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* SOME PHYSICAL CONSEQUENCES OF THE ABFST MULTIPERIPHERAL MODEL 

Chun-Fai Chan 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

August 14, 1972 

ABSTRACT 

The solution of the Amati-Bertocchi-Fubini-Stanghellini-Tonin 

multiperipheral integral equation with a narrow-resonance kernel is 

investigated. First, an approximate scheme that leads to a tractable 

analytic approximate solution is presented for both the forward and 

nonforward equations. Next, the exact numerical .solutions are dis-

played.for the relevant values of the input.parameters: These results 

serve as. a rrieasure of the accuracy of various analytic approximate 

solutions. The approximate solution present here is found to be good 

to within about 10% in the region of interest. The absolute magnitude 

of the. high energy pseudoscalar-meson (IJ.)- baryon (B) total cross 

section is calculated in an SU(3)- symmetric model by using this 

approximate solution and the approximation that the low energy iJ.B 

amplitude is dominated by the baryon pole plus the first elastic reson

ance. The result is comparable to data at the presently highest 

available energy. The theoretical and phenomenological implications 

of the high energy off-shell behavior given by this solution are also 

studied. The improvement of the model by including the high energy 

scattering part in the kernel, thus giving a new-solution consisting of 

Regge pole and cut, is briefly discussed. 
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I. INTRODUCTION 

In this paper we shall study high energy hadron-hadron 

scattering with the ABFST multiperipheral model.l-3 The input to the 

problem will be mainly.the knowledge of the interaction at low energy, 

Le.,around l.Ge~. By this we mean that, in the relation of the 

cross sections 

(1.1) 

we assume ~ involves mainly the formation of (two-body) resonances 

in each unit block of the multiperipheral chain. Correspondingly, in 

the integral equation 

(1. 2) 

we assume the kernel K = crel S (where S is the metric in the inte-

gration) consists mainly of the resonance part of crel Each ~ will 

then have the characteristic of rapid rising and falling behavior as 

·a function of the· energy s. We believe it is mainly the sum of these 

"peaks" that gives rise to the observed magnitude of tot cr . Such a 

composition is justified to some extent by the existing data, for 

example, in the data of K+N scattering. 4 Due to exchange degeneracy 

of the secondary j-plane singularities, in this case we have exclusively 

(or alrriost) diffractive scattering for tot 
cr . A portion of the 
·K+N 

composition is sketched in Fig. 1. 

In a more SEl,rious approach, as pointed out in Ref. 2, we 

should include the high energy scattering part in ~' and correspond

ingly the high energy scattering part in the kernel K = crel S as 

well. This gives each ~ a small but constant_(or almost constant) 
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tail. And there comes the question of self-consistency in the high 

energy scattering parts in the output crtot and the input crel 

(We remark that this picture seems in contradiction with the 

self-bootstrapping Pomeranchukon model in which each ~ has only a 

constant part due to the diffractive production process in itself.) 

We shall first investigate in Sec. II the solution of the 

multiperipheral integral equation with a resonance kernel only, and 

then study in Sees. III and IV some physical consequences of this 

solution. The question of including the high energy tail in the kernel 

will be discussed briefly in Sec. v. 
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II. SOLUTION OF THE ABFST EQUATION WITH A RESONANCE KERNEL 

A. Preface 

In this section we shall investigate in two complementary ways 

the solution of the ABFST multiperipheral integral equation, 1 in the 

modern version formulated by Chew, Rogers, and Snider, 2 and by 

Abarbanel, Chew, Goldberger, and Saunders.3 We shall study in detail 

the solution of the equation with the simplest kernel consisting of a 

single sharp resonance, and discuss only briefly the straightforward 

generalization to the case of a kernel with many resonances. This 

solution, in the language of Ref. 3, corresponds to the "unperturbed 

solution," since we neglect the small high-subenergy diffractive 

scattering part in the input kernel. 

In order to gain insight into the nature of the output, we 

first obtain an analytic approximate solution by replacing the original 

kernel by a factorizable kernel. This replacement is guided in some 

sense by "peripheralism," that is, the factorizable kernel should 

behave like the original kernel in the peripheral region, where the 

contribution to any convergent integral involved is expected to be 

important. We shall demonstrate that the solution so obtained repro

duces itself under the action of the original kernel in the most 

peripheral region. 

On the other hand, we have also solved the equation numerically 

for certain values of the input parameter~. This solution provides a 

measure of the accuracy of various analytic approximate solutions. 

Our analytic approximate method is presented in subsection B 

(for forward scattering) and subsection C (for nonforward scattering). 

There is no pretense of rigor; rather, in a practical way we shall 

develop a tractable explicit form that is simple enough and yet has 

-._, . 

-. 
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reasonable accuracy. The latter point is justified by comparing with 

the exact numerical solution which is presented in subsection D. Some 

generalizations and the question of the uniqueness of our approximation 

scheme are presented at the end of this section. 
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B. THE FORWARD EQUATION AND THE APPROXIMAl'E SOLUTION 

We shall first illustrate the properties of our approximation 

in the case of forward scattering (q = 0 in Fig. 2). Let us here 

ignore the problem of internal symmetry; this can easily be incorpor-

ated into the model by introducing crossing matrices as described in 

Sec. III. The absorptive part A of the elastic amplitude T of 

pseudoscalar-meson-pseudoscalar-meson scattering is normalized in such 

a way that 

2 2 
A(s,J.l ,J.l ) ~( 2 2) .. tot( 2. 2) 6 s,J.l ,J.l o s,J.l ,1-l , 

where is the meson mass squared, 

(2.1) 

2 2 2 
6(x,y,z) = x + y + z 2(xy + yz + zx), and otot is 'the total 

meson-meson (1-l-1-l) cross section. The elastic 1-1-p. cross section 

oel enters in the input potential of the equation in the (on-shell) 

form 

2 2 
V(s

0
,f.l ,J.l ) 

The 0(1,3) partial wave of A is defined as 

the inverse transform is 

(2.2) 

(2.4) 



wh~e the contour is taken to the right of any singularity of A/1. in 

the ~ plane. In terms of A/1., the ABFST equation is 

dT 1 

( 2 I )2 11 - T 

(2 ·5) 

The essence of our method is to approximate 

2 

(s - Tl - T2) + [(s - Tl - T2)2 - 4(-T1 )(-T2)]2 

(2.6) 

by a factorizable expression4 

The function is actually a lower bound to 

(-T )2(-T )2 
1 2 

-e e Notice that 

(2.8) 

when either T2, or both, approach zero. When Tl approaches 

(minus) infinity with T2 fixed, we have 

-e e 

( -T )2(-T )2 
1 2 

The case is similar when 

, whereas 

T2 approaches (minus) infinity with T1 

fixed. One hopes that, in any convergent integral involved in the 

calculation, the contributions from these "nonperipheral" regions do 

not matter very much. Notice also that ~ is a small quantity for 

all values of Tl and T2 . For a given s, it has an absolute maximum 

~( )labs.max. 
!> S,T ,T2 1 Tl =T2=-S 

whereas 
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1 
4 ' (2.9) 

1 l 
(s - T2)2 - (s)2 

(-T2)2 
~ 1' 

approaching the absolute maximum value of 1 for -T1 -T2 >> s. 

With this approximation Eq. (2.5) is immediately soluble. Here 

we consider the solution forthekernel with a single (sharp) resonance. 

A kernel with many resonances will be discussed in subsection II.E. 

Thus we put for the (on-shell) potential 

( 2 2) ± 2 2 el 2 
V s0 ,11 ,11 = 6 (s0 ,11 ,11 )rrmxr crmax5(s0 - m ) 

2 2 
- m R(0)5(s0 - m ), 

(2.10) 

where m2 x, and r are the squared mass, elasticity, and width of 

the 11··11 resonance. We shall assume 112 << m2 The solution to Eq. 

(2.5) is then 

where 

. m~(o) 
16rr3 (r... + 1) 

1 - Trl)_ 

f -( 11..._,2.::..;d~-T-)-;:;-2 
:~:~ B(/1. + 2,/1. + 2) F~/1. + 2,2/1. + 4, 1 - ~), 

(2.11) 

{2.12) 

(2.13) 

(2.14) 

.. 

~ . 

., 
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In Eq. (2.13) and Eq. (2.14), B is the Euler beta function and 

F is the hypergeometric function. The eigenvalue condition is given 

by the vanishing of the Fredholm determinant 

D(A.) 1 - Trl\ 0 . (2.15) 

A special property of this approximate solution is that, under 

the action of the original kernel, it "reproduces itself" for -Tl' 
.• ' 2 

--r
2 

.• or both, small (in comparison with m ). This can best be 

illustrated by going back to the s plane. From Eq. ( 2. 4) and Eq. 

(2.11), we get for the leading behavior of the full amplitude 

r--J 
S--'> oo 

,(2.16) 

where a is the largest value of A. satisfying Eq. (2.15), and 

(2.17) 

In the interest of simplicity and clarity, let us put 1-1

2 
= 0 for the 

moment; then the amplitude at the physical (and most peripheral) point 

is 

A(s,o,o) ~ 
S--'> oo 

(2.18) 

On the other hand, in this asymptotic region of the s plane, the 

full amplitude, when written in the form 

(2.19) 

-10-

satisfies an equation corresponding to Eq. (2.5) 

( 2 ' )2 !l - T 

-(a+l)9(s0 ,T1 ,T 1 ) 
e 

(2.20) 

If we put Eq. (2.16) as a trial function into the right-hand 

side of Eq. (2.20) ~Mth th · · 1 k "~ e or~g~na ernel, the output physical 

amplitude is 

A(s,o,o) r-..~ (2.21) 

(2.22) 

which is just Eq. (2.18) by virtue of Eq. (2.12) and Eq. (2.15). 

(Actually the condition -r 2 = 0 is not necessary in this part of the 

argument; -r2 can take any value.) The corresponding property can of 

course be demonstrated in the A. plane. It should be noted that 

some previously proposed approximate solutions5-8 do not possess this 

property. Comparisons of the solution proposed here and other 

approximate solutions with the exact numerical solution will b"e given 

in subsection D. 
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C. THE NONFORWARD EQ,UATION AND ITS APPROXIMATE SOLUTION 

Away from t = o, the on-shell potential is given by 

where T is the complete elastic amplitude; Im T(s,t) = A(s,t). 

where· 

A- single (sharp) resonance contributes a potential 

z 
s 

2 'X 

2 2 - m R(t)o(s0 - m ) , 

and L is the spin of the resonance. 

The appropriate 0(1,2) partial-wave amplitude is 

and the inverse transform is 

(2.24) 

I c.+ioo d£ 

2ni 
C-l.oo 

-12-

where the contour is taken to the right of any singularity of A
2 

in 

the £ plane. 

In terms of A£' the nonforward ABFST equation is 

10 i+l 
+ ~ d-r' 2 

16n 
00 

_ 1 [ (J-L 

(2.27) 

In order to make an approximation similar to that discussed in 

subsection B, we note that the function· Q
6

(cosh 1jr) can be expanded as9 

oo £B 

~ 
2 ) 22+1 ' 2 r ~2 + 1 2 n. [ (l _ z 2). 
r 22 + 2 + n) 1 

(2.28) 

where c2+l is a Gegenbauer polynomial. Now, as before, we shall 
n -e ( s , T l' -r 2) 

replace e by ~(s,-r1 ,-r 2 ) of Eq. (2.7). With the input 

potential Eq. (2.24), the kernel in Eq .. (2.27) is then a sum of 

factorized terms. We shall discuss this case in subsection E. As a 

first approximation here, we take only the first term of the sum. in 



.. 

-13-

Eq. (2.28).
10 

This is not unreasonable since, as we have realized 

above [Eq. (2.9)], t(s,-r
1

,-r
2

) is a small quantity throughout the 

range of integration. Thus 

1 
m R(t) B(£ + 1,-2) 2 2 dz(l z ) 

2 1 ( 0 f +l £+=-

ltl~ j -cc d-r -1 -[-(~....,2~_~T--....::..,~...J.)~2,.--_--r-t-.z...,2:-J 

X [ 

2 l.e+l 
-m -r (2.29) 2 2 

(m - -r) j 

(m2)£+2~{ t) f" .£+1 1 
du 

u 

16n3 (.e + 1) 0 
(m2 + u)2.£+2 (/ + u + n2 

X ~1 4u~ n~ F '2' £ + 2, 
(~2 + u + 

(2.30) 

where we have used the notation u = --r and s = - i for convenience. 

Now observe that, for a given t > 0, the expression (4u~)/(~2 + u + ~f 

is always less than or equal to 

4u~ 
max. 

( ~2 + u + •)2 2 
~ U=~ +/; 

1 throughout the range of integration 

< 1 for 

1 for 

~2 ~ o, 
2 

~ 0 . 
(2.31) 

Thus, the eXpansion of F as a hypergeometric series in powers of 

c4us)/(~2 + u + ~) 2 always stays within the radius of convergence of 

the series for Re .e > -2. After this expansion has been made, the 

series can be integrated term by term, each term being expressed as a 

hypergeomet~ic function. Thus we get a series of hypergeometric 

functions with coefficients (s/m2 )n. The first two terms are as 

follows: 

-14-

= R(t) . {B(.e + 2, .e + 2) Ff2,£ + 2,2£ + 4, 
16:ri3 (.e + 1) ~ 

4 (.L) h -~2+) + 2(.e + 2 ) m2 B(.e + l,.e + 3) F\4,.e + 1,2.e + 4,1 m 

The next step is to transform11 F(a,b,c,l - x) into 

F(a' ,b' ,c' ,x) and then to express F(a' ,b' ,c' ,x) as a hyp.ergeometric 

series in powers of X = (~2 + s)/(m
2

) [since We shall be interested 

only in the small-t region where (~2 + ~)/(m2 ) 2 1]. After this 

manipulation, we obtain the eigenvalue condition 

1 

~~:5 {2W·!ll) 0 + 2(£ + 2) (~' 
-.e + 1 2 / m 

2(.e + 2) 3(£ + 3) ~c·~2 + t). 2 
+ -.e + 1 -.e + 2 2 2 

m 

C~).e - si~rt£ ; 
m 

;x ( +(2.e + 2)(.e + 2) ffl2 
+ s'\ + c2.e + 2)(.e + 2) (2.e + 3 )c.e + 3 ) 

~ .e + 1 \" 2 :; .e + 1 .e + 2 . m 

Equation (2.33) Continued 
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Equation (2.33) Continued 

+ 4 (L) [-B(R J!) _£ ( _2_ + _4_(~"\ 
2(£ + 2) m2 ' · -£ + l ~ + l -£ + 2 m2 ) + ··) 

@T) + •• )] 

. (2.)3) 

Notice that in Eq. (2.33), the radius of convergence of the 

series is controlled by m2 . Therefore, for t i 0, even if 2 
1-l ~ o, 

the solution £(t) of Eq. (2.33) remains finite. If, instead.of the 

procedure following Eq. (2.30), a direct expansion of the nonforward 

propagator were made in the form 

1 

(2.)4) 

one would obtain a series representation of TrK£ with a radius of 

convergence that is essentially controlled by 1-1
2

• Thus such a pro-

2 
cedure would suggest t~at TrK£ ~oo for 1.1 ~o and £ < 1, even 

though tne corresponding integral representation of TrK£ is actually 

finite in this limit.
6' 8 

The slopes of the tr~jectories can easily be computed from 

Eq. (2;33) by the formula 

Thus 

d£ OTrK£ I oTrK.e 
dt = -~ ~ 

in which 

x(o) 

-H)-

Y(;) [---\- X(O) 
_ 16n3 .• 

R(O) 
2m \p'(l) G 

2 \ J, 
2 2 2 L 

6(m ,1.1 ,[1 ) ) . · .. 

'(2.35) 
4m 

a satisfies Eq. (2.33) and 

(2.36) 

B(a,a)~a + 2) [ 1 + )(a + 3) (~ '\ + 
(-a+l (2a+l) (-a+2) m2/ 

- sin\a (~ )a-l [a + 2(a + l)(a + 2>(~) + • • ·1 

-2a B(a,a) (1 4(a + 1) ( ~) + l 
-(-a+ l)(a + l)(a + 2) +(-a+ 2) 'm2 ••• J 

n a +----
sin na 3 (

2)a-l[ (.2) 
~2 1 + 2(a + 3) ~. (2.37) + ••• ] ' 

~ + 5 log(~:~ + ( 1~9 + ~8 log(~:»(~) + • • • 

(2.)8) 
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Y(O) .::!.__ lon TrK r' ,.. 3 1 
l o£ R('tJ £ £=a( o), t=o 

(2.39) 

r:B(a,a) - B(a,a) ~ 
\'(2a + 1) (2a + 1)

2
) 

~ 
B(a,a)(a + 2) 3B(a,a) 

+ - 2 
-a.+ 1)(2a+ 1) (-a+ 1)(2a + 1) 

+ ~ 
/ 2) B(a,a)(a + 2) l ~::_ 

2 ' 2 
(-a+l) (2a+l \m 

'+ ... 

+ [~ c~:)a log(~:.) 
s~n na m m 

( 

2 ( 2 a"] 
+ -.-n-) (cos na) ~ 2 ) .~ 

s~n na m I j 

J1 ~ 

( 

2)a+l 
-2---.. 2 + 

sin na m ·' 

(2.40) 

(2.41) 

In Eq. ( 2. 40), B(a,a) = 2B(a,a)[W(a) ~ W(2a)]. From these relations 

one sees immediately that owing to the presence of the factor 

in x(o), (da)/(dt) lt=O _, oo when 
2 

~ _, 0 and a < 1. 

Alternatively one can see this from the derivative of the integral 

representation of TrK£ in Eq. (2.30): The integral [aj(ot;) ]TrK£ 

2 
diverges at the lower end of integ:ration when 11 0 and s = 0 · By 

taking ~2 ->0 we have moved the threshold from t 4~2 > 0 to 

t = o. 

We also have 
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(2.42) 

S---7 oo 

(2.43) 

where, as before, ~a(t)(t) = -[Y(t)f
1

• 

Notice that when t (i.e., t;) goes to zero, Eq. (2.43) 

coincides with Eq. · ( 2 .16). That is, in the forward limit, the leading 

member of. the family of Regge poles (£=a-n, n = 0,1,2,···) and 

the corresponding Toller pole (A. = a) are the same, as far as the 

high-energy behavior of the full amplitude is concerned. This result is 

true in general and does n.ot depend on the approximation we have made. 
; 

On the other hand, from Eq. (2.42) and Eq. (2.11) we see that 

A£ ~A apart from the function 1 
t_, 0 A. 

B(£ + 1, 2 ) and a factor \vith 

dependence on zl and z2; however, this result follows only from the 

fact that we have discarded all the daughters (£=a- 1, a- 2, ···) 

in A£, 9 owing to the approximation made after Eq. (2.28). 
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D. EXACT NUMERICAL SOLUTION AND COMPARISON WITH 

APPROXIMATE SOLUTIONS 

We have also solved Eq. (2.5) and Eq. (2.27) numerically, 

using the method described by Wyld12 to find the leading pole and its 

residue. We have considered the two cases >1
2 0 and >1

2 
= m 2 

1( 

·:0 ') 

(i.e., >tfmL- = l/30) for a kernel consisting of a sharp resonance 

2 of mass squared m 2 2 = m = 0.585 GeV • p 
The quantity R is treated 

as a variable parameter. 

In Fig. 3 we show the numerical-solution for the intercept of 

the leading pole when 2 
>I = o. It should be noted that the method of 

numerical solution is not precise in this zero >I limit: the error in 

a might be as high as _ ±0.1. The value of a(o)_· calculated from Eq. 

(2.33) with 2 
p = 0 and 0 is also plotted; it differs from 

the numerical solution by about 6% when a = l. For the sake of 

comparison we have also plotted the values of a(O) calculated in the 
'') 

_trace approximation"' 

l 
R(O) 2 

1Grt3 a(a + l) (a + 2) 

(dashed line), and the approximate solution of Ref. 5 

l 
R(O) __ 1 __ 

l6rt3 a(a + 1) 

(dotted line), which is also the expression obtained in Ref. 6. 

(2.44) 

(2.45) 

Figure 4 shows the numerical solution for a(O) when 

(>J2 )/(m
2

) = l/30, together with the value of a(O) calculated from 

Eq. (2.33) to first order in 
2 2 

(f! )/(m ). 
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Figure 5 shows the numerical solution for the residue of the 

leading pole defined in Eq. (2.19) when 
2 

fl = o. In this figure we 

have also plotted our approximate solution from Eq. (2.18) 

(2.46) 

where ~a(o) = -[Y(O)]-l with 
2 

fl = 0 in Eq. (2.39) .. Again we also 

show the value of ¢a(o,o) calculated from Ref. 7 (dashed line) and 

from the eigenvalue condition [our Eq. (2.45)] of Refs. 5 and 6 (in 

dotted line). For [R(O)]/(l6rt3) = 4, say, Eq. (2.46) misses the exact 

solution by about 10%, whereas the other approximate solutions miss by 

more than 100%. 

In Fig. 6 we show the numerical solution for ¢a(o,o) -..men 

(f!2 )/(m2 ) = l/30. The approximate solution given by Eq. (2.46) with 

~ = -[Y(O)]-l is also shown to first order in a 
2 2 

(f! )/(m ). 

Figure 7 shows the off-shell dependence of the residue of the 

leading pole when 2 
fl = o. From Eq. (2.16), we have 

(2.47) 

It is seen that the approximate solutions are "more peripheral" than 

the exact ones. This is not surprising since we have replaced the 

original kernel by the one which is more peripheral [c.f., Eq. (2.6) 

and Eq . ( 2 . 7 ) J • 

Finally, in Fig. 8 we show the slope of the leading pole at 

t = 0, when the fl-fl resonance is (i) a scalar and (ii) a vector. 

The numerical solution for t = 0 lies somewhere within the shaded 

area. We have also computed the values of the slope at t 0 
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according to Eq. (2,35) up to order [(J})/(m2 )J 2 at three different 

values of R(O) corresponding to 
. 13 

a(o) = 0.5, 0.8, and 1.0. · They 

are shown as X's in the figure. 

·"?"'. 

.. 

-22-

E. GENERALIZATIONS 

Let us consider briefly the case of a kernel consisting of a 

finite sum of factorized (and symmetric) terms. The sum may arise 

either from the input of many resonances in Eq. (2.10) or from taking 

more terms in the serEs of Eq. (2.28). For example, if we put 
2 2 n 2 · 2' 

V(s,ll ,11 ) [ m. R. o(s - m. ), then we have 

id ',[' >(mi: _,1)>)"+1]. [ t(~i ( --r2)t)t..+l] 
V"- (-rl'-r2) L miRi 2 miRi -2~--

i · mi - Tl mi - T2 

(2.48) 

which is no longer factorizable in -r1 and -r2 • The resulting equation 

can be solved by an algebraic method. That is, for an integral equation 

where 

(2.49) 

n 
L: vi(-r1 )vi(-r2 ), the solution is just 

.i=l 

n n 

L vi (-rl)vi (-r2) + L 
i,j,k=l 

T .. 
Jl 

vi (-rl)(i -. T)~~ Tjk vk(-r2), 

(2.50) 

(2.51) 

For the case n = 2, for example, the solution is 
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+ 

which is similar to the solution to a coupled-channel problem. 

F. DISCUSSION 

From the explicit approximate solution, Eq.(2.16), Eq. (2.33), 

and Eqs. (2.35-43), we see the following characteristics: 

(1) The leading behaviors of the trajectory and. residue do not 

depend on the external mass 2 
~ ; in fact, the full expressions for them 

remain finite in the limit 2 
~ ~o (but not for the slope at t = 0 

for cx:::l). 

(2) The mass 2 m plays:· the role of the "scale parameter" in the 

[(s)/(m2)]cx - ( ) factor as well as in the slope formula Eq. 2.35 ; this 

scale parameter is usually asserted to be about 1 Ge~ in Regge 

phenomenology. And, apart from the masses 2 2 
~ and m , the residue is 

completely determined by the location of the pole cx(t). [In the 

Veneziano model, the situation is similar to that mentioned in (2) 

above, in that it is the reciprocal of the slope of the trajectories 

which serves as the scale parameter. But in that model there is an 

overall factor in the residues (the constant usually denoted by ~) 

which is not determined by the theory itself.] Most important of all, 

the absolute magnitude of high energy total cross section so determined 

turns out to be a resonable value when an appropriate symmetry scheme is 

incorporated into the model. We shall illustrate this point in Sec. 

III below. 

(3) The high energy off-shell "form factor" given by Eq. (2.16) or 

Eq. (2.43) is an interesting output from this model. Its theoretical 

and phenomenological implications will be discussed in Sec. IV. 

From the numerical solution (as well as from the approximate 

solution), we see that the leading pole position cx(O) 
l 

and the · 

residue ¢
0 

display monotonic behavior as a function of the kernel 

strength, which is characterized by R(0)/16~3. As we have mentioned 
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in subsection B, the factorizable expression (2.7) we used is actually 

a lower bound to the original kernel (2.6), whereas the approximate 

solutions obtained by various authors5 -8 are based on some upper bound 

factorizable expressions. 14 
It can be shown that, for a( 0), the 

approximate value obtained here is a lower bound to the exact one, while 

other approximate values5-8 are its upper bounds. 15 

Let us now turn to the question of the uniqueness of our 

approximation scheme. As we have understood, there exist a lot of 

factorizable forms similar to the particular one given in Eq. (2.29). 

Even the conditions that we imposed in Eq. (2.8) and Eq. (2.22) do not 

seem to determine ~(s,T1 ,T2 ) uniquely. However, if we multiply Eq. 

(2.7) by a factor y(s,T1 )"y(s,T2 ) in which we require 

2 2 
Y(m ,T1 )r(~ ,T2 ) = 1 when either Tl 

s(m2,T1 ,T2 )Y(m
2

,T1 )y(m
2

,T2 ) matches 

or T
2 

goes to zero, [i.e., that 
-e(s,T

1
,T

2
) 

e along the line 

Tl = 0 (T2 = 0) for all values of T2 (T1 ) in the Tl - T2 plane], 

2 
then it must be true that r(m ,T) = 1 (apart from a sign). On the 

other hand, if we only require r(m2 ,o) = 1, then the condition in 

Eq. (2.22) imposes 

r 
2 r,+l 

' ' [Y m ,T - Y m ,-r ~2T l(m2-m T ~) 2 J 2 ( 2 ) ( 2 ) ] 0 . 

Of course 
2 

Y(m ,T) = 1 (the original proposal) fulfills this require-

ment. There do exist, however, non-null functions which are orthogonal 

2 2 2 2 A+l to 1/-r [(-m T)/(m - T) ] ; and thus one may be able to choose a 

2 -e(s,T1 ,T2 ) 
suitable r(m ,T) to match the high T behavior of e We 

shall not investigate this possibility further here. It suffices to 

say that Eq. (2.7) seems to be the simplest choice and produces a 
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solution with reasonable analytic properties and in fairly good 

numerical agreement with the exact solution. We believe that such a 

solution will be useful in the semi-quantit;3.tive study of the general 

physical output of the multiperipheral mode1.
16 



-27-

III. AN APPLICATION: CALCULATION OF THE MAGNITUDE OF 

HIGH ENERGY MESON-BARYON TOTAL CROSS SECTION 

In this section, 17 we shall incorporate internal symmetry into 

the scheme. And we shall study, in a somewhat crude way, the forward 

scattering between a pseudoscalar meson (1-t) and a baryon (B) at 

very high energy on the basis of the approximate solution obtained in 

Sec. II. This study is inspired by Ref. 7 in which an order-of-

magnitude calculation of 1-1-!l total cross section from a multiperipheral 

model is done using the trace approximation solution. The purpose 

of the present work is to extend the calculation to a "physical" 

process, using a more accurate solution and handling (at least 

formally) the spin complication. We shall be able to see how far our 

output differs from the observed values at the presently highest 

available energy. The physical significance of these semiquantitative 

calculations will be discussed at the end of this section. 

Since here we are not interested in the precise numerical 

value of the output from the model, we shall make the following 

simplifications. We believe that we do not lose the essence of the 

physics in doing these: 

(1) We assume an exact SU(n) internal symmetry in the dynamics. 

The equation is then diagonalized in the t-channel quantum numbers. 

And the Pomeranchuk pole is assumed to belong to a singlet representa-

tion in the t-channel. In practice, it turns out that the symmetry 

should be SU(3), in order to get the output magnitude of to be a 

reasonable· value in comparison with experiments or expectations. This 

corresponds to the maximal generalization of the original pion-exchange 

model without possibly altering the form of the equation by including, 
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e.g., vector meson exchange. An SU(2)-symmetric model, ignoring the 

existence of strange mesons and baryons, .. not only sUffers from the 

difficulty that the 
2 18 

kernel is too weak to produce ' . a:( 0) "' l 

for the leading vacuum pole, but also gives a result for otot almost 

an order of magnitude too great. 

(2) From Eq. (2.2), the (on-shell) input 1-1-1-t kernel is 

I s 

tively, and 

are the quantum number index in t,s channels respec
It,I 

X s is the crossing matrix element. Accurate numerical 

study, 19 inputting all the·observed 1-1-!l resonances together with some 

off-shell corrections to that, shows the eigenvalue o:(o) to be about 

0.7. It is conceivable that various other delicate corrections, if 

taken into account, might even push this value higher. But here we 

simply put (for It= l), 

(3.2) 

and assume the value of R1 gives o:(O) = l. This rough approximation 

amounts to, essentially, replacing.the detail spectrum of the low energy 

resonances which have squared masses around l Ge~, wlth a 

single resonance located at 

attached to it. (Recall that 

s0 = ~2 and with all the "weights" 

2 m0 will also serve as the scale 

factor in the output high energy amplitude.) Correspondingly we 

replace the sum in VA of Eq. (2.48), in which each term has the same 

fUnctional behavior, by a single representing term. 
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(3) We neglect 2 
iJ. in comparison with all other masses in question. 

As we have seen in Sec. II, this is a good approximation as long as 

1 a(o) ~ 2 . 

(4) Assuming the production amplitudes of iJ.B scattering to be 

given by Fig. 9a for even numbers of final iJ.'s, and by Fig. 9b for odd 

numbers of final 1-.1.'s, we approximate the low energy iJ.B kernel by a 

B pole plus the first prominent iJ.B resonance pole. 'This approach 

is motivated by known f~cts about 

Fig. 10. Thus we have20 

l,I 
X s 

cr~~' like the curves shown in 

ZI 
s 

Xl,R _21 cr~lB,R(max) "'( 2) + 6 rr ~ ~ r R r- (J sB - ~ , (3-3) 

where both sides refer to spin-averaged quantities. ·The factor zi 
s 

comes from the projection of the symmetry factor, e.g., ( TfT. )f • 
~ =~ 

onto the subspace with quantum number Is in the s-channel. The 

'-r-2/(r-2 factor \:: -r•i) is the DUrr-Pilkuhn form factor21 for the 

~-.~.-B-B vertex, and r is the "radius" parameter of the vertex. We 

cannot keep this vertex on-shell because that will make it negative. 

The prescription of vertices in Eq. (3.3) gives a satisfactory 

description of experimental differential cross sections in singly 

peripheral reactions at low energy. For example, the reactions 

rrN ~ pN and rrN ~ p6 at p~ab = 4 GeV/c (for which we use OPE 

models with p vertices on-shell, in addition to the prescription 

Eq. (3.3) for the N and 6 vertices]. This problem has been 
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discussed in Ref. 17. The reader is referred to that reference for 

detail. 

After this long preparation, we are now ready to calculated the 

high energy forward elastic- 1-.1.B amplitude. From Eq. (2.20) and Eq. 

(2.22), we have 

a+l 

.. 2 
d-r' -(a+l)9(sB,M ,-r') 
"""T'2 e 
T 

(3.4) 

where A1(s,-r 1 ,0) is given by Eq. (2.16). Next, recall that, as far 

as internal symmetry SU(n) is concerned, any elastic amplitude in 

the direct at high energy at or near the forward direction is related 

to the crossed-channel amplitude which corresponds to the identity 

representation by22 

(3.5) 

when TiJ.B 1 dominates other amplitudes in the crossed channel. The 

factor comes from-the 1s-t crossing matrix and NiJ. (NB) 

is the dimension of the subspace to which !J.(B) belongs. Combining 

Eq. (3.3), .Eq. (3.4),and Eq. (3.5), we have 
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0
tot ,..__; 1 1' 

A!J.B 
1 

1-LB s N2N2 s-+ oo 
1-1 B 

1 L 
l,I 

2 ~1B/mo2. ,_...__; .. X s 
ZI 1{ g 

s-+ oo N2N2 s 
1-1 B I s 

1 __ 1 R e1 R a I 2 
+ _ _ r' --~ n: ~ rR cr B' (max) <dlR m

0 N 2 N 2 1-1 
1-1 B 

where,the dimensionless quantities 

) -2 ( --r'r 
-2 (r - -r') 

. 2 ~ '2 ~ 1 x [(-r' -b-ri) +-r'(-r' -2b-r')2J, 
; 

[ -1( ')' -1 ]1 X sin 1 - ~ + sin (1) ( 

(3.6) 

(3.7) 

J 

__,..!../_...,. ~b - l) .en E.+ 2b - 1 _ [sin-l G - !_\+ sin-1 (1)]1 
cl - 1)

2 L 2 
{2b - 1) 2 \:' w ~ 

( 

+ 1 {b 
cl - 1) L 

b b - 1 
+.en 2 -

(2b - '1)2 
[•in"1(l, ~)+ ''n"\l)J}) , 

(3.8) 

with 

and 

with 
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:~ {2b b~ l " 2(2b ~21)372 
l 

1\ -1 )l ( - 'b;+ sin (1 l r 
. Jj 

-2 2 
r = mo for (3-9) 

b 2ri'-
-2 

r 
b = 2 2 ' r 2 ' ·nu mo· mo 

4 Jo ~l mo 
(2r:f)2 d-r' 

-oo 

a 

( 2 ~ ~ ~2] ~ 2 ~2)1.) ( ) X [-r' - (a+ b)-r' +a - (a - -r 1 )(-r• - 2b-r 1 +a 2 3.10 

= 2 2(a - b) + (a + b - 2a ) .en --2- . (:lla { 2 a + b} 
b 2a - . 

+ -a - b + )ba + a
2 

- 2a3 

(2b - 1 - a 2 )2 
sin 

[ 
-1 

~2 M2 
2 

~ b ~ > rl-a b 2+2 a 2 2-2 ' 2 
mo mo mo mo mo 'mo 

l 
-1 n 

2)-2 > > 

-a . jj 
(3·.11) 

It is noteworthy that the behavior of the_ integrands in Eq. 

(3.7) and Eq. (3.10) are similar. In the two limits of integration} 

.... :• 



They both decrease monotonically from a finite value to zero and fall off 

,-4 asymptotically oc T . Thus. B and R contribute to the right-most 

(Fig. 9a and 9b) links with the· same degree of "peripherali ty. " 

Without the help of the Durr-Pilkuhn form factor for the B-pole vertex, 

the integrand of Eq. (3.7) would fall off like T,-3 and thus make 

the B contribution much less peripheral than the R contribution. 

Numerical Value of the Asymptotic tot 
a B in an SU(3)-symmetric Model: 

We adopt the following as our "best -input" for the hypothetical 

exact-SU(3)-symmetry limit. 
1+ 

0-~(K, n, ~' i), 2 ~(N, E, 

Consider 1.1, M, and ~ to be the 

3+ -A, ::::), and 2 ~(6, E, =-, n) respectively, 

and take, for definiteness, m0 to be ffiy 1-~(K*, p, ¢, i*). The 

mixing of 1 and 8 is ignored. We continue to set the mass of 1.1 

equal to zero. But for other mass, we use the first term in the 

corresponding Gell-Mann-Okubo mass formula. 23 Thus M = 1.15 GeV, 

For the B vertex, we now have 

where I 
s 

(3.14) 

FfFi = 3((? 8 )fi,: etc. (the (P 's 
a a 

are projection operators for the 

corresponding subspaces). We use the D/F 

2 
g 14.4 X 4n. 

24 
We furthermore choose 

ratio a = ~ and 
3 

-2 
r 

1 2 
= 2 mo . 

For the R vertex, we use the calculated value of the width 

rR from the SU(3) Chew-Low static model, 25, 26 

2 8 2 
1 3 2 X -X- a(3 - 2a) L 2 p "" 0.107 GeV, 3 3 4n 4M c.m. (3.15) 

and we put · ~ = 1. 
1,8 1,8 

Recall finally that N = 8, .NB = 8, X ss X aa 1, 
ll 

1,8 1,8 

~"' I ll6) x1,1o 5 X sa = X as 0 ZI - 27 ' = 4 And from 

Eq. ( 2 .17) , we get 9 
131 = 4 

I s s 

Feeding all these ingredients into the right-hand side of 

Eq. (3.6), we obtain 

This 

a tot 
-

1( p 

tot 
a 
~.tB 

value is 

r---J 
65 GeV/c 

comparable 

24.69 mb, 

to the Serpukhov 

a tot ,-....._; 
K p 55 GeV/c 

projected values 28 atot 1"'.1 21mb, and 
nN 

(3.16) 

data27 

21.5 mb, or to the 

a tot 
KN 

rv 17.2mb. 



We conclude this section with these remarks: 

(l) With multiperipheral dynamics, the absolute magnitudes of 

high energy scattering cross sections are calculable. And these 

magnitudes are determined decisively by the properties of a few low-

lying states. 

(2) To get .these magnitudes about right, it is important to count 

properly the symmetry-multiplet structure of the reacting hadrons. 

(3) If we input more 1-1B resonances in Eq. (3.3), we shall 

probably make the output in Eq. (3 .16) even larger. On the other 

(2.18) and calculate tot in this oversimplified hand, if we use Eq. CT 
1-ll-l 

way·, we get a value a couple times larger than the value expected from 

factorization. The main deficiency of the scheme we developed so far 

is, we believe, that we have not included the high energy scattering 

part in the input in V. This question will be addressed in Sec. V. 

\ 

IV. HIGH ENERGY OFF-SHELL BEHAVIOR 

Referring back to Fig. 2 and Table 1·, we see that the masses of 

the four legs of amplitude A are related to other variables by 

2 c~ + pl )
2 + t + 

1 1 

Ill+ Tl ( -T )2 ( -t)2 zl ' 1} l 
(4.1) 

2 ( q )2 t l l 

Ill- = -- p Tl + 4 - (-T )2 (-t)2 zl 2 l . l (4.2) 

for the left legs, and similar relations for the right legs. So we may 

·express the variables T1 , z1 etc. in terms of the masses, e.g. 

(4.3) 

and the amplitude A(s,T1 ,z1 ,T
2

,z
2

; t) maybe re-expressed in terms of 

the mass variables and t. 

From our approximate solution Eq. (2.43), we have the following 

prediction of high energy "form -factors" 

for 2 1-1 , · (Fig. lla), 

(4.5a) 



-. 

-37-

for 

for 

2 
Ill+ 

2 
Ill+ 

2 
Ill- = u, 

u, 
2 

Ill-

(Fig. llb), 

2 
ll ' 

(4.5b) 

(Fig. llc). 

(4.5c) 

Theoretically, these form factors are important in the follow-

::!:-.) ing aspects: If later on we want to include the high energy scattering 

part in crel in the input, then we can include such off-shell 

~t correction so that the Fredholmness of the kernel is maintained. And 

-~-., similarly, when we calculate certain diagrams which correspond to 
I 

"''::.0,,
' .. ,.P 

--""'""' 

processes involving high energy off-shell scattering, we can include 

such corrections so that we don't have to use the embarrassing cut-off's 

in some divergent integrals or to introduce some ad hoc "exponential 

damping factors." 

Phenomenologically, these form factors may give rise to 
~-d' 

... ~obs-ervable effects as well, though it might be difficult to detect 

that, because high statistics on relatively: large momentum transfer 

~---events are needed for this purpose. Nevertheless, let us indicate here· 

how this could be done, in principle at least. Consider for example 

the reaction + -
~ p ~ n~ ~ (cf. Fig. 12) with the invariant squared 

mass of the + -
n ~ system above, say, 3 Ge-.1-. There may not be many 

events of this type if the pion incident momentum is around 10-20 GeV/c. 

However, in the future when larger accelerators are in operation, and 
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thus more phase space opens up, we may then be able to collect many of 

these events to study higp energy ~-~ scattering via-Chew-Low 

extrapolation. The differential cross for the process stated above 

is, according to one-pion-exchange model, 

duds 'dt --=-3 _1---::2,---,2,...- [ ~2l uF ( u) J 
16~ 6(S,IJ. ,M ) 

1 
2 2 

(u - ll ) 

[ 

· el( , )l 1. 2 dcr~~ s ,t,u 
t-.2(s' ,ll ,u) J. 

-dt 
(4.6)_ 

where 2 
g = 14.4 X 4~, and F(u) is the Dlirr-Pilkuhn form factor for 

the left vertex. From another low-energy process 0 
~ p ~ np , we know 

that 

F(u) G 
-2 2) rN - ll 

= -2 ' 
rN - u / 

with 

Our main concern here is, o-f- course, the off-shell elastic cross 

-( 2) +( ) - 2 + 2 section of the process ~ ll + ~ u ~rr (ll) + ~ (ll ). In the 

same spirit as that mentioned in approximation number (2) in the 

beginning of Sec. III, we use expression (4.5c) and put the "scale 

factor" m0
2 

""'1 Ge-.1-. In order to be easier to compare with experi

ment, we may write, instead of Eq. (4.6), 

1 
3 2 2 

16~ 6(s,IJ. ,M ) 

X 

[~2iuF(u)] ---=1-:2~2 
(u - ll ) 

cre
1
(s') ~(u)j, (4.8) 

~~ 
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wl:.ere cre1(s') is. the on-shell cross section 

--:;4.. 'd (u) G-o-=-2--=-;.;;_~ :-=2:---+-u-)) ax( o) +2' with 
2 2 

m0 "' 1 GeV , (4.9) 

and a(O) is the intercept of the highest Regge trajectory in 

cre1 (s' )·: In deriving Eq. (4.8) from Eq. (4.6) we have made use of 
1{J( 

the presumption that dcre1/dt has a sharp forward peak. 
•J(1( 

Note, for example, that when u = -0.4 Ge;, c:;f(u) = 0.) 

for a(o) = 1. Thus the predictions for the differential cross 

section at this momentum transfer differ by a factor of 2 when Eq. 

(4.8) is used with or without the form factor Eq. (4.9). 

2 On the other hand, we may choose a value of m
0 

to give the 

best fit to data. Then the precise value of dcre 2/dt (Thus crtot 
1{J( 1l1l 

via optical theorem) deduced from extrapolation with Eq. (4.6) from 

experiment can help us to prove the factorization properties of the 

Pomeranchukon. 
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V. INCLUSION OF THE HIGH ENERGY TAIL IN THE KERNEL 

In this section we shall discuss, for completeness, an attempt 

to include the high energy.scattering part in the potential v. To 

be specific, we shall keep on working on the simplified version of the 

model outlined in Sec. III, and use Eq. (2.16) or Eq. (2.43) as the 

solution when V contains the low energy resonance part only. There 

are a number of reasons for the desire to make improvement on this 

kind of solution. Let us state some of them. Quantitatively: the 

output values (include those obtained from realistic and accurate 

numerical studies2 ' 18,l9) for a(O), a'(O), ~a' etc. are not in 

excellent agreement with experiments or expectations. Qualitatively: 

(i) there is no reason why V, the basic building block in the multi= 

peripheral chai~, should not contain the high energy scattering part·, 

(ii) a complete scheme should have the Froissart bound built in, and 

(iii) phenomenologically, it is well known that pure (real) pole 

amplitu~s, either in the vacuum or nonvacuum crossed channel, can not 

explain all the aspects of high energy data. 

The particular method3 we use to implement the improvement 

goes through the following steps. 

(1) * Let an energy s0 be chosen such that, to a good approximation, 

we may describe V with resonances only (call it vR) 
with high energy (diffractive) scattering only (call it ~) for 

* s :::_ s
0

. 

(2) When v = ., alone, accept that the solution is given by 

Eq. (2.16) or Eq. (2.43) (together with a signature factor for the full 

amplitude if needed). Thus 



' ·~;:) . 

A R 
A. 

A.+l (1.+1 

(-T )~ (-T )~ 
1 2 
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b(I.(T1,t) b~(T2 ,t) 
A. - ~ 

where ~ is assumed to be "quite close" to 1, 

b (T,t) 
~ 

(5.1) 

(5.3) 

(5 .4) 

(5.5) 

and we have dropped the symmetry index It= 1 ··for the moment. 

(3) Guess that the leading behavior of the final amplitude is 

again Regge-pole behaved 

T (5.6) 

where 

(5.7) 
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where a, ~a are supposed to .be calculated. We may conveniently 

parametrize ~a( t) by 

with a constant y. This form is suggested by experiments. 

With this T, we compute vP with Eq. (2.2), and thus V P 
A. 

with Eq. (2.3); for t = 0 

A.+l A.+l 

dt'(-T1)~ (-T2)2 lba(T1,t')i
2 

(5.9) 
r-.- 2a(t') + 1 

This corresponds to a branch cut with branch point a = 2a(O) - 1 in . c 

the A.-plane. Using Eq. (5.7) and Eq. (4.5c), we may write 
\____ 

approximately 

where a'(O) is the derivative of a(t) at t = o, and E1 is the 

Exponential Integral. 

Reasonable estimates2 show that 
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V R >> V p 
A. /1. (5-ll) 

fo:r f... not too close to the tip of the branch cut. 

(4) Now treat Eq. (5.1) as the "unperturbed" solution to the problem. 

With the additional· "small" piece v/1.11 in V/1., we may calculat/9 

the "perturbed" solution by the variational principle of Schwinger. 

The forward partial-wave amplitude is then given by 

where 

E /1. 

R(O) 

1 2 ex' Co) ("A-a,) 
~/1. = 16:n: G/1. (o) e 

2a'(O) 

and the triple-Pomeranchukon coupling3° 

(5 .12) 

(5.13) 

(5.14) 

(5 .15) 

(5.16) 

(5 .17) 
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(--r')f...+l 2 
- jb,.,(-r',O)I b',(-r',o) 
(-r'/ u. "" 

(5.18) 

(5.19) 

Expression (5.12) has a branch cut i~ the /I.-plane starting at 

' cxc = 2a(O) - 1. We shall draw this cut to the left along the real 

axis from a to -oo. 
c 

Part of the self-consistency requirements on Eq. (5.12) is to 

identify the ~st sheet zero of the denominator (there is only one such 

zero and it is real) with a and the corresponding residue with 

bcxbcx. It can be shown that, for OR <etc' this zero lies .above etc 

but below 1.3
1 (A physically acceptable solution· must, of course, 

have a just slightly below 1.) When Eq. (5.12) is transformed back 

to the physical s-plane, we pick up the pole and the discontinuity 

across the cut: 

(5.20) 

where bcxbcx' the residue of the pole, can be computed from Eq. (5.12), 

and 
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disc AA 

(5 .21) 

where the first bracket has argument T
1

, the second has T2 . 

We close by pointing out some qualitative properties of this 

solution:32 

(1) As we have mentioned, the leading pole is real and closer 

(than aR) to 1 but never exceeds 1. 

(2) is smaller than b b 
~~ 

(3) The off-shell behavior of this pole is just 

(4) The discontinuity disc~ is always positive when all the 

legs of A are on-shell. 
A 

And disc~ ~o as A ~a. c 
(Note, 

however, that the condition Eq. (5.11) does not hold in this limit.] 

The cut integral may be associated with secondary Regge singularities . 
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Table I. The variables. 
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FIGURE CAPTIONS 

Fig. 1. Sketch of the total cross section and some individual produc

tion cross sections in K+p scattering. In this figure 

a stands for the sum of a's of all possible final 
K+IH K:n:N 

charge states. 

Fig .. 2. The kinematic structure of the multiperipheral integral equatio~ 

Fig. 3. Solutions for the intercept of the leading pole when 2 = o. ~l 

Fig. 4. Solutions for the intercept of the leading pole when 2 2 
~ = m :n: 

Fig. 5- Solutions for the residue of the leading pole when 2 0. ~ 

Fig. 6. Solutions for the residue of the leading pole when 2 2 
~ =m :n: 

Fig. 7· Off-shell dependence of the residue of the leading pole when 

2 
= o. The exact numerical solutions are shown in heavy ~ 

lines, whereas 

in light lines. 

¢a(T1 ,o) calculated 

Curve I: a(o) ? 1, 

from Eq. (2.47) are shown 

!1Ql = 4. 95 . Curve II : 
16:n:3 

a(o) = 1, !1Ql- 6 3 - . 
16:n: 

Curve III: a(o) = 0.94, R(O§ = 4.95· 
16:n: 

() ~ Curves 1 and 2: a 0 = 0. 7, 
3 

"" 2. 5 . 
16:n: 

Fig. 8. Slope of the leading pole at t = 0. 

Fig. 9. Production amplitude of ~B scattering of (a) even numbers 

of final ~·s and (b) odd numbers of final ~·s • 

Fig. 10. Schematic representation of cr:n:N's. 

Fig. 11. The high energy vertices when (a) both legs on-shell [Eq. 

(4.5a)], (b) one leg on-shel1,one leg off-shell [Eq. (4.5b)], 

and (c) both legs off-shell [Eq. (4.5c)]. 

Fig. 12. The process - - + :n: P ~:n: :n: n. 
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r-----------------LEGALNOTICE--------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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