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SUMMARY

Zika virus (ZIKV) infection is implicated in severe fetal developmental disorders, including 

microcephaly. MicroRNAs (miRNAs) post-transcriptionally regulate numerous processes 

associated with viral infection and neurodegeneration, but their contribution to ZIKV pathogenesis 
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is unclear. We analyzed the mRNA and miRNA transcriptomes of human neuronal stem cells 

(hNSCs) during infection with ZIKV MR766 and Paraiba strains. Integration of the miRNA and 

mRNA expression data into regulatory interaction networks showed that ZIKV infection resulted 

in miRNA-mediated repression of genes regulating the cell cycle, stem cell maintenance, and 

neurogenesis. Bioinformatics analysis of Argonaute-bound RNAs in ZIKV-infected hNSCs 

identified a number of miRNAs with predicted involvement in microcephaly, including miR-124–
3p, which dysregulates NSC maintenance through repression of the transferrin receptor (TFRC). 

Consistent with this, ZIKV infection upregulated miR-124–3p and downregulated TFRC mRNA 

in ZIKV-infected hNSCs and mouse brain tissue. These data provide insights into the roles of 

miRNAs in ZIKV pathogenesis, particularly the microcephaly phenotype.

Graphical Abstract

In Brief

Dang et al. investigate the dysregulation of miRNAs in Zika-virus-infected neural stem cells and 

identify miR-124–3p as a potential regulator of Zika-virus-mediated microcephaly.

INTRODUCTION

Zika virus (ZIKV) is a re-emerging arbovirus belonging to the Flaviviridae family and has 

recently been linked to severe fetal abnormalities, including microcephaly and fetal growth 

restriction (Brasil et al., 2016; Lazear and Diamond, 2016; Sarno et al., 2016). In vitro and 

in vivo studies have shown that ZIKV preferentially infects neuronal stem and/or progenitor 
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cells and immature neurons in the developing brain and dysregulates processes involved in 

cell-cycle progression, differentiation, apoptosis, autophagy, and immune activation (Cugola 

et al., 2016; Dang et al., 2016; Li et al., 2016a, 2016b; Liang et al., 2016; Tang et al., 2016). 

However, the molecular mechanisms by which ZIKV perturbs the transcriptomic landscape 

or leads to microcephaly are not well understood.

MicroRNAs (miRNAs) are a class of small non-coding RNAs (~22 nt in length) that play 

critical roles in regulating protein expression. miRNAs act post-transcriptionally by binding 

to partially complementary sites in the 3′ UTR of target mRNAs. This sequence-specific 

interaction leads to translational repression or mRNA degradation through Argonaute 

proteins within the RNA-induced silencing complex (RISC), which cleave the mRNA and 

recruit other proteins that repress translation or promote degradation. The mRNA targeting 

specificity of miRNAs is controlled by many factors, including base pairing between the 

miRNA 5′ seed sequence and mRNA 3′-UTR sequence, cooperativity between multiple 

miRNA-binding sites, and the position of miRNA-binding sites in the targeted mRNA 

(Agarwal et al., 2015; Ambros, 2004; Bartel, 2009; Cloney, 2016; Grimson et al., 2007; 

Lewis et al., 2005; Pasquinelli, 2012). This flexibility means that individual miRNAs are 

capable of repressing the translation of hundreds of target mRNAs (Baek et al., 2008; 

Selbach et al., 2008). As a result, miRNAs are known to play pivotal roles in the post-

transcriptional regulation of numerous biological processes.

Little is currently known about the role of miRNAs in ZIKV pathogenesis and microcephaly. 

Given their documented roles in regulating neurodegeneration, viral infection, and innate 

immunity (Eacker et al., 2009; Lanford et al., 2010; Liu et al., 2012; O’Connell et al., 2010; 

Sullivan and Ganem, 2005; Taganov et al., 2006; Wang et al., 2006), we hypothesized that 

miRNAs may play a significant role in ZIKV pathogenesis, particularly the effects on the 

developing brain. Here, we report that ZIKV infection dysregulates both coding gene and 

miRNA transcriptomes of human neuronal stem cells (hNSCs). We performed meta-analyses 

and constructed regulatory interaction networks to integrate the miRNA and mRNA 

expression data, with the goal of shedding light on the potential role of miRNA-mediated 

target gene repression during ZIKV infection. We identified a number of miRNAs, including 

let-7c and miR-124–3p, that mediate the suppression of gene networks involved in cell-cycle 

progression and stem cell maintenance. Collectively, our data provide insight into the 

function of miRNA-regulated networks in ZIKV-induced pathogenesis, particularly as it 

pertains to microcephaly.

RESULTS

ZIKV MR766 and Paraiba Modulate the mRNA Transcriptome of hNSCs

To investigate the role of miRNAs during ZIKV pathogenesis, we performed next-generation 

sequencing of RNA isolated from hNSCs infected with ZIKV strains MR766 (African 

origin) and Paraiba (Brazilian origin) for 3 days (Figure 1A). Consistent with previous 

studies showing that ZIKV strains show differences in rates of viral replication (Cugola et 

al., 2016; Simonin et al., 2016), we found ~10-fold higher levels of infection with MR766 

than with Paraiba on the first 3 days after inoculation of hNSCs at the same MOI of 1, as 

demonstrated by qRT-PCR analysis of ZIKV RNA (Figure 1B). Immunostaining of ZIKV 
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envelope protein (ZIKVE) (Figure 1C) further confirmed higher rates of infection, with 

MR766 infecting approximately 70% of cells and Paraiba infecting ~30% after 3 days post-

inoculation. In addition, we confirmed that ZIKV MR766 produces ~6-fold more infectious 

viral particles than does ZIKV Paraiba in plaque-forming assays (Figure S1A).

The Paraiba strain had a less significant impact on gene expression in hNSCs, suggesting an 

overall lower rate of infection as previously indicated (Figures 1B and 1D; Tables S1 and 

S2). ZIKV MR766 significantly upregulated 1,159 genes and downregulated 1,120 genes 

(Figures 1D and 1E), compared with only 112 and 178 genes that were significantly 

upregulated and downregulated, respectively, in ZIKV Paraiba-infected hNSCs (Figures 1D 

and 1F). In addition, we identified a total of 52 and 52 genes that were commonly 

upregulated and downregulated, respectively, in both MR766- and Paraiba-infected cells 

(Figure 1D).

We next performed gene set enrichment analysis (GSEA) of the differentially expressed 

genes. In MR766-infected hNSCs, the upregulated genes were enriched in functions related 

to chromosome organization and cell-cycle processes (Figure S1B), whereas the 

downregulated genes were involved in gene expression, biosynthetic processes, and cell 

death (Figure S1C). The processes most affected by MR766 infection were those governing 

chromosome organization, metabolism, cell cycle, and cell stress (Figure S1D), which is 

consistent with previous reports (Tang et al., 2016). In contrast, the upregulated and 

downregulated genes in Paraiba-infected hNSCs were all largely related to metabolism and 

biosynthetic processes, with additional enrichment of genes involved in tissue development 

and neurogenesis (Figures S1E–S1G).

We considered that the transcriptomic differences induced by ZIKV MR766 and Paraiba 

might be a consequence of their differing infection rates. Therefore, we infected hNSCs with 

MR766 at an MOI of 1 for 2 days or with Paraiba at MOIs of 1 or 3 for 2 or 4 days. We then 

analyzed the top 20 most differentially expressed genes between both strains to assess their 

similarity as a function of MOI and time point (Figure 1G). Indeed, we found that the 

Paraiba- and MR766-induced differential gene expression profiles became increasingly 

similar as the Paraiba MOI and time post-infection increased, indicating that the differential 

pattern of gene expression was a reflection of the infection level rather than the strain per se.

Collectively, these findings indicate that ZIKV MR766 infection and Paraiba infection of 

hNSCs cause dysregulation of a number of pathways involved in neurogenesis, suggesting 

that they may contribute to the microcephaly phenotype.

miRNAs Regulate Processes Implicated in ZIKV-Induced Microcephaly

Because miRNAs are potent post-transcriptional regulators, we examined their contribution 

to the changes in the transcriptome of ZIKV-infected hNSCs. We profiled differential 

miRNA expression at 3 days post-infection by microRNA sequencing (miRNA-seq) 

(Figures 2A–2C; Table S3). Although ZIKV MR766 induced a more robust change in the 

mRNA transcriptome than did Paraiba infection (as described earlier), ZIKV Paraiba 

induced a significantly greater change in miRNAs, in terms of both quantity and magnitude, 

likely due to the differing rates of viral replication within neural stem cells. Interestingly, we 
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observed more differentially expressed mRNAs during MR766 viral infection but fewer 

differentially expressed miRNAs.

To understand the potential mechanistic roles of miRNAs in ZIKV infection and the 

associated neurodegenerative pathology, we utilized the predictive algorithms TargetScan 

(Agarwal et al., 2015), miRANDA (Betel et al., 2008), and miRTarBase (Chou et al., 2016) 

to identify putative mRNA targets of the differentially expressed miRNAs. These algorithms 

evaluate target seed sequence pairing, site numbers, conservation, and site context scores to 

predict targets with high confidence. To identify miRNA-mRNA interactions that may be 

regulated by ZIKV infection, we then cross-checked the list of putative mRNA targets with 

the mRNAs shown to be most significantly altered by ZIKV infection of hNSCs. GSEA of 

the dataset indicated that mRNAs satisfying both criteria (i.e., directly modulated by ZIKV 

infection and putative targets of differentially expressed miRNAs) were enriched in 

functions related to transcriptional regulation, metabolism, cellular stress response, cell 

cycle, tissue development, neurogenesis and nervous system development, cell death, and 

neuron differentiation (Figure 2D). Using qRT-PCR, we validated these data by confirming 

that ZIKV infection down-regulates NESTIN and PAX6 expression, both of which are 

involved in NSC maintenance (Figure S2A). Similarly, analysis of the datasets from ZIKV 

Paraiba-infected cells also identified mRNAs likely to be involved in processes related to 

metabolism, tissue development, neurogenesis, and neuron differentiation (Figure 2E). 

These data indicate that pathways potentially involved in neurodegeneration feature 

prominently among the host miRNA-mRNA networks dysregulated by infection of hNSCs 

with both ZIKV MR766 and Paraiba.

To more precisely map the miRNA-regulated pathways that may contribute to ZIKV 

pathogenesis, we constructed integrative networks of the ZIKV-modulated miRNAs and 

miRNA-regulated mRNAs. Genes that were downregulated by ZIKV infection and enriched 

in gene ontology (GO) functions related to ‘‘cell cycle’’ and ‘‘G1/S transition,’’ ‘‘defense 

response to virus,’’ and ‘‘brain development’’ (Figure 2F, blue hexagons) were cross-

referenced with potential miRNA regulators concomitantly upregulated upon ZIKV 

infection (Figure 2F, red circles). Likewise, genes that were upregulated by ZIKV infection 

and enriched in ‘‘viral process,’’ ‘‘apoptosis,’’ ‘‘NF-κB (nuclear factor κB) signaling,’’ and 

‘‘cell cycle arrest’’ were cross-referenced with potential miRNA regulators concomitantly 

downregulated by ZIKV infection (Figure S2B). These networks indicate that some 

differentially expressed mRNAs–such as TP53 or CDK6–may be derepressed, and thereby 

upregulated following infection, due to the downregulation of multiple putative miRNAs. 

The miRNAs identified from these analyses included many with functions relevant to the 

pathogenic ZIKV phenotype, including G1/S transition, defense response to virus, brain 

development (Figure 2F), viral process, apoptosis, NF-κB signaling, and cell-cycle arrest 

(Figure S2B). We also generated networks of miRNA targets downregulated by ZIKV 

(Figure S2C) and grouped them by their GO function (Figure S2D). With these analyses, we 

observed downregulated genes involved in biological processes, including nervous system 

development, cell-cycle transition, and DNA damage repair. Collectively, these interaction 

networks identify a number of miRNAs and mRNAs perturbed during ZIKV infection. 

Further studies including gain and loss of function should be performed to assess the ability 
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of ZIKV to dysregulate multiple miRNAs with effects on the same target mRNA (Figure 

2F).

AGO-iCLIP-Seq Identifies Dysregulated miRNA-mRNA Interactions in ZIKV-Infected hNSCs

miRNAs contribute to post-transcriptional regulation of gene expression by associating with 

Argonaute proteins (AGOs) to repress target gene expression through either mRNA 

degradation or translational repression within the RISC. Differential expression of miRNAs 

during viral infection may hint at an important role in viral pathogenesis; however, it does 

not necessarily indicate a biological function. Thus, to further elucidate the role of miRNA-

mRNA networks in ZIKV infection of hNSCs, we performed Argonaute crosslinking and 

immunoprecipitation followed by sequencing (AGO-iCLIP-seq), which identifies miRNAs 

and mRNAs bound to AGOs within the RISC (Chi et al., 2009; Haecker et al., 2012; Hafner 

et al., 2010; König et al., 2010, 2011). To accomplish this, neural stem cells were infected 

with Paraiba isolates at MOI 1 for 4 days to achieve higher viral titers without significant 

cell loss and UV crosslinked to covalently bind RNA-protein complexes. Lysates were 

treated with RNase T1 and immunoprecipitated with a pan-AGO-specific monoclonal 

antibody to identify all miRNAs and target mRNAs within the RISC following stringent 

high salt washes. Libraries were generated and sequenced to identify miRNAs and target 

mRNAs with single-nucleotide resolution. Moreover, AGO-iCLIP-seq may identify 

biologically significant miRNAs whose expression levels are not changed during viral 

infection but show greater loading in the RISC or have non-canonical binding sites outside 

of the 3′ UTR. Furthermore, miRNAs may post-transcriptionally regulate gene expression 

through various processes, including mRNA degradation and translational repression, both 

pathways of which are mediated though the association with RISC and AGO. Thus, through 

analyzing RNAs bound by AGO using AGO-iCLIP-seq, we can address both mRNA 

degradation and translational repression, which may not necessarily be reflected in RNA-

sequencing (RNA-seq) data.

As expected, AGO-associated material from cells was enriched in putative miRNA-binding 

sites within mRNA 3′ UTRs rather than 5′ UTRs or the coding region of a gene (CDS) of 

cellular mRNAs (Figure S3A). Interestingly, in ZIKV-infected neural stem cells, we 

identified many sequences bound to AGO throughout the ZIKV genome (Figure 3A), 

suggesting that ZIKV gene expression is regulated by host miRNAs. Further experiments 

should be performed to determine the possible role of miRNAs in targeting viral UTRs as an 

antiviral host response during ZIKV infection. ZIKV is known to dysregulate many host 

pathways at the RNA and protein levels, including autophagy via AKT/mTOR signaling 

(Liang et al., 2016), mitosis (Onorati et al., 2016), and splicing (Hu et al., 2017); thus, we 

did not observe a clear correlation between ZIKV-induced miRNA expression, mRNA target 

expression, and AGO binding at a transcriptome level. However, there are cases in which 

miRNA-seq and AGO-iCLIP-seq data are correlated. For example, the miRNA-seq results 

indicate that miR-1246 and miR-335 are both upregulated during ZIKV infection and show 

enhanced binding to AGO (Figures S3B and S3C). Conversely, expression of miR-129–2 

and miR-139 was decreased following ZIKV Paraiba infection, which is consistent with 

their attenuated binding to AGO (Figures S3D and S3E).
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Because ZIKV is able to dysregulate many different pathways, we wanted to identify 

miRNAs specifically targeting genes relevant to microcephaly by repressing host gene 

expression. For this, the miRNA-seq and AGO datasets were screened against the 

Harmonizome database (Rouillard et al., 2016), which ranks miRNAs using an aggregate 

score based on putative target genes associated with microcephaly, curated from the 

Comparative Toxicogenomics Database (Davis et al., 2017). This analysis identified a 

number of miRNAs potentially regulating genes significant to microcephaly, from which we 

selected two, hsa-let-7c and miR-124–3p, for more detailed investigation (Figure 3B).

We first analyzed the potential role of let-7c in ZIKV pathogenesis because of its well-

known role in regulating stem cell self-renewal (Büssing et al., 2008; Melton et al., 2010). 

We confirmed that ZIKV infection did, indeed, upregulate let-7c expression (Figure 3C) and 

AGO binding (Figure 3D), although this change was only significant for ZIKV Paraiba-

infected cells under the conditions used here. Since the let-7c target gene high-mobility 

group AT-hook 2 (HMGA2) has previously been shown to govern self-renewal of NSCs 

(Nishino et al., 2008), we analyzed HMGA2 expression and binding of AGO to the HMGA2 
3′ UTR following ZIKV infection. Consistent with previous data (Yu et al., 2015) and 

TargetScan predictions, we observed increased AGO binding to sequences in the HMGA2 3′ 
UTR (Figure 3E) and downregulation of HMGA2 mRNA levels (Figure 3F) upon ZIKV 

infection. These data, therefore, suggest that ZIKV induces let-7c transcription and 

downregulation of its target genes, including the established regulator of NSC renewal, 

HMGA2.

The Harmonizome database analysis also predicted miR-124–3p to be involved in the ZIKV-

induced microcephaly phenotype (Figure S4A). Similar to let-7c, this mRNA also shows a 

slight, although not statistically significant, upregulated expression (Figure S4B) but an 

increased association with AGO (Figure S4C) after ZIKV infection of hNSCs. Since no 

miR-124–3p targets with potential functions in neural stem cell biology or ZIKV 

pathogenesis have yet been identified, we looked for genes that were significantly 

downregulated by ZIKV Paraiba and MR766 infection of hNSCs and are also predicted 

target genes of miR-124–3p (Figure S4D). We selected the transferrin receptor (TFRC) from 

the 8 potential target genes identified–FLRT3, LAMC1, NRCAM, TFRC, C3orf58, NRP1, 

TXNRD1, and RCAN1–for further analysis, since it has known roles in stem cell self-

renewal (Schonberg et al., 2015). Moreover, TFRC shows high species conservation of the 

putative miR-124-3p-binding site, suggesting that its regulation by miR-124–3p has an 

important function (Figures S4E and S4F). Notably, ZIKV infection of hNSCs resulted in 

increased AGO binding at the TFRC 3′ UTR and in a concomitant decrease in TFRC 
mRNA levels (Figures 4A and 4B).

We next sought to confirm the relevance of our findings in vivo using Ifnar1−/− mice. Six 

days after ZIKV infection, the mice were sacrificed, and the brains were removed, sectioned, 

and stained for ZIKVE and neuronal cell markers to identify infected cells. We found that 

the ZIKVE colocalized with the NSC marker SOX2 in the hippocampus and subventricular 

zone regions (Figures S4G and S4H), consistent with previous reports (Li et al., 2016a, 

2016b) that ZIKV preferentially infects these cells. Moreover, qRT-PCR analysis of brain 

tissue confirmed that TFRC mRNA levels were downregulated in the infected, compared 
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with uninfected, mice (Figure 4C). Thus, we have identified two miRNA-mRNA interactions 

that could contribute to the neurodegenerative phenotype induced by ZIKV infection.

Potential Role for miR-124–3p–TFRC Interactions in the Maintenance of NSCs In Vivo

To investigate the role of miR-124–3p and its putative target TFRC in ZIKV-mediated 

microcephaly, neurosphere growth kinetics were evaluated (Dang et al., 2016; Tiwari et al., 

2014b) following miR-124–3p overexpression and TFRC knockdown. miR-124 mimic 

overexpression downregulated TFRC mRNA level (Figure 4D) and reduced the size of 

neurospheres, as compared to scrambled miRNA transfected samples (Figures 4E and 4F). 

Similarly, knockdown of TFRC by small interfering RNA (siRNA) in hNSC-derived 

neurospheres resulted in attenuated neurosphere size, as compared to a scrambled control 

group, consistent with miR-124–3p overexpression (Figures 4G–4I).

Next, the direct interaction between miR-124–3p and TFRC was investigated, using a dual 

luciferase assay containing the TFRC 3′ UTR and miRNA seed sequence target site. To 

validate whether miR-124–3p targets TFRC through this putative miR-124–3p binding site 

in the 3′ UTR, we utilized a luciferase reporter construct (pGL3) in which the human TFRC 

3′ UTR, containing either a wild-type (WT) or mutant miR-124–3p binding sequence, was 

placed immediately downstream of the luciferase gene. 293FT cells were co-transfected with 

WT or mutant type (Mut) reporter constructs with miR-124–3p mimics and pRLuc null 

plasmid expressing Renilla luciferase. Luciferase reporter activity of WT constructs was 

significantly reduced in cells co-transfected with miR-124–3p (Figure 4J). However, 

luciferase activity was not abolished in reporter constructs containing the mutant target 

sequence, indicating that miR-124–3p represses TFRC expression by specifically binding to 

the predicted target sites in the 3′ UTR of TFRC (Figure 4J).

To gain insight into the mechanism by which TFRC downregulation might affect NSCs, we 

examined the effects of siRNA-mediated TFRC knockdown in hNSCs on TFRC target genes 

involved in cell-cycle regulation. Several studies have shown that TFR plays a role in 

glioblastoma stem cell proliferation and self-renewal through the FOXM1 transcriptional 

regulatory signaling loop, which decreases the expression of cell-cycle genes (Schonberg et 

al., 2015; Silvestroff et al., 2013). Notably, we found that siRNA-mediated knockdown of 

TFRC or ZIKV infection decreased the expression of FOXM1 as well as down-stream 

targets of the FOXM1 regulatory axis–AURKA, CCNB2, CDC25A, CDK1, CENPF, 

MELK, and PLK1–which play important roles in cell-cycle regulation (Figure 4K).

Collectively, the results presented here shed light on the functional role of miRNAs, 

particularly miR-124–3p, in post-transcriptional regulation of ZIKV-infected hNSCs and the 

associated microcephaly phenotype.

DISCUSSION

In this study, we performed integrative analyses of coding and non-coding transcriptomes in 

hNSCs, which revealed miRNA-mRNA networks that may be dysregulated during ZIKV 

infection and may contribute to the microcephaly phenotype. Analysis of the dynamic 

transcriptomic landscape and RNAs bound to AGO following ZIKV infection revealed the 
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dysregulation of genes associated with cell cycle, neurogenesis, stem cell maintenance, and 

metabolism. While previous studies have shown that ZIKV-induced perturbation of cell 

cycle, neurogenesis, and stem-cell-related processes contributes to the microcephaly 

phenotype, only a few mechanisms have been proposed to explain how ZIKV modulates 

these pathways (Dang et al., 2016; Gabriel et al., 2017; Hamel et al., 2015; Li et al., 2016a; 

Liang et al., 2016; Onorati et al., 2016; Tang et al., 2016). Our findings point to miRNA-

mediated dysregulated gene expression as a potential contributing factor to the microcephaly 

phenotype.

One key finding from analysis of miRNA-mRNA networks in ZIKV-infected cells is that 

multiple differentially expressed miRNAs may potentially regulate the same mRNA targets 

implicated in microcephaly. For instance, miR-125a-3p and miR-125a-5p, which were 

upregulated by ZIKV infection, are both negative regulators of MAVS, an essential signaling 

protein in the RIG-I and type I interferon (IFN) response pathways of the innate immune 

system (Baril et al., 2009). miR-320c and miR-7–5p, also upregulated by ZIKV, target 

SIN3A mRNA, which encodes a STAT3-interacting repressor with an essential role in the 

IFN-mediated antiviral response (Icardi et al., 2012). Previous work showed that ZIKV 

inhibits type I IFN production through a mechanism involving ZIKV NS5 binding to STAT2 

to promote its proteasomal degradation (Grant et al., 2016; Kumar et al., 2016). Thus, our 

findings reveal a potential mechanism by which miRNAs mediate suppression of IFN 

signaling in ZIKV-infected hNSCs and suggest that multiple miRNAs work in concert to 

suppress immunity- and neurodegeneration-related gene networks. Future work involving 

gain- and loss-of-function studies of specific miRNAs would further reveal the effects of 

ZIKV on proposed miRNA-mRNA networks.

Many of the miRNAs differentially expressed upon ZIKV infection showed enhanced 

binding to AGO. Using the Harmonizome database, we screened these for miRNAs and 

target genes with the potential ability to dysregulate neurogenesis and induce microcephaly. 

We confirmed an association between let-7c and HMGA2 in hNSCs, as previously described 

(Nishino et al., 2008). Interestingly, HMGA2 expression is also repressed in cells infected 

by human cytomegalovirus, which can also cause birth defects such as microcephaly 

(Shlapobersky et al., 2006).

In addition to let-7c, hsa-miR-124–3p was identified as a ZIKV-modulated miRNA with a 

potential role in microcephaly. miR-124–3p has also been shown to be upregulated in THP-1 

cells latently infected with human cytomegalovirus (Fu et al., 2014; Gérardin et al., 2018). 

The putative miR-124–3p target gene TFRC encodes the transferrin receptor TFR, which 

regulates cellular iron uptake and metabolism and plays a role in stem cell renewal and cell-

cycle regulation (Sanchez et al., 2006; Schonberg et al., 2015; Silvestroff et al., 2013). In 

addition, TFRC1 has been shown to promote the proliferation of rat NSCs (Silvestroff et al., 

2013). Interestingly, TFRC is highly upregulated in cancer stem cells and plays a role in 

glioblastoma stem cell renewal through an iron-dependent pathway involving the 

transcriptional regulators STAT3 and FOXM1 (Schonberg et al., 2015). Targeting of iron 

metabolic pathways can decrease cancer stem cell growth in vitro and in vivo (Schonberg et 

al., 2015). Moreover, iron negatively regulates replication of the flavivirus hepatitis C virus 

by binding to the Mg2+ binding pocket of the viral polymerase NS5B (Fillebeen and 
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Pantopoulos, 2010; Fillebeen et al., 2005). Thus, there are multiple potential mechanisms by 

which miRNA-mediated downregulation of TFRC might dysregulate host meta-bolic 

processes and perturb the cell cycle during ZIKV infection.

Collectively, the data presented here identify miRNA-regulated transcriptional networks 

involved in self-renewal, cell-cycle progression, and neurogenesis in ZIKV-infected hNSCs, 

providing a possible mechanism by which the virus inflicts neuronal damage during brain 

development.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead 

Contact, Tariq Rana (trana@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions—All cells were maintained at 37°C in a humidified 

5% CO2 atmosphere. Vero cells were maintained in Eagle’s Minimum Essential Medium 

(EMEM; ATCC, 30–2003) supplemented with 10% fetal bovine serum (FBS; GIBCO) and 

antibiotics. Human NSCs (ThermoFisher, A15654) were cultured in StemPro NSC SFM 

medium consisting of Knockout DMEM/F-12 media supplemented with 2 mM GlutaMax, 

20 ng/ml basic fibroblast growth factor, 20 ng/ml epidermal growth factor, and 2% StemPro 

Neural Supplement (ThermoFisher, A1050901) on Matrigel- or CELLStart-coated plates 

following the manufacturer’s instructions.

ZIKV Propagation—ZIKV prototype MR766 (National Institutes of Health, LC002520.1) 

and Brazilian strain Paraiba (Stevenson Laboratory, University of Miami Life Science and 

Technology Park, KX280026.1) were propagated in the low passage Vero cell line. Vero 

cells were infected with virus at an MOI of 1 in EMEM medium supplemented with 10% 

FBS. The medium was refreshed 4 h after infection and the viral supernatant was collected 

at 5 days post-infection. Viral titers were assessed using iScript One-Step RT-PCR kit (Bio-

Rad). Viral copy numbers were calculated from a standard curve of in vitro-transcribed viral 

RNA transcripts.

Ifnar −/− Mouse Handling—All studies were conducted in accordance with protocols 

approved by the Institutional Review Board of the University of California, San Diego. All 

animal work was performed in accordance with the guidelines of the Institutional Animal 

Care and Use Committee of the University of California, San Diego.

Ifnar−/− mice 4–5 weeks old were purchased from MMRRC Jackson Laboratories and 

housed according to regulatory standards approved by the Institutional Review Board of the 

University of California, San Diego.

ZIKV Infection of Mice—All studies were conducted in accordance with protocols 

approved by the Institutional Review Board of the University of California, San Diego. All 
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animal work was performed in accordance with the guidelines of the Institutional Animal 

Care and Use Committee of the University of California, San Diego.

Ifnar−/− mice (4–5 weeks old; MMRRC Jackson Laboratories) were infected by 

intraperitoneal injection of 2.5 × 107 genome equivalents ZIKV Paraiba (500 μL of viral 

stock with 5 × 104 genome equivalents/μl) or 1.6 × 108 MR766 (500 μL of viral stock with 

3.2 × 105 genome equivalents/μl). Mice were sacrificed at 6 days post-infection and brains 

were collected for RNA extraction and/or immunostaining (described above).

METHOD DETAILS

Plaque-Forming Assay—Vero cells were seeded in 12-well plates and incubated at 37°C 

in a 5% CO2 incubator until they reached ~90%–100% confluency (~3 days). Cells were 

infected with serial 10-fold dilutions of ZIKV for 4–6 h and then overlaid with 4% agarose 

and incubated for 4 days. Cells were then fixed with 4% formaldehyde and stained with 

0.1% crystal violet solution in 20% ethanol. Plaques were visualized under a microscope and 

counted. Plaque-forming units (PFU) were calculated as ([number of plaques 3 ZIKV 

dilution]) / infection volume) and are expressed as PFU/ml.

Immunofluorescence Microscopy—To assess ZIKV infection, hNSCs were fixed at 

24, 48, and 72 h post-infection and immunostained as described previously (Dang et al., 

2016). In brief, ZIKV- and mock-infected hNSCs were fixed with 4% paraformaldehyde 

(PFA) in phosphate-buffered saline (PBS) for 20 min at room temperature. Cells were 

permeabilized by incubation in 0.1% Triton X-100 for 5 min at room temperature and then 

blocked in 5% bovine serum albumin for 30 min. Cells were then incubated overnight at 4°C 

with a mouse anti-ZIKVE/anti-flavivirus group antigen (1:500, Millipore MAB10216), 

which is directed against the flavivirus envelope protein. Cells were washed with PBS and 

incubated for 1 h at room temperature with fluorescein isothiocyanate (FITC)-conjugated 

anti-mouse IgG. The nuclei were stained with Hoechst 33258 before analysis. 

Immunostained cells were imaged using a Leica fluorescence microscope (DMI 3000B).

For staining of brain sections, at the end of the experiment, mice were transcardially 

perfused with normal saline (0.9% NaCl) followed by ice-cold 4% PFA (pH 7.2) under deep 

anesthesia, as described previously (Tiwari et al., 2014a). Brains were removed and post-

fixed in 10% PFA overnight at 4°C followed by cryopreservation in 10%, 20%, and 30% 

(w/v) sucrose in PBS. Serial coronal sections of 30 μm thickness were cut using a freezing 

cryostat (Leica Biosystems, CM3050s) beginning at the bregma −1.50 to −3.50 mm through 

the dorsal hippocampus encompassing the dentate gyrus region and +0.26 to −2.5 mm 

through the SVZ. Free-floating sections were washed, antigen retrieval was performed with 

citrate buffer (pH 6.2), and the sections were blocked with 3% normal goat serum, 0.1% 

Triton X-100, and 0.5% bovine serum albumin for 2 h. Sections were then incubated with 

mouse anti-ZIKVE antibody (1:500), rabbit anti-SOX2, or rabbit anti-NeuN (1:100) for 24 h 

at 4°C. Sections were then stained with secondary antibodies (anti-mouse and anti-rabbit 

Alexa Fluor 488 at 1:200; anti-rabbit, anti-mouse, and anti-goat Alexa Fluor 594 at 1:200), 

washed, mounted with DAPI-containing Hard Set Anti-Fade mounting medium 

(Vectashield, Vector Laboratories, CA, USA), and stored in the dark at 4°C. Slides were 

Dang et al. Page 11

Cell Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyzed using an inverted Leica fluorescence microscope (DMI 3000B) or a Leica SP5 

confocal with Resonant Scanner microscope with Leica LAS Lite Software.

RNA-seq and miRNA-seq Library Preparation—RNA-seq libraries were generated 

using the NEBNext Ultra II Directional RNA Library Kit for Illumina (NEB, E7760L) 

according to the manufacturer’s instructions. miRNA-seq libraries were generated by 

ligating Truseq 3′ and 5′ adapters using T4 RNA Ligase2 and T4 RNA Ligase, 

respectively. RNAs were reverse transcribed using Superscript II Reverse Transcriptase and 

PCR amplified using Q5 master mix (NEB M0494S). Sample quality was assessed using a 

high-sensitivity bioanalyzer.

RNA Extraction, cDNA Synthesis, and qRT-PCR—Total RNA was extracted from 

hNSCs using a miRNeasy Mini Kit (QIAGEN, 217004) according to the manufacturer’s 

instructions. RNA samples were treated with RNase-free DNase (QIAGEN), and cDNA was 

generated from 500 ng RNA/sample using iScript Mastermix (Bio-Rad) according to the 

manufacturer’s instructions. qPCR was performed with SYBR Green PCR Master Mix (Bio-

Rad) using a Roche LightCycler 480 using ZIKV-specific forward 

(TTGGTCATGATACTGCTGATTGC) and reverse (CCCTCCACGAA GTCTCTATTGC) 

primers.

AGO-iCLIP-seq Library Preparation—AGO-iCLIP-seq libraries were prepared 

according to previously published methods (Huppertz et al., 2014; Konig et al., 2011). 

Briefly, hNSCs were infected with ZIKV Paraiba at an MOI of 1 and UV crosslinked with 

150 mJ/cm2 at 254 nm on ice. Cell pellets were harvested and lysed (50 mM Tris-HCl, pH 

7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 1/100 protease 

inhibitor cocktail III, Calbiochem). RNAs were partially digested using RNase I (Ambion, 

AM2295) and Turbo DNase. Digested RNAs were incubated with washed protein A/G 

Dynabeads (Thermo Scientific, 88802) and 10 μg AGO 2A8 antibody (Millipore, Mill-

MABE56) on a rotator overnight at 4°C. RNAs were immunoprecipitated and washed twice 

with a high-salt buffer (50 mM Tris-HCl, pH 7.4, 1 M NaCl. 1 mM EDTA, 1% NP-40, 0.1% 

SDS, 0.5% sodium deoxycholate) and twice with a wash buffer (20 mM Tris-HCl, pH 7.4, 

10 mM MgCl2, 0.2% Tween-20).

To prepare CLIP-seq libraries, 3′ ends of immunoprecipitated RNAs were dephosphorylated 

using PNK (Promega) for 20 min and then washed with high-salt buffer and twice with wash 

buffer (composition as above). Pre-adenylated L3 linkers were ligated to RNAs on 

resuspended beads using RNA ligase (NEB) at 16°C overnight in a thermocycler. RNAs 

were washed sequentially with wash buffer, high-salt buffer twice, and wash buffer to 

remove excess linker and enzyme. The 5′ ends were radiolabeled using 32P-γ-ATP (Perkin 

Elmer, blu002250uc) and PNK.

Samples resolved by SDS-PAGE using 4%–12% NuPAGE Bis-Tris gels (Invitrogen) using 1 

s MOPS running buffer following the manufacturer’s instructions. RNA-protein complexes 

were transferred to nitrocellulose membranes and RNAs were released by proteinase K 

treatment and urea elution of the membranes. RNAs were recovered with RNA phenol/
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chloroform (Ambion, 9722) using Phase Lock Gel Heavy tubes and precipitated overnight 

with sodium acetate and ethanol.

Precipitated RNAs were reverse transcribed using Superscript III reverse transcriptase 

(Invitrogen) and indexing primers. cDNAs were gel purified using precast 6% Tris/Borate/

EDTA-urea gels (Invitrogen) according to the manufacturer’s instructions. Following gel 

purification, cDNAs were circularized using Circligase II (Epicenter) and linearized with 

BamHI (NEB). Linearized cDNAs were precipitated, PCR amplified using P5/P3 Solexa 

primers, and sequenced.

RNA-Seq and miRNA-Seq Data Analysis—RNA was extracted from hNSCs as 

described above and then ribo-depleted. RNA and miRNA sequencing were performed using 

an Illumina NextSeq 500 with an average of 20 million and 5 million reads per sample, 

respectively.

For RNA-seq analyses, the single-end reads that passed Illumina filters were filtered for 

reads aligning to tRNA, rRNA, adaptor sequences, and spike-in controls. The reads were 

then aligned to UCSC hg19 reference genome using TopHat (v 1.4.1). DUST scores were 

calculated with PRINSEQ Lite (v 0.20.3), and low-complexity reads (DUST > 4) were 

removed from the BAM files. The alignment results were parsed using SAMtools to 

generate SAM files. Read counts to each genomic feature were obtained with the htseq-

count program (v 0.6.0) using the ‘‘union’’ option. After removing absent features (zero 

counts in all samples), the raw counts were imported into R/Bioconductor package DESeq2 

to identify genes differentially expressed between samples. DESeq2 normalizes counts by 

dividing each column of the count table (samples) by the size factor of the column. The size 

factor was calculated by dividing the samples by the geometric means of the genes. This 

brought the count values to a common scale suitable for comparison. P values for differential 

expression were calculated using a binomial test for differences between the base means of 

two conditions. The p values were adjusted for multiple test correction using the Benjamini–

Hochberg algorithm to control the false discovery rate. Cluster analyses, including principal 

component analysis and hierarchical clustering, were performed using standard algorithms 

and metrics.

For miRNA-seq analyses, quality control was assessed using FastQC. Reads were aligned to 

the genome with bowtie2 using the following reference and annotations: 

Homo_sapiens.GRCh38.dna.primary_assembly.fa (NCBI) and 

Homo_sapiens.GRCh38.86.gtf (NCBI). Random 100 unmapped reads were generated and 

compared using BLAST (NCBI). Partek was used to generate read counts, RPKM, and the 

mapping summary. Genes with read count values < 1 across all samples were filtered out. 

DESeq2 was used to calculate the fold change, p value, and adjusted p value for 

differentially expressed miRNAs.

Gene ontology analyses of biological processes were performed using The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2009). Grouped 

functional pathway/gene ontology network and miR–mRNA target analyses were performed 

using Cytoscape with the ClueGo and CyTargetLinker add-ons (Bindea et al., 2009; Kutmon 
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et al., 2013; Shannon et al., 2003). miRNA target predictions were performed using 

TargetScan, miRTarBase, and miRANDA (Agarwal et al., 2015; Betel et al., 2008; Chou et 

al., 2016; Kutmon et al., 2013). Density and cumulative density plots were generated in R 

after calculating the cumulative context scores of a given mRNA based on miRNA target 

sites within the 3′-UTR (Wu et al., 2016).

AGO-iCLIP-seq Bioinformatic Analysis—Peak calling was performed following 

previously established protocols (Grozhik et al., 2017) with some modifications. First, 3′ 
adapters were trimmed using flexbar (Dodt et al., 2012) and demultiplexed using pyCRAC 

(Webb et al., 2014). Control and infected samples were aggregated into separate files and 

subsampled for equal number of reads before proceeding. PCR duplicates were collapsed 

with pyCRAC and concatenated reads were aligned to hg38 or ZIKV kx280026.1 genome 

using Novocraft. To identify CIMS (crosslink-induced mutation sites), separate bed files 

were generated containing mutation coordinates and read coordinates by CTK-1.0.3. The 

CIMS algorithm was used to call mutation sites. CITS (crosslink-induced truncation sites) 

were identified using only forward reads.

To identify differential iCLIP-seq peaks, CITS and CIMS sites were combined for the two 

infected and control samples and DESeq2 was performed to determine statistically 

significant CITS/CIMS sites. Gene symbols were added using ChIPpeakAnno (Zhu et al., 

2010), TxDb.Hsapiens.UCSC.hg38.knownGene, and rtracklayer (Lawrence et al., 2009). 

From the differential sites, FASTA sequences were generated using bedtools2–2.26.0 and 

analyzed for miRNA seed sequences using Supermatcher. The accession number for the 

AGO-iCLIP-seq data reported in this paper is GEO: GSE113640.

Transfection of miR-124–3p mimics and siTFRC gene in human NSC—hsa-

miR-124–3p oligonucleotide mimics (sequence: UAAGGCACGCGGUGAAUGCC), 

scrambled control (sequence: UCACAACC UCCUAGAAAGAGUAGA), and siRNA for 

TFRC were obtained from Dharmacon (USA). hNSC were seeded in 12-well Matrigel 

coated plates at the density of 1 × 106 cells/well approximately 24h before transfection. 

hNSC were transfected with miRNA mimic, siTFRC or scrambled controls in antibiotic free 

Opti-MEM medium with final concentration of 50nM of miRNA mimic and 25nM of 

siTFRC for 48h. RNA was extracted to assess transfection efficiency and knockdown. The 

size of neurospheres was measured by ImageJ in control, miRNA mimic and siTFRC 

transfected groups.

miR-124–3p 3′UTR target Dual Glo Luciferase Assay—To verify the direct 

regulation of TFRC expression by miR-124–3p, dual glo luciferase assay was performed as 

described earlier (Hu et al., 2012; Shin et al., 2014). Briefly, the 3′UTR of human TFRC 

gene (ENST00000540528.1) was cloned into a pGL3 vector back-bone (miTarget miRNA 

3′-UTR target clones) obtained from GeneWiz (USA). The mutant construct was created by 

substituting TGTATCG for the WT sequence GTGCCTT within the miR-124–3p binding 

site in the 3′-UTR. For the reporter assay, 293FT cells were cultured for 24h in 24-well 

culture plate, followed by co-transfection of wild-type (WT) or mutant (MT) reporter 

constructs (50ng/well), pGL3-Promoter vector, miR-124–3p oligonucleotide (25nM/well) 

and pRLuc null plasmid expressing Renilla Luciferase (200ng/well) with 
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lipofectamine-2000. Renilla luciferase activity was used as transfection normalization 

control for the miR-124–3p 3′UTR TFRC luciferase assay. After 48hr of transfection, cells 

were collected, and luciferase activity was measured by dual-luciferase reporter assay 

(Promega, Madison, WI, USA) as per manufacturer’s instructions. The firefly luciferase 

activity was normalized by Renilla luciferase activity for each transfected well.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was carried out using GraphPad Prism software. Differences between 

group means were analyzed by Student’s t test. Statistical details regarding individual 

experiments can be found in the figure legends section. Differentially expressed genes in the 

RNA-seq data were analyzed using DESeq2. A adjusted p value ≤ 0.05 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcriptomic profiling identified dysregulated miRNAs in ZIKV-infected 

stem cells

• miRNAs regulate the cell cycle, stem cell maintenance, and neurogenesis 

pathways

• miR-124–3p regulates expression of transferrin receptor (TFRC) mRNA
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Figure 1. Genome-wide Integrative Analysis of miRNAs in ZIKV-Infected hNSCs
(A) Experimental design. hNSCs were infected with ZIKV MR766 or Paraiba for 3 days at 

an MOI of 1. Total RNA was analyzed by RNA-seq or miRNA-seq to identify miRNA-

regulated networks of genes implicated in ZIKV pathogenesis. DE, differentially expressed.

(B) qRT-PCR analysis of ZIKV MR766 and ZIKV Paraiba copy number on days 1, 2, and 3 

post-inoculation of hNSCs at an MOI of 1. Data are means ± SEM of biological triplicates.

(C) Fluorescence immunostaining of ZIKV envelope protein (ZIKVE) in hNSCs on days 1, 

2, and 3 post-infection with ZIKV MR766 or Paraiba at an MOI of 1. Nuclei were stained 

with DAPI. Scale bar, 100 μm.

(D) Venn diagram of differentially expressed genes in ZIKV MR766- and Paraiba-infected 

hNSCs at 3 days post-infection at an MOI of 1. Up, upregulated; down, downregulated.

(E and F) Volcano plots of the differentially expressed coding genes in (E) MR766-infected 

and (F) Paraiba-infected hNSCs at 3 days post-infection at an MOI of 1. Blue circles 

represent significantly (adjusted p < 0.05) differentially expressed genes. The size of each 

circle is proportional to the square root of the base mean expression of the gene.

(G) Scatterplot matrix comparing the relative gene expression of 20 top differentially 

expressed genes in ZIKV MR766- and Paraiba-infected hNSCs under varying MOIs and 

time points. Plots show the correlation between differentially expressed genes in MR766-

versus Paraiba-infected neural stem cells infected under 4 conditions: with MR766 at an 

MOI of 1 and analyzed 2 days post-infection; with Paraiba at an MOI of 1 and analyzed 2 or 

4 days post-infection; or with Paraiba at an MOI of 3 and analyzed 2 days post-infection. 
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Points represent the mean relative expression level of 20 top differentially expressed genes 

relative to mock-infected cells in each condition. n = 6 biological replicates.

See also Figure S1.
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Figure 2. Relationship between Differentially Expressed miRNAs and Putative mRNA Targets in 
ZIKV-Infected hNSCs
(A and B) Volcano plots of differentially expressed miRNAs in (A) MR766- and (B) 

Paraiba-infected hNSCs at 3 days post-infection. Blue circles represent significantly 

(adjusted p < 0.05) differentially expressed miRNAs. The size of each circle is proportional 

to the square root of the base mean expression of the gene.

(C) Comparative dot plot of differentially expressed miRNAs in MR766 (MR)- and Paraiba 

(PA)-infected hNSCs. The size of each circle is proportional to the square root of the base 

mean expression of the gene.
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(D and E) Gene set enrichment analyses (GSEAs) of putative miRNA targets differentially 

expressed in hNSCs during MR766 (D) and Paraiba (E) infection. Blue represents 

downregulated mRNAs targeted by upregulated miRNAs; red represents upregulated 

mRNAs targeted by downregulated miRNAs. The size of the dot is proportional to the 

number of genes in that enriched GSEA biological category.

(F) Integrative regulatory network analyses showing upregulated miRNAs (red circles) 

targeting downregulated putative mRNA targets (blue hexagons) based on TargetScan, 

miRANDA, and miRTarBase. The number of edges between miRNAs and mRNAs is equal 

to the number of algorithms predicting the miR-mRNA interaction. The blue or red color 

intensity is proportional to the fold change in expression during ZIKV infection (darker 

represents larger change).

See also Figure S2.
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Figure 3. Zika Virus Upregulates let-7c and Represses HMGA2
(A) AGO binding map of the ZIKV Paraiba genome after infection of hNSCs at an MOI of 1 

for 4 days. Crosslink-induced truncation or mutation sites (CITS/CIMS) that provide 

nucleotide resolution for AGO binding are shown as tick marks.

(B) Scatterplot showing the ranking and combined score of miRNAs predicted to regulate 

genes associated with microcephaly based on the Harmonizome database. hsa-let-7c (rank 

36) is highlighted in red.

(C) miRNA-seq analysis of let-7c expression in mock-infected (NT), ZIKV MR766-

infected, and Paraiba-infected hNSCs 2 days after infection at an MOI of 1. Scatterplot 

indicates mean and SD of n = 2 of biological replicates.

(D) AGO binding maps of mock-infected (NT) and Paraiba ZIKV-infected hNSCs 4 days 

post-infection at an MOI of 1 show significantly enriched loading of let-7c in the RISC after 

ZIKV infection.

(E) AGO binding maps of mock-infected (NT) and ZIKV-infected hNSCs show significantly 

enriched binding within the HMGA2 3′ UTR after ZIKV infection. The predicted let-7c 

target site is shown below the plots.

(F) RNA-seq analysis of HMGA2 expression in mock-infected (NT), ZIKV MR766-

infected, and Paraiba-infected hNSCs 2 days after infection at an MOI of 1. Scatterplot 

indicates mean and SD of n = 2 biological replicates.

See also Figure S3.
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Figure 4. ZIKV Infection Modulates miR-124–3p and Its Target Gene TFRC In Vitro and In Vivo
(A) AGO binding maps of mock-infected (NT) and Paraiba ZIKV-infected hNSCs show 

significantly enriched binding within the TFRC 3′ UTR 4 days after ZIKV infection at an 

MOI of 1. The predicted miR-124–3p binding site is shown below.

(B) qRT-PCR analysis of TFRC mRNA levels in mock-infected (NT) and ZIKV Paraiba-

infected hNSCs at 3 days post-infection at an MOI of 1. Data indicate means ± SEM of n = 

5 biological replicates. **p < 0.01.

(C) qRT-PCR analysis of Tfrc mRNA levels in the brains of mock-infected and ZIKV 

Paraiba-infected Ifnar−/− 4- to 5-week-old adult mice at 6 days after infection. Data indicate 

means ± SEM of n = 3 biological replicates. *p < 0.05.
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(D) qRT-PCR analysis of TFRC mRNA levels after overexpression of miRNA-124–3p 

mimic in hNSCs. Error bar represents the mean ± SEM of n = 4 biological replicates, *p < 

0.05.

(E) Representative bright-field images of human neural stem cells (hNSC) derived 

neurospheres with scrambled control and miRNA-124–3p mimic over-expression. Scale bar 

represents 100μm.

(F) Neurospheres show significant reduction in size after the overexpression of miR-124–3p 

mimic, as compared to the scrambled group, quantified by ImageJ. Box-and-whisker plots 

show mean and 25th and 75th percentiles. Error bars represent the 10th and 90th percentiles; 

n = 3. **p < 0.001, Student’s t test.

(G) qRT-PCR analysis of TFRC mRNA levels after siRNA-mediated TFRC knockdown in 

hNSCs. Error bar represents the mean ± SEM of n = 6 biological replicates. ***p < 0.0001.

(H) Representative bright-field images of human-neural-stem-cell (hNSC)-derived 

neurospheres in scrambled control and transferrin receptor siRNA (siTFRC)-transfected 

groups. Scale bar represents 100μm.

(I) Neurospheres show significant reduction in size after the knocking down of the TFRC 

gene, as compared to the scrambled group, quantified by ImageJ. Box-and-whisker plots 

show mean and 25th and 75th percentiles. Error bars represent the 10th and 90th percentiles; 

n = 3. **p < 0.001, Student’s t test.

(J) HEK293T cells were transfected with luciferase reporter constructs containing WT or 

mutant (GTGCCTT to TGTATCG) TFRC 3′ UTRs. Firefly reporter luciferase activity was 

measured and normalized to Renilla activity. Error bar represents the mean ± SEM of n = 3 

biological replicates; **p < 0.001, Student’s t test.

(K) Heatmap of qRT-PCR analysis of target genes downstream of STA3-FOXM1 in hNSCs 

transfected with control siRNA (siNT) or TFRC-specific siRNA for 3 days or transfected 

with siNT and infected with ZIKV Paraiba for 3 days. Data indicate mean of n = 6 

biological replicates. Color code shows the expression relative to that of the siNT samples.

See also Figure S4.
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