which is usually represented by the wholesale price. With the ratio,

rules were de�ned to generate retail price. Finally, it set the notice intervals when

the dynamic rate is delivered in advance. The range is from one hour ahead to one

day ahead. Figure 3.2 and 3.3 present the whole process for both the DR tari� sim-

ulations over �ve summer days. The green curves are the �nal price signals and the

other curves are the intermediate signals generated during the process.

In order to compare di�erent control strategies, identical weather and price se-

quences should be applied as working conditions. The price generator is able to

generate identical time sequences of electricity price given identical weather inputs

without losing randomly-generated-events functions. In other words, the price gener-

ator could generate the same random sequences with the same weather inputs.

The price generator has been used in both computer simulations and in real house

tests. In computer simulations, historical weather data were used as inputs to the

price generator. In �eld tests, we fed hourly weather data forecasted one day ahead

by a weather station to generate price sequences. The price generator generated

reasonable electricity price signals successfully.
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Figure 3.2: Dynamic Four-level Rate

Set di�erent thresholds for low, medium, high and critical price and generate discrete
prices (green line).
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Figure 3.3: Time-of-use Rate with Critical-peak Price

Based on time of use (TOU) schedule, additional critical peak price is generated from
the demand-to-supply ratios. Set �xed rate that changes seasonally for low, medium
and high price; when demand-to-supply ratio is over a threshold, critical peak price
is triggered.
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3.2 House Simulation: MZEST

We use the Multi-Zone Energy Simulation Tool (MZEST) to simulate the energy use

of houses. MZEST is a multi-zone extension of the simulation code California Non-

Residential Engine (CNE). CNE is used by the CALRES program, which is mandated

by the California Energy Commission for showing compliance to California's Title-24

Building Energy Standard in residential buildings. We chose MZEST because it can

predict the temperature in several thermal zones and because we had access to the

source code.

The interior space conditioning system can run MZEST the same way it runs

a real house. Based on users' settings, weather conditions and room temperatures,

the control system dictates to MZEST whether the HVAC equipments are on or

o�. MZEST then computes the next-step multi-room temperatures and provides

these temperatures to the control system. Hourly climate data necessary for the

computation are fed to MZEST. The data are either from TMY2 climate �les or

real data collected from test houses. Currently, the control system heats or cools

the MZEST house to meet the needs of only one zone (the control zone). The other

zones are conditioned, but will generally not exactly meet the setpoint, especially

if there are large internal gains or some other in�uence on the temperature of the

zones. This is exactly the same case as in central conditioning houses. The control

system interfaces with MZEST in an iterative loop by a 5-minute time step. The

timing allows us to use an external controller to control it with the same timing as

in a real house. The communication between the controller and MZEST is via XML

data transfer.

To construct a house model in MZEST, we need to specify house construction

parameters in an input �le, including insulation values, speci�c heat capacity of ma-
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terials, in�ltration rates, and adjacencies of rooms or zones. The exact shading coef-

�cient per hour of all windows may be speci�ed. Internal gains, such as equipment

and occupant schedules, are also speci�ed as a multiplier. The e�ciency of HVAC

equipment may be speci�ed as well. The output of MZEST includes several types of

report spreadsheets and graphs depicting energy use, cost, and so on. But for the

interior space conditioning, only room temperatures are delivered.

We developed a house model using data collected from an occupied residential

house in California. It is the basic house model that is used for further expansion.

The physical characteristics of the house are described in the next section. The house

was inspected and measured with respect to the knowledge needed to build a model in

MZEST. By specifying this information and tuning unknown parameters, the house

model shows similar thermal behavior as the real house it mimics. Figure 3.4 [30]

compares the measured indoor temperature (in light blue) and the simulated indoor

temperature (in red) by MZEST given the same HVAC operations. The two sets

of temperature curves match closely with each other, including the periods when

the AC is on and o�. This showed that MZEST is able to simulate the thermal

behavior of a real house and its HVAC systems. The detailed work was stated in the

thesis �Distributed Sensing and Controlling of Residential HVAC Systems for Thermal

Comfort, Demand Response, and Reduced Annual Energy Consumption�[30].

To check the e�ectiveness of demand responsive control strategies on typical Cal-

ifornia residential houses, a single MZEST house model is not enough. Based on

the analysis of California house characteristics (section 2.2.2), we approximated the

spectrum of California houses using four construction types. The house model de-

veloped previously is used as the base. First, house parameters were modi�ed to

represent typical characteristics of a generic house built before the Title-24 energy

e�ciency standards were implemented. This modeled house is assumed to be poorly
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Figure 3.4: Measured and Simulated Indoor Temperature

insulated, with single-pane windows and equipment e�ciencies typical of the 1970s.

To represent the opposite extreme, a post-1992 model was developed representing a

generic house with windows, insulation values and equipment e�ciency meeting the

minimum for Title-24 compliance. Further, because of the important role that ther-

mal mass plays in the attenuation of heating loads, both a crawl-space model and

a slab-on-grade version were created for each category (see �gure 3.5 [11]). These

house models in MZEST enable us to evaluate the e�ect of the demand responsive

autonomous control strategies on a wide variety of houses located in any California

climate zone.

3.3 Field Tests

After feeding back the system design by computer simulations, the next step is to de-

ploy the interior space conditioning system in an actual occupied house with multiple

residents, and test the system over several weeks. The purposes are to evaluate the
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Figure 3.5: Four Typical House Models in California

Source: Hand-drawing by Kyle Konis, Architechture Department, University of Cal-
ifornia, Berkeley
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system infrastructure, validate the results obtained from simulations, and get feed-

back from users. We have performed a few �eld tests over the past four years. Each

test had its own focus and provided insightful feedback to evaluate di�erent aspects

of the system.

3.3.1 Long-term Field Tests

We ran long-term tests in a single-family house from summer 2004 to spring 2006.

The purpose is to validate the infrastructure of the system before complex control

strategies are deployed. The house is located southeast of Berkeley, California in a

climate that requires both air conditioning in summer and heating in winter. The

single-story house has 1825 square feet. It has three bedrooms and two bathrooms;

the long axis of the house runs north-south. The east-facing windows are protected

from solar exposure by trees and the porch roof; however the west-facing windows

catch the full brunt of the sun's rays in the afternoon. The house was built in 1968

with un-insulated �oors and walls and single-paned windows; the ceiling has recently

been insulated. The packaged HVAC unit sits on the ground outside, and it supplies

conditioned air via multiple �oor vents distributed throughout the house.

In total, we ran more than twenty tests and each test lasted from days to a

few months. The system collected multiple sets of sensing data through a wireless

network using 13 motes installed in the house. Figure 3.6 [10] shows the house plan

with the �nal con�guration of distributed indoor sensors (motion, air temperature,

global temperature, relative humidity, power sensing) and outdoor weather station.

Data were stored in local and remote databases. Close loop controls were performed

on its air conditioning system. A virtual network connection was set up to monitor

the system remotely. The system software was amended after each test and then

was tested again. We located and �xed program bugs and modi�ed the methods
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Figure 3.6: Plan of Test House Showing Location of Sensors and Actuators

of communication and data transfer. The usability and stability of the system in a

real-life environment were improved dramatically.

In addition, we inspected and measured the house construction. Combined with

sensed data, a house model was developed in MZEST as the basic model (section

3.2).

3.3.2 2007 Summer Test

The interior space conditioning system was tested in two occupied houses during sum-

mer 2007. The purposes of the tests were to test the functionalities of the system, to

verify simulation results of control strategies, and to get feedback from participants.

Two single-family houses participated in the tests, in which the occupants use their

air conditioning during the summer months. Located about 40 miles northwest of

Berkeley, the two houses were exposed to similar outdoor conditions, but the house

structure, HVAC system and residents' schedules are di�erent. These diversities of-
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fered the opportunity to test the system under di�erent conditions.

House 1 is a 1700-square-foot two-story stucco house built in 1991 with two oc-

cupants. Three ceiling fans are controlled manually in the living room, kitchen and

master bedroom. The HVAC system is a Carrier split system air conditioner/furnace,

with supply grilles in the �oor throughout the house. The house is occupied most

of the time except for irregular hours during the day when the occupants leave for

business. The owners reported that they normally keep the setpoint as 74F for both

daytime and night, and when they leave and remember to o�set the temperature,

they set the thermostat to 79F. Participants open the windows (upstairs) at night

and close the windows during the day. The main electrical appliances are the clothes

washer and dryer.

House 2 is a 1500-square-foot one-story house built in 1984. One ceiling fan

continuously runs in the family room. The HVAC system is a General Electric split

system air conditioner/furnace, with supply grilles in the ceiling. The house has two

skylights in the roof and an attic fan. The two occupants are normally out of the

house during the day, but during a portion of the test were at home taking care of

newborn puppies. The participants look at the weather forecast for the day to decide

whether or not to use the air conditioning. Usually the setpoint during the day is

70F, and lowered in the evening, and turned o� at night. If the weather is hot, the

setpoint is 68F and 70F at night to pre-cool the house manually. The participants

open up the house at night; two windows are opened during the day as well.

Fourteen and 15 motes were installed in house 1 and house 2 respectively. An

additional repeater mote is necessary for house 2 to relay the data from the outside

mote to the base mote due to the large size of the house. Table 3.1 lists the details of

sensors installed in the two test houses. A plastic sheet was designed to attach a mote

to a light switch (�gure 3.7), allowing temperature sensors to be read at approximately
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Table 3.1: Information of Motes Installed in Test Houses

Information Location

Temperature Distributed in all the rooms at the same height
approximately

Temperature In the supply grille in the ceiling of the living
room, to sense temperature of HVAC supply air

Relative
Humidity

In the control zone (living room for house 1 and
bedroom for house 2)

Motion Near the entrance to the house to detect the
occupancy

Temperature Outside under the southeast eave of the roof

Relative
Humidity

Outside under the southeast eave of the roof

Solar
Radiation

On top of the roof

Power At the air conditioner circuit breaker

Power At the main circuit breaker panel, measuring
current from the blower fan, dishwasher, the
clothes washer, clothes dryer, the kitchen, and on
both main branches of the panel

the same height. Actuation motes are installed to relay HVAC equipments and switch

between the original thermostat and our tested interior space conditioning system. A

price indicator mote shows price information to users.

We used an ultra mobile PC�the Samsung Q1�to host both the controller and

the user interface. The size of the computer is slightly larger than a programmable

thermostat, and the touchscreen made it ideal for user input. The computer is shown

in �gure 3.8.

The total time for the tests was approximately six weeks. The test in house 1

began two weeks earlier than the test in house 2, leaving time to �x problems if any

occurred in test 1. Each test was divided into three phases as described in table 3.2,
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Figure 3.7: Example of Generic Mote Installation

Figure 3.8: The Controller and Interface
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Table 3.2: Field Test Plan

Name Length Description

System check
out period

1 week The system monitors temperature,
occupancy status, electricity use, and
HVAC status under the control of original
thermostat. The purpose is to learn
participants' temperature preference at
di�erent time of a day and evaluate default
house model and AC e�ciency.

Mimicking
period

2 days The system controls the HVAC system in
the same manner as the original thermostat.
This period is for testing the actuation
functions and training the occupants to
interact with the system user interface.

Testing
period

5 weeks The HVAC system is completely under the
control of the interior space conditioning
system. Test focuses on the optimal control
and house model learning: 1) Validate the
learned house model by comparing
predicted indoor temperature with actual
temperature. 2) Validate the strategy
transition when price or occupancy status
changes. 3) Compare the optimization
performance (setpoint) under di�erent
values of economics index, using default
house model or learned house model.

while the communication reliability was continuously monitored. The participants

were interviewed before and after the tests to collect information about their energy

use habits and to get feedback.

In the tests, we explored the dynamics of the house and its HVAC systems, tested

the optimization control strategies, and looked at the potential for a computer to

identify the house dynamic signature. The user interface was used by the participants

to control the HVAC system. Interesting feedback was collected about its usability.

The detailed analysis was described in paper [15].
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3.3.3 Large-scale Field Tests

A start up company, Ecofactor, who provides online services for residential thermal

controls, is performing �eld tests in 22 residential houses, which began winter 2007.

The tests adopt traditional sensing and actuating methods: a single temperature

sensor and wired HVAC control. The main controller and the user interface are

running on a remote server. Communication is through the internet. Users are able

to monitor and modify their room temperature through a website, which is supported

by a large database. Data obtained from the tests were used to identify house thermal

characteristics. Designed control strategies were deployed for the purpose of validation

and evaluation.

Tests are being executed in both a summer climate and a winter climate. Min-

neapolis, Minnesota was selected as the �rst test market to deploy heating controls.

Twelve homes are participating in the study. To allow simultaneous deployment of

AC control, Adelaide, South Australia was chosen as another test market, although

their HVAC systems are not compatible with U.S. �standard thermostats. Equip-

ment di�erence was compensated during hardware installation. Table 3.3 lists the

important characteristics of the two sets of test houses, including information about

home structure, HVAC systems, and thermostat system[28].

Several houses participating in the �eld tests have similar characteristics. In Ade-

laide tests, �ve of the homes all built in 1999 are located on the same street (see

�gure 3.9). Three of them (B, C and D) have identical house structure � same �oor

plan, construction methods, etc. In addition, houses C and D have the same orien-

tation. Their exposure to the sun is essentially identical. Similarly, houses A and E

have identical house structure and orientation. The similarity among these houses

o�ers possibilities to validate the performance of control strategies: in one house, the

treatment, or the control strategy being tested, is applied; in the other, the control,
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Table 3.3: Minnesota and Adelaide Test Houses

Minnesota Adelaide
Number of
houses

12 10

Year built Ranging from 1937 to 1987
with an average age of 42
years.

Average age is 31 years. One
was built in 1980. Five were
built in 1999. The other four
are unknow.

House
structure

House size ranges from 946 to
2204 square feet, with an
average of 1300 square feet.
All have insulations in both
the attic and the walls. Ten
homes are primarily wood; 1 is
primarily masonry; 1 is
unknown.

Five homes located on the
same street have similar
structure.

HVAC
system

Each home uses one
single-stage natural gas
furnace. Five furnaces are less
than �ve years old, �ve are
5-10 years old, and one each is
10-20 years and more than 20
years old.

Each home has a single-stage
A/C-heat pump unit. Five of
the homes have AC units that
are less than 10 years old, 3
are less than 5 years old, one
is a recently refurbished unit
and one homeowner is not sure
how old his unit is.

Thermostat Nine out of 12 homes had
programmable thermostat
perviously.

All 10 homeowners previously
had programmable
thermostats

the strategy is not applied.

Large-scale �eld tests are able to provide convincing results about the performance

of the control strategies. Many di�erent kinds of common houses with various oc-

cupants were subjected to the tests for several months under normal and extreme

weather conditions. Therefore, we were able to evaluate control strategies more ex-

tensively and more completely. We noticed that houses responded di�erently to the

same control strategy. Under certain conditions, the diversity is non-trivial. This con-

�rms the necessity and importance of customizing control strategies for each house.
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Figure 3.9: Similar houses in �eld tests, located on the same street

Source: Ecofactor white paper, May, 2008[28]

Further, for the best case and worst case, we explored what worked and what did not

work and amended the controller design.
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Chapter 4

Optimization Control in Interior

Space Conditioning

4.1 Problem Description

Interior space conditioning is a type of temperature regulation by HVAC control. The

objective is to minimize electricity cost while creating a comfortable interior thermal

environment for a whole billing period. Although thermal comfort and electricity

cost are a�ected by many factors, only indoor temperature is controllable by common

residential HVAC systems. In fact, indoor temperature is determined by controller

settings, i.e. temperature setpoint.

Of the most interest is the competitive relation between minimizing cost and

maximizing thermal comfort. Speci�cally, it is costly to achieve the most comfort

all the time, especially when electricity price is high. Meanwhile, users are able to

realize cost savings if they sacri�ce a little comfort, by increasing setpoint in summer

or decreasing setpoint in winter. Therefore, we consider the problem of interior space

conditioning as an optimization problem.
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Optimization problems refer to the problems �in which one seeks to minimize or

maximize a real function by systematically choosing the values of real or integer vari-

ables from within an allowed set�[31]. The real function is called the utility function,

or the cost function. It is a qualitative measure of objectives. And the allowed set

is usually represented by a set of constraint functions. To formulate an optimization

problem, we need to de�ne both utility function and constraints.

Under the context of interior space conditioning, the optimization problem is

formulated as following.

U =
N∑

i=1

h(C(Ts) ∗ p(i), g(Ts))∆t =
N∑

i=1

h(cost, comfort)∆t (4.1)

s.t. Ts is acceptable and achievale.

where

cost = C(Ts) ∗ p(i)

and

comfort = g(Ts)

The variable U is the overall utility in a billing period; ∆t is the time interval, typically

equal to the smallest time window over which controller settings change, e.g. 0.5

hour; N is the number of the time intervals in a billing period. C(·) is electricity

consumption, as a function of setpoints Ts; p is the electricity price within the time

interval i; g(·) is the function of thermal comfort index, which is also determined

by temperature setpoints. Here I use the adaptive comfort standard proposed in

section 2.2.3. Of the most importance is the function h(·), a self-de�ned function,

which indicates the trade-o� relationship between electricity cost and users' thermal

comfort. There are many ways to de�ne h(·). For example, a straightforward way is
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to de�ne h(·) as polynomial functions of comfort index and cost, such as the forms

de�ned in equation 4.2 and 4.3.

h = (1− α) ∗ cost+ α ∗ (1− comfort) (4.2)

h = β1 ∗ cost2 + β2 ∗ cost+ β3 ∗ (1− comfort)3 + β4 ∗ (1− comfort) (4.3)

Equation 4.2 de�nes a linear trade-o� between cost and comfort. Di�erent values

of α indicate di�erent weights we apply to comfort and cost during optimization.

Intuitively its values imply users' sensitivity to price. It has the same e�ects as the

economics index de�ned in section 2.2.3. A complex form in equation 4.3 implies

another trade-o� relation between cost and comfort. Parameters β1, β2, β3 and β4

work as optimization weights for each term as well. h(·) may be de�ned in any form

to express various trade-o� pro�les between heating/cooling cost and users' thermal

comfort.

The values of input variables, a sequence of setpoints, are limited by several con-

straints. First, they need to be in the endurable temperature range set by users. It

may be time variant and price variant. In other words, the acceptable temperature

range changes when the electricity rate changes or at di�erent times of day. Choice

of optimal setpoints is also constrained by practical implementation. They need to

be achievable. If indoor temperature can not reach the optimal setpoint, the optimal

setting is not a practical solution.

Optimal temperature setpoints are determined by minimizing the utility function,

but this is not the whole story. The system needs to make an e�ort to realize those

settings precisely and e�ciently. The typical methods are ON/OFF control or bang-

bang control. The controller coordinates the operations of heater/AC and fan to

improve energy e�ciency. Anticipating function is adopted, in which the heater or
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the air conditioner is turning o� slightly early to prevent the space temperature

from greatly overshooting the thermostat setting. Minimum-OFF-time controls for

heating/cooling equipment are required to avoid excessive actuations and therefore

extend their working lives.

In summary, the optimization problem in interior space conditioning is realized by

two levels of control: supervisory control functions and local control functions. The

responsibility of top level, supervisory control, is to determine the optimal control

settings, speci�cally a sequence of setpoints that minimize an overall utility function

de�ned in the form of equation 4.1. As low level control, local control functions are the

basic temperature controls that allow HVAC systems to operate properly and provide

adequate services to realize the temperature setpoints decided by supervisory control.

The whole control process is in a hierarchical structure. This thesis focused on the

design and the implementation of supervisory control. Local control is described in

Jahwi Jang's thesis [32]and the project report [11].

4.2 Theoretical Background

Before describing the design of supervisory control strategies, I will introduce some

concepts and methodologies adopted in the supervisory control in the �eld of interior

space conditioning.

4.2.1 Introduction of Supervisory Control

Supervisory control in a controller is usually the top-layer functions that determine

the control settings based on overall functionalities or objectives of a control system.

The control settings are not the �nal output of the controller. Instead, they are the

goals for the lower-layer controller to achieve.
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The development of supervisory control in building temperature controls has

evolved over time[33]. The earliest supervisory control emphasized the equipment

automation to save labor. Later, it stressed the building energy monitoring as well

as automatic control. Yet little attention was paid to energy e�ciency and cost ef-

fectiveness. Nowadays, due to the shortages of energy supply, supervisory control

highlights the overall performance improvement of the system involving energy/cost

e�ciency and users' thermal comfort.

Due to such design concerns, supervisory control is often named optimal control. It

seeks optimal solutions of controller settings to minimize operating cost while still pro-

viding adequate indoor comfort. A well-de�ned utility function presents the objective.

In the current design, supervisory control also takes into account the ever-changing

indoor and outdoor conditions as well as the characteristics of the building and HVAC

systems. Remember in Section 2.2 �Other Issues Involved� it is stated that all these

components produce a non-trivial impact on the control performance. Supervisory

control allows a comprehensive consideration of their characteristics and interactions.

Knowledge of these components can be utilized to achieve better predictions about

how the building responds to certain control settings, which would improve system

autonomy and enlarge energy/cost savings. Global optimization techniques are uti-

lized to locate optimal control settings without violating the operating constraints of

each component.

4.2.2 Methodologies

A few research projects addressed the approaches for supervisory optimal control

on HVAC operations[34, 35]. According to these previous studies, methodologies of

supervisory control could be classi�ed into four categories: model-free supervisory

control method, model-based supervisory control method, performance-based super-
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Figure 4.1: Supervisory Control Method Classi�cations

visory control method and hybrid supervisory control method. Each method has

further classi�cations. The details are shown in �gure 4.1. Each method has its

advantages and disadvantages in relation to the other methods.

Model-free Supervisory Control Method

As the name implies, model-free supervisory control methods do not require a �model�

of the target system or component. Here, the model refers to a numerical model

speci�cally. There are several approaches that do not use any model in the optimal

control process, including expert system, reinforcement learning[36] and experiment-

based control for speci�c HVAC systems[37].

I will introduce the details of expert system as one example of model-free method.

An expert system imitates the logic reasoning processes of human experts to make

decisions for a certain type of problem[38]. Typically, such a system contains a knowl-
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edge base involving facts and a set of reasoning rules. Given a particular situation,

the system applies the knowledge base and simulates the decision making of human

beings. It is even capable of deducing reasonable solutions with incomplete or par-

tially wrong working conditions, as a real human being can do. In the �eld of interior

space conditioning, an expert system could be adopted to decide controller settings

given indoor and outdoor conditions. For example, it could be used to choose the

control mode as cooling or heating.

Compared with other supervisory control methods, an expert system is easy to

implement, maintain and use. However, its applications are limited by the richness

of the knowledge base. If a set of given conditions are outside the knowledge base,

the expert system might make signi�cant error. In other words, it does not have the

ability to expend the reasoning to unseen situations.

Model-based Supervisory Control Method

In model-based supervisory control methods, the controller needs two tools: models of

the controlled system and optimization techniques. Numerical models for the target

system and/or its components are required to predict their behavior under certain

control settings. With the prediction, optimization algorithms are utilized to seek

the optimal control parameters that minimize or maximize the utility function, which

is a form of evaluation of control performance. Figure 4.2 illustrates this idea in

the context of interior space conditioning. A model of local control simulates the

operation of low level control functions given control settings from the supervisory

level. It determines a series of ON/OFF commands that actuate the control targets,

HVAC systems. Another model predicts the mixed behavior of the house, its HVAC

systems and its occupants under such actuations. Then it outputs two important

measures, electricity cost and comfort index, to calculate the utility. Finally, the
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Figure 4.2: The model-based supervisory control for interior space conditioning

utility as a function of control settings is delivered to the optimization module to seek

optimal solutions. To ensure the models perform as the actual systems, measurements

collected online from the controller and the target system are used to tune model

parameters. We call this the learning processes. The model-based method is relatively

complex to realize, but it could provide quick responses to the changes of indoor and

outdoor thermal conditions.

According to the form of models, the model-based supervisory control can be

divided into the structure model-based method and the structure-free model-based

method. Obviously, implied by its name, structure models are the models that can be

written as equations with numerical free parameters. These parameters may or may

not have physical signi�cance and need to be identi�ed based on experimental data.

Nevertheless structure-free models are in the form of a set of numbers, which are also

the model parameters. They are certain meaningful measures that are used to identify

the signature of target systems or target processes. A typical structure-free model

for interior space conditioning consists of the heating/cooling speed corresponding to

di�erent indoor and outdoor conditions. In fact, structure models and structure-free

models are essentially the same except the signi�cant di�erence of their parameter
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numbers. Generally speaking, structure models only have a few parameters, while

in structure-free models hundreds of parameters are required to cover all kinds of

working conditions.

Comparing these two model-based methods, they both have their own features.

Using structure models, the controller has high prediction performance. But it takes

some computation to identify parameters in structure models. Structure-free models

do not need complex computation to identify their parameters. However, the mod-

els do not cover unseen operating conditions. That is, their prediction abilities are

restricted by the richness of experimental data. To compensate for this shortcoming,

structure-free models can be modi�ed by identifying the trend of parameter values.

Then parameters under any input conditions can be determined based on the trend.

The structure models can be further divided into three types based on the amount

of system knowledge used to construct the models: physical model, gray-box model

and black-box model.

In physical model-based control, physical models are adopted to predict the sys-

tem responses to the controller settings. Models are built with prior knowledge of

the system, the principles on how the system and its components behave. According

to fundamental laws of heat transfer, dynamics, �uids, and other �elds, mathemati-

cal descriptions of the system are derived. MZEST as a validation tool is indeed an

example of a physical model for a house and its HVAC system. Usually, due to the

complexity of the target system, physical models are simpli�ed by making reason-

able assumptions. Physical model-based methods are capable of producing accurate

predictions of thermal behavior and therefore the controller has relatively high perfor-

mance. Since the unknown parameters have physical meanings, it is easy to identify

invalid models. However, the model equations are complicated and have high order,

even after being simpli�ed. This results in high computational costs and memory
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demand in both the processes of learning model parameters and seeking optimal so-

lutions. It is hard to realize the physical model-based supervisory control through an

online application.

On the contrary, in black-box model-based methods, models are built without

utilizing any kind of prior knowledge of the system. They identify the mathematical

relations between input variables and output variables directly based on historical

data of the system. To de�ne reasonable black-box models that are easy to build,

a model space is required. Simple forms of equations such as polynomials are often

chosen to reduce computational costs. Arti�cial neural network (ANN) is also a

common choice of black-box models[39, 40]. Whatever forms the models take, the

order of the structure needs to be chosen carefully. High order means a relatively

large number of parameters, which demand large sets of training data and long time

to learn the models. Moreover, redundant parameters may lead to the over-�tting

problems. While low order models are easier to �t, they may not be complicated

enough to cover the dynamics of the system. In this case, the models may produce

totally wrong predictions. In summary, the selection of model order is a type of

trade-o� between the computational costs and the prediction ability. Additionally,

because the parameters in the models have no physical signi�cance, it is di�cult to

validate the models. The models are reliable only around operating points covered

by training data. They cannot guarantee stable and reliable predictions when the

operating points are out of that range. Therefore, large sets of training data are

necessary to ensure their performance.

Gray-box models are a kind of compromise between physical models and black-box

models. A gray-box model can be developed from either side. From black-box models,

it can be derived by incorporating prior knowledge of the system as constraints on

parameters or variables. From physical models, it can be achieved by simplifying
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and combining all the equations. Gray-box model-based supervisory control methods

inherit the advantages of both methods as well. The model complexity is low so that

models are easy to construct. Computational load is acceptable for achieving optimal

solutions. Parameters in the models still have some sense of physical signi�cance.

Models have good performance when applied to operating points outside the range

of training data. Yet, the performance of the gray-box model-based method still

strongly depends on the richness of training data.

Performance-based Supervisory Control Method

Performance-based supervisory control means the controller settings are chosen based

on a system's historical performance under similar working schemes. In this method,

a performance map is created over the range of expected operating conditions. It

records performance index with respect to various input values, such as the electricity

cost under di�erent working conditions. The map is obtained by testing the system

over a signi�cant range of working conditions or extracting useful information from

historical data. With the performance map, the controller picks optimal control

settings for future working conditions.

In performance-based methods, performance information is saved in the perfor-

mance map in a tabular form. Values in the map can be considered as parameters.

By analyzing data collected from the system, parameters are identi�ed and tables are

�lled. Although this idea is similar to structure-free model-based control methods,

we catalog them di�erently due to the di�erent meanings of parameters they used.

In structure-free models, the parameters are not necessary to the performance index.

They are certain measures that can be used to identify the characteristics of the target

systems or processes. Similarly to structure-free models, the parameter identi�cation

in performance map is limited by the richness of historical data. Sometimes not all
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of the values can be obtained. Extrapolation is necessary to ful�ll the performance

map. If relations (trends) between table values can be identi�ed, the map can be

converted into equations.

Performance-based control methods �t for small systems but might not be prac-

tical for complex systems. A complex system has more subsystems and constraints

and therefore needs multi-dimensional performance tables. It requires considerable

e�ort to �ll them. The methods lack generality: tables are designed for particular

systems or control objectives. However, the methods are easy to implement and do

not need any prior knowledge of the system. The computation load is very low for

simple target systems. They are feasible and practical for online applications.

Hybrid Supervisory Control Method

It is obvious that hybrid supervisory control adopts di�erent control methods to

realize entire control functions, including di�erent types of models when utilizing

model-based methods and/or the combination of model-free methods, model-based

methods and performance-based methods. Such design takes advantages of proper

features of each method.

4.2.3 Control Design Concerns

There are important factors addressing the nature of supervisory control problems.

They should be seriously considered before we deal with the design and the real

implementation of control strategies.

� First of all, the e�ective supervisory optimization strategies for systems with

and without energy storage are signi�cantly di�erent. For the former system, we
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deal with a dynamic process and seek an optimal trajectory of control settings.

While for the latter, systems without signi�cant energy storage, the associated

optimization is a quasi-steady optimization[34]. Single-point settings are the op-

timal solution. Accordingly, optimization techniques applied to these two types

of problems are also di�erent. As a popular optimization algorithm, dynamic

programming can be used for dynamic processes, while static optimization such

as direct search is su�cient for quasi-steady optimization problems.

� It is important to note that for systems with signi�cant ability to store energy,

the impact of previous controller settings will last for quite a long time, and

therefore a�ect the decision making process for the following periods. For ex-

ample, a house with signi�cantly large mass is di�cult to cool down at night

if the setpoint during the day is high, say 85F. In order to create a comfort-

able environment in the evening, we need to keep indoor temperature lower in

the day although the house is not occupied. This idea is useful when control

strategies are designed for long durations.

� In practice, usually near-optimal solutions are identi�ed due to several reasons.

Among other things, simpli�ed models, assumptions made to simplify the mod-

els, and uncertainty of the target systems all could lead to prediction errors

when applying model-based control methods and performance-based methods.

Inaccurate information about the surroundings is another reason. Poorly pre-

dicted future outdoor temperature and unexpected changes of occupancy status

would also generate certain prediction errors. Therefore, robustness is required

when control strategies are designed.
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4.3 Hierarchical Control Strategy Design

4.3.1 Problem Formulation

The supervisory control problem in interior space conditioning is actually an opti-

mization problem. De�ned in equation 4.1, the optimization utility is a function of

electricity cost and comfort index over a billing period, usually one month. However,

the problem is not easily solved due to the long duration it covers. Uncertainties

from the house, users and outdoor surroundings impact the control decisions dra-

matically. Prediction errors in supervisory control algorithms would accumulate and

lead to huge errors. User's thermal requirements may vary during such a long period.

Unexpected events such as a weekend party may happen. Also, one month future

data that are indispensable to determine control settings are usually not reliable or

even available. For example, the predicted outdoor conditions are relatively reliable

for only the next few hours. Supervisory controller can not make accurate predictions

and determine reasonable control settings without convincing information. Moreover,

it is not necessary in practice to decide the control settings for a whole month at one

time. People mostly care about the settings for the next a couple of hours. Due to

these reasons, the original optimization problem is split into short-period optimization

sub-problems.

In the new formulation of supervisory optimization control, the utility function has

the same format. But each short-period problem covers only a few hours. The length

depends on the changing rates of electricity price and users' thermal requirements.

Here, I assume these short-period optimization problems are independent of each

other. Each sub-problem has its own control objectives: improving energy e�ciency,

trading electricity cost with thermal comfort, or achieving temperature requirements

with minimum cost. Based on control objectives, these sub-problems are classi�ed into
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four catalogs, or �control states.� Considering the di�erence of operation environment,

high-level strategy classes are de�ned, namely �control mode.�

4.3.2 Control Modes and Control States

The top-level control modes are cooling mode and heating mode. Intuitively, such

classi�cation is necessary because it is not common to use the heater and the air con-

ditioner at the same time or the same day in a residential house. From a user's per-

spective, people have di�erent thermal requirements at these two modes. In cooling

mode, people are comfortable when the surrounding temperature is below a threshold,

say 76F. While in heating mode, people are comfortable if the temperature is higher

than a certain point, for example 70F. Even when the temperature is above 76F in a

winter afternoon, users usually adjust to the temperature by changing their clothes

instead of turning on the air conditioner, as they would do in summer. Therefore,

to mimic human behavior, supervisory control makes completely di�erent control

settings under cooling mode and heating mode.

At the second level, four control states are de�ned according to users' requirements

on thermal comfort and economics: the normal state, the pre-cooling/pre-heating

state, the pre-conditioning state, and the overlapping state. In each control state, a

certain control strategy is adopted to meet the speci�c control objectives. The control

strategy determines setpoints and setpoint schedules if necessary, which are realized

by local control functions. These four states work di�erently under cooling or heating

mode. Their de�nitions are summarized in table 4.1.

Normal State

The normal state is de�ned when there are no changes of electricity price and thermal

requirements during the optimization period. Although electricity rate is invariable,
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Table 4.1: Control State Design

State Name De�nition
Normal Optimize cost vs. comfort, when there are no

changes of electricity price and thermal
requirements.

Pre-cooling/Pre-
heating

Save cost by shifting load for future price
increase period, with a minimum sacri�ce of
users' comfort.

Pre-conditioning Achieve an expected temperature just in time,
make comfort environment with minimum cost.

Overlapping Prepare for future comfort or another future
price increase when there is a future price
increase. The overall cost is minimized under the
limitations from both events.

its value could be any TOU or CPP price, i.e. o�-peak, partial-peak, peak and crit-

ical peak. Supervisory control may make energy/cost savings by sacri�cing thermal

comfort based on users' willingness. Thus, in the normal state, control strategy is

de�ned to determine a temperature setpoint that optimizes cost and comfort based

on the utility function that re�ects the trade-o� preference of users. Equation 4.4

shows the utility function utilized in the implementation.

U(Ts) = (1− e) · cost(Ts) + e · discomfort(Ts)

= (1− e) · power(Ts) · price+ e · (1− comfort(Ts))
(4.4)

U is the utility function and Ts is the setpoint candidates that should minimize the

utility function. Thermal comfort is determined by the adaptive comfort standard

de�ned in section 2.2.3. It is a percentage number ranging from 0 to 100%. 100%

represents the most comfortable temperature, and 0 indicates intolerant environmen-

tal conditions. e is the economics index de�ned in section 2.2.2, ranging from 0 to 1.

Electricity cost is calculated by multiplying electricity price by power consumption,
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Figure 4.3: Normal State Optimization Strategy

which is a function of temperature setpoint Ts.

Because cost and comfort do not use the same unit, quantitative optimization re-

quires creating a common currency. One solution is to scale comfort level to dollars,

the currency of cost. This method was used in comfort analyses for o�ce buildings:

comfort a�ects employees' productivity, which a�ects the operation cost of compa-

nies. However, it is not applicable in a residential building. We scale both energy

consumption and electricity price in percentages, by dividing current values by the

full range. Figure 4.3 illustrates the normal strategy using typical curves of cost,

comfort and utility in cooling mode.

Since normalized values of electricity cost are used, the absolute value of power

consumption is not very important. The power consumption to maintain certain

temperature depends on the duty cycle of heating or cooling equipment. Duty cycle

provides all the information needed. Supervisory control needs to predict the duty

cycle of heater or AC given outdoor temperature and temperature setpoints. Model-

based methods or performance-based methods can be used to make such predictions.

After obtaining the utility with respect to temperature setpoint candidates, we

can use optimization algorithm to locate the optimal value of Ts. Following are some

comments for the formulation of the normal state optimization control.

1. The utility function for normal state clearly presents the competitive relation-
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Figure 4.4: Impact of Economics Index in Normal State

ship between cost and comfort (or discomfort). Optimization makes a trade-o�

between cost and discomfort based on the value of e. A linear relationship is

used because it is a simple form to express the idea of competition. Other

formulations can be used as well, which will lead to di�erent optimization solu-

tions.

2. The economics index e plays the role of a weighting factor; the temperature

setpoint is the optimal under a weighted function. A large value of economics

index indicates more concerns on thermal comfort. Users are willing to pay more

to get better environment. Thus, optimal temperature setpoint would be less

sensitive to price increase. For a small value of economics index, temperature

setpoint is set in low comfort range when price is high to make cost savings.

The idea is expressed in �gure 4.4. For partial-peak and peak price, setpoint

changes by larger setbacks for a small value of e. The default value of economics

index is 0.5, which means that cost and comfort are evaluated under the same

weight. Users are sensitive to price when price changes from partial-peak to

peak so that temperature setpoints are adjusted moderately.

3. The algorithm considers only steady-state optimization. We assume the indoor

temperature �uctuates around setpoint candidates. Duty cycle to maintain the

73

 PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



temperature setpoints are evaluated. The transition process from the previous

indoor conditions is not considered.

4. Notice here energy savings are equivalent to cost savings in the normal state

because electricity rate is �xed over this period. But high price would spur the

trade-o� between energy and comfort. When electricity price is high, users are

expected to make more energy savings.

Pre-cooling/Pre-heating State

In the pre-cooling/pre-heating state, the pre-cooling/pre-heating strategy is utilized

to reduce electricity usage during a future increased-price period with a minimum

sacri�ce to users' comfort. The future increased price can be any of the partial-peak,

peak or critical peak rates, as long as it is higher than the current value. For the

sake of convenience, high price and low price are used to denote the electricity rates

before and after the pre-cooling strategy. Its basic idea is to shift the load at high

price to low-price period by cooling or heating a house ahead of time. Without losing

generality, the pre-cooling state is used in the following as the representative of this

strategy. The pre-heating strategy works in a similar way.

Figure 4.5 shows the way the pre-cooling strategy works. Triggered by near-future

high electricity rates, supervisory controller selects lower temperature setpoint to

�overcool� the house during a low-price period. Ideally, the house stores this negative

thermal energy so the temperature stays in the comfort range during the high price

period without using air conditioning. Occupants experience minimal discomfort

compared with only turning o� the AC without �pre-cooling� the house.

Motivated by the electricity price increase, the objectives for the pre-cooling strat-

egy are to minimize electricity cost while maintaining an acceptable comfort environ-

ment. The cost refers to the overall cost during the overcooling period and the
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Figure 4.5: Concepts of the Pre-cooling Strategy

recovery period. The comfort requirement is to maintain indoor temperature in an

acceptable range. Thus, thermal comfort need not be evaluated qualitatively. With-

out the term of comfort index in the utility function, no concept of economics index is

needed. Users specify their economics preferences by setting acceptable temperature

ranges. Optimal temperature setpoint is constrained by this range. The optimiza-

tion strategy generates a setpoint pro�le instead of a single temperature setpoint,

including setpoint for overcooling and the time pre-cooling starts. Equation 4.5 is

the utility function de�ned for the pre-cooling strategy. Figure 4.6 shows the detailed

explanation intuitively.

U(Tx) = [t1 − tt1(Tx)] ∗DC(T1) ∗ P1 + tt1(Tx) ∗ 1 ∗ P1 + (t2 − tt2(Tx)) ∗DC(T2) ∗ P2

= [t1 − tt1(Tx)] ∗DC1 ∗ P1 + tt1(Tx) ∗ 1 ∗ P1 + (t2 − tt2(Tx)) ∗DC2 ∗ P2

(4.5)

T1and T2 are temperature setpoints at o�-peak price and peak-price, which could be

decided by normal state or users. Without losing generality, I assume their values

are di�erent. DC1 and DC2 are the AC duty cycles needed to maintain indoor
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Figure 4.6: Pre-cooling Utility Function Calculation

temperature at T1 and T2. P1 and P2 are o�-peak price and peak price correspondingly.

Tx in �gure 4.6 represents the candidates of pre-cooling setpoint, which is constrained

by T1 and Tmin, the upper and lower bound of the setpoint candidates. t1 is the

time needed to reach Tmin from T1. It is the longest overcooling interval among all

setpoint candidates. Similarly, t2 is the longest recovery interval, for temperature

�oating from Tmin to T2. tt1 and tt2 are overcooling interval and recovery interval for

a certain setpoint candidate Tx. With all these de�nitions, the utility U represents

the total cost during t1 and t2. The optimal solutions are Tx that minimize the total

cost and the corresponding overcooling interval tt1.

The value of Tmin is pre-determined by users, which is the lowest acceptable tem-

perature. However, there are other constraints in practice. First of all, it needs to be

achievable. In the cases when the AC is not powerful enough and outdoor temper-

ature is extremely high (this is a common scenario when deploying the pre-cooling

strategy), it is possible that the lowest acceptable temperature set by users can not

be reached. Second, the value of Tmin should not be so low that temperature is not

able to recover to T2 during a high price period. In that case, the system uses more
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energy since the indoor temperature is lower after the high price period.

To calculate the utilities for candidates of control settings, the dynamic processes

over the whole pre-cooling period need to be estimated. Model-based methods or

performance-based methods are used in practice. Details are given in sections 4.5

and 4.6.

Several remarks for the pre-cooling strategy should be made. First, this is a

demand response strategy, which reduces peak energy, not an energy savings strategy.

In fact, the pre-cool strategy uses more energy because it uses a lower temperature

setpoint than normal.

Second, the ratio of high price to low price a�ects the pre-cooling decision signif-

icantly. A high ratio increases the savings by shifting the load to a low price period

while a low ratio makes load shifting trivial. Simulation results con�rm this hypothe-

sis. Assume the setpoint before and after pre-cooling is 24C. The energy consumptions

under di�erent pre-cool settings are generated using MZEST under the same operat-

ing conditions. Scaled costs are calculated when the price ratio is 3, 5 and 7. The left

graph in �gure 4.7 shows the cost curves as a function of temperature setpoint for

each price ratio. The corresponding optimal pre-cooling setpoint pro�les are shown

in the right graph. The plot implies that a high ratio of price changes motivates lower

pre-cooling setpoint, which enable more load shifting. The corresponding overcooling

intervals vary as well.

Note that the current design of pre-cooling strategy assumes that the indoor tem-

perature should reach the overcooling setpoint just at the moment when electricity

price increases. Temperature soaking at overcooling temperature would use more

energy and does not increase the cost savings. Here soaking means that the indoor

temperature is maintained in the overcooling setpoint over a certain time interval. In

fact, this may not be the truth in real life. Temperature soaking is capable of enlarg-
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Figure 4.7: Pre-cooling Setpoint Pro�les with Di�erent Price Ratio

ing load shifting and therefore improves cost savings under appropriate conditions.

During the soaking period, the interior temperature is relatively low. In addition to

the interior air, the mass of interior space is cooled down as well. This is re�ected by

the temperature decreasing of interior walls and other solid objects, such as tables

and counters. Under proper conditions, the soaking would delay the temperature re-

covery speed when the AC is o�. Therefore, the electricity load reduction is enlarged

for high price periods.

In fact, the e�ects of temperature soaking depend on the thermal characteristics

of the house. Well-insulated houses bene�t from the action of soaking while poorly-

insulated houses do not. We compared the soaked pre-cooling performance for a 1992

house with a 1978 house using MZEST. The former is well-insulated while the latter

is poorly insulated. To simplify the operating conditions, the outdoor temperature is

set as a constant 34C. Setpoints before and after pre-cooling are 24C, and the pre-

cooling setpoint is 20C. Figure 4.8 shows the simulation results. Table 4.2 lists the

recovery intervals with respect to di�erent overcooling durations. We can see that in

the case of the 1978 house, soaked pre-cooling does not increase recovery duration.

But for the 1992 house, soaked pre-cooling does increase recovery intervals, and the
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Table 4.2: Simulation Results for Soaked Pre-cooling

Precooling hours 10-11.16 (1.16h) 10-13 (3h) 10-15 (5h)
Recovery Time 2.0833 1.8333 1.8333

(a) Simulation Results for house built in 1978

Precooling hours 10-10.75 (0.75h) 10-13 (3h) 10-15 (5h)
Recovery Time 4 4.9167 5.4167

(b) Simulation Results for house built in 1992

increased intervals are proportional to the soaking time. In other words, the longer

the soaking, the more slowly the indoor temperature recovers. Under an appropriate

price ratio, cost savings can be enlarged by the soaking strategy.

The soaking strategy adds complexity to the original pre-cooling strategy. Besides

overcooling setpoint and its schedule, the supervisory control function needs to decide

the soaking intervals. It also raises a critical question for the controller design: how

to identify the house characteristics in respect to insulation? Only houses with good

insulation properties can bene�t from the soaking. This question is not answered in

this thesis. Further investigation is necessary.

Pre-conditioning State

The pre-conditioning state represents the conditions to achieve an expected temper-

ature at a particular time. Consider the following scenarios. On a winter morning,

users expect warmer surroundings than during the night when they get up. On a

summer afternoon, a cool environment is demanded at the moment users enter the

house, although during the daytime when the house is unoccupied the setpoint is set

higher to save energy and cost. In both situations, changes of indoor temperature are

expected to occur automatically to make a comfortable environment for users.

Conventionally, such functions can be realized by setting setpoint changes through

a programmable thermostat. However, a �xed setpoint schedule does not accommo-
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Figure 4.8: Simulation for Soaked Pre-cooling

(a) Three day pre-cooling simulation for house built in 1978

(b) Three day pre-cooling simulation for house built in 1992
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date weather conditions. For users who set the thermostat based on the worst-case

scenario, they waste energy when the outside temperature is relatively mild because

the target temperature is achieved earlier than required. For other settings, they

either waste energy when the target temperature is reached ahead of schedule, or

fail to achieve the demanded comfort under extreme weather conditions. Field test

results[28] imply that the outdoor temperature a�ects the heating/cooling intervals

signi�cantly. In the above example of heating during winter mornings, the heating

interval for a particular house under the same temperature settings ranges from 30

minutes to 90 minutes. Further, the heating/cooling intervals di�er among various

houses. Therefore, precise control for an individual house is necessary to avoid energy

wasting and to make satisfactory temperature control.

Toward this end, the pre-conditioning control strategy was designed. It considers

the future weather conditions and is able to achieve the target temperature just

in time. Thus, this strategy is also called �just-in-time conditioning.� In the pre-

conditioning state, the expected values of future temperature are pre-determined by

users. It is not necessary to evaluate users' thermal comfort. The control objective

is to make accurate control to achieve the target temperature considering the ever-

changing outdoor conditions. Pre-conditioning is not an optimization problem. The

strategy determines when the heating/cooling actuation should start.

There are two ways to realize the accurate control. One is using model-based meth-

ods to predict the future temperature pro�les. The solution is the pro�le achieving

the target temperature just in time. Performance-based methods are also promising.

The heating/cooling interval can be used as performance index. Its values corre-

sponding to di�erent operation conditions can be saved in the performance map. In

real implementation, usually the operation conditions (with the exception of outdoor

temperature) are almost the same. This decreases the dimension of the performance
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Figure 4.9: Pre-conditioning Simulation using Search Algorithm
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map dramatically. For both methods, the key is to identify the dynamic signature of

each individual house.

To locate the accurate actuation time for �Just-In-Time� (JIT) conditioning, a

search algorithm is developed. First, set target temperature schedules and initialize

JIT start time using arbitrary values. A good candidate of the initial value is the

start time of the previous day. Second, given this setting and the predicted outdoor

temperature, predict the interval needed to achieve the goal temperature. Based on

the predicted temperature pro�le, adjust the JIT start time. If the di�erence between

the current and the previous prediction intervals is less than 5 minutes, return the

current setting of start time. Otherwise, go back to step 2. In real implementation,

the search algorithm locates the solution quickly. Figure 4.9 shows an example using

three iterations.
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Overlapping State

The overlapping state represents the overlapping of multiple states including the pre-

cooling/pre-heating state and the pre-conditioning state. Theoretically, any number

of states can overlap over a certain period. But constrained by actual situations,

we only need to consider the overlapping of two states. The overlapping of two pre-

condition states seldom occurs in real life. I do not discuss it here.

This state is adopted when two control objectives need to be handled together.

There are two situations. The �rst one is the overlapping of the pre-cooling/pre-

heating state and the pre-conditioning state, preparing for load shifting for future

high price and certain temperature demanded by users. The second occurs when

the controller is in pre-cooling/pre-heating state, another future-price-increase event

occurs. That is, the controller aims to shift loads for two future-price-increase events

occurring closely together. Although the scenarios are di�erent, the optimization

problems are essentially the same: minimizing the overall cost under the constraints

of maintaining thermal comfort. For the �rst case, the thermal constraint is the

expected temperature pre-determined by users while the temperature is maintained

in the comfort range all the time. For the second case, the constraint is to maintain

temperature in a comfort range.

In some cases, the two control objectives modify the temperature setpoint in the

same direction. For instance, on a summer evening both the pre-cooling state and the

pre-conditioning state require a lower temperature setpoint. Thus a setpoint meeting

both criteria is chosen. In other cases, the two control objectives con�ict because each

state pushes the temperature setpoint in di�erent directions. A typical example is the

overlapping of the recovery period for the pre-cooling state and the pre-conditioning

for future arrival in summer climate. The decision made in such a case depends on

the optimization calculation.

83

 PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



Similar to the pre-cooling/pre-heating state, the overlapping state determines a se-

ries of setpoints and the corresponding schedules. Usually the overcooling setpoint or

recovery setpoint is pre-determined as the expected values users speci�ed. The over-

all cost is minimized under such constrains. Model-based methods and performance-

based methods are both good choices to make estimations.

4.3.3 Robust Control Design

Robustness is an important consideration when designing supervisory controllers be-

cause prediction errors are inevitable. In the case of interior space conditioning,

prediction errors always exist for any operating condition, because the models in

model-based methods and the table values in performance-based methods are ac-

tually averages among many di�erent uncertainties. Input disturbances are another

source of uncertainty. For instance, predicted future outdoor temperatures di�er with

actual values. Since prediction errors exist universally and constantly, the controller

should consider them and be able to perform satisfactorily under such disturbances.

However, it is di�cult to evaluate and compensate for the prediction errors for

optimization controls. Because the prediction errors exist for all the candidates of

control settings, the optimal solutions may or may not actually be optimal. We do

not know the answer because the operating conditions can not be duplicated. Among

the above four control states, the only strategy that can be evaluated directly is the

pre-conditioning strategy. When the actual temperature changing curve is away from

the prediction pro�le, we can take some actions to compensate for the prediction

errors.

There are two types of prediction errors for the pre-conditioning strategy: the

aggressive temperature pro�les in which indoor temperature changes more quickly

than predicted; and the slowly responsive pro�les when temperature changes more
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Figure 4.10: Robust Design for Setpoint Pro�les

slowly than expected. A robust control strategy is developed to compensate for the

former type. Instead of being a �xed value, setpoints are designed as a smooth

curve that the indoor temperature should follow. If the real temperature changes

aggressively, HVAC equipment is turned o� to slow down the changing speed and

force the temperature to follow the designed curve. In other words, the aggressive

pro�les are corrected by turning o� the AC or heater until the temperature �oats back

to the setpoint pro�le. In practice, because a thermostat only accepts setpoint settings

with resolution of 1F or 0.5F, the continuous temperature setpoint are discretized.

Figure 4.7 shows the degree-by-degree setpoint pro�le in real implementation. But

for the other type of prediction errors, this method does not work because the heater

or AC is already in full operation.

Combining the robust control strategy with the pre-conditioning strategy, it is

guaranteed that the target temperature is not achieved earlier than required but may

instead be late. In both cases, minimum energy/cost is used.
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4.3.4 Optimization Algorithm

In all the control strategies except pre-conditioning, an optimization technique is used

to seek global optimal solutions. An e�cient algorithm would reduce computational

loads and improve the speed to locate the solutions. An optimization algorithm is

proposed here.

The basic idea is as follows: 1) choose arbitrary control settings a, b, c so that

a.utility > b.utility and c.utility > b.utility. That is, setting b has the lowest utility;

2) locate utility-minimum settings in the searching space from a to c. The distance

between settings a, b and c should be selected carefully. Small values of the distance

would increase the searching time in step 1. Large values lead to extensive compu-

tation in step 2. Figure 4.8 shows the �ow diagram of the detailed algorithm. The

pre-cooling strategy is used as the example. In real implementation, this algorithm

converges quickly.

4.3.5 Discussion

The de�nitions of control modes and control states classify the objectives of super-

visory control functions. In each control state, a certain control strategy is adopted

to meet the speci�c control objectives. The control strategy determines setpoints

and setpoint schedules if necessary, which are realized by local control functions. In

summary, the supervisory control for interior space conditioning makes decisions on

control settings in a hierarchical structure by three steps: 1) choosing cooling/heating

mode; 2) choosing control state, i.e. control strategies; and 3) choosing the tempera-

ture setpoints and their schedules using the strategy decided in step 2. Supervisory

control methods introduced in section 4.2.2 can be utilized in each step to realize

their functions.
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Figure 4.11: Optimizaiton Algorithm Flow Diagram

Comparing the four control states, there are some interesting facts indicating their

nature of optimization.

1. Only the normal state evaluates users' thermal comfort quantitatively. Opti-

mization is performed to balance cost and comfort. In the other three control

states, indoor temperature is either maintained in an acceptable comfort range

or �xed at a value that is user speci�ed. The controller minimizes the overall

electricity cost only.

2. Only the normal state considers the steady state of the interior space thermal

dynamics. The other three states consider the dynamics during a time period.

Temperature transition processes are involved in the optimization. Accordingly,

the optimization algorithm for the normal state is relatively simple, while com-

plex computations are needed for the other states.
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3. Optimal solutions of the normal state can not be evaluated. Because the same

operating conditions can not be duplicated, we do not know what the real

costs would be for other control settings. It is similar for the case of the pre-

cooling/pre-heating strategies. But the pre-conditioning strategies can be easily

evaluated. Whether or not the control objectives are achieved is obvious.

4. Since the goal of optimization in the pre-cooling/pre-heating state is to reduce

peak electricity consumption, the optimization calculation is driven by price

but not energy savings. Electricity cost depends on electricity consumption and

electricity price. Therefore, price plays an important role in optimization. The

system's goal is to use less money (not less energy) and improve or at least

maintain users' thermal comfort. In the normal state and the pre-conditioning

state, since the price signal does not change, the objective of minimizing cost is

equivalent to improving energy e�ciency.

Based on the formulation of interior space conditioning and the knowledge of su-

pervisory control methodologies, hybrid supervisory control methods are applied for

this problem in a hierarchical structure. In the design, both model-free methods and

model-based methods are adopted. Performance-based methods could be used to

substitute model-based methods. The following sections explain the details.
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4.4 Expert system: choosing control mode and con-

trol state

With respect to the choices of control mode and control state, the supervisory con-

troller imitates the logic reasoning of human beings. In other words, expert systems

are designed to make such decisions.

Let's consider the �rst step, choosing cooling or heating mode. Logically, people

choose control mode based on the season and the weather conditions. The 2005

California Energy Commission Residential ACM Manual[41] recommends that the

choice refers to the average outdoor temperature of the previous 30 days. Based on

this criterion, a simple expert system is designed. The �ow diagram is shown in �gure

4.12. In practice, the value of threshold temperature is set as 60F. According to this

criterion, control mode is updated every day based on historical outdoor temperature,

and it can not change during the day. In fact, this is not the only standard to decide

control mode as cooling or heating. But the reasoning logic used here is very common.

The key is the application of an expert system-based control method in this particular

topic � interior space conditioning.

At the second step, the system continues to choose a control state or a control

strategy. With the de�nitions of control states, we developed another expert system

that decides how the system transitions from one state to another. Figure 4.13 below

shows an event-based state transition diagram. The transition is triggered by current

and future events of price and comfort expectation. Every arrow indicates an event

enabling state change.

The normal state is the default state when the controller starts running. A future-

price-increase event triggers the transition from normal state to the pre-cooling/pre-

heating state. When price increases, the controller transitions back to the normal
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Figure 4.12: Expert system to choose control mode

Figure 4.13: Event-based control state transition

Note: TO � Time out; ETs � Expecting Future Temperature Ts;
PI � Price increase; FPI � Future price increase.
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state. Settings of expected future temperature would trigger the pre-conditioning

state. The state is set back when the target time for the settings arrives. The indoor

temperature either achieves the expected value or fails to reach it. In complex cases,

when the controller is in the pre-cooling/pre-heating state, the future requirement

of temperature change or future-price-increase event would enable the overlapping

state; when in the pre-conditioning state, future-price-increase event would trigger

the overlapping state. Here the future events are de�ned as those occuring in the

next couple of hours. In the real implementation, considering the prediction ability

of supervisory control methods and the information available, events that will occur

in the next four hours are de�ned as future events.

The third and �nal step in the decision making process for the optimization is de-

riving the temperature setpoint and its schedules if necessary. The following sections

describe the methods for each state and thus control strategy utilized.

4.5 Model-based Supervisory Control

To realize the supervisory control strategies for interior space conditioning, future

indoor temperature pro�les can be predicted by model-based methods. Three types of

models were built, representing the target system � interior space thermal dynamics.

The prediction performances and �nal control performances for each strategy are

evaluated and compared.

4.5.1 1st Order Physical Model

As a simpli�ed physical model, a �rst order time-invariant model is proposed to pre-

dict temperature trend and estimate electricity consumption. Considering the mixed

processes of heat transfer for the interior air of a house, �ve heat transfer approaches
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involved are considered: conduction, in�ltration, heat from internal gains, solar radi-

ation, and air conditioning in summer or heating in winter. Based on fundamental

laws of thermal dynamics, their e�ects on indoor temperature are simpli�ed. Conduc-

tion and in�ltration are proportional to the temperature di�erence between outside

and inside. So the corresponding heat �ow is expressed as a linear function of tem-

perature di�erence. Although internal gains due to people, lights, and equipment

�uctuate daily, these in�uences are usually much less than the other sources of heat

transfer and thus it is reasonable to assume this is constant. The temperature changes

due to solar radiation depend on the size and the orientation of windows as well as

the structures around a house that block or re�ect radiation; both are �xed. It is

reasonable to linearly correlate temperature changes and radiation. Although such

correlation depends on time of day and day of year, the impact is ignored to simplify

the model. Finally, we assume that the capacity of the AC and heater remains con-

stant. With all these assumptions, a �rst order equation (equation 4.6) describes the

indoor temperature change rate with respect to previous indoor temperature, outdoor

temperature, sun radiation and HVAC status.

V HC · Tin(t+ ∆t)− Tin(t)

∆t
= α ·(Tout(t)−Tin(t))+β+γ ·Rad(t)+δ ·HV AC (4.6)

where V HC represents volumetric heat capacity; α denotes conduction and in�ltra-

tion rate; β denotes internal gain; γ denotes the dependence coe�cient of radiation;

and δ denotes the capacity of AC or heater. These parameters are free parameters

which need to be identi�ed.

It is important to point out that the free parameters for a �time-invariant� model

are not functions of time, but in the above model, parameter values actually change

with time. For instance, when a house gets old, its conduction rate would increase
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and therefore the value of α increases as well. Because the change is so slow, we

assume these free parameters are �xed instead of being functions of time. But the

model does account for time by updating their values with the latest data.

To identify these parameters, historical data are used, including indoor and out-

door temperature data and AC/heater status. Global radiation is estimated using

numerical models based on the weather conditions. The �rst step to tune these pa-

rameters for a speci�c house is clustering historical data with respect to radiation

conditions and air-conditioning status. Data obtained under no radiation and no

air-conditioning (usually during night times) are used to tune parameters α and β.

After the �rst two parameters are tuned, the next two parameters γ and δ can be

tuned with the data under the e�ects of radiation and air-conditioning/heating in

turn. Least square regression is used. The details are in Chapter 3 of Jaehwi Jang's

thesis[32].

Figure 4.14 shows the prediction results for one test house in Antioch, CA. The

actual indoor temperature (black curve) and the predicted indoor temperature (red

curve) are compared in two consecutive days. The 1st order physical model is identi�ed

using part of the data set collected over the previous month. Data with incomplete

information or anomalies were not used. Actual indoor temperature was used as the

initial condition for the prediction. Actual outdoor conditions were used as inputs

and HVAC actuations are generated based on actual setpoints with a model of local

control functions. Finally, the indoor temperature pro�le was predicted given all these

inputs.

We observed that the prediction performance is not bad despite the disparities for

some long-term HVAC operations. Moreover, the predictions are more linear than

the actual temperature curves. The reason is that the model is �rst order, and the

higher order e�ects are ignored. Therefore, it does not have the ability to catch the
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Figure 4.14: Prediction Performance using 1st Order Physical Model
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other thermal dynamics besides the dominant heat transfer. But the simpli�ed 1st

order physical model is easy to implement and the computational cost is moderate.

It is a good choice for real-time application.

4.5.2 Tabular Model

The tabular model is a type of structure-free model. It is expressed using tables

instead of equations. To identify the dynamics signature of houses, temperature

changing rates (degree/hour), also called the slope, are selected as the model pa-

rameters, corresponding to the HVAC status and the temperature di�erence between

indoor and outdoor. Although global radiation has signi�cant impact on the temper-

ature changing rates as well, especially in summer climate, such impact is ignored to

decrease the dimension of the model.
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Figure 4.15: Temperature Pro�le for Tabular Method Anaylsis
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Therefore, the tabular model uses two dimensional tables. Temperature di�erence

between indoor and outdoor is one dimension, and the HVAC status is the other.

Because the slopes are determined by HVAC status, historical temperature pro�les

are �rst split into pieces according to the HVAC status. In heating mode, pieces

of pro�les are grouped as heater-on pro�les and heater-o� pro�les; in cooling mode,

AC-on pro�les and AC-o� pro�les are generated. Slopes are identi�ed for each type

using least square linear regression. The values are �lled into appropriate cells of the

model tables. Similar to the 1st order physical model, the parameters in the tabular

model are updated frequently with latest sensing and actuating data.

Notice that the temperature pro�les are not linear so that the changing slopes

vary with the HVAC operating duration. An AC-on pro�le is used as an example

in �gure 4.15. The black curve is the indoor temperature, and the blue lines are

the AC status (high means on and low means o�). At �rst, the indoor temperature

decreases quickly because the interior space thermal dynamics is dominated by AC
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cooling capacity. Then the temperature changing rate slows down when the dynamics

is a mix of AC cooling and outdoor heating through conduction, in�ltration, etc. To

separate these processes, it is necessary to divide the whole curve into several pieces.

Slopes of sub-pieces are identi�ed as model parameters. Based on the number of divi-

sions, the tabular methods are divided into instant slope methods (using one slope),

two-slope methods and three-slope methods. Obviously, instant slope methods only

work for short-term HVAC operation. Two slope methods and three slope meth-

ods are promising for extensive indoor temperature predictions. Fine separation of

temperature pro�les decreases identi�cation errors, while it increases computational

load.

Figure 4.16 shows the prediction performances using both multi-slope tabular

models. Real-time data collected from the �eld tests are used. For the winter cases,

data from a Minnesota house are used; and for the summer cases, data are collected

from a test house in Antioch, CA. The identi�cation of tabular models is based on

the previous 10-day data for all the cases. The predictions are made for each HVAC

operation. With the analysis of the prediction performance of the tabular model,

there are some �ndings.

First, two-slope methods and three-slope methods have better performances for

both short-term and long-term predictions than using the 1st order physical model.

And their performances are similar. Since two-slope methods have fewer parameters

and need less computation, they are preferable.

Second, this method shows high prediction ability for heating mode. Its perfor-

mances are not satisfactory for cooling mode in summer, especially for long-term AC

operations. The main reason is that the model ignores the impact of global radiation,

which is not a strong factor in winter, but it a�ects indoor temperature signi�cantly

in summer.
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Figure 4.16: Prediction uisng Multi-slope Tabular Models
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(a) Prediction using 2-slope Tabular Model in
Winter Climate
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(b) Prediction using 3-slope Tabular Model in
Winter Climate
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(c) Prediction using 2-slope Tabular Model in
Summer Climate
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(d) Prediction using 3-slope Tabular Model in
Summer Climate
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Another drawback of this method is that the predictions for heater-o� pro�les are

also not good. In fact, when the heater is o�, the thermal dynamics are dominated

by the temperature of interior walls, which depends on the mixed heat transfer pro-

cess a�ected by recent indoor and outdoor temperature. Additionally, the impact

of indoor and outdoor temperature di�erence 4T is delayed by the house's exterior

walls.[42, 43] The tabular model just covers the linear impacts from current 4T . The

temperature of the interior walls and the delayed impact of 4T are not expressed in

the tabular models. This causes large prediction errors.

Compared with the �rst order physical model, this method has relatively precise

predictions for long-term heater ON events. Therefore, this method is applied for

pre-conditioning strategy in heating mode. We got satisfactory results for winter

morning heating. The results are in section 4.5.4.

4.5.3 ARX Model

With the analysis of the previous two model-based methods, we realized that it is

necessary to develop a model that can cover the higher order thermal dynamics,

including the heat transfer from interior walls and exterior walls. Temperature of

interior walls dominates the thermal dynamics of interior space when the AC/heater

is o� or the AC/heater is on for long durations. Exterior walls delay the impacts

from outdoor temperature and sun radiation. Considering all these factors, another

structure model is developed, namely auto-regressive with exogenous input (ARX)

model. Equation 4.6 shows its general form.

Tin(t) =

p∑
i=1

ϕi · Tin(t− i) +

q1∑
j=0

φj · Tout(t− j) +

q2∑
j=0

ψj ·HV AC(t− j) + εt (4.7)

As a purely statistical model, the ARX model is indeed in the form of a di�erential
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polynomial, indicating linear connections of indoor temperature with input variables

� outdoor temperature and HVAC status. Equation 4.6 is the form after dicretizing.

Theoretical knowledge about building thermal dynamics under HVAC actuations is

used to determine the orders of the model[42]. Thus, the ARX model is indeed a

gray-box model. The �rst order terms indicate the linear impacts from the inputs,

while the higher order terms represent indirect impacts from outdoor conditions and

HVAC heating/cooling through interior and exterior walls. The details are described

in Jang, J. thesis[32]. With historical data, model parameters are identi�ed using least

square linear regression. The prediction performances are satis�ed, with noticeable

improvements compared with the other model-based methods using the 1st order

physical model and the tabular model.

However, relatively large prediction errors are observed when weather conditions

are not normal. To improve the prediction accuracy in such cases, global radiation is

added as another input variable. Since its values change slowly, a �rst order input is

enough. The modi�cation improves the prediction when the weather conditions are

di�erent. Plots in �gure 4.17 show the prediction performance using this version of

the ARX model. The outdoor temperature is interpolated from its hourly values (blue

line); the sun radiation is modi�ed based on the weather conditions (yellow line). The

indoor temperature prediction �ts the actual indoor temperature very well.

There are some various versions of this method. The parameter identi�cation for

the ARX model is based on data collected over the previous one day or multiple days,

or based on the data from a day with similar outdoor conditions. Using any of these

variations, the prediction performances are not consistent. That is, the prediction

is accurate for some days but still makes large errors sometimes. The main reason

is that the thermal dynamics of the house are changed by users' behavior, such as

opening the windows. If the ARX model is built based on data when windows are
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Figure 4.17: Prediction Performance of AXR models
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closed, it must generate large prediction errors for the case when windows are open

� the direct impact of outdoor temperature is stronger. To handle such problems, an

algorithm to detect dynamics changes is proposed. A combination of multiple models

built for di�erent cases is utilized. The weights put on di�erent models are determined

by the match of previous 3-hour predictions. The multi model-based method shows

promising results. The details are discussed in Chapter 4 in Jaehwi Jang's Ph.D.

thesis[32].

The problem with this method is that the parameters do not have physical mean-

ings. It is di�cult to evaluate their values. In addition, the problem of over �tting

may occur.
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4.5.4 Control Performances

After constructing the above three models, model-based supervisory control methods

are applied to realize di�erent control strategies. Their functions are implemented

based on the model-based predictions. MZEST simulations and �eld tests under

di�erent weather conditions demonstrate the control performances. The results pro-

vide insight about the nature of each control strategy and each model-based control

method.

Normal State Optimization

The implementation in normal state acquires energy consumption and the thermal

comfort index to decide the optimal setpoints. A �rst order physical model is created

to estimate the HVAC duty cycles under di�erent temperature setpoints. The model

parameters are identi�ed using historical data collected over the previous 30 days.

Data with incomplete information or anomalies are not used. The comfort index is

calculated using adaptive comfort standards.

To validate the optimal solutions located using 1st order physical model-based

prediction, we use MZEST to create identical operating conditions and generate com-

parable results. The test house in Moraga, CA is simulated by MZEST. The house

thermal behavior with HVAC operations is simulated under di�erent setpoint set-

tings in the normal state cooling mode. To guarantee the indoor temperature reaches

steady state, constant outdoor conditions are set. The �actual� energy consumption

index � duty cycle is obtained from the simulation. And the corresponding discomfort

indexes are calculated. With full information, the supervisory controller is able to

locate the �actual� optimal solutions. Figure 4.18 (a) shows the optimization results

in this case. The left �gure shows the curves of scaled energy consumption and dis-

comfort. The right one expresses the optimal setpoint settings under di�erent choices
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Figure 4.18: Setpoint Pro�les Genereted in Normal State Optimization

(a) Normal State Optimization with Full Information on Cost and Comfort

(b) Normal State Optimization with 1st Order Physical Model

of economics index e and electricity prices. To compare with the �actual� solutions,

the �house� characteristics are identi�ed using a 1st order physical model. AC duty

cycles are predicted under the same setpoint settings. The optimization results are

shown in Figure 4.18 (b) in the same forms.

The predicted AC consumption di�ers from the �actual� values simulated by

MZEST. However, since the prediction errors exist for all the setpoint candidates,

they do not necessarily impact the choice of the optimal solution. In fact, the opti-

mal solutions for both cases are exactly identical when e is 0.5 and 0.9. Only solutions

when e is 0.1 are a�ected by prediction errors: the setpoints are 1 degree o� the �true�

optimal. Such di�erence is acceptable in practice.

The simulation results also prove that the optimal setpoints are di�erent with

di�erent choices of economics index. However, the pro�le shape is slightly di�erent
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Table 4.3: Average Setpoint at Di�erent Prices for Two Days

Economics Index Low Price Medium Price High Price
Day 1: 0.3 74F 76F 79F

Day 2: 0.7 74F 74F 75F

from the original design. When the economics index is 0.5, the setpoint is supposed

to be di�erent for medium and high price. The simulation results do not show the

proper economics sensitivity. This is caused by the design of the utility function.

Other forms of utility functions should be able to �x this problem.

Field tests at Antioch, CA validate the normal state performance as well. A two-

day �eld test was executed under typical California hot weather. Figure 4.19 shows

the results. The two days experienced similar weather conditions. The controller

was running at only the normal state and the pre-cooling state. Economics index for

the normal state was set as 0.3 for day 1 and 0.7 for day 2. Users are assumed to

be comfortable (100%) at 74F. Considering the ever-changing outdoor temperature,

setpoints were recalculated by optimization control strategies every half hour. Table

4.3 shows the average setpoints determined in the normal state for each day. Tem-

perature setpoints are the same at low price, while slightly higher at medium price

periods and much higher during high price periods for day 1, due to the smaller value

of the economic index.

According to the results from MZEST simulation and �eld tests, the normal state

strategy has satisfactory performances using 1st order physical model-based control.

Since the normal state considers the steady-state energy consumption, ignoring high

order thermal dynamics in the model does not cause large diversity when deciding

optimal temperature setpoints. The controller is able to respond to DR signals by

adjusting temperature setpoint autonomously. At the same time, users' economics

preferences are considered by introducing the concept of economics index. In the
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Figure 4.19: Field Test Results
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simulation, the e�ect of economics index is slightly di�erent with the hypothesis.

However, it still leads to reasonable trade-o� between energy cost and thermal com-

fort. Improvement can be made with other forms of utility functions.

Pre-cool/pre-heat Strategy

I again use pre-cooling strategy as an example. Unlike the normal state, pre-cooling

strategy needs to consider the thermal transient processes of house interior air. There-

fore, the 1st order physical model-based control cannot perform satisfactorily, because

it ignores high order terms in the dynamics. The plot from �eld tests shows large

errors when using the physical model. Therefore, ARX model-based control method

is used.

Figure 4.20 demonstrates the predicted temperature pro�les for the candidates of

pre-cooling settings using the ARX model. The red curves are predictions, and the
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Figure 4.20: Pre-cooling Settings Searching

black curve is the real indoor temperature. By calculating the energy consumption

and cost for each of them, the optimal setting that uses minimum electricity cost can

be located.

Figure 4.21 shows the cost calculation with respect to setpoint candidates. Results

are compared for di�erent price ratios of high price to low price (after-pre-cooling price

to before-pre-cooling price). AC on time at high price and low price are shown as the

index for energy consumption (blue curves and red curves). Considering the price

di�erence, the scaled AC on time at high price is shown in yellow. The total cost

is represented by light blue curves. It is easy to locate the optimal settings from

the plots. It is important to mention that in practice it is not necessary to calculate

energy cost for all candidates of control settings, as shown in the graph. The optimal

settings are obtained using a real-time optimization algorithm described in section

4.3.4. The results imply that the price ratio of high price to low price impacts the

optimal settings signi�cantly. In the demonstration, the price increases to high price
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Figure 4.21: Utility Calculation for Pre-cooling Strategy

(a) Utility Calculation when Price Ratio is 2

(b) Utility Calculation when Price Ratio is 4

at 13:30. When the price ratio is 2, the optimal settings occur when pre-cooling

start at 13:15. Not much over-cooling is needed. While the price ratio is 4, the

controller decides to start pre-cooling much earlier, at 12:15pm. This would shift

more electricity use from the high price period to the low price period and therefore

lead to cost savings. Meanwhile, this simulation is a good example of showing how

utility tari� impacts the control settings and control performances. High price is able

to spur users to take actions when electricity shortages occur.

In section 4.3.2, I stated the e�ect of soaking in the pre-cooling strategy. However,

the ARX model is not able to produce such an e�ect. The predictions for future
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Figure 4.22: Prediction for Soaking Performance in Pre-cooling

(a) Utility Calculation when Price Ratio is 4

indoor temperature are identical although previous indoor temperature has di�erent

pro�les. Figure 4.22 demonstrates this point. Red and green temperature pro�les are

generated by setting the setpoint at 77F and 78.5F from 10 a.m. The temperature

stays at those values for 3 hours and 30 minutes. Then the temperature setpoints

are synchronized before the recovery period. Finally we observed that the recovery

pro�les are identical for these two cases. In other words, the recovery interval does not

depend on the previous series of indoor temperature, although this is not necessarily

true. Based on such predictions, the soaked pro�les can not be the optimal solutions

because it uses more energy during the overcooling period and uses the same amount

of time to recover. Therefore, using the ARX model-based control method, the soaked

pre-cooling strategy can not be realized.
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Since the pre-cooling strategy is a demand responsive strategy, its performance

of load shifting is validated using MZEST. Remember that simulations can provide

identical operation conditions for strategy comparison.

To evaluate the performance of the DR strategy, we compared three control set-

tings. One is the default settings of an EnergyStar programmable thermostat: day-

time setpoint 25.5C and nighttime set-back setpoint 28C [44]. It does not consider

the ever-changing DR rates. The second strategy is the designed interior space condi-

tioning system running at the normal state only. Note that the normal state strategy

also has the e�ect of decreasing high price load. The economics index is set as its de-

fault value 0.5. The last one is the designed system running at both the normal state

and the pre-cooling state. The normal state adopts 1st order physical model-based

control; while the pre-cooling strategy uses the ARX model to determine the optimal

settings. Model parameters are identi�ed using appropriate data over the previous

month. Using MZEST, we ran 3-day simulations of a pre-1978 house in a Fresno

climate. The controller ran under these three strategies. The metrics measured were

AC on time at the di�erent electricity rates and the scaled total electricity cost.

The results are presented in �gure 4.23. First, the system running in the normal

state uses less energy for both high price periods and medium price periods compared

with programmable thermostat settings. The reductions of energy consumption are

caused by higher temperature setpoints. It uses slightly more energy for low price

periods, and when the setpoint is not a constant, the indoor space needs to be cooled

down at the beginning of each low price period, from the higher setpoint set for

medium price. This process increases the duration the AC is used for the low price

period. For the case of deploying both the normal strategy and the pre-cooling

strategy, much less electricity is consumed for high price periods. Consequently,

it uses more electricity at medium price and low price than only running in the
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Figure 4.23: DR Strategies Performance Comparison

normal state. These results indicate that the DR strategies, especially the pre-cooling

strategy, successfully shift the loads from high-price periods to medium price periods

and low price periods. The total cost under such utility tari� decreases as well. Thus

we see that the interior space conditioning system responds automatically to price

signals with appropriate energy saving behavior.

Pre-conditioning Strategy

The pre-conditioning strategy is utilized when users demand a certain temperature at

a speci�c time. For example, users would like to have a warm temperature, say 74F,

when they get up at 5 a.m. on a winter morning. The supervisory controller needs

to determine when to start HVAC operations to achieve the target temperature just

in time. In fact, the actuation time is not a constant. Instead, it depends on outdoor

weather conditions and an individual house's characteristics. The tabular model-

based method is adopted to identify the thermal signature of the target house and

predict the temperature transient processes based on forecasted outdoor temperature.
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The robust control design introduced in section 4.3.3 is applied.

To see the signi�cance of the learning function in the pre-conditioning scenario,

we compare two pre-conditioning settings: the duration of HVAC actuation is pre-

dicted by using a general tabular model, or by adopting the individual tabular model

identi�ed from each house. Data from seven Minneapolis houses are used to compare

the two settings in heating mode. The general tabular model is obtained by averaging

the individual tabular models of the seven houses. The results indicate how much the

pre-conditioning performances are improved after control parameters are customized

for an individual house. The results also imply the importance of house signature

identi�cation in supervisory control.

In the seven test houses, we did not actuallyapply the pre-conditioning strategy.

In fact, long-term heating events are considered as the pre-conditioning events. Long-

term heating event means the temperature drifting due to setpoint increasing. We

compare the actual heating durations and the predicted values using the above two

tabular models. The tabular model construction is based on data collected over

ten days; evaluations are performed in three days for each house. Figure 4.24 gives

an example of the results. It shows the actual indoor temperature collected from the

house and the predicted indoor temperature curves using the above two models. Table

4.4 compares the prediction errors for seven test houses over three evaluation days.

The results indicate that by customizing the pre-conditioning strategy for each house,

the prediction on actuation time is more accurate. Such accurate predictions provide

users the required comfort without wasting energy. In conclusion, it is necessary

to acclimate control settings to both the climate and the individual house in the

pre-conditioning state.

Finally, the pre-conditioning strategy was deployed in two test houses in Min-

neapolis, Minnesota. The tabular model is identi�ed based on data collected over
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Figure 4.24: Pre-conditiong Strategy Evaluation: General Tabular Model v.s. Indi-
vidual Tabular Model

Table 4.4: Pre-conditiong Strategy Evaluation: General Tabular Model v.s. Individ-
ual Tabular Model

Max error
Time

(minutes)

Max error
Percentage

(%)

Average error
Time

(minutes)

Average error
Percentage

(%)
Average char-
acteristics
(average 7
houses)

166.9103 81.42 42.0859 52.16

Customized
performance

76.5819 55.47 12.6669 19.1
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Table 4.5: Field Test Results on Pre-conditioning Strategy

House ID A B
Year Built 1985 1937

Test duration 24 days 25 days
Settings 72°F -> 76°F at 5am 65°F -> 69°F at 6am

Outside Temperature range 16°F to 50°F 15°F to 51°F
Anticipated heating interval 12 to 35 minutes 31 to 89 minutes

Rate of succeed 20/24, 83% 24/25, 96%
Average prediction error 0.64°F 0.61°F

the previous day. Every midnight, the tabular model is updated. Temperature is

expected to reach 76F at 5 a.m. for house A and reach 69F at 6 a.m. for house

B. In both settings, the temperature setpoint increases 4F. The real-time tests were

executed over 24 and 25 days, and the performances were satisfactory. For house A,

the algorithm successfully reached the target temperature at the desired time 20 out

of 24 days. For house B, the rate of success is even higher. During 25 test days, there

was only one day when the controller failed to achieve the target. The average pre-

diction error of 0.6°F is essentially indistinguishable from a perfect result. Table 4.5

lists the detailed results. The wide ranges of outdoor temperature and anticipated

heating interval indicate the necessity and signi�cance of applying the customized

pre-conditioning strategy.

From the �eld tests, it is interesting to see that the heating intervals for the two

houses are quite di�erent although operating conditions are similar. For house A, the

intervals range from 13 minutes to 35 minutes while for house B, the range is from

half an hour to an hour and a half. This is caused by the di�erence of the thermal

characteristics of the two test houses: house A is much newer than house B so it is

better-insulated. This fact indicates a useful characteristic of the pre-conditioning

strategy. It will most bene�t the least e�cient houses. Such houses include poorly-

insulated houses or houses with undersized HVAC units. In those houses, temperature
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transient intervals have strong correlations with outdoor conditions. Accurate pre-

dictions are critical to avoid wasting energy or failing to achieve the desired level of

comfort.

4.6 Performance-based Supervisory Control

To seek the optimal control settings in each control state, performance-based super-

visory control is another option. Instead of predicting temperature pro�les as is done

in the model-based method, the controller settings are determined based on the sys-

tem's historical performances under similar operation conditions. Compared with the

model-based control methods, performance-based supervisory control does not need

any prior knowledge of the target house and its HVAC system. The computation load

is relatively small. However, the usefulness of the method is limited by the richness of

historical data. It cannot be applied to the operating conditions that have not been

observed. To overcome this issue, an extrapolation technique is utilized to extend the

working ranges.

4.6.1 Performance Map Construction

The �rst step of the performance-based control is to generate a performance map.

Choosing a good performance index is critical to implement the strategy. A meaning-

ful measure that can be obtained easily from temperature pro�les is a good choice.

It simpli�es the construction of a performance map. Meanwhile, it should be easy to

calculate utility functions by integrating its values. A simple idea is to use the utility

or its component as the performance index. Finally, considering the computational

complexity, the dimension of the performance map should be small. The perfor-

mance index should have simple relationships with input variables, such as outdoor
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temperature.

First, consider the normal state. The optimization strategy involves the evalu-

ations of energy consumption and the discomfort index when maintaining a certain

temperature setpoint. To represent energy consumption, duty cycle is chosen as per-

formance index, which is not hard to obtain from indoor temperature pro�les. The

performance map records the duty cycle values with respect to the temperature di�er-

ence between outdoor and indoor. The values of the duty cycle are calculated based

on every on-o� cycle of HVAC operation when indoor temperature is maintained at a

certain setpoint. Transient processes are �ltered out. The corresponding di�erences

of indoor and outdoor temperature over one operation cycle are averaged as the input.

Figure 4.25 shows the performance map generated according to 10-day data collected

from test houses in Minneapolis, Minnesota and Adelaide, Australia. The x axis is

the indoor and outdoor temperature di�erence, and the y axis is the value of duty

cycle. Their linear trends are expressed in red lines. The data show a clear linear

relationship when outdoor weather conditions do not �uctuate in large ranges, such

as in winter climate. However, in a summer climate, the map is subject to much noise

due to the impact from sun radiation and users' activity such as opening or closing

windows. The linear trends of the data imply the relationship of HVAC duty cycle

and temperature di�erence between outdoor and indoor environment: the larger the

temperature di�erence, the larger the HVAC duty cycle needs to be. And the linear

trends are used as the map extension to unobserved operating conditions.

The performance map generation for the pre-cooling/pre-heating strategy is not

straightforward. The pre-cooling strategy implementation is used as an example. The

utility function is the total cost over the overcooling period and the recovery period.

Without considering the bene�t of indoor temperature soaking at low temperature,

there are determined relationships among control variables: overcooling interval, pre-

114

 PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



Figure 4.25: Normal State Performance Map Generation
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(b) Summer Climate

cooling setpoint and recovery interval. Under certain initial indoor temperature and

outdoor conditions, the overcooling duration determines the pre-cooling setpoint. It

is the indoor temperature at the end of the overcooling period. It is also the low-

est achievable temperature over the overcooling period. Similarly, the pre-cooling

setpoint determines the recovery interval given the temperature setpoint after pre-

cooling. In other words, although there are three undetermined values, only one is the

free parameter. Because of such relationships, the performance index can be chosen

as any one of them. The input variables are average outdoor temperature and radi-

ation over the whole pre-cooling period, and temperature setpoints before and after

pre-cooling. With the proposed structure, the performance map has �ve dimensions.

Because there are only a few pre-cooling events occurring every day, it takes a long

time to ful�ll the map in a real-time application. Therefore, we have not applied

performance-based supervisory control to realize the pre-cooling strategy.

The pre-conditioning strategy is the most e�ective strategy that is realized by the

performance-based method. As stated earlier, its purpose is to seek the start time

of HVAC actuation in order to achieve the target temperature at a speci�c time.

Therefore, we choose the operation duration as the performance index intuitively. In
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Figure 4.26: Pre-conditioning State Performance Map Generation

practice, usually the working conditions when applying the pre-conditioning strategy

are partially identical everyday: the indoor temperature is expected to reach a �xed

target setpoint at a �xed time with a �xed initial setpoint, while outdoor temperature

varies. Thus, based on the fundamental laws of heat transfer, the performance map

only needs to record the relationship between the heating duration and the averaged

outdoor temperature. The map has two dimensions, and it is relatively easy to

�ll. Although there is only one such pre-conditioning event everyday, the map can be

�lled after several days. Figure 4.26 shows an example of performance map generation

based on data collected fromMinneapolis, Minnesota. Each morning, the temperature

is expected to change from 72F to 76F at 5 p.m. A 4-degree warm-up is a typical

setting for winter morning setbacks. Data over 30 days were collected, and there

are 30 pre-conditioning events recorded in the map. Over these 30 days, the outdoor

temperature ranges from 16F to 41F, and the heating duration ranges from 31 minutes

to 70 minutes. All these values form the performance map. To seek the heating

duration under di�erent outdoor temperature, the linear trend is identi�ed.
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4.6.2 Control Performances

Normal State

Using the performance-based method, it is easy to obtain the HVAC duty cycle for

each setpoint candidate. Combined with the discomfort index calculated using adap-

tive comfort standards and economics index speci�ed by users, the optimal settings

that minimize utilities can be achieved. In �gure 4.27, we show the utility calculation

when outdoor temperature is 34C. The blue line is the AC duty cycle with respect

to setpoint candidates obtained from the performance map, and the red curve is

the corresponding discomfort index. Table 4.6 lists the optimal control settings at

various price levels when the economics index takes di�erent values. The electricity

rates are set as $0.11, $0.25, $0.75 according to PG&E pilot programs[19]. When

economics index e equals 0.9 (high comfort and high bill), the setpoints are all 24C

for o�-peak, shoulder-peak and peak price. When e is 0.1 (low comfort and low bill),

the setpoints increase to 25C, 28C and 30C. The table clearly shows how the set-

point settings change when users' economics preferences change from one extreme to

another. Thus, using performance-based supervisory control, we obtain reasonable

control settings. The normal state control performances are similar as using the 1st

order physical model-based control method.

Pre-conditioning Strategy

For the pre-conditioning strategy, the performance map indicates the heating or cool-

ing duration needed given outdoor temperature. In practice, the outdoor temperature

is obtained from weather forecasting. Given outdoor temperature, the controller set-

tings can be read directly from the map and no further calculation is needed. To

evaluate the performance-based control method, the control settings are compared
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Figure 4.27: Normal State Utiltiy Calculation using Performance-based Method
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Table 4.6: Setpoint Generated for Di�erent Ecnomics Index and Price

Economics Index O�-peak Price Shoulder-peak Price Peak Price
0.1 25 28 30
0.2 25 25 30
0.3 25 25 27
0.4 24 25 27
0.5 24 25 25
0.6 24 24 25
0.7 24 24 25
0.8 24 24 24
0.9 24 24 24
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Figure 4.28: Pre-conditioning Strategy Comparison: Performance-based Method vs.
Tabular Model-based Method

with the values obtained using the tabular model-based control. In �gure 4.28, blue

dots represent the performance map. The heating intervals are determined based on

its linear regression (black line). The yellow dots represent the heating intervals de-

cided by the tabular model-based method. Because the tabular models are updated

every midnight based on data collected from that day, the �nal decisions on control

settings are a bit noisy. Even under the same outdoor conditions, it is possible for

the controller to make di�erent decisions. The plot indicates that the two methods

generate similar results.

4.6.3 Discussion

There are some concerns about the performance-based control method. To generate

the performance map, data collected over multiple days are needed. For instance, in

the above demonstration of the pre-conditioning strategy, 30-day data were used to

construct the map. But the model construction for the model-based control methods
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is much quicker. Usually data collected over one day or two days are su�cient.

Therefore, before the performance map is generated, initial values of performance

index are required to deploy performance-based control. Model-based methods are

a reasonable option to generate the initial values (i.e., using the models to predict

the values of performance index under di�erent input conditions and ful�ll the map).

Another option is the combination of two methods: using model-based supervisory

control at the very beginning until the performance map is constructed using real

data.

Another drawback is that the performance-based method works well only for �xed

scenarios. To decrease the dimensions of the performance map, the method takes

particular input variables as constants. In normal state realization, we assume the

values of sun radiation are constant. In pre-conditioning implementation, we consider

only the case when the comfort requirements are �xed � the previous setpoint, the

expected temperauture and its schedule are all �xed. This limits the application

of performance-based methods. But the performance-based methods require little

computation. They are very useful for real-time programs.

4.7 Further Discussion

Up to now, four supervisory control strategies were developed to realize interior space

conditioning. However, they may not work equally for all residential houses, because

a house and its HVAC systems have their own characteristics.

The pre-cooling strategy is more bene�cial for houses with small leakage and a

good ability to store heat. The more heat a house can store, the longer the recov-

ery period, and more peak load can be shifted to the previous o�-peak period. The

strategy is best suited to newer, better-insulated concrete homes. On the other hand,
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the pre-conditioning strategy will most bene�t the least e�cient homes. For poorly-

insulated houses, heating/cooling intervals are a�ected by weather conditions dramat-

ically. Such houses make signi�cant energy savings by deploying the pre-conditioning

strategy, considering the large variation of heating/cooling intervals. Similarly, houses

with less powerful HVAC systems make larger savings: it takes much longer to achieve

comfort under extreme weather.

Some strategies do not work properly under some particular conditions, according

to the observations obtained from simulations and the �eld tests. For example, in one

test house in Bay Point, CA, its air conditioner is so undersized that the controller can

not run the normal state or the pre-cooling strategy appropriately when the outside

temperature is extremely hot. Further, the indoor temperature keeps increasing when

the outdoor temperature is hot, and it can not be maintained at a reasonable set-

point for the normal state or at a pre-cooling setpoint. In order to create a tolerable

environment on a hot summer afternoon, users keep the air conditioner on continu-

ously from the early morning. They check the predicted outdoor temperature every

morning before taking such actions. Currently, no speci�c strategies are designed to

mimic such behavior. Except for mimicking what users do, another suggestion is to

upgrade the HVAC equipments. Actually, this option is more appropriate from the

point of view of economics.

The system should give such suggestions automatically, as an HVAC professional

would. Further analysis on house signature is needed. Theoretically, this feature

is named automated continuous commissioning. In addition to the HVAC system,

the objects of the commissioning include malfunctions of control software, incorrect

operations by users, hardware failures and communication failures. When anomalies

are detected, they should be diagnosed and evaluated. Finally, a course of action

should be suggested by the system. This is one of the directions of future work.
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Chapter 5

Conclusion

In this thesis, a demand-responsive autonomous system was developed for interior

space conditioning in residential houses. Its functions of multiple sensing and ac-

tuating are built on low-cost, low-power wireless technology, providing informative

knowledge and independent operations that enable advanced control strategies. In-

tuitive user interfaces are designed to teach users the concept of DR and inform them

how the system works, improving the usability and acceptability of the system. The

system interacts with various objectives including public utilities, residential houses,

HVAC equipment, and human beings. To handle the complicated working envi-

ronment, control functionalities are embedded in a layered structure. Such design

provides modularization of functions and semi-independent designs for each layer.

To realize demand responsiveness and autonomous optimal control, the control

functions are realized by supervisory controls and local controls. This thesis focuses

on the development of the former � supervisory controls. Generally speaking, super-

visory optimal control aims at seeking the minimum operating cost while providing

satisfactory indoor comfort. Adopting a hierarchical structure, supervisory controls

are realized by three steps: deciding control modes, choosing control states, and �-
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nally choosing control strategy settings � temperature setpoints and their schedule if

necessary, which will be delivered to local controls as the control objectives.

Several control strategies for interior space conditioning are designed to meet users'

various requirements on utility cost and thermal comfort. The results from computer

simulations and �eld tests prove the e�ectiveness and e�ciency of the control strate-

gies.

� The normal state utilizes indoor temperature control with a constant setpoint.

The key is to locate a balance between utility cost and thermal comfort accord-

ing to users' economics sensitivity. As the innovation of the thesis, economics

indexes are proposed to express users' economics choice. Since the normal strat-

egy has the e�ect of decreasing load for peak-price-period, it is considered a DR

strategy.

� The pre-cooling/pre-heating strategy is a typical DR strategy � shifting peak

loads to o�-peak periods. To minimize the total electricity cost instead of

electricity consumption, the temperature pro�les under di�erent settings are

predicted, and the optimal settings are located using optimization techniques.

We found the pre-cooling/pre-heating settings are signi�cantly a�ected by the

price ratio of peak to o�-peak. In addition, temperature soaking shows potential

to enlarge load shifting.

� The pre-conditioning strategy is not a type of DR strategy. No price issue is

considered here. Instead, it is designed to satisfy users' thermal requirements

with minimum cost/energy consumption. Toward this end, the controller needs

to customize its settings based on the individual house and the local climate.

House signature identi�cation is the key enabling technology.

� The overlapping strategy is more complex than the above three strategies. It
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considers the combination of two objectives: load shifting plus target thermal

comfort or load shifting for two future price-increasing events. Due to its com-

plexity, the overlapping strategy had not been implemented so far.

The hierarchical supervisory controls are realized by hybrid control methods. A

model-free method � an expert system determines control mode and control state;

control strategy in each state is realized by model-based methods or performance-

based methods. Three model-based methods are discussed in the thesis. Their char-

acteristics and applications are listed in table 5.1. The performance-based method is

deployed to realize normal state control and pre-conditioning control as well. These

methods perform acceptably when realizing control strategies, although problems ex-

ist. First, in the normal state and the pre-cooling/pre-heating state, near-optimal

settings are located due to the prediction errors in model-based methods. Second,

the soaking e�ects of pre-cooling strategy for well-insulated, newly-constructed houses

can not be predicted using any of these methods. Finally, users' behavior sometimes

leads to large noise to the controller.

In conclusion, the thesis demonstrates the potential of a smart, adapting, demand

responsive, disaggregated control system for interior space conditioning. Here are

the main contributions: 1) constructed the system and validation tools, 2) developed

hierarchical controls that respond to DR price signals autonomously, and 3) deployed

supervisory control methods to realize optimization control strategies and validated

the performance through computer simulations and �eld tests.
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Table 5.1: Comparison for Model-based Supervisory Control Methods

Method Parameter
Number

Prediction Application

1storder
physical
model

4 Linear shape, good for
short-term HVAC
operations

Normal

Tabular
Model

Hundreds Good for short-term
HVAC operations in
cooling mode

Normal,
Pre-conditioning

ARX Model 10-plus Good for both
short-term and long-term
HVAC operations. But
short-term predictions
are not as accurate as
using Tabular Method.

Pre-
conditioning,

Pre-cooling/Pre-
heating
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