Lawrence Berkeley National Laboratory

Recent Work

Title

MASSES FOR 43Ar AND THE NEW ISOTOPES 45Ar AND 46Ar

Permalink

https://escholarship.org/uc/item/7xj4r2sn

Authors

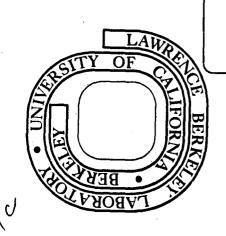
Jelley, N.A. Wilcox, K.H. Weisenmiller, R.B. <u>et al.</u>

Publication Date

1973-12-01

LBL-2329 Preprint c.d

MASSES FOR ⁴³Ar AND THE NEW ISOTOPES ⁴⁵Ar AND ⁴⁶Ar


N. A. Jelley, K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak and Joseph Cerny

December 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LBL-2329

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. MASSES FOR ⁴³Ar AND THE NEW ISOTOPES ⁴⁵Ar AND ⁴⁶Ar^{*}

N. A. Jelley, K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak, and Joseph Cerny

Department of Chemistry and Lawrence Berkeley Laboratory University of California Berkeley, California 94720

December 1973

Abstract:

The reactions $(\alpha, {}^{9}Be)$, $(\alpha, {}^{7}Be)$, and $({}^{6}Li, {}^{8}B)$ on ${}^{48}Ca$, at $E(\alpha) = 78 \text{ MeV}$ and $E({}^{6}Li) = 80 \text{ MeV}$, were used to determine the mass excesses of ${}^{43}Ar$ (-31.98 ± 0.07 MeV), ${}^{45}Ar$ (-29.727 ± 0.06 MeV), and ${}^{46}Ar$ (-29.732 ± 0.07 MeV) by counter telescope techniques. Excited states in ${}^{43}Ar$ at 1.74 ± 0.05, 2.55 ± 0.05, 3.56 ± 0.07, and 4.74 ± 0.10 MeV and in ${}^{45}Ar$ at 1.66 ± 0.05, 2.42 ± 0.05, and 3.25 ± 0.07 MeV were also observed. Comparisons are made with mass predictions calculated from simple mass relations based on the shell model and with those obtained from the Garvey and Kelson approach.

In the region of light nuclei (A < 50), masses of highly neutron-rich nuclides have been predicted by Garvey et al.¹ by extrapolating away from the valley of stability on the basis of an independent particle model description of nuclear ground states. A simple alternative approach² based on an extension of a j-j coupling shell model description³ for the ground states of even-even and even-odd nuclei, though not as general as that of Garvey et al.,¹ has recently^{2,4} been applied to describe successfully the masses of the known $T_z = 5/2$ nuclei in the s-d shell. Experiments that help determine the validity of the assumptions of either model are of importance in assessing the reliability of predictions of the particle stability of nuclei, and also in determining the significance of, for instance, the explicit neglect in both models of the effects of deformation.

Recent measurements⁵ of the masses of high-T_z sodium isotopes (²⁷Na to ³⁰Na) showed that there was considerable disagreement (> 1.4 MeV) between the revised predictions⁶ of Garvey <u>et al</u>.¹ and experiment for ²⁹Na and ³⁰Na. The very neutron-rich argon isotopes ⁴³Ar, ⁴⁵Ar, and ⁴⁶Ar also extend far from stability (T_z = 7/2 to 5), and their masses are of considerable interest not only as a means of investigating the effect of increasing neutron-excess on nuclear binding energies, but also because in this region the predictions of Garvey <u>et al</u>.¹ and those of the shell model differ significantly.

With a ⁴⁸Ca target we have successfully observed the (α , ⁹Be) reaction (Q = \sim -21 MeV), determining the previously unknown mass of ⁴³Ar⁷ and the excitation energies of several of its levels. By also detecting ⁷Be nuclei from the ⁴⁸Ca(α , ⁷Be) ⁴⁵Ar reaction (Q = \sim -28 MeV), excited states in ⁴⁵Ar and the mass of this new isotope were determined. Similarly, since the feasibility of employing the (⁶Li, ⁸B) two-proton transfer reaction as a means of studying neutron-rich nuclei has been demonstrated, ⁸ the ⁴⁸Ca(⁶Li, ⁸B) ⁴⁶Ar reaction (Q = \sim -23 MeV) was used to establish the mass of ⁴⁶Ar.

Beams of 77.7 MeV α -particles ($\sim 1 \ \mu$ A) and 80.1 MeV ⁶Li²⁺ ($\sim 100 \ n$ A) from the Lawrence Berkeley Laboratory 88-inch cyclotron were used to bombard a 96.25% isotopically enriched self-supporting ⁴⁸Ca target (410 μ g/cm²). In both experiments outgoing particles were detected by two counter telescopes located on opposite sides of the beam. For the detection of ⁷Be and ⁹Be nuclei the counter telescopes, each subtending a solid angle of 0.43 msr, consisted

-2-

of two transmission (ΔE) detectors 59 and 35 µm thick, a 260 µm E detector, and a 500 µm reject detector; for the (${}^{6}Li$, ${}^{8}B$) experiment the two ΔE detectors were 15 and 11 µm thick and the solid angle subtended was 0.64 msr. The method of data handling has been described previously⁴ and involves in part a comparison of two particle identification signals to reduce background; this comparison eliminated \sim 35% of the α and \sim 45% of the ${}^{6}Li$ induced events. During both experiments electronic and beam energy stability were monitored, and the beam energy was determined using a high-precision analyzing magnet.

Figure la shows a ⁷Be energy spectrum from ⁴⁸Ca obtained at $\theta_{lab} = 32^{\circ}$. Transitions arising from ¹²C and ¹⁶O contaminants in the target can be seen, as well as peaks (FWHM ~ 250 keV) corresponding to the ground state of ⁴⁵Ar and to a level at 3.25 MeV excitation. An energy calibration was obtained for the ⁷Be spectra by recording the ²⁸Si(α , ⁷Be)²⁵Mg and ⁴⁰Ca(α , ⁷Be)³⁷Ar reactions at intervals throughout the experiment. Adequate separation between the ⁷Be(g.s.) and ⁷Be*(0.429 MeV) transitions was obtained for (α , ⁷Be) on ²⁸Si, ⁴⁰Ca and ⁴⁸Ca, though not on ¹²C and ¹⁶O. Spectra at several angles between $\theta_{lab} = 28^{\circ}$ and 45° (see Fig. 1b) were collected, kinematically confirming observation of the reaction ⁴⁸Ca(α , ⁷Be)⁴⁵Ar, as well as enabling the region up to ⁵ MeV excitation to be seen. Over this angular range the crosssection to the ground state of ⁴⁵Ar varied between 1.4 and 0.5 µb/sr, and transitions to levels at 1.66 ± 0.05, 2.42 ± 0.05, and 3.25 ± 0.07 MeV excitation were identified. All states were seen at more than one angle.

For the ⁹Be spectra the ⁷Be energy calibration was used as a primary reference since it was well determined in the region of interest. Analysis of ⁹Be energy spectra from ¹²C and SiO₂ targets showed that the ground state of the residual nucleus was always populated. A ⁹Be energy spectrum from ⁴⁸Ca

° – 3–

at $\theta_{1ab} = 28^{\circ}$ is shown in Fig. 1c. Peaks are indicated corresponding to the ground state ($d\sigma/d\Omega \sim 100$ nb/sr) and excited states at 1.74 ± 0.05, 2.55 ± 0.05, and 3.56 ± 0.07 MeV excitation in ⁴³Ar. These and a state at 4.74 ± 0.10 MeV were all seen at more than one angle.

Large basis shell model calculations^{9,10} for ⁴³Ar and ⁴⁵Ar indicate an approximate similarity between the low-lying level spectra of ³⁹Ar and ⁴⁵Ar, and between ⁴¹Ar and ⁴³Ar, as would be expected on the basis of simple particlehole theorems. For ⁴⁵Ar the large level spacing we observe between the ground state and the lowest excited state is in qualitative agreement with the prediction that the excited states of ⁴⁵Ar begin above \sim 1 MeV. The predicted level density in ⁴³Ar compared with our observations implies that the ⁴⁸Ca(α , ⁹Be)⁴³Ar reaction is quite selective. A state at \sim 0.2 MeV excitation is predicted, with the next state at \sim 1 MeV; however, we have assumed on the basis of reaction systematics that the highest energy peak corresponds predominantly to population of the ground state of ⁴³Ar. (The below comparison of the ⁴³Ar ground state mass with either of the predicted values reinforces this assumption.)

For the ⁴⁸Ca(⁶Li,⁸B)⁴⁶Ar data, an energy calibration was obtained by periodically collecting spectra from a carbon target, and from the position of the ¹⁶O(⁶Li,⁸B)¹⁴C ground state peak arising from slight oxidation of the ⁴⁸Ca target. A ⁸B energy spectrum from ⁴⁸Ca at $\theta_{1ab} = 15^{\circ}$ is shown in Fig. 2a. Identification of the peaks followed from comparison with spectra taken at $\theta_{1ab} = 15^{\circ}$ on ⁴⁰Ca, ¹²C and SiO₂ (as an oxygen target). Spectra from ¹²C and SiO₂ are shown in Figs. 2b and 2c, respectively. (As was the case for the lighter targets, the level most strongly populated in the ⁴⁰Ca(⁶Li,⁸B)³⁸Ar reaction was the ground state.) Observed kinematic shifts between $\theta_{1ab} = 10^{\circ}$ and 17° provided additional confirmation of peak assignments. The cross-section to the ground

-4-

LBL-2329

state of ⁴⁶Ar was found to be $\sim 1 \ \mu$ b/sr at forward angles. No transitions to excited states of ⁴⁶Ar were observed; shell model calculations¹⁰ predict the first excited state to be at ~ 2 MeV excitation.

Analysis of the data gave the mass excesses of the argon isotopes as ${}^{43}\text{Ar} = -31.98 \pm 0.07 \text{ MeV}, {}^{45}\text{Ar} = -29.727 \pm 0.06 \text{ MeV}, \text{ and } {}^{46}\text{Ar} = -29.732 \pm 0.07 \text{ MeV},$ which are compared in Fig. 3 to the predictions of Garvey <u>et al</u>.¹ and to those based on a shell model description of nuclear ground states. A preliminary value¹¹ (-32.27 ± 0.04 MeV) for the mass excess of ${}^{44}\text{Ar}$ via the ${}^{48}\text{Ca}({}^{3}\text{He}, {}^{7}\text{Be}){}^{44}\text{Ar}$ reaction is also compared. In this shell model description, which is an extension of the approach given in the original work,³ the mass excess of a nucleus with m j-protons beyond a closed shell and n j'-neutrons filling a different shell, $M(\pi j^{m} \vee j^{n})$, is related simply to that of the nucleus with no j'-neutrons, $M(\pi j^{m})$, by the equation:

 $M(\pi j^{m} \vee j'^{n}) = M(\pi j^{m}) + n\alpha_{j'} + V(j'^{n}) + V(j^{m}, j')$

where α_{j} , denotes the sum of the kinetic energy and the interaction with the closed shells of each j'-neutron, V(j'ⁿ) their mutual interaction energy, and V(j^m, j'ⁿ) their interaction with the m j-protons. The value of V(j^m, j'ⁿ) simplifies considerably if no odd-odd nuclei are considered, depending then only on a single average interaction potential, V(jj'), through the relation $V(j^m, j'^n) = nm V(jj')$.^{1,12} With this restriction we have determined the 14 parameters $M(\pi j^m)$, $\alpha_{j'}$, $V(j'^n)$ and V(jj') for the 37 nuclei with $\pi d_{3/2} v f_{7/2}$ configurations by a least squares fit to the 24 known masses.¹³ The root mean square deviation between the fitted and experimental values is 85 keV. The predicted values for the mass excesses of the high-T_z argon isotopes are 43 Ar = -31.78, 44 Ar = -32.35, 45 Ar = -29.69, and 46 Ar = -29.72 MeV.

-5-

As can be seen in Fig. 3, these predicted values agree well with the observed mass excesses of the argon isotopes. However, significant discrepancies between experiment and the predictions of Garvey <u>et al.</u>¹ are observed for ⁴⁴Ar (490 keV) and ⁴⁶Ar (750 keV). It will be particularly interesting to compare these measurements, both of masses and of excitation energies, with the results of large basis shell model calculations.¹⁰ It would appear, though, that the above shell model approach² to masses may be useful as an alternate predictive scheme for experimentalists studying highly neutron-rich light nuclei.

We would like to thank Dr. Creve Maples very much for writing the multiparameter analysis program, and Drs. R. D. Lawson and S. Maripuu for communicating results from their calculations on $^{43-46}$ Ar.

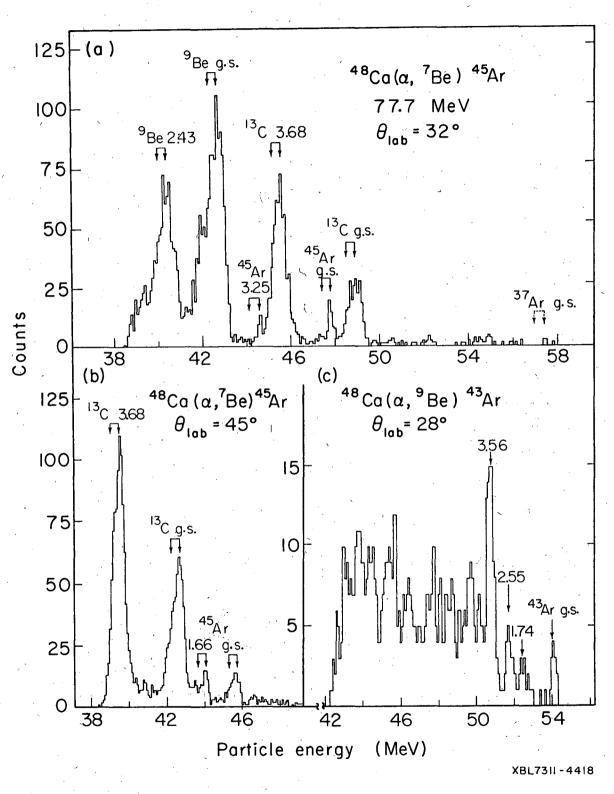
FOOTNOTES AND REFERENCES

ő

Wo	rk performed under the auspices of the U.S. Atomic Energy Commission.
1.	G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod.
	Phys. <u>41</u> , S1 (1969).
2.	N. A. Jelley, K. H. Wilcox, and J. Cerny, to be published.
3.	S. Goldstein and I. Talmi, Phys. Rev. 105, 995 (1957).
4.	K. H. Wilcox, N. A. Jelley, G. J. Wozniak, R. B. Weisenmiller, H. L. Harney,
	and J. Cerny, Phys. Rev. Letters <u>30</u> , 866 (1973).
5.	R. Klapisch, R. Prieels, C. Thibault, A. M. Poskanzer, C. Rigaud, and
	E. Roechl, Phys. Rev. Letters <u>31</u> , 118 (1973).
6.	C. Thibault and R. Klapisch, Phys. Rev. <u>C6</u> , 1509 (1972).
7.	J. Hudis, E. Hagebø, and P. Patzelt, Nucl. Phys. A151, 634 (1970), and
	references therein.
8.	J. Cerny, R. B. Weisenmiller, N. A. Jelley, K. H. Wilcox, and G. J. Wozniak,
	Proc. of the Int. Conf. on Nuclear Physics, Munich (1973), Vol. 1, ed. by
	J. de Boer and H. J. Mang (North-Holland/American Elsevier), p. 465.
9.	A. O. Evwaraye and S. Maripuu, Bull. Am. Phys. Soc. <u>18</u> , 577 (1973), and
	private communication.
10.	D. H. Gloeckner, R. D. Lawson, and F. J. D. Serduke, submitted to Phys. Rev. Letters.
11.	W. F. Steele, G. M. Crawley, and S. Maripuu, MSU Cyclotron Laboratory Report
	Number 98 (1973).
12.	A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic Press Inc., New
	York, 1963).
13.	A. H. Wapstra and N. B. Gove, Nucl. Data Tables 9, 265 (1971).

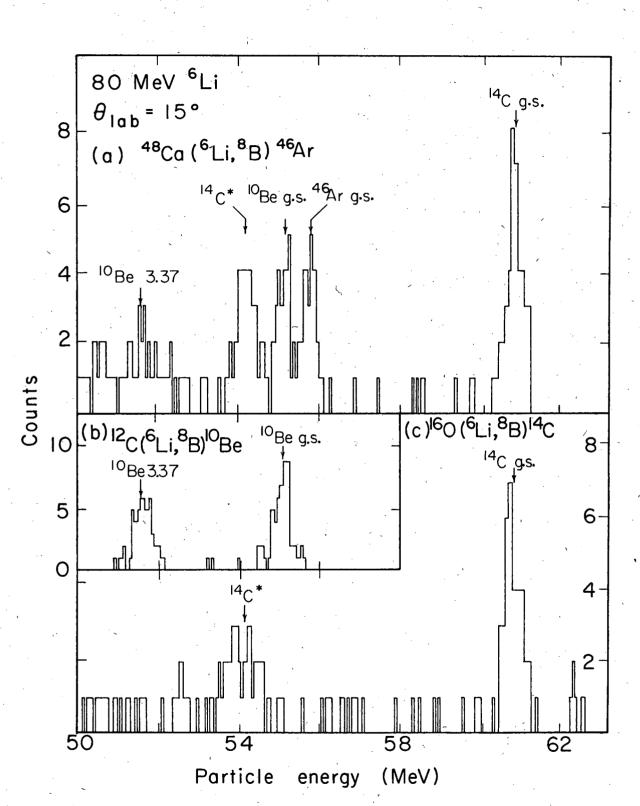
-7-

FIGURE CAPTIONS


Fig. 1. (a) An energy spectrum from the reaction ${}^{48}Ca(\alpha, {}^{7}Be){}^{45}Ar$ at $\theta_{lab} = 32^{\circ}$ (7250 µcoul). The double arrows represent ${}^{7}Be(g.s.)$ and ${}^{7}Be*(0.429 \text{ MeV})$ transitions.

(b) As (a) but taken at $\theta_{lab} = 45^{\circ}$ (30,000 µcoul).

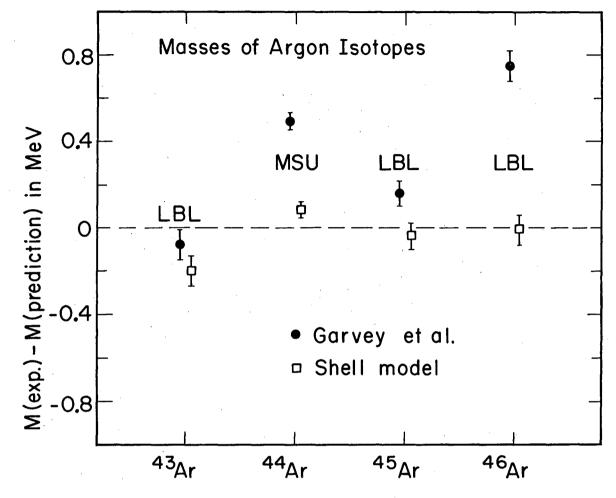
(c) A composite spectrum of data taken with one counter telescope at $\theta_{lab} = \pm 28^{\circ}$ from the reaction ${}^{48}Ca(\alpha, {}^{9}Be){}^{43}Ar$ (17,000 µcoul). Contributions to this spectrum from the ($\alpha, {}^{9}Be$) reaction on ${}^{12}C$ and ${}^{16}O$ fall below ~ 46 MeV. Fig. 2. Energy spectra from the (${}^{6}Li, {}^{8}B$) reaction taken at $\theta_{lab} = 15^{\circ}$ on (a) ${}^{48}Ca$ (6300 µcoul), (b) ${}^{12}C$, and (c) ${}^{16}O$; all are displayed with the same ${}^{8}B$ energy scale.


Fig. 3. Comparison of the difference between the measured mass excesses and predictions for the argon isotopes, 43-46 Ar.

LBL-2329

-9-

Fig. l



-10-

XBL7311-4417

LBL-2329

Fig. 2

XBL7311-4564

-LEGAL NOTICE-

3

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

🛥 2 🔹 🔺

.

* .* *

.