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SOME PHYSICAL CONSEQUENCES OF THE ABFST MULTIPERIPHERAL MODEL I. INTRODUCTION

In this paper we shall study high ener hadron-hadr
Chun-Fai Chan pap y hig gy hadron-hadron

scattering with the ABFST multiperipheral model. ™ The input to the
Lawrence Berkeley Laboratory

University 0? Cal%fornia ) problem will be mainly .the knowledge of the interaction at low energy,
Berkeley, California . 94720

i.e., around  l-GeV2. By this we mean-that, in the relation of the

cross sections.
August 1k, 1972

tot el ' R :
o = 0 4+ 2: @, (1.1)
ABSTRACT n ‘ ‘

The solution of the Amat;-Bertocchi—Fubini-Stanghellini-Tonin . we assume o°F involves mainly. the fdrmation of (two-body) resonances
multiperipheral integral equation with a narrow-resonance kernel is in each unit block of the multiperipheral chain. Correépondinglj, in
investigated. First, an approximate scheme that leads to a tractable the integral equatioﬁ
analytic approximate solution is presented for both the forward and .

: tot el el
. X : . ) . i g = 0 + fc S crtOt R (1.2)
nonforward equations. Next, the exact numerical solutions are dis- .
played for the relevant values of the input. parameters: These results el

we assume the kernel K = 0~ § (where S is the metric in the inte-

serve asua,ﬁeasure of the accurécy of various analytic approximate ) el
) R gration) consists mainly of the resonance part of o 7. Each - will

solutions. The approximate solution present here is found to be good
: then have the cha;acteristic of rapid rising and falling behavior as
to within about 10% in the region of interest. The absolute magnitude
o - : “"7a  function of the energy " s. We believe it is mainly the sum of these

"peaks” that gives rise to the observed magnitude of otOt. Such a

section is calculated in an SU(S)- symmetric model by using this : -
. . : composition is justified to some extent by the existing data, for

of the.high energy pseudoscalar-meson (p) - baryon (B) total cross

approximate solution and the approximation that the low energy uB . . + N
» ) example, in the data of K'N scattering. Due to exchange degeneracy
amplitude is dominated by the baryon pole plus the first elastic reson- . .

. . . - . of the secondary j-plane singularities, in this case we have exclusively

(or almost) diffractive scattering for ctit. A portion of the

available energy. The theoretical and phenomenological implications ‘KN
o composition is sketched in Fig. 1. : '

.-ance. The result is compafable to data at the presently highest

" of the high energy off-shell behavior given by this solution are also -
. In a more serious approach, as pointed out in Ref. 2, we

studied. The improvement of the model’by including the high energy .
: should include the high energy scattering part in Un, and correspond-

el

scattering part in the kernel, thus giving a new solution consisting of .
: : : : . ingly the high energy scattering part in the kernel K = o~ 8 as

Regge pole and cut, is briefly discussed. )
well. This gives each o° a small but constant_(or almost constant)
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tail. And there comes the question of self-consistency in the high

tot el

energy scattering parts in the output © and the input o

|
(wé remark that this picture seems in contradiction with the
self-bootstrapping Pomeranchukon model in which each & has only a
constant part due to the diffractive production process in itself.)
We shall first investigate in Sec. II the solution of the
multiperipheral integral equation with a resonance kernel only, and
then study in Sec;.'III and IV some physical consequences of this

solution. The question of including the high energy tail in the kernel

will be discussed briefly in Sec. V.

he

II. SOLUTION OF THE ABFST EQUATION WITH A RESONANCE KERNEL
A. Preface
In this section we shall investigate.in two complementary ways

the solution of the ABFST multiperipheral integral equation,l in the
modern version formulated by Chew, Rogers, and Snider,2 and by
Abarbanel, Chew, Goidberger, and Saunders.3 We shall study in detail
the solution of the equation with the simplest kernel consisting of a
single sharp resonance, and discuss only briefly the straightforward
generalization to the case of a kernel with many resonances. This
solutidn, in the language of Ref. 3, corresponds to the "unperturbed

' since we neglect'the small high-subenergy diffractive

solution,’
scattéring part in the input kernel. s
In order to gain insight into the nature of the output, we

first obtain an analytic approximate solution by replacing the original

kernel by a factorizable kernel. This replacement is guided in some

. sense by "peripheralism," that is, the factorizable kernel should

behave like the original kernel in the peripheral region, where the
contribution to any convergent integral involved is expected to be
important. We shall demonstrate that the solution so obtainéd repro-
duces itself under the action of the briginal kernel in the most
peripheral region.

On' the other hand, we have also solved the equation numerically
for certain values of the input barameteré. This solution provides a -
measure of the accuracy of various analytic approximate solutions.

Our analytic approximate method is presentéd in subsection B
(for forward scattering) and subsection ¢ (for nonforward scattering).
There is no pretense of rigor; rather, in a practical wéy we shall

develop a tractable explicit form that is simple enough and yet has
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reasonable accuracy. The latter point is justified by comparing with
the exact numerical solutioﬁ which is presented in subsection D. Some

generalizations and the question of the uniqueness of our approximation

scheme are presented at the end of this section.

-6-
B. THE FORWARD EQUATION AND THE APPROXIMATE SOLUTION v
We shall first illustrafe the properties of our approximation
in the case of forward scattering {(q = 0 in Fig. 2). Let us here
ignore the problem of internal symmetry;ithis can easily be incorpor-
ated into the model by introducing crossing matrices as describéd in
Sec. III. The abéorptive part A of the elastic amplitude T of

pseudoscalar-meson—pseudoscalar-meson scattering is normalized in such

a way that
2 2 i, 2 2, .tot, 2 2 (o
Als,p™,u") = 2%(s,u",u7) © (8,0 5u) L (21)

: 2 .
where- is the meson mass squared,

2 2 2 t
AMx,y,2) =X +y +2 -2(xy +yz + zx), and G °F i the total
meson-meson (u-p) cross section. The elastic p-p cross section

cel enters in the input potential of the eqguation in thé (on?shell)

_form

' o 2 1 2 2, el 2 2
V(sgok 51 ) = e T LI CIFTRTD P . (22

The 0(1,3) partial wave of A . is defined as

[+

. _(K+l)e(S}Tl)T2)
Ax(Tl,Tg) = ds e A(S,Tl,TE) 5 (2.3)
1® ‘
the inverse transform is
C+ico +(x+1)e(s,rl,12) ,
dax e :
A(s,7,,7,) = + A (1, ,1,)
1’2 oqi = o R AR -] ]
i T 2(-11)2(-12)2 sinh 9(3,11,12) A

(2.4)
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wh®e the contour is taken to the right of any singularity of A, in

A
the  plane. In terms of Ax, the ABFéT equatién is
0
)
Ax(Tl,Tg) = Vx(Tl,TE) + Zg;gzi—:—;; E;Eg%—;jsg
x V)\(Tl’T')A)\(T"TZ . (2.5)
. The essence of our method is to agproximate
e-Q(S,Tl,Tg) ,
= —

|

(-m)3(-7)% (s -m - 7) +[s -y - )2 - b(ery)(-my)]

(2.6)
by a factorizable expressionu
E(s,T,,7,) s
1’2
T T = . (2.7)
(_Tl)2(_T2)2 (S'- ’Tl)(S - Te)
The function E is actually a lower bound to e-e Notice that
PeTT) ks [ 2(m) ey
e 1’2 1 2
I TRl T T (.9)
(-Tl) (_Tg) (-Tl) ('Tg) s
when either T or T,, Or both, approach zero. When T approaches

(minus) infinity with fixed, we have

To
-5
e

T T - 1 , whereas % - 1 ‘ 5 .
HCAHCSCENES (-7 )2(=7,) (-Tl)<s - 72>

The case is similar when

|+

T, approaches (minus) infinity with T
fixed. One hopes that, in any convergent integral involved in the -
calculation, the contributions from these "nonperipheral” regions do

not matter very much. Notice also that & 1is a small quantity for

all values of T and To- For a given s, it has an absolute maximum

-8-
abs.max. 1
§(S,T1,T2) T =T,.=-§ E 2 (2'9)
12
whereas
1 1
0(s,my, ) [ (s - 7,)% - (s)2
1’2 2 <
€ fixed 1v.,-T,=s-T = = =1,
27 1 2 (-72)2
approaching the absolute maximum value of 1 for =Ty = "To >> 5.

With this approximation Eq. (2.5) is immediately soluble. Here
we consider the solution for the kernel with a single (sharp) resonance.
A kernel with many resonances will be discussed in subsection II.E.

Thus we put for the (on-shell) potential

2 2 1 2 2 el
V(So;u m) = AF(So)u 17 )mxl @

2 . 2 2
nax®(50 - m ) = m R(O)S(so - n“),

(2.10)

where m2, x, and T are the squared mass, elasticity, and width of

2

the p-pu resonance. We shall assume ue << m~. The solution to Eq.

(2.5) is then
1 AL
(-u7 )3 (-nr )* |
(m2 - )(m2 - 1))
A (r,m) = L 2 ) (2.11)

1l - TrKK

m2R(O)

where

o] r AL
TrK _ - m2R§O§ aT -m2T }

{
16n3(x + l) (u2 - T)2 (m2 - T)?j

s (z.12)

-0

2
519% B(n + 2,\ + 2) F(éx r2on 4L, 1 - E§;>, (2.13)
m

16x

~ R(0) _BOLA 2 :
6.5 20n + 1 s for =0. (2.1k)
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In Eq. (2.13) and Eq. (2.14), B is the Euler beta function and
F 1is the hypergeometric function. The eigenvélue condition is given
by the vanishing of the Fredholﬁ d?terﬁinant N

p(A) = 1 -Tr}& = 0. (2.15)

A special proﬁerty of this apprdgimate solution is that, under
the action of the original kernel, it "reproduces itself" for =Tys
-T,y OT both,'small.(in comparison Qi£h. me). "This can best be
illustrated by éoing back to the s plane. From Eg. (2.4) and Eq.
(é.ll), we get for the leading beha%ior of the full amplitude .

a+l -

- . ' 5 o+l 5 o
Als,79575) o~ 1610 By _2"1___> <_2“l___> <S—2) ,(2.16)
- Tl m m 4

S— m - T
) 2

where « is the largest value of X satisfying Eq. (2.15), and

S 161{3
By - [-& 570) TrK}\] . (2.17)

' 2
In the interest of simplicity and clapity, let us put p =0 for the

moment; then the amplitude at the physical (and most peripheral) point

is
’ - 0
3. /s :
S a—— 2.
A(s,0,0) S 165 Qa\‘ 5 . (2.18)
m
On the other hand, in this asymptotic region of the s plane, the
full amplitude, when written in the form ‘
(2.19).

: a
A(S}Tl’ig) gx ¢a(Tl,T2)s E

-10~

satisfies an equation corresponding to Eq. (2.5)

(-2 (2 ) P g (5 )7,)

~ ° (ar1)e( )
1 ) - Sas Ty, T
_3— dSOV(SO’Tl’T') __é_dL___ e 0’1’
167 (a + 1) : (u= - T')2
N -00

X (-1 )2 (e )2 9 g (or,n,) o (2.20)

If we put Eq. (2.16) as a trial function into the right-hand
side of Eq. {2:20) with the original kernel, the output physical

amplitude is

A(s,0,0) ~. lim (7)) (2.21)
11,12—90
A~ m Rgoz [ E- Cm _Tv- >a+l 16 3 o ( m2 ; Ot+l(,s \O,’
g Y, B LOT - . -
6@ +1) J BN - a\p? - T-) \2/
g : ' - (2.22)

which is just Eq. (2.18) by virtue of Eg. (2.12’ and Eq. (2.15).
(Actually the.condition Ty = 0 1is not necessary in this parf of the
argument T, can take any value.) The corresponding property can of
course be. demonstrated in the A plane. It should be noted that

some previously proposed appfoximate solutions5_ do not possess this
property. Comparisons of the solution proposed here énd otherb

approximate solutions with the exact numerical solutionbwill be given

in subsection D.
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C. THE NONFORWARD EQUATION AND ITS APPROXIMATE SOLUTION

Away from % = O, the on-shell potential is given by

V(s ,,,t) =
0’ bt b,
' S A b))
at_at o | "A(Et%5) L
19%2 : s n
1 0 *
=3I 5 2 Wet, 15 T (50,81 )T(s,8,5)
Lox A”(So,p. B ) ['A(tgtl:tg) + 1 z
S, - by
0 (2.23)

where T is the complete elastic amplitude; Im T(s,t) = A(s,t).

A single (sharp) resonance contributes a potential

16+s
V(sget) =2 X —r—-%——— (2L + 1)P (2 )rmxrd(s, - m %)
e 2
& (8,1",17)
= nR(t)8(s, - o) , (2.24)
wheré 
2s
z = 1 + —
2
® A(So,uz,u )

and L ié the spin of the resonance.

The appropriate 0(1,2) partial-wave amplitude is

[o5]
AE(Tl’Zl’TZ’ZQ; t) = ‘/P ds Qz(cosh V) A(W,Tl,zl,12,22; %),
’ ’uug (2.25)

and the inverse transform is

~10-
A(w’Tl,Zl’TZ’ZE; t)
CHle (22 + 1)P,(cosh V) v
= géI ) ; 5 Ay(1520575255t)
b - - 2
c~ico 2[(-'1'1)(1 - Zl )( Tg)(l 22 )]

(2.26)

where the contour is taken to the right of any singularity of Az in

the £ plane.

~In terms of A_, the nonforward ABFST equation is

2}
AE(Tl:Zl:T21Z25 t) =. VZ(Tl’Zl’TE’ZZ; t)
0 +1 2'_%
] - 1
+ -—lE ary 5 dz' (1 tzz ) —— Vz(Tl,Zl,T',Z'; t)
161 o 1 m -.T' - H) - 1'%z ')
X Az(w',z',12,z2; t) . (2.27)

In order to make an approximation similar to that discussed in

subsection B, we note that the function - QA(cosh ¥) can be expanded as’

Qz(cosh ¥) =
© £+1
E: 2y 1)222+l L@ -z 2):2 £+l( )]
r(2¢ + 2 + n) 1 n ‘1
n=0
. £+1
55 z+1 » -(g+1+n)e(s,T )T )
X 1@ -z (z,)] e e
(2.28)
£+l : . - '
where C is a Gegenbauer polynomial. Now, as before, we shall
'Q(S)Tl;Tz)

replace e by £(s,7,,7,) ©of Ba. (2.7). With the input
potential Eq. (2.24), the kernel in Eq. (2.27) is then a sum of
factorized terms. We shall discuss this case in subsection E. As a

first approximation here, we take only the first term of the sum in

.
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Eq. (2-28).10 This is not unreasonable since, as we have realized

above [Eq. (2.9)1, g(s,Tl,Te) is a small quantity throughout the

range of integratioﬁ. Thus

1
0 L4z
n°R(t) B(4 + 1,—:25) [ S az(1 - &) 2
TrK, = - dt )
¢ 167" [W° -1 - 57 - 1t
T A -1 » o T K ]
_mgT ]E+l
(m - )
. m2:z+2R;t: . u!;+l 1
1600 +1) ), @+ wPP T eusg)?
1 buf .
X P{1,51+2, — —} 5 (2.30)
(" +u+ ) : _
where we have. used the notation u=-r and ¢§ = -.E for convenience.

Now observe that, for a given ¢ > 0, the expression (hug)/(u2 +u + ;f

is always less fhan or equal to 1 throughout the range of integration

< 1 for uz % o,

N SR Y (2.31)
5 7 = 3 2 -31)
(b +u+ ) U=u2+t po+¢ = 1 for p =0.

Thus, the eXpansionrof F as a hypergeometric series in powers of
(l;u'g)/(u2 +u + C)g always stays within the radius of convergénce of
the éefiés for Re £ > ;2. After this expansion has been made, the
series can be integrated term by term, each term being expressed as a

-hypergeometg;c function. Thus we get a series of hypergeometric

functions with coefficients (C/me)n. The first two terms are as

follows:

-1h-

TrK = -ﬂ_t_)___

. 7 | 5 ,
y 3 B(£ +2, ¢ +2) F(E,ll + 2,24 + by 1 - L—;—QD

| 2
= i 25(%) B{£ + 1,4 +3) F@,E + 1,24 + 4,1 - B_é“ﬁ)
m ] -

¥(a,b,c,1 - x) into

(2.32)

The next step is to tra.nsformll

F(a',b',c’,x) and then to express F(a',b',c',x) as a hypergeometric
. . : 2 2 :

series in powers of x = (i° + ¢)/(m”) [since we shall be interested

only in the small-t region where (pg +'§)/(m2) <'1]. After this

mahipulation, we obtain the eigenvalue condition

1l = Ter

R(t) ) B(s,0) (. 204 +2) (12 : 9

_—- 16,0 2(22 + 1) £+ 1
L2028 +2) 3(s + 3) ;CHZJ«C' 2+
-4 + 1 -4 +2 2 m2 .

A __n_(f_u)”
- sinyl m2

)( Gd@e -322% +2) u'zmg §> . (22 Ti(f +2) (28 +3)(4 + 3)

g + 2
. 2
x D )

Equation (2.33) Continued
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Equation (2.33) Continued
L & 2 1 b (Wt
+2Zz+25<m2> B I\ T T F T =)
L g : , in which « satisfies Eq. (2.33) and

N RPN | | 2 o
N (8 + 2) T ut o+ ¢ 26(e +3) (p-+ LY, ... —
6 sin ’.‘ﬂ-( n° ) <l+ ‘ ( n ) > ‘ x(0) = ggl_é(% "} a0) | .
’ . : E:ao ,Q:O

ao . _ ]_- ;]L;X(O) _ 1611.5_' '2'm22 . \ PL(]_)} 5 (2.35)
44 o Y(0) {12 - r(0) A SH )/ :

il

Ly ) C(2.33) SV
40 F . 53 o 1,0 2 3(a + 3) Ny
Gr et i ety () -

Notice that in Eq. (2.33), the radius of convergence of the

£

- l
2
series-is conitrolled by m2. Therefore, for t # 0, even if ug -0, _ < ) a+ g(a + 1) (o + 2) }*_2) + oee
’ s1n sin o ;
the solution £(t) of Eq. (2.33) remains finite. If, instead of the . .
procedure following Eq. (2.30), a direct expansion of the nonforward : ' ~ I
. . ) -20 B(at, ) l+h§oc+l)’\u_> +l
propagator were made in the form (<o + L){a + L){a + 2) o+ 2 n2 §
. 2 a-1 o ' '
1 1 t 1 t1z
— = —= |1 + - - ot B .e
2 t.2 2 PE el 2 ., 2 2 ’ + 1+ 2(a+3) ) } 2.3
(™ -7 - ) - 7t27] (W™ - 1) 2 (W - 1) W) Slnﬂa5< ) [ me » (2:37)
, o ‘ : (2.34) . '

4 2 l e
one would obtain a series representation of Ter with a radius of =t (T% + 3 lOg(i-é)) + log( ))l\};—') + ’
convergence. that is essentially controlled by ug. Thus such a pro- ' : ) (2.38)
cedure would suggest that TrKﬂ — o for p.2 -0 and £ <1, even
though the corresponding integral representation of TrkK

is actually

finite in this limit.6’8
The slopes of the trajectories can easily be computed from

Eg. (2:33) by the formula
a aTer/c)Ter
at - 3t it

Thus
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¥(0) . (2.29)

I""""-\
Ej
N

TrKi]
Ed}t(O), €=O

(B _B@,0)
(g(ea +1)  (ex + 1)2

< Blo,a) (o + 2) 3B(Q,Q)
(

o+ 1) +1) (-0 +1)(2a + 1)2

B(o,o (a +2) .
(-a + 1) (Ea +1)

+

-~

a:
ENIN o
sin nQ sin n¢x _!
I 5 o \OHL
X l+2(o¢+2)<9—§> +> -2 — L <-“—2-) oo,
) \ m /. sin =@ \m

(2.10)
- .g. ._ .;;(%7_ ]_og )( . (2.11»1)
Bla,a) = 2B(a,a)¥(a) = ¥ (2a)]

Q
i

In Eq. (2.k0), From these relations

one sees immediately that owing to the presence of the factor
2 2y70-1 .
[(u7)/(m™)] in
Alternatively one can see this from the derivative of the integral
The integral [5/(5C)]TTK£

2 )
diverges at the lower end of integration when p~ =0 and ( = 0. By

representation of TrK, in Ed. (2.30):
’ g ' >0 t
taking u~ — O we have moved the threshold from ~t = 4n o
t = 0.

_We also have

2
x(0), (da)/(at)|, o —»« when p° -0 and @< 1.

-18-

AE(Tl)zl)T21Z2; t)
- 2 £%£ o 1 2 1 P
Bz + 1, D - 2,90 - 2,27 2 &) [ (a7 ]
= ’ 1 - TrK 2 2 _ ’
: 2 (m Tl)(m 12)

(2.142)

A(s,Ty,T5 8) s 1600 Ba(e) ()

S—

a(t)+1 “ a(t)+1l a(t)
2.43)
RGNl ()

where, as before, Ba(t)(t) = -[Y(t)]

Notice that when t (i.e., t) goes to zero, Eq. (2.43)
coincides with Eq.  (2.16). That is, in the forward limit, the leading
member of the family of Regge poles (£ =Q -n, n = 0,1,2,-++) and
the corresponding Toller pole (A = @) are the same, as far as the
high-energy behavior of the full amplitude is concerned. This result is
true in general and does qpt depend oﬁ the approximation we have made.
On the other hand, from Eq. (2.42) and Eq. (2.11) we see that
A, —™> A apart from the function B(Z + 1, i) and a factor with

£ t-0 "\
dependence on Zq and 22; however, this result follows only from the

fact that we have discarded all the daughters (£ =& -1, & -2, ---)

in Az,9 owing to the approximation made after Eq. (2.28).
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D. EXACT NUMERICAL SOLUTION AND COMPARISON WITH
APPROXTMATE SOLUTIONS
' We have also solved Eq. (2 5)' and Eq. (2.27) numerically,
using the method described by Wyldl® to find the leading pole and its
2 2

residue. We have considered the two cases u2 =0 and p =n
b

(i.e., u /m = 1/30) for a kernel consisting of a sharp resonance

of mass squared m2 =m 2

= 0.585 GeVQ. The quantity R is treated
as a varilable parameter.

In Fig. 3 we show the numerical.solution for the intercept of
the leading pole when ug = 0., It should be noted that the method of
numerical solution is not precise in this zero p 1limit: the error in
a miéht be as high as :0.1. The value of «(0) calculated from Eq.
(2.33) with uz =0 and ¢ = is also plotted; it differs from
the numerical solution by about 6% when « = 1. For the sake of

comparison we have also plotted the values of a(0) calculated in the

: . . 2
.trace approximation

1 - RO CR— | (2.1)

16n5 ala + 1L)(a + 2)

(dashed line), and the approximate solution of Ref. 5

; - RO 1 (2.45)
16713 ofa + 1)

(dotted line), which is also the expression obtained in Ref. 6.
Figure U shows the numerical solution for «(0) when
2)/(m2) = 1/%30, together with the value of «(0) calculated from

Fa. (2.33) to first order in .(ug)/(mz)

-20-
Figure 5 shows the numerical solution for the residue of the

2 D e
leading pole defined in Eq. (2.19) when p = 0. In this figure we

have also plotted our approximate solution from Eg. (2.18)

00 ~ 1678, T s e

where Ba(O) = —[Y(O)]_l with pg = 0 in Eq. (2.39):.:Again we also

show the value of ¢a(0,0) calculated from Ref. 7 (dashed line) and
from the eigenvalue condition [our Eq. (2.45)] of Refs. 5 and 6 (in
dotted line). For [R(O)]/(16n5) = k4, say, Bq. (2.46) misses the exact
solution by about 10%, whereas the other approximate solutions miss by
more than 100%.

In Fig. 6 we show the numerical solution for ¢a(0,0) when
(uz)/(mg) = 1/30. The approximate solution given by Eq. (2.46) with
By = -[Y(O)]-l is also shown to first order in (ua)/(mg).

Figure 7 shows the off-shell dependence of the residue of the

leading pole when p2 - 0. TFrom Eq. {2.16), we have

o+l '
Bolt1,0) = @00, o)( ) (2.47)

It is seen that the approximate solutions are "more periphergl”'than
the exact ones. This is not surprising since we have replaced the
original kernel by the one which is more peripheral [c.f., Eq. (2_6)
and Eq. (2.7)]..

Finally, in Fig. 8 we show the slope of the leading pole at
t = 0, when the u-u rescnance is (i) a scalar and (ii) a vector.
The numerical solution for + = 0 lies somewhere within the shaded

area. We have also computed the values of the slope at t =0
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according to Eq. (2.35) up to order [_(pz)/(mg)]2 at three different

corresponding to (0) = 0.5, 0.8, and 1.0.%2 fThey

values of R(O)

are shown as X's. in.the figure.

P22~

E. GENERALIZATIONS

Let us consider briefly the case of a kernel consisting of a

finite sum of factorized (and symmetric) terms. The sum may arise

either from the input of many resonances in Eq. (2.10) or from taking
more terms in the series of Eq. (2 28).. For example, if we put

V(S,p SH ) _ E:In R; 5(3 - m ), then we have

' 1 . 1\
. ( =T )2 % mi(-12)2
VK(Tl’TE) = ms R Rl —
m, -7
1 2

(2.48)
T apd 12.

which is no longer factorizable in 1 The resulting equation

can be solved by an algebraic method. That is, for an integral equation

of the type
f(Tl,Tz) = V(Tl,Tg) + ‘[~V(T1,T') s(t') f(T‘,Tg)dx' (2.49)
n
with V(ry;7,) = £;£ (11)v;(1,), the solution is just
’ n n
2rm) = v(rvi() ey v - D T (),
d=l i,3,k=1 '
(2.50)
vwhere
Ty = jio<= ‘[ vi(w) S(t) VJ(T) ar . (2.51)

For the case n = 2, for example, the solution is
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f(Tl,T2)

C L - Ty (v (r) (= Ty (e Ivy(ny) + Tyv, (5 )vy(5y)

which is similar to the solution to a coupled-channel prqblem.

oL
F. DISCUSSION
From the explicit approximate solution, Eq.{2.16), Eq. (2.33),
and Egs. (2.35-43), we see the following characteristics:
(1) The leading behaviors of the trajectory and residue do nbt
depend on the external mass uz; in fact, the full expressions for them

0

]

remain finite in the limit u2 -0 (but not for the slope at t
for a < 1).

(2) The mass e plé&sfkhe role of the "scale parameter” in the -
factor t(s)/(m?)]a aS'welilas in the slope formule Eq. {2.35); this
scale parameter is usually asserted to be about 1 GeV2 in Regge
phenomenology. And, apért from the masées u2 and m2, the residue is-
completely determined by the location of the pole a(t). [In the
Veneziano model, the situation is similar to that mentioned in (2)
above, in that it is the reciprocal of the slope of the trajectories
which se;Qes as the scale parameter. But in that model there is an
overall factor in the residues (the constant usually denoted by B)'
which is not determined by the theory itself.] Most important of all,
the absolute magnitude of high energy total cross section so determined
turns out to be a resonable value when an appropriate symmetry scheme is
incorporated into the model. We shall illustrate this point.in Sec.
II1I below.

(3) The high energy off-shell "form factor” given by Eq. (2.16) or N
Eq. (2.43) is an interesting output from this model. TIts theoretical
and phenomenological implications will be discussed in Sec. IV.

From the numerical solution (as well as from the approximate

solution), we see that the leading pole position «af0) and theW
residue Qd display monotonic behavior as a function of the kernel

strength, which is characterized by R(O)/l6n5. As we have mentioned
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in subsection B, the factorizable expression (2.7) we used is actually

a lower bound to the original kernel (2.6),»whereas the approximate

solutions obtained by various author85—8 are based on some upper bound

faétorizable expressions. It can be shownl)+ that, for «(0), the

approximate value obtained here is a lower bound to the exact one, while

other approximate va.luesS_8 are its upper bounds.15

Let us now turn to the question of the uniqueness of our
approximation scheme. As we have understood, there exist a lot of
factorizable forms similar to the particular one given in Eq. (2.29).
Even the conditions that we imposed in Ea. (2.8) and Eq. (2.22) do not
seem t0 determine §(S,T1,T2) uniquely. However, if we multiply Eq.
(2.7) by a factor Y(S,leY(S,Tg) in which we require

2 2 . .
7(m ,Tl)Y(m ,72) = 1 when either r, or 7, goes to zero, [i.e., that
. -0 ('S > Tl') T2)

§(mE,Tl,Tg)Y(m2,+l)Y(m2,T,) matches e along the line
T, =0 (1, = 0) for all valuesvof o (Tl) in the ™ - 7, planel,
then it must be true that Y(mg,T) =1 (apart from a sign). On the

other hand, if we only require Y(me,o) = 1, then the condition in

Eq. (2.22) imposes
o 5 A+l :
art -m T 2, 2 2
/ = [——5———5 (v (1) = ¥(m,7)] = 0. (2.53)
o 7 (m - T) :
0f course Y(me,T) =1 v(the original proposal) fulfills this require-
ment. There do exist, however, non-null functions which are orthogonal

7)2]X+l' and thus one may be able to choose a

to l/T?[(-mZ'r)/(m2 - 5 ¥ )
-0(s, 7,7,

suitable Y(mE,T) to match the high T behavior of e We

shall not investigate this possibility further here. It suffices to

say that Eq. (2.7) seems to be the simplest choice and produces a

26

solution with reasonable analytic properties and in fairly good

numerical agreement with the exact solution. We believe that such a
soluﬁion will be useful in the semi-quantitative study of the general:

’ 16
physical output of the multiperipheral model.
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III. AN APPLICATION: CALCULATION OF THE MAGNITUDE OF : : . i '# » L
e.g., vector meson exchange. An SU(2)-symmetric model, ignoring the
HIGH ENERGY MESON-BARYON TOTAL CROSS SECTION .

17

existence of strange mesons and baryons, not only suffers from the

we shall incorporate internal symmetry into 2,18
difficulty that the g-n kernel is too weak to produce ’ __a(Q) ~1

the scheme. And we shall study, in a somewhat crude way, the forward . tot
for the leading vacuum pole, but also givesa result for ¢ »almpst

In this section,

scattering between a pseudoscalar meson (i) and a baryon (B) at
an order of magnitude too great.
very high energy on the basis of the approximate solution obtained in
(2) From Eq. (2.2), the (on-shell) input p-p kernel is
Sec. II. This study is inspired by Ref. 7 in which an order-of-

Iy, 2 2 Tl 1 o 20 eI o o
magnitude calculation of p-u total cross section from a multiperipheral v (so;u M) = z: X A?(SO)H M) o (So:u u) o, (3.1)
model is done using the trace approximation solution. The purpose 8

of the present work is to extend the calculation to & "physical"

where I IS are the quantum number index in t,s channels respec-

2
E I,.,I

tively, and X ° S

process, using a more accurate solution and handling (at least is the crossing matrix element. Accurate numerical

formally) the spin complication. We shall be able to see how far our - 19
: : study, inputting all the-observed p-p resonances together with some

output differs from the observed values at the presently highest
off-shell corrections to that, shows the eigenvalue «(0) to be about

available energy. The physical significance of these semiquantitative
0.7. It is conceivable that various other delicate corrections, if

calculations will be discussed at the end of this section.
taken_into account, might even push this value higher. But here we

Since here we are not interested in the precise numerical
simply put (for I, = 1),

value of the output from the model, we shall make the following 3

N~

2 2 2 24 - o T
simplifications. We believe that we do not lose the essence of the Vl(so,u ) = my R 5(50 - m, ) (3.2)

physics in doing these: 1
: ] and assume the value of R gives a(O) = 1. This rough approximation

(1) We assume an exact SU(n) internal symmetry in the dynamics. , ,

. amounts to, essentially, replacing the detail spectrum of the low energy

The equation ig then diagonalized in the t-channel quantum numbers. . .

) p-u  resonances which have squared masses around I GeV2, with a

And the Pomeranchuk pole is assumed to belong to a singlet representa-

single resonance located at g = mo2 and with all the "weights"
attached to it. .(Recall that mo2

factor in the output high energy amplitude.) Correspondingly we

tion in the t-channel. In practice, it turns out that the symmetry

tot

will also serve as the scale
should be SU(3), in order to get the output magnitude of 0°°C° +o be a o ’ :

reasonable value in comparison with experiments or expectations. This
replace the sum in V, of Eg. (2.48), in which each term has the same

corresponds to the maximal generalization of the original pion-exchange
. functional behavior, by a single representing term.

model without possibly altering the form of the equation by including,
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(3) We neglect ug in comparison with all other masses in question.
As we have seen in Sec. II, this is a good approximation as long as
a(o) > % .

(%) Assuming the production amplitudes of pB scattering to be
given by Fig. 9a for even numbers of finai p's, and by Fig. 9b for odd
numbers of final u's, we abproximate the low energy upB kernel by a

B pole plus the first prominent upB resonance pole. "This ap?roach

is motivated by known facts about UZ%, like the curves shown in

Fig. 10. Thus we have20

- 1,1 : 2 N '
1 ’Ts vy 2 T -2
Vet = L e ) E(F) vlsy - )

T
-7
I
s

+ xR A% n oMy X Tp ozé’R(max) 5(SB - mRE) ,‘ v (3.3)

where both sides refer to spin-averaged quantities. - The factor zI
. : ]
comes from the projection of the symmetry factor, e.g., ('rf'ri)f=i
onto the subspace with‘quantum number Is in the s-channel. The
factor (x™°/(r™® - 1')) is the Dirr-Pilkun form factor’ ' for the
u-B-B vertex, and r is the "radius" parameter of the vertex. We
cannot keep this vertex on-shell becausé that will‘méke it negative.
The prescription of vertices in Eq. (3.3) gives a satisfactory
déscription of experimental differential cross sections in singly

-

peripheral reactions at low energy. For example, the reactions

N >N and N - pA at Py, = b GeV/c [for which we use OPE
models with p vertices on-shell,bin addition to the prescription

Eq. (3.3) for the N and A vertices]. This problem has been

-30-
discussed in Ref. 17. The reader is referred to that reference for

detail.
After this long preparation, we are now ready to calculated the

high energy forward elastic ' pB amplitude. From Eq. (2.20) and Eg.

(2.22), we have

N .
A (s,M,0)
0 sy 2
: 1 1 ar! —(a+l)9(SB,M :T')
N dsp V o (SB,T') —ze . )
1657 (@ + 1) H LT '

X <:I7d> . Al(S:T'JO) ) (3.4)
-M

where Al(s,T’,O) is given by Eq. (2.16). Next, recall that, as far
as internal symmetry SU(n) is concerned, any elastic amplitude in
the direct at high energy at or near the forward direction is related

to the crossed-channel amplitude which corresponds to.the identity

representation by22

L . | (3.5)

when TuBl dominates other amplitudes in thevcrossed channel. The

1

1 1
factor N 2 N, 2 comes from the (8-t crossing matrix and Nu (NB)

B
~is the dimension of the subspace to which Q(B) belongs. Combining

Eq. (3.3), Eq. (3.4),and Eq. (3.5), we have
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1,1 '
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o T P e
S
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s

1R ‘ el,R 2

+ \ s

gy *g 7 mp Ty Op (max) galR/mO ’
u B

vwhere. the dimensionless quantities

N

L ro
. 3 ’ = Bl :O [ ar! 1 K:T')Z‘-g
| 1B (af)? | - | .T'?(moe Y = - -
X [(T'e - ’BT.") + T"(1;12 - 2%7')%] ’
.. . ! ’)(‘
s]_ Y2 : P b 2bY2 - y‘h
Ay o b
P\ - 12 (o - 717) o7 + -
X [Sm_lc ) BY'Q‘) + sin 1(1)]
J
2 I b oop -1 . N 1
- Z;é—t—I;§ 1$b - l? in 5 +.Z;;ft~zsg sin (j - E>+ sin (1?L
2 |
+ (Yg Y lb +4n 2 ZEE—Ef%;% [51n—1'<; ) _>+ i

(3.6)

(3.7)

for r-2 m02 5
with
3 oM o
b = —5 F —3., Y—‘-‘“"“e‘:
% Ty o)
and
By ‘/’ art — a
IR 2 —2, 2 2
@) J_ T (m, - )
o~ ~ ~ ‘ ~ 2L '
X (2 - (8 + B)rt +8°] - (& - 11)(m2 - 2B+ aR)2) (3.10)
B8.a
- 2 (2(a -b) +(a +b-2°) m 25D
b 28
2 3 2
- b + 3ba + ; L- 2a {sin-l b a2 o+ + sin
(2b -1 .-a%)2 (v~ - a%)2
with
K 2 5 - 2
I WD U G S &
& = 77 7 —2 z o2 e
m m m 0 o

0 0 0

It is noteworthy that the behavior of the integrands in Eq.

(3.7) and Eq. (3.10) are similar. In the two limits of integration,

!

-
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1ntegrand of Eq. (3. 7) —— -5 > ~ T b = 2M2 s
T'> 0 m, T'> =0 '
(3.12) -
~p o ~ 2
i al(b - a)/a)l
integrand of Eq. (3.10) = - n B
' 0 m .
0
~2 ~ 2
. (b + 8 a = - M2 ~
/’\\./ 2 . "R ’
T -0 'H H g _ ) . M2 (5-15)
T = R :

They both decrease monotonically from a finite value to zero and fall off

asymptotically o T'-u. Thus, B and R

contribute to the right-most
(Fig. 9a and 9b) links with the same degree of "peripherality."”

Without the help of the Dirr-Pilkuhn form factor for the B-pole vertex,

the integrand of Eq. (3.7) would fall off like 117> and thus make

the B contribution much less peripheral than the R contribution.

Numerical Value of the Asymptotic oﬁgt in an SU(3)-symmetric Model:

We adopt the following as our "best input” for the hypothetical

exact-SU(3)-symmetry limit. Consider u, M, and mR- to be the
+

+
078(K, n, n, X), % 8(N, £, A, E), and % 10(a, £, Z, Q) respectively,
and take, for definiteness, m, 'to be m, 178(K*, p, ¥, K*). The

mixing of % and § is ignored. We continue to set the méss of
equal to zero. But for other mass, we use the first term in the
corresponding Gell-Mann-QOkubo mass formula.25 Thus M = 1.15 GeV,
my = 1.385 GeV, and my = m, = 0.852 Gev.

For the B vertex, we now have

_5h_

zp = [h[agD_fDi + (1 - a)2 FF, + a(l - o:)(DfFi + FfDi)]fzi}I ’
s s
' (3.14)

, . _0 ¢ '
where I =8, 8 ,8 ,and8 , and DfD 3. (?BSs)fi’

FF, = 5((?8 )f s ete. (the (FP's are projection operators for the

D/F ratio « =' and

correspondlng subspaces). We use the 3
-2

= 1k.4 X Ly. We furthermore choosezu r 2 otn?

(O
value of the width

o M-

For the R vertex, we use the calculate

rp from the SU(3) Chew-Low static mode1 29226

9
2,8 1
Iy = 2X5 X5 - 20) %; ——5 ~ 0.107 GeV, (3.15)

and we put -xR = 1.

: : 1,8, 1,8,
Recall finally that N = 8, Np = 8, X =X =1,
1,8 1,8
X ®_x *®_.0 | thus E: - E"é , x00 _2 . aad from

I s

Fo

Eq. (2.17), we get By =
Feeding all these ingredients into the right-hand side of

Eq. (3.6), we obtain

tot

93 (3.16)

~ 350.9 mb.

S— o

This value is comparable to the Serpukhov data.27

ot 2469 my, %P o~ 21.5mb, or to the
xp 65 GeV/e Kp 55 GeV/c

.pfojected value528 gtot N/ 21 mb, and “Eﬁt 17.2 mb.

N
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We conclude fhis sectioﬁlWiﬁh»ﬁhese remarks :

(lj With'multiperipheral dynamics;:the’absolute mégﬁitudes‘of-'
high energyﬁSCattering cross sectiohs are calculable. And these
magnitudes are determined decisively b& the properties‘of a few low-
lying states.

(2) To get these mégnitudes ébout‘right, it is important.to count
properly fhe symhetry—multiplet structure of the reacting hadrons.

(3) 1If we inpﬁt more uB resonances in Eq. (3.3), we shall
probably meke the output in Eq. (3.16) even larger. On the other
hand, if we use Eg. (2.18) and calculate ﬁzjt in this oversimplifiéd

.way, we get a value a couple times larger than the value expected from
factorization. The main deficiency of the scheme we developed so far
is, we believe, that we have not included the high energy scattering-

part in the input in V. This question will be addressed in Sec. V.

=36~

IV. HIGH ENERGY OFF-SHELI BEHAVIOR
Referring back to Fig. 2 and Table 1, we see that the masses of

the four legs of amplitude A are related to other variables by

]

. 1 1
“1+2 (% * p1>2 L EE S S ALRCOLENE (4.1)

1
4

2 q 2
Hi- (E } Pl)-

for the left legs, and similar relations for the right legs. So we may

L E e (r)? (0)E (h.2)

1

- %K‘fﬁg 1) Q‘l_-g - E)‘ ’ (4:3)

" express the variables Tys 2 etc. in terms of the masses, e.g.

2
By, -2

— £ X
2(-1)% ()%

and the amplitude A(S’Ti’zl’TZ’ZE; t) may be re-expressed in terms of
the mass variables and +t.
From our approximate solution Eq. (2.43), we have the following

prediction of high energy "form-factors"

5 a(t)+L

mO : . -
2 (pg ) t) for p, "= =, (Fig. 1lla),
° e | (4.58)



_.5(_
’ ] i s a(t)+
. m .
R 0 2 2 .
o 5 ( t'> for w m=w "=, (Fig. 1lv),
- n" -{u-
j B ° g (L.5b)
fa P 5 a(t)+1"
. . )
—= 2 1¢{ 2 t t
- "0 ‘5[(“ -1;5+ (“‘L:)}
o 2 2
for " =uw, py " o= ug, (Fig. 11c).
(k.5¢)

P Theoretically, these form factors are important in the follow-
&J ing aspects: If later on we want to include the high energy scattering

3w&7part in Gel in the input, then we can include such off-shell

%" correction so that the Fredholmness of the kernel is maintained. And

= similarly, when we calculate certain dlagrams which correspond to
\
" am  Processes involving high energy off-shell scattering, we can include
R

B

such corrections so that we don't have to use the embarrassing cut-off's

o

-
... _in some divergent integrals or to introduce some ad hoc "exponential
damping factors."
e
Phenomenologically, these form factors may give rise to

_Mi < observable effects as well, though it might be difficult to detect
ey

Trvaare

that, because high statistics on relatively large momentum transfer

4..__events are needéd for this‘purpose. Nevertheless, let us indicate here’
how this could be done, in principle at least. Consider for example
the reaction x p —>nn+ﬁ_ (cf. Fig. 12) with the invariant équared
mass of the n+ﬁ— system above, say, 5»GeV2. There may not be many
events of this type if the pion incident momentum is around 10-20 GeV/c.

- —. However, in the future when larger accelerators are in operation, and

-58- - [
thus more phase space opens up, we may then be able to collect many of
these events to study high energy x-n scattering via-Chew-Low
extrapolation. The differential cross for the process stated above
is, according to one-pion-exchange model,

Sa 1
Tuas'dt

2 ' 1
(w2 uF(u)]
16:°A(s ;12 M) " (u - u5)°

el .
dcﬁﬂ(s',t,u)l

J , (h.6)_

1 2
X AZ(S’:H :u)
: -dt

. .
where g~ = 1h.4 X by, and F(u) is the Diirr-Pilkuhn form factor for
the left vertex. From another low-energy process x P —>npo, we know

that
N
Fu) = —N72—— ,  with rN'2 ~ 10u° . (&.7)

Our main concern here is, of course, the off-shell elastic cross
section of the process n-(pz) + 1t (u) +0n—(p2) + ﬁ+(u2). In the

same spirit as that mentioned in approximation number (2) in the
beginning of Sec. III, we use expression (4.5¢) and put the "scale.
factor"” mo2 ~ 1 GeVz. In order to be easier to compare with experi-

ment, we may write; instead of Eq. (4.6),

" do 1 2 1
= & ———— [12g uF(u)]
du 16:°8(s 1% M) " ) (u - 152
séax(s,u)
X ast 85t ) o(s) F(w)|, (1.8)
3
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where Uel(s')_ is. the on-shell cross section

5 20 (0)+2

- ) m

Fw - | ;. with m° ~10eV", (4.9)
my - 5" +u)

and «{0) is the intercept of the highest Regge trajectory in
c:i(s‘)f In deriving Egq. (h.8) from Eq. (h.6? we have made use of
the presumption that aaii/dt has a sharp fofward peak.'

Note, for example, that when u = -0.4 GeVE, f?(u) = 0.5
for‘ a(0) = 1. Thus thé predictions for.the differential cross
section ét this momentum transfer differ by a factor of 2 when Eq.
(L.8) is used with or without the form factor Eq. (4.9).

On the other-hand, we may choose a value of mo2 to give the
best fit to data. Thén the precise value of doiﬁ/dt (Thus Uﬁit
via optical theorem) deduced from extrapolation with Eq. (%.6) from
experiment can help us to prove the f;ctorizatiop probefties of the

Pomeranchukon. -

-Lo-

V. INCLUSION OF THE HIGH ENERGY TAIL IN THE KERNEL

In this section we shall discuss, for completeness, an attempt

to include the high energy scattering part in the potential - V. To

be specific, we shall keep on working on the simplified version of ‘the

model outlined in Sec. III, and use Eq. (2.16) or Eq. (2.4%) as the

solution when V contains the low energy resonance part only. There
are a number pf reasons for the desire to make improvement on thisv
kind of solutioh. Let us state some of them. Quantitatively: the
oﬁtput values (include those obtained from realistic and accurate
numerical studies2’18’19) for a(0), a'(0), By’ etc. are not in
excelle@t agreement with experimenté or expectations. Qualitatively:
(1) there is no reason why V, the basic building block in the multi-
peripheral chain, should not contain the high energy scattering part,
(ii) a complete scheme should have the Froissart bound built in, and
(iii) phenomenologically, it is well known that pure (real) pole
amplitudes, either in the vacuum or nonvacuum crossed channel, can not
explain all the aspects of high energy data.

The particular method3 we use tp implemgnt the improvement
goes through the following_steps.

*
(l) Let an energy s be chosen such that, to a good approximation,

0
*
we may describe V with resonances only (call it VR) for 5o < 849
with high energy (diffractive) scattering only (call it VP) for
. Lo . . .
5 2 84

(2) wWhen V = VR alone, accept that the solution is given by
Eq. (2.16) or Eq. {2.43) (together with a signature factor for the full

amplitude if needed). Thus
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AKR- . gx(Tl’t) gx(Tg,t)
_)\_4.}_ AL = N s (51)
(=) & (erp) @ °R
AR~ B (1) B (r,t) =55 % s ' © (5.2)
o 1 aR 2 mo2 : - :
where 0p  is assumed to be "quite close"” to 1,
o . 5 A+L : '
§ (« t) = [B (t)]%/i— (5.3)
A _ Or \\?02 -7 ’ )
' ' ' 1 m 2 R b _
B, (m,t) = (B, (8))27 { —>— 5.k
°r y R <:?02 - Tj) 2
By = 160 B, o (5.5)

) Or
and we have dropped the symmetry index I, = 1 " for the moment.

(3) Guess that the leading behavior of the final amplitude is

again Regge-pole behaved

[0
T = ba<Tl;t) bd(TQ’t)<—%) 3 : (5'6)

where

o+l

; (5.7)

I
[P
VA
]
Q
ot
»]
N
Ry
~
o+
L
[—
N[k
B
no
o]
1
-

ba("')t)

=hoo

where a, E} are supposed to be calculated. We may conveniently

parametrize E&(t) by
By (8) = B o) e, (5-8)

with a constant 7vy. This form is suggested by experiments.
With this T, we compute VF ‘with Eq. (2.2), and thus VKP
with Eq. (2.3); for t =0

' 0 AL Al '
)2 .1 (v ) 2 (-1.) % b $1)|?
v.P(0) = o, / at'(-1) © (-1p) T {o (r )]
-00

r-20(t! +1) :
oy (5 t')|2 GG | (5.9)

A - 2a(t') +1

X

This corresponds to a branch cut with branch point o, = 20(0) - 1 in

the A-plane. Using Eq. (5.7) and Eq. . (4.5¢c), we may write

approximately
x+ : h+l 20.(0)+2
Y -
‘V)\ (O) w5 T— (- ul) U, l >
-l
20(0)+2 :
2 . 2
R B,(0) |
X (2 e w ((hsy + m s 0 - )
my -5 U 20" (0)
(5.10)
vhere «'(0) is the derivative of a(t) at t = 0, and Ei is the

Exponential Integral.

Reasonable estima.tes2 show that
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R . P
v, >> V)\ (5.11)

for A not too close to the tip of the branch cut.
(4) Now treat Eq. (5.1) as the "unperturbed" solution to the problem.
With the additional "small" piece pr in VX, we may ca.lcula.te29

the "perturbed” solution by the variational principle of Schwinger.

The forward partial-wave amplitude is then given by

A : N
: ]
ML L ~~y Kx“x bxbx
(-Tl 2 (—Tg) 2
2~ o 2 -12 . 2. 2
RNt 5 P B [+ oy 17 BB + 76 00 - o) o 17 b, |y
- o - ME '
(5.12)
where
2 “ o, 2 o
b, oy 7 = B, (13,0) [y (75,0) |7, ete., (5.13)
Ry = Ko~ 1-w(h-og), (5.14)
R(0
g - —2O__ , (5.15)
165> g, (0) | -
;o R
%
€ = o ’ (5.16)
, 16 20'(0)
T ( .
&0y A OL) ,
noo= N Gxg(O) &0 ¢ s (5.17)
16x 20'(0) ™ L :
%0

and the triple-Pomeranchukon coupling

Lo

G, (0)

1

© 1)X+1 | >
i ar' 1:1;-§~— ]ba(T’,O)| B (r',0)
16 0 200 + 1) ). (") >

(5.18)

% Z (o) 5 i 0)(2 2a(0)+2
D (0 By 0)(@)

X B@x(0) +3,) F(x(0)+ 2, 2(0) + 3, 20(0) + 3 + n,-1) .
: S (5.19)

Expression (5.12) has a branch cut in the A-plane starting at
a, = 20(0) - 1. We shall draw this cut to the left along the real
axis from Qg to  -w.

Part of the self-consistency requirements on Egq. (5.12) is to

identify the lst sheet zero of the denominator (there is only one such
zero and it is real) with 'a and the correspondihg'residue with

%aﬁa' It can be shown that, for QR < Qs this zero lies_above a,
but below l.Bl (A Physicaliy accepfable sélﬁfibn‘must,ﬁof cbufse;
have «a Just slighfly below‘ 1.) When Eq..(5.lé)‘is‘transformed back
to tﬁe physical s-plane, we pick up the pole aﬁd fhe discontinuity »

across the cut:

A

. - : ,
]
s " & ]
A~ BE S5 + an 2) disc A, (5.20)
m X m .
[¢] -0 0 .

where ﬁxﬁx’ the residue of the pole, can be computed from Eq. (5.12),

and
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disc Ak . ‘ ) ""
2 -3 ) ﬁ é] ;% 2 B ]
[k, 25 +n e)\(x—qR‘]a| [0, 2, (0 - ag) o |7 + w0 N

= o (X-aR-ﬂ)\lEll)2+32ﬂ>\2

(5.21)

where the first bracket has argument Ty the second has T,.

We close by pointing out some qualitative pfoperties of this

' solution:52
(1) As we have mentioned, the leading pole is real and closer

(than aR). to 1 but never exceeds 1.

.is smaller than 5 % .

s
et PO
o .
(2) The residue 5.5, o
(3) The off-shell behavior of this pole is just
: s 5 a+l 5 a+l
o, "o "o
B SR e o
- S ! 0 2
vy (L) The discontinuity aise AX is always positive when all the
=y legs of Ax are on-shell. And .disc A -0 as x-oa. [Note,
— however, that the condition Eq. (5.11) does not hold in this limit.]
. The cut integral may be associated with secondary Regge singularities
i
]
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The formula we needed is

-a-b
F(a,b,c,l - x) = ?%g)f(g)r(z - d% F(a,b,a +b - ¢ + 1,x)

c-a=b I'(cir(a + b =.¢c
O CEE R

for |arg x| <x. When ¢ -a -b = 10, #1, £2,..., this expres-~ .

sion is still valid but we must pass to the limit with care, e.g.;

F(a,b,a +b + k, 1 - x)

k-

—

r(a + n)r(d +n) r(2 ; k)- %

r(k)r(a + b + k) x
r(a)r(e) — r(l -k +nj n?

<
Tla + X)r(d + k) 4L,

_r{a +b +k & E: ria + k + n)r(b + k + n) x
r{a)r(o r(a + k)r'(b + k) ni(k +n):

n=0

=
o

X [logx-%n+1) +¥%a+k+n)+ Pt +%k+n)

- (1 +k +n)]

for |arg x| <x, |x| <1, k=1,2,3,--+ . This gives, for

example, Eq. (2.33) below when { =0 and ¢ -1,

1

2 2 2 H

1 fﬁ!ll%;% + (log B5 + %)(E§) + 6(10g & + TN(5)P + ... }
m m

B 16115 L m

i
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and fermions. For pB scattering, we have

Ty - (A + Y-QCE)u )

with (v.p = M) u(p) =0 and Wu = 2M.
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22.

23,
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ApB(s’o) = Im TpB(S’O) ~ 2M In A(s,0) + s Im.ﬂa(s,o).

The wp-B-B vertex is given by

TpB = 1Gu757iu for 8U(2) .model, and
T _ = ioGuy, epu + i1 - a)GGYBEFiu for SU(3) model.

uB- 5
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ral in Eq. (3.7) is not sensitive to our particular choice of

- 2 . : - -
2. %-mo , since the form factor r 2/(r 2. T') is close to
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most to the integral, the tail of the' integrand (with the factor
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value of the integrals changes only +10%.
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not underestimated this factor in the (uB) resonance contribution.
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we may alternatively solve the equation with Eq. (2.52). But the
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D,
form for. VX
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It mo2 =1 GeV2, op = 0.8, »=a =1 (it does not matter for
o to be arbitrary close to 1 here), Np =8 and

Uto
K

v |S;1|2/Nu ~ 15 mb, then Gl(O) = 0.81 GeV—l; Thus

N = 0.016 if «a'(0) = 0.h,
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Table I. The variables. FIGURE CAPTIONS

Fig. 1. Sketch of the total cross section and some individual produc-

2
s = (p; - p,) ' : : S ) e
“P1°Po 8 =T T T, tion cross sections in K'p scattering. In this figure
cosh 6 = T +r = T +
t = o o (=71)2(-1,)? 2(-7y)%(-1,)7 o, stands for the sum of 0o's of all possible final
X p— KnN
N 5 Py-q » charge states.
A5 R 5 = I
('Tl)z('t)z Fig. 2. The kinematic structure of the multiperipheral integral equation
- Fig. 3. Solutions for the intercept of the leading pole when “2 = 0.
2 Ppd .
o = Po 2y = z__—sgz—zsg Fig. 4. Solutions for the intercept of the leading pole when ug = mﬁ2.
—T -
2
Fig. 5. Solutions for the residue of the leading pole when p2 = 0.
S o , Fig. 6. Solutions for the residue of the leading pole when u2 = mﬁz.
1 ! ' p .q .
T =P z' = ———y=T
- (—T')§(-t)5 Fig. 7. Off-shell dependence of the residue of the leading pole when
i
B u2 = 0. The exact numerical solutions are shown in heavy
. A1 < gz o< 1 for all z's lines, whereas Qu(Tl’o) calculated from Eq. (2.47) are shown
7 in light lines. Curve I: a(0) = 1, R(O) _ L.95. Curve II:
- - ' ‘ 1610
cosh © - z.2 R(0 0
% cosh ¥ = il S S a(0) =1, M6 curve rr: a(0) = 0.9%, M- ug
. (1 - 2, y2(1 - z,°)? 165 1657
f"».'-‘:} - . ~
. Curves 1 and 2: «af0) = 0.7, 03 ~ 2.5.
. 165
oy Fig. 8. Slope of the leading pole at t = O.
-l
— Fig. 9.  Production amplitude of upB scattering of (a) even numbers
- of final p's and (b) odd numbers of final p's.
.y
ok’

Fig. 10. Schematic representation of GnN,s'

¢ ' ' iFig. 11. The high energy vertices when‘(a) both legs on-shell [Eqg.

. (4.5a)1, (b) one leg on-shell,one leg off-shell [Eq. (4.5b)],
and (c) both legs off-shell [Eq. (4.5c¢)].

Fig. 12. The process = P —9ﬂ—ﬁ+n-
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes. any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not 1nfr1nge privately owned rights.
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