
UC San Diego
Technical Reports

Title
On the Resilience of Broadcasting Strategies in a Failure-Propagating Environment

Permalink
https://escholarship.org/uc/item/7xj258pb

Authors
Marzullo, Keith
Lin, Meng-Jang
Ricciardi, Aleta M

Publication Date
1999-07-06
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xj258pb
https://escholarship.org
http://www.cdlib.org/


On the Resilience of Broadcasting Strategies in a

Failure-Propagating Environment

�

Meng-Jang Lin Aleta M. Ricciardi

y

Department of Electrical and Computer Engineering

The University of Texas at Austin

Keith Marzullo

Department of Computer Science and Engineering

University of California at San Diego

Abstract

A process that is under the control of an intruder may masquerade as a legitimate process

and, like an arbitrarily faulty process, may not follow the speci�cation that other processes

expect it to. Given this similarity, it seems plausible to mask the e�ects of such compromised

processes in the same way that one masks arbitrary failures. One must, however, be able to

bound the number of such compromised processes. We examine this problem in the context of

multicast protocols. We cast the problem into terms of availability, which is the probability that

no more than a certain number processes are infected. We consider the two questions \what

is the availability of the system after having run for some period of time?" and \how long

can a system run until the availability is unacceptably low?" We examine how the answers to

these questions change as the number of processes grows, as the probability of a message being

infective changes, and as di�erent multicast strategies are used.

�

Supported by DOD-ARPA under contract number F30602-96-1-0313.

y

Also supported by the Texas Higher Education Coordinating Board, under contract ARP-003658-260.



1 Introduction

There are similarities between problems associated with processes that are under the control of an

intruder and problems associated with processes that are arbitrarily faulty. A process that is under

the control of an intruder may masquerade as a legitimate process and, like an arbitrarily faulty

process, may not follow the speci�cation that other processes expect it to.

Given this similarity, it seems plausible to mask the e�ects of such compromised processes in

the same way that one masks arbitrary failures. Masking the e�ects of failures requires replication,

and several protocols have in fact been designed to use replication to mask the e�ects of such

processes [10, 11]. The bounds for masking arbitrary failures hold for these protocols, such as

the need for either digital signatures or (3f + 1){fold replication in order to mask f compromised

processes when reaching agreement [6].

However, an intruder may wreak more damage than what is captured by the arbitrary failure

model. For example, an intruder may launch a malicious attack towards other processes on the

system. It can create other seemingly benign processes by exploiting transitive trust that is assumed

with the use of, for example, a .rhosts �le, or it can co-opt otherwise correct processes through

mechanisms like trap doors and race condition attacks. This implies that the techniques used to

mask arbitrarily faulty processes may not be applicable, because too many processes may become

compromised thereby violating the replication assumption. Accepting that the natural occurrence

of Byzantine faults is small, and that one likely source for such faults is due to malicious attacks,

then the self-propagating nature of these attacks should also be considered.

In this paper, we examine how di�erent multicast strategies e�ect the e�cacy of such attacks.

We model these attacks as a simple form of infection. We assume that intruders can infect processes

with a given probability by sending it a message. We consider only the messages in multicast

strategies that carry the user's data, since these are the messages over which an application process

has the most control.

We measure this e�ect in terms of availability, which is the probability that no more than a

certain number processes are infected. We consider the two questions \what is the availability of

the system after having run for some period of time?" and \how long can a system run until the

availability is unacceptably low?" We examine how the answers to these questions change as the

number of processes grows, as the probability of a message being infective changes, and as di�erent

multicast strategies are used.

The results in this paper a�ect the design of middleware for group-based communication sys-

tems [4]. An attack at this level of a system would be very hard to detect. Using the results of this

paper, one could use a standard protocol for masking arbitrary failures. Given a desired availability,

one can determine how long this protocol can run before the processes must be \cleaned", either by

restarting processes from known clean images or by running a diagnostic program. This periodic

cleaning ensures that the initial assumption of no more than f processes being arbitrarily faulty is

maintained with an acceptable level of likelihood.

Our results are applicable to more than group-based communications. For example, in a mobile

agent system, one can model a compromised landing pad as an infected process, and a mobile agent

capable of compromising a landing pad as a message from an infected process. In this context,

availability is the probability that no more than a given number of landing pads are compromised.

If one uses mobile agents to collect information in a web-crawl-like manner, a compromised landing

pad can corrupt the information that agents carry while passing through that pad. The results of

1



this paper can be used to choose a dissemination mechanism for the agents and decide how often

the landing pads must be \cleaned".

>From a modeling point of view, our work resembles epidemiological modeling of algorithms [2].

Our model is essentially that of a simple epidemic with a zero latency period. If cleaning were also

modeled, then one would have a general epidemic. There has been work on modeling the spread

of computer viruses as a general epidemic (e.g., [7, 8]). However, our work di�ers from existing

epidemiological approaches in several aspects. First, we are interested in how the infection process

a�ects the availability of the system rather than the expected number of infected processes. This is

important because we wish to apply the results to multicast protocols. If one builds a protocol that

can mask f arbitrarily faulty processes, then one would like to know how likely this assumption

holds. Knowing the average number of infected processes does not address this question. Second,

our transmission of infection is more restricted than general mixing of populations or a mixing

restricted to undirected graphs. Third, we separate infection from death because death (for us,

cleaning by restarting processes from trusted object �les) is not a stochastic process. Instead,

cleaning is periodically initiated based on the rate of infection and the desired availability, which

ensures that any initial assumptions regarding the maximum number of (arbitrarily) faulty processes

is maintained with an acceptable likelihood. At a pragmatic level, cleaning is expensive, and so

should only be done as infrequently as possible rather than at random times chosen from some

distribution.

The observations in our paper are consistent with some earlier work in epidemiological algo-

rithms. For example, [8] observes that when connectivity is low, a higher transmission rate is

required for an epidemic to become widespread. We observe a similar e�ect. Our work could also

be used to extend prior research. For example, in [5], di�erent epidemiological techniques are ap-

plied to propagate database updates. By understanding the e�ect of communication patterns on

the speed of propagation, one might be able to design faster epidemic-based information di�using

mechanisms.

The rest of the paper proceeds as follows: in Section 2 we describe our system model and the

multicast strategies that we consider. In Section 3 we give a de�nition for availability and describe

how we simulate the execution of a system in order to determine how availability changes with

di�erent system parameters and di�erent multicast strategies. Section 4 interprets the results of

our simulations. We conclude and comment on future work in Section 5.

2 System Model

We consider an asynchronous distributed system composed of processes that communicate with

one another by passing messages over a network of point-to-point channels. The communication is

reliable, in that every message sent on a channel will be received by the destination process. In such

a system, an infected process can infect another process only through messages. In particular, an

infected process may send an infective message to an uninfected process, which will then become

infected as soon as it receives this message (i.e. latency period = 0). We assume that there is

no mechanism available to uninfected processes to determine when another process is infected nor

when a particular message is infective.

Messages are not corrupted or otherwise tampered with once in transit. Because we are in-

terested in comparing dissemination strategies according to how quickly they spread infection,

we model only the ability of an infected process to infect another process, and do not consider

2



spontaneous infection or infection via some external entity.

Each process has a probability of being infected in the initial state. Unless stated otherwise, we

assume that this is the same for all processes, and we denote it with the simple variable p

init

; the

model can be easily tuned by customizing this value for speci�c platforms, security domains, and

so forth. We further assume that p

init

is small enough to ignore the probability that more than

one process is initially infected; thus, p

init

is not the percentage of n processes that are initially

infected. Each message sent by an infected process is infective with probability p

infect

. Again, we

make a simplifying assumption that p

infect

is constant and identical for all intended destinations.

Allowing p

infect

to di�er for various destinations, yet remain constant, would model heterogeneity

within the system. Allowing p

infect

to further vary, as in a probability distribution for each intended

destination, models more complex infective behavior.

De�nition 1 An infective system � is parameterized by < n; p

init

; p

infect

>, where n is the number

of processes, p

init

is the probability that a process is infected in its initial state, and p

infect

is the

probability that a message sent by an infected process is infective.

Since infection spreads through communication, the rate of infection depends on the pattern of

communication. The pattern of communication that a multicast protocol uses is chosen based on

several factors, including message e�ciency, time e�ciency, and the underlying network topology.

We consider three patterns of communication, each of which also maps to a common network

topology:

1. Ring: The processes are totally ordered, f0; 1; � � � ; n � 1g. Process i starts a multicast by

sending the message to its successor, process (i + 1) mod n. The multicast terminates when

i receives its own message from its predecessor, process (i � 1) mod n; since only one point-

to-point message may be in transit at any time, n sequential hops are needed to complete

one multicast with the Ring strategy. Protocols that �t this structure include the Totem

group-based protocols [10] and any lower level protocols designed to run on ring networks.

2. Coordinator-cohort: A process starts a multicast by sending its message to a special process

called the coordinator. The coordinator forwards the message to all of the other processes;

it takes two sequential hops to complete one multicast with the Coordinator-cohort strategy,

the length of the second determined by the longest delay between the coordinator and any

cohort. Protocols that use this structure include the Isis [3] group-communication protocols.

One could also say that any network gateway acts as a coordinator for incoming tra�c to

that network.

3. Peer: A process starts a multicast by sending its message to all other processes; since all n�1

point-to-point messages may be in transit simultaneously, the time to complete a multicast

is the longest delay between the initiator and any other process. Protocols that use this

structure include the Psync [9] group-communication protocols.

The 
ow of information in any particular protocol can be very complex, depending on the

exact properties of the multicast. We assume that the only messages that could be potentially

infective, however, are the messages that contain the data to be delivered to the application.

Other messages, such as those acknowledging the receipt of a message, seem less likely to o�er the

security holes that could be exploited to infect another process. We assume that for all integral

3



` � 0, each process initiates exactly one multicast for multicasts with sequence numbers in the

range

h

n� `+ 1; n� (`+ 1)

i

.

3 Infection and Availability

In this section we de�ne the terms by which we measure and evaluate our simulation results. These

results are de�ned in terms of what we call availability and are displayed with two types of graphs,

which we call availability graphs and f-graphs.

De�nition 2 Given an infective system �, P (�; f;m) is the probability that, after m multicasts,

no more than f processes in � are infected, given that one process is initially infected.

We estimate P (�; f;m) through simulation as described below. The availability of � is derived

from P (�; f;m) and removes the e�ect of having assumed that a process is initially infected.

De�nition 3 Given an infective system �, the availability A(�; f;m) is the probability that, after

m multicasts, no more than f processes in � are infected.

For example, A(�; 2; 100) = 0:99 means that in �, in 99% of the runs, no more than 2 processes

will be infected after 100 multicasts. Thus, a protocol that masks failures can assume that no more

than 2 processes are infected.

>From conditional probability, we get A(�; f;m) = (1 � p

init

) + P (�; f;m) � p

init

. Note that

P (�; 0;m) is by de�nition 0, and so A(�; 0;m) is simply 1 � p

init

. This is obviously correct given

that we assume (p

init

)

2

is zero and that infections can not spontaneously occur.

We consider two natural questions about infective systems:

1. Given p

infect

, p

init

, some maximum number of infected processes f and some number of mul-

ticasts m, what is the availability of the system? This is a question that one might ask to

determine whether a given strategy is acceptable.

2. Given a desired availability, a, and given p

infect

, p

init

, and f , how many multicasts can occur

before the availability falls below a? The answer to this question determines how often some

anomalous behavior detection utility or disinfecting program must be run to enforce the

assumption that no more than f processes are infected.

3.1 Estimating P (�; f;m) Through Simulation

A simulation is a set of runs � in which initially exactly one process is infected and in which M

multicasts are sent and delivered. Throughout this work, M = 300 and R = j�j = 1000. For each

run r 2 �, we de�ne F (r;m) as the number of infected processes once all processes have received

multicast m. Since we assume one process is initially infected, F (r; 0) = 1.

De�ne N(�; f;m) =

�

�

�

fr 2 � j F (r;m) � fg

�

�

�

, which is the number of runs r 2 � in which

F (r;m) � f . Finally we estimate P (�; f;m) = N(�; f;m)=R. From these de�nitions, the �rst

question above is answered by computing

A(�; f;m) = 1� p

init

+ P (�; f;m)� p

init

= 1� p

init

+

N(�; f;m)� p

init

R

: (1)

4



Since processes do not become uninfected, F (r;m) is monotonically increasing in m, and so

N(�; f;m) is monotonically decreasing in m. Thus, the second question above is answered by

�nding the largest m such that N(�; f;m) � (a+ p

init

� 1)R=p

init

. Since N(�; f;m) is nonnegative,

this inequality trivially holds for all f and m when a � 1� p

init

. Indeed, if the availability a is that

low, then the percentage of runs in which there is no initially infected process is large enough to

ensure that for all f and m, A(�; f;m) � a.

Notation De�nition Comments

� set of runs of M multicasts M = 300 in simulations

R j�j R = 1000 in simulations

F (r;m) # infected after m multicasts F (r; 0) = 1

N(�; f;m)

�

�

�

fr 2 � j F (r;m) � fg

�

�

�

P (�; f;m) N(�; f;m)=R Estimated

A(�; f;m) (1 � p

init

) + P (�; f;m)� p

init

Availability

H(�; a;m) min f : A(�; f;m) � a for availability graphs

I(�; f;m)

�

�

�

fr 2 � j F (r;m� 1) < f; F (r;m) � fg

�

�

�

for f -graphs

Summary of notation and de�nitions.

3.2 Displaying Availability and Infection Rates

We display simulation results in two di�erent formats.

3.2.1 Availability Graphs

Let H(�; a;m) be the smallest f that ensures an availability of at least a given � and m,

H(�; a;m) = minf : A(�; f;m) � a:

An availability graph plots the curves H(�; a;m) versus m for di�erent values of a. One can

think of H(�; a;m) as being an \iso-availability" curve for a given value of a. H(�; a;m) is a

monotonically increasing step function in m; to keep the same availability, the number of possibly

infected processes cannot diminish. By de�nition, for (unacceptably low) values of a � 1 � p

init

,

H(�; a;m) is the horizontal line f = 0.

If a multicast strategy spreads infection quickly, the plot of H(�; a;m) will be nearly vertical; if

it spreads infection slowly, each step of H(�; a;m) will endure for many multicasts. Consequently,

the most resilient strategies will show intervals lasting many multicasts between H(�; a;m) = f

and H(�; a;m) = f + 1.

Figure 1 is a sample availability graph, plotting H

peer

(�; 0:99995;m);H

ring

(�; 0:99995;m),

and H

cc

(�; 0:99995;m) for � =< 7; 0:0001; 0:04 >. It shows that Ring and Coordinator-

cohort are nearly equally poor under these circumstances, while Peer is best, especially so for

H(�; 0:999995;m) � 4, which Peer does not attain until multicast m = 14, while Ring and

Coordinator-cohort attain at m = 10. No strategy can maintain an availability of 0.999995 for 50

multicasts without the entire system becoming infected.

5



0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

 m

 H
(σ

, a
, m

)

 n = 7, Pinit = 0.0001, Pinfect = 0.04, a = 0.999995

peer              

ring              

coordinator−cohort

Figure 1: A typical availability graph. For � =< 7; 0:0001; 0:04 > anda = 0:9999995, Peer is more

resilient than Coordinator-cohort, which is more resilient than Ring.

3.2.2 f-Graphs

The second format of graph is called an f-graph. An f -graph plots, for a given value of f , the

percentage of runs in the simulation in which the f

th

infection occurs with multicast m. More

precisely, de�ne I(�; f;m) to be the number of runs r 2 � for which F (r;m) � f and F (r;m�1) < f .

An f -graph plots I(�; f;m)=R versus m. We also plot on an f -graph the values N(�; f � 1;m)=R

versus m. Note that N(�; f;m) = R�

P

m

i=1

I(�; f + 1; i), and so the graph of N(�; f � 1;m)=R is

simply one minus the integral of the graph I(�; f;m)=R.

Figure 2 shows an f -graph for thee Coordinator-cohort strategy in which n = 7; f = 2 and

p

infect

= 0:15. The x-axis is the number of completed multicasts, the left y-axis is the percentage of

runs in which the second process becomes infected with that multicast, and the right y-axis plots

N(�; f � 1;m)=R. From this f -graph, the second process becomes infected in the �rst multicast,

m = 1, in 12:5% of (R = 1000) simulation runs, in the third multicast in 4:3% of simulation runs,

and in the 100

th

multicast in 0:3% of simulation runs.

Since f -graphs show N(�; f � 1;m)=R, they can be used to answer both of the questions posed

above. f -graphs can also be used to understand the sensitivity of availability to the number of

multicasts. As the number of multicasts grows, the availability for a �xed f must monotonically

decrease. The rate of the decrease of A(�; f;m) is the same as the rate of decrease of N(�; f;m).

Thus, one can examine the (f+1)-graph to determine how A(�; f;m) decreases withm. For exam-

ple, if N(�; f;m) decreases slowly then one can increase m without a rapid decrease in availability.

4 Simulation Results

We ran several sets of simulations to determine the e�ects on availability of varying n, of varying

p

infect

, and of varying the multicast strategy. Each simulation generated 1,000 runs, each run lasting

300 multicasts. This is su�ciently long for most processes to become infected when p

infect

= 0:04,

which is the value we normally used in the simulations. Exactly one process is infected in the initial

state of each run. For completeness, we include illustrative graphs in the Appendix; all graphs can

be found at http://www.nile.utexas.edu/�mj/disc-graphs/.

6



0 50 100 150 200 250 300
0

0.05

0.1

0.15

h
is

to
g
ra

m

0 50 100 150 200 250 300
0

0.5

1

1
 −

 in
te

g
ra

l

coordinator−cohort,  n = 7, Pinfect = 0.15, f = 2

 m

Figure 2: A typical f -graph showing, for Coordinator-cohort, when the second (i.e., f = 2) process

becomes infected. � =< 7; 0:0001; 0:15 >.

4.1 E�ect of Varying p

infect

Our simulations show that within each group strategy, and for the same values of f and n, scaling

p

infect

by a factor of 1=k is equivalent to scaling m by k. This is expected. If p

infect

is reduced by k,

then an infected process must send k times more messages to generate the same expected number

of infective messages.

4.2 E�ect of Varying n

Our simulations show that as the number of processes n increases, the availability A(�; f;m) de-

creases. This is signi�cant because it is at odds with the traditional reasoning behind fault tolerance

based on masking. A system of n processes can mask n=3 malicious failures or a minority of crash

failures, and so as n increases more failures can be masked. Our results show that larger systems,

though able to tolerate a larger absolute number of failures, may actually incur that fraction of

failures very rapidly. Said another way, resilience to infection does not scale.

The rate at which availability decreases depends on the multicast strategy. Consider two sys-

tems, using the same multicast schema and having the same value of p

infect

. The �rst system

has n processes, and the second has n

0

> n processes. Consider a run of each system, where

each run contains nn

0

multicasts. In this and subsequent discussions, unless otherwise stated

p

init

= 0:0001; p

infect

= 0:04 and the desired availability a = 0:999995.

� In the Peer strategy, each process in the �rst system multicasts n

0

times and each process in

the second system multicasts n

0

times. When multicasting, a process in the �rst system sends

n� 1 messages while a process in the second system sends n

0

� 1 messages. Thus, a process

7



in the second system sends n

0

� n more messages than its equivalent in the �rst system. The

initially infected process therefore sends more messages, and the infection will spread faster.

For example, simulations show that at multicast m = 25, to maintain a = 0:999995, one must

allow three of n = 4 processes to be infected, �ve of seven, �ve of ten, and six of 30 processes

to be infected.

� In the Coordinator-cohort strategy, the coordinator sends nn

0

(n

0

� n) additional messages in

the second system, and each cohort sends n

0

� n fewer messages in the second system. If the

coordinator is the initially infected process, then the expected number of infective messages it

generates will be much larger in the second system. If a cohort is the initially infected process,

then the expected time for the coordinator to become infected is longer in the second system,

but once the coordinator becomes infected it spreads much faster. When the initially infected

process is chosen uniformly from all processes, then it is less likely that the coordinator is

the initially infected process in the second system. The coordinator must be either the �rst

or second infected process, however, and so the infection still spreads rapidly even when the

coordinator is not initially infected.

For example, at multicast m = 25, one must allow all of n = 4 processes to be infected, but

six of seven, seven of ten, and 17 of 30 processes to be infected.

� With the Ring strategy, each process sends nn

0

messages in both systems. Hence, the infection

rate is relatively insensitive to n. There are runs in the second system in which more processes

are infected for small values of m just because there are more processes that can be infected,

but these runs are very rare for small values of p

infect

.

Again, at multicast m = 25, one must allow all of n = 4 processes to be infected, but six of

seven, six of ten, and only six of 30 processes to be infected.

n = 4 7 10 30 remarks

CC 20 39 53 93

Peer 26 48 68 > 100 H

peer

(�; a; 100) = 27

Ring 11 35 57 � 100 H

ring

(�; a; 100) = 15

Ring would seem to fare best

as system size increases, and

Coordinator-cohort worst. The ta-

ble on the left is extracted from

Figure 3. It indicates the multicast at which the last of n processes becomes infected while ensuring

that a = 0:999995. For masking-based strategies, the table immediately below, also taken from

Figure 3,

f=n = 2=4 4=7 6=10 16=30

CC 2 10 15 23

Peer 2 15 22 56

Ring 2 12 17 > 100

indicates the multicast at which b

n

2

c+ 1 processes be-

come infected while maintaining a = 0:999995. While

all strategies fare nearly equally for small system sizes,

Ring shows a marked advantage for n = 30.

This comes at a cost: the time to complete a single multicast increases linearly with n as well.

4.3 E�ect of Securing the Coordinator

In Coordinator-cohort, the infection rate greatly depends on whether the coordinator or a cohort is

the initially infected process. For example, in Figure 2 the values for 1 � m � 6 are unusually large

8



precisely because they re
ect runs in which the coordinator is initially infected. If it is not initially

infected, it will not become infected, on average, until the initially infected process has initiated

1=p

infect

multicasts. In all such cases, the coordinator becomes the second infected process, and this

accounts for the tail of the distribution in Figure 2. Clearly, one expects availability to increase by

securing the coordinator. Figure 4 bears this out; it shows that the Coordinator-safe strategy is

more resilient than even Peer. Not surprisingly, it seems wise to invest in the security of a static

coordinator; this is be less expensive than securing all entities in the system, in addition to being

easier to monitor and maintain.

Unfortunately, these gains are short-lived and do not scale with system size (Figure 5); while

the H

c�safe

= 1 step endures longer than H

peer

and H

ring

, by multicast m = 18 Coordinator-safe

has become, and thereafter remains, far worse than either.

4.4 E�ect of Varying Desired Availability

For all strategies, lessening the desired availability means that more multicasts can be completed

before the number of infected processes must increase. However, some strategies are more sensitive

to these changes than others, to the extent that strategies' relative resilience changes. While a

tight availability of a = 0:999995 favors Peer over Coordinator-cohort, (Figure 1), if a � 0:999975

is acceptable, then the reverse is true; Coordinator-safe is still the absolute best. Coordinator-

cohort and Coordinator-safe show large improvements across the range of decreased availability;

Ring, at the other extreme shows the least improvement throughout the range.

a = 0:999995 0:999970 improvement

CC 39 95 144%

Peer 48 87 81%

Ring 35 59 69%

C-safe 57 119 109%

For � =< 7; 0:0001; 0:04 >, the accom-

panying table indicates the multicast at

which H(�; a;m) = 7 for a = 0:999995

and a = 0:999970.

The edge experienced by Coordinator-based strategies for low availabilities is attributable to

the increased importance of any cohort, as opposed to the coordinator, being the initially infected

process. The infected cohort sends only one message in each group of n multicasts whereas in Peer,

the initially infected process sends n� 1 messages (in each group of n multicasts), and in Ring it

sends n. With lower availabilities, this discrepancy becomes visible.

The improvement in the Coordinator-based strategies prompts a further inquiry into the e�ect

of system size, this time coupled with decreased desired availability. Coordinator-cohort shows

a tremendous improvement with respect to its own performance at tight availability (compare

Figure 3 with Figure 6). For as long as 67 multicasts, one only has to allow 1 of 30 processes to

be infected to maintain a = 0:9999975. After that, unfortunately, nearly one more infected process

per multicast has to be allowed to maintain the same availability.

5 Conclusions and Future Work

In this paper, we examined a model of how the e�ects of intrusion spreads through a system. Our

model is based on a simple notion of spreading: a compromised process can compromise another

process by sending it a message, but it is only successful in doing so (that is, in generating an

9



infective message) with a given probability p

infect

. Each attempt to generate an infective message

is independent.

This simple model of infection is, in some cases, may not be appropriate. For example, the

Morris Internet Worm [12] had a �xed set of tricks that it used to try to replicate itself. In this

case, a more appropriate model would have p

infect

drop rapidly with time. For another example,

many sites run the same operating system on many machines. If the infected process is able to

exploit a trap door in one process, then it should be able to do the same for a large number of

processes. In this case, if one message a process sends during a given multicast is infective, then

most of the messages it sends during that multicast are infective. We are interested in exploring

these models of infection.

There have been several recent protocols that treat compromised processes as being arbitrarily

faulty as a basis to mask their e�ects. The results in this paper are a step towards understanding

when such protocols can, in fact, be used. However, we have abstracted the message 
ow of

multicast protocols to a degree that the results are not immediately applicable. To be applicable,

one would need to choose speci�c protocols and to re�ne the infection model. Such research would

generalize the work done on reliability for reliable multicast protocols (for example, [1]), and is an

obvious next step for us.

Our model is also applicable to mobile agent systems, in which an infective message is equivalent

to a malicious mobile agent. The results of this paper suggest that if one wishes to allow for the

collection of information in a large network, then the mobile agents should be forced to visit the

landing pads in a �xed sequence. This raises the question of how landing pads could cooperate to

enforce an ordering on the sequence of landing pads an agent visits. This also begs the question of

the e�ect of compromised landing pads. Assuming that an compromised landing pad can change

the information that an agent carries, the best strategy a non-malicious agent should adopt is to

send independent copies of itself to all landing pads. It would be interesting to see how these two

goals, protection against malicious agents and compromised landing pads, could be balanced.

References

[1]

�

O. Babao�glu, \On the reliability of consensus-based fault-tolerant distributed computing sys-

tems", in ACM Transactions on Computer Systems, vol. 5, pp. 394{416, 1987.

[2] N. T. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, second

edition, Oxford University Press, 1975.

[3] K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE

Computer Society Press, 1994.

[4] K. P. Birman and R. van Renesse, \Software for Reliable Networks," Scienti�c American, May

1996.

[5] A. Demers et al., \Epidemic Algorithms for Replicated Database Maintenance,"

[6] L. Lamport, R. Shostak and M. Pease, \The Byzantine Generals Problem," in ACM Transac-

tions on Programming Languages and Systems, vol. 4, pp. 382{401, 1982.

10



[7] J. O. Kephart and S. R. White, \Measuring and Modeling Computer Virus Prevalence," in

Proc. of the 1993 Computer Society Symposium on Research in Security and Privacy, pp. 2{15,

1991.

[8] J. O. Kephart and S. R. White, \Directed-Graph Epidemiological Models of Computer

Viruses," in Proc. of the 1991 Computer Society Symposium on Research in Security and

Privacy, pp. 343{359, 1991.

[9] L. L. Peterson, N. Buchholz and R. D. Schlichting, \Preserving and Using Context Information

in Interprocess Communication," in ACM Transactions on Computer Systems, vol. 7, pp. 217{

246, 1989.

[10] L. E. Moser et al., \Totem: A Fault-Tolerant Multicast Group Communication System," in

Communications of the ACM, April 1996.

[11] M. K. Reiter, \Secure Agreement Protocols: Reliable and Atomic Group Multicast in Ram-

part," in Proc. of the 2nd ACM Conference on Computer and Communication Security, pp.

68{80, November 1994.

[12] D. Seeley, \A Tour of the Worm," in USENIX Conference Proceedings, pp. 287{304, Winter

1989.

11



Appendix of Graphs

0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

 m

 H
(σ

, 
a
, 
m

)

 n = 30, Pinit = 0.0001, Pinfect = 0.04, a = 0.999995

peer              

ring              

coordinator−cohort

Figure 3: E�ect on availability of increasing system size. � =< 7; 0:0001; 0:04 > a = 0:999995.

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

 m

 H
(σ

, 
a
, 
m

)

 n = 7, Pinit = 0.0001, Pinfect = 0.04, a = 0.999995

peer            

ring            

coordinator−safe

Figure 4: E�ect on availability of ensuring the coordinator is not initially infected.

� =< 7; 0:0001; 0:04 > a = 0:999995.

12



0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

 m

 H
(σ

, 
a
, 
m

)

 n = 30, Pinit = 0.0001, Pinfect = 0.04, a = 0.999995

peer            

ring            

coordinator−safe

Figure 5: The Coordinator-safe strategy for larger system sizes.

� =< 30; 0:0001; 0:04 > a = 0:999995.

0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

 m

 H
(σ

, 
a
, 
m

)

 n = 30, Pinit = 0.0001, Pinfect = 0.04, a = 0.999975

peer              

ring              

coordinator−cohort

Figure 6: Lower availability and larger systems. � =< 30; 0:0001; 0:04 > a = 0:999975.

13




