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Preface

An overview of air-snow exchange at Summit, Greenland:
Recent experiments and findings
1. Introduction

The research station at Summit, Greenland
(721340N, 381290W, approximately 3250masl) was
established in 1989 for the recovery of the GISP2 ice
core. At the time of its creation, the Summit station
was 29 km east of, and 28m lower than, the summit
of the Greenland ice sheet (where the GRIP camp
was established to recover the second of the summit
ice cores). The steering committees of both ice core
projects, and the international funding agencies,
supported investigations of air–snow relationships
in the region throughout the lifetimes of the GISP2
and GRIP project. Since the conclusion of GISP2 in
1993, the Summit camp has been maintained to
support a range of scientific research, including
ongoing air–snow investigations.

Physical and chemical characterization of the
snow pack, and how these characteristics reflected
variations in atmospheric composition and dy-
namics at Summit, has been a focus since the first
campaign in summer, 1989. From the beginning, it
was recognized that understanding air–snow rela-
tionships would be limited if sampling and observa-
tions were restricted to the summer seasons when it
was easy to gain access to the Summit region (Dibb
and Jaffrezo, 1997). In recognition of the value of
winter-time observations, NSF OPP supported
year-round investigations by small teams (two or
three technicians conducting experiments for up to a
dozen researchers) through the winter of 1997–98
and a 2-year campaign from August 2000 to August
2002. In August, 2003 the station was officially
designated the Greenland Environmental Observa-
tory at Summit (GEOSummit) and opened to
support year-round measurements by the interna-
tional scientific community. Funding is in place to
e front matter r 2007 Elsevier Ltd. All rights reserved
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support operation through 2008, but it is hoped that
the observatory will operate long into the future.
The first section of this overview discusses selected
results from year-round sampling at Summit, as
presented more fully in seven papers in this special
issue.

In the mid-1990s a series of intensive summer
campaigns was initiated. These focused on im-
proved understanding of how nitrogen oxide
chemistry above Summit was reflected in the nitrate
preserved in snow/firn and ice. It soon became
apparent that the nitrogen oxide budget and cycling
above the snow at Summit were perturbed com-
pared to expectations for the remote free tropo-
sphere. In particular the HNO3/NOy ratio was
found to be exceedingly small, leading to a
hypothesis that organic nitrates might be the
dominant source of nitrate in the snow (Dibb
et al., 1998). A follow-up campaign to test this
hypothesis led to the discovery that photolysis of
nitrate in the snow produced NOx which was
released to the firn air and subsequently the
boundary layer atmosphere above the snow (Hon-
rath et al., 1999). Similar findings in the same year
at Alert, NWT (Ridley et al., 2000), and South Pole
(Davis et al., 2001) launched a series of investiga-
tions into snow photochemistry, including several
intensive campaigns at Summit (Bottenheim et al.,
2002). These campaigns have found that a host of
reactive molecules are produced in sunlit snow and
released into the atmosphere just above the snow,
where they collectively create one of the most
oxidizing regions of the troposphere through greatly
enhanced production and abundance of HOx. With
the exception of the ISCAT campaigns at South
Pole, where OH was measured (and confirmed to be
very high (Mauldin et al., 2001, 2004)), the impact
.
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of snow photochemistry and thermal desorption of
precursors on HOx (hence all atmospheric chem-
istry) above the snow was based on model calcula-
tions constrained by measured sources and sinks
(e.g., Hutterli et al., 2001; Yang et al., 2002).
Intensive sampling campaigns were conducted at
Summit in summer 2003 and spring 2004 to directly
test our understanding of HOx cycling in this
unusual environment. In addition to making the
first measurements of OH, HO2, and all presumed
sources and sinks in the air just above the snow,
these campaigns investigated photochemical pro-
cesses within the surface snowpack. The second
section of this overview presents highlights of these
two campaigns, which are described more fully in
five papers in this special issue.

2. Year-round measurements

2.1. Snow

During the 1997–1998 and 2000–2002 year-round
campaigns significant effort was made to document
the physical and chemical evolution of the snow-
pack at Summit. The technicians on site made
observations of falling snow, clear sky precipitation
(diamond dust), ice fog, and also any drifting or
blowing of the surface layer every few hours.
Surface height was measured weekly on 100 stakes
on site and monthly on an additional 122 stakes
along a 12 km transect to the southwest. Samples of
the dominant layer of the surface snow were
collected daily (weather permitting) for chemical
and density measurements (conducted at several
laboratories back in the US). At monthly intervals
the top meter of the snowpack was sampled for the
same chemical suite and detailed microphysical
characterization, including determination of perme-
ability on site.

Dibb and Fahnestock (2004) analyzed the stake
measurements made in the 2000–2002 campaign and
found that the relationship between surface height
change and the accumulation of snow was compli-
cated by seasonal changes in the rate of densifica-
tion of the top meter of the snowpack. Enhanced
densification during summer caused the rate of
surface height increase to be smaller in this season,
despite average, or above average, rates of snow
accumulation. Dibb et al. (this issue) present the
soluble ionic content of the daily surface snow
samples collected in the 1997–1998 and 2000–2002
experiments. Their analysis focuses on seasonal
changes in snow composition, and confirms that the
seasonality previously inferred from snowpit studies
is largely valid. Specifically, the surface snow
sampling found sharp April peaks in the delivery
of dust to Summit, summer (June–August) peaks in
NH4

+ and excess Cl�, and a late winter (February–
March) timing for the maximum delivery of seasalt.
Comparisons between well-dated snowpits and
simulated pits constructed from the surface samples
suggest that the snowpack preserves on the order of
80% or more of the burden of most soluble ions
delivered in snow at the surface, at least over
periods up to 2 years. These comparisons suggest
some loss of NO3

�, but not more than 25% of the
total delivered to the surface.

2.2. Atmosphere

Since 1997 air samples have been collected weekly
at Summit, whenever it was occupied, as part of the
NOAA/Earth Systems Research Laboratory/Global
Monitoring Division’s (ESRL/GMD formerly
CMDL) Cooperative Global Air Sampling Net-
work. Each sample consists of two glass flasks
flushed in series with ambient air and then
pressurized to �1.3 atm using a portable battery
powered pumping apparatus. The samples are
returned to the ESRL/GMD laboratory in Boulder,
Colorado where each sample is analyzed for the
mixing ratios of CO2, CH4, CO, H2, N2O, SF6, and
13C/12C and 18O/16O in CO2. The network and the
analytical methods have been described in detail
elsewhere (Conway et al., 1994; Dlugokencky et al.,
1994; Novelli et al., 1992; Trolier et al., 1996).

The measurement time series for six species are
shown in Fig. 1. The lack of high-frequency
variability in the time series presented in Fig. 1
demonstrates that the atmosphere at Summit is, as
expected, composed of well-mixed air masses not
recently affected by local sources or sinks of the
species measured. Through careful use of the
portable air sampler the numerous people collecting
samples over the years have been able to avoid
sampling air contaminated by human activities at
Summit camp. The time series in Fig. 1 contain
signals due to processes occurring on large spatial
scales in mid-to-high northern latitudes.

For example, the trends in CO2 (increasing) and
d13C (decreasing) are due primarily to CO2 emis-
sions from combustion of fossil fuels (fossil carbon
is depleted in 13C relative to the modern atmo-
sphere). The near-mirror image seasonality of CO2
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and d13C is due to the seasonal imbalance between
photosynthesis and respiration of the northern
hemisphere terrestrial biosphere. In spring and
summer, when photosynthetic uptake exceeds re-
spiration, CO2 is removed from the atmosphere.
Plants using the C3 photosynthetic pathway dis-
criminate against 13CO2, so the atmosphere be-
comes relatively enriched in 13C. When respiration
exceeds photosynthesis CO2 enriched in 12C is
returned to the atmosphere. The scaling factor used
in panels 1a and 1b, 0.05% ppm�1 CO2, is
characteristic of C3 plants. Simultaneous measure-
ments of atmospheric CO2 mixing ratio and d13C of
CO2 provide a strong constraint for quantitative
estimates of the marine and terrestrial sinks for
fossil fuel CO2 (Ciais et al., 1995).

After increasing by more than a factor of 2 since
pre-industrial times, the rate of increase of CH4

(Fig. 1c) has been essentially zero since 1999.
Dlugokencky et al. (2003) suggested that a balan-
cing of CH4 sources and sinks has resulted in a new
steady-state atmospheric burden. CO, which has the
shortest lifetime of the gases measured in these air
samples, also shows no significant trend in recent
years (Novelli et al., 2003). N2O and SF6, both
infrared absorbing (‘‘greenhouse’’) gases, are in-
creasing steadily at 0.770.1 and 0.2170.01
ppt year�1, respectively. The primary cause of N2O
increase is agricultural use of nitrogen fertilizers.
SF6 is primarily used as an insulator in electrical
switches and atmospheric SF6 measurements are
often used as a tracer for anthropogenic influence
on air masses as well as a constraint on atmospheric
transport models.

Similarly, the Blake group at UC Irvine has been
providing stainless steel canisters for whole air
sampling at Summit whenever possible. A metal
bellows pump was installed in the science trench and
samples were drawn down a stainless steel line into
the canisters, pressurized to about 20 psi. The
samples were returned to the UC Irvine lab for
analysis for an extensive suite of gases by GC FID/
ECD/MS (see Colman et al. (2001) for details of the
analysis).

All the gases in Figs. 2–4 show substantial
seasonal variation. Consistent with previous work
(e.g., Penkett et al., 1993; Swanson et al., 2003), the
longer-lived gases tend to have lower amplitude
seasonal swings. All the gases build up over the
winter as the result mainly of the weaker OH sink
but the longer-lived ones, e.g., ethane, reach their
minimum values later in the summer (Fig. 2).
The time series for C2Cl4, ethyne, ethane and
propane (Fig. 3) show that only C2Cl4 displays an
obvious long-term trend, declining by about 6 pptv
over the 7 year observation period, or an average of
about 0.9 pptv year�1. This observation is consistent
with the 30% decrease in annual global C2Cl4
mixing ratios between 1995 and 2002 reported by
Simpson et al. (2004).

The atmospheric alkyl nitrate seasonal variation
at Summit has been described by Swanson et al.
(2003) using a single year of measurements
(1997–1998). By contrast, Fig. 4 includes a much
more comprehensive set of data. The new multi-
year plots reveal very similar seasonal variations
to those reported by Swanson et al. (2003) but
more convincingly define the seasonal cycles of all
four alkyl nitrates, particularly that of methyl
nitrate.

The seasonal variations of the non-methane
hydrocarbons and alkyl nitrates should be sensitive
to long-term changes in combustion (and other)
sources, as well as the oxidizing capacity of the
troposphere. The multi-year hydrocarbon and alkyl
nitrate data provide crucial baseline information
with which to detect long-term changes that may
occur in sources or sinks in the future.

The time series presented in Figs. 1 and 3 clearly
demonstrate the suitability of Summit for measure-
ments of gases representative of large well-mixed air
masses. The value of these records is currently
limited because they are short and contain large
gaps. Longer, continuous records from Summit,
combined with data from the global network, will
help better constrain estimates of trace gas budgets,
and provide deeper understanding of the processes
underlying the observed atmospheric variability.
The observation that many of the sparingly soluble
trace gases display smooth seasonal cycles that
reproduce themselves almost exactly year to year
(e.g. Figs. 2 and 4), also confirms that Summit is an
excellent vantage point from which to obtain
samples that are representative of the high-latitude
northern hemisphere.

The aerosol-associated radionuclide tracers 7Be
and 210Pb have also been quantified in all year-
round campaigns at Summit (Dibb, this issue). Like
the long-lived gases shown in Fig. 1, the activities of
these tracers in the remote free troposphere should
generally reflect large-scale mixing, in this case
between air masses originating in the upper tropo-
sphere/lower stratosphere (UT/LS) (7Be) and those
from the continental boundary layer (210Pb).
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Fig. 1. Example time series from Summit sampling as part of the NOAA/Earth Systems Research Laboratory/Global Monitoring

Division’s (ESRL/GMD formerly CMDL) Cooperative Global Air Sampling Network. Each symbol represents the measurement of a

single flask. The species plotted and their analytical repeatabilities (1m) are: (a) CO2 (0.07 ppm), (b) d13C (0.01%), (c) CH4 (1 ppb), (d) CO

(2 ppb) (e) N2O (0.2 ppb) and (f) SF6 (0.04 ppt).
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However, at Summit the time series of these tracers
are dominated by high-frequency variability
(Fig. 5). If this high-frequency ‘‘noise’’ is smoothed
by taking monthly averages, a strong and repro-
ducible summer peak in 7Be becomes obvious, and
is suggested to reflect a significant UT/LS contribu-
tion to the air reaching Summit during this season
(Dibb, this issue). Helmig et al. (this issue a) show
that seasonal variations in O3 mixing ratios, and the
relationships between O3,

7Be and water vapor are
also consistent with downwelling UT/LS air masses
exerting strong influence on the summertime com-
position of air at Summit.

It should be noted that the high-frequency
variability in the radionuclide tracers provides
important insight into boundary layer dynamics at
Summit. Activities of these tracers have been shown
to decrease over time under very stable conditions
(on the Greenland ice sheet), and to increase rapidly
when the near-surface inversion breaks down and
the boundary layer is replenished by air from aloft
(Dibb, 1990, this issue; Dibb and Jaffrezo, 1993;
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Fig. 2. Monthly average71SD mixing ratios for ethane, ethyne,

propane and benzene vs. day of year for all UCI samples

collected at Summit between summer 1997 and summer 2004.
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Dibb et al., 1992). Comparison to a single year of
sampling at DYE 3 in south Greenland indicates
that the surface air at Summit is, on average, better
isolated from the free troposphere (Dibb, this issue),
but the large sample to sample changes in the
activities of 7Be and 210Pb at Summit (Fig. 5)
indicate that strong capping inversions rarely persist
for very long. Cohen et al. (this issue) combine
micrometeorological measurements from short
towers and from tether sondes deployed at Summit
through several spring and summer seasons to show
that strongly stable conditions rarely persist more
than 24 h in spring, and become even less persistent
in summer. Positive values of sensible heat flux
around mid-day (7:00–18:00 local time) through the
summer dominate the surface energy balance and
often lead to a weakly unstable boundary layer
(51% of observations in July and August). At night,
the boundary layer height decreases dramatically as
radiative cooling reestablishes strongly stable
conditions. Cohen et al. (this issue) specifically
contrast boundary layer dynamics at Summit and
South Pole and suggest that the stronger, and more
persistent, stability at South Pole explains much of
the difference in boundary layer chemistry at the
two sites.

The contrasting behavior of the trace gases shown
in Figs. 1–4, which dominantly reflect long-range
transport and chemical processing in the free
troposphere, and the radionuclide tracers, with
strong overprinting by boundary layer processes at
Summit, is due to the fact that the aerosols carrying
7Be and 210Pb are lost by deposition to the under-
lying snow and become depleted under persistent
inversions.

The snow surface plays an active role in atmo-
spheric chemistry, serving as a strong sink for
aerosols and also ‘‘sticky’’ gases (e.g., HNO3 (Dibb
et al., 1998; Honrath et al., 2002)). The snow at
Summit has been shown to destroy O3 at a very
rapid rate when the sun is high (Peterson and
Honrath, 2001; Helmig et al., this issue b). On the
other hand, there is mounting evidence that sunlit
snow can act as a source of an ever growing number
of reactive gases.

Swanson et al. (2007, this issue) present evidence
for production of alkyl halides in the snow at
Summit, South Pole, and two shallow seasonal
snowpacks in the temperate zone of North America.
Mixing ratios of alkyl halides in firn air at Summit
were higher than at South Pole, apparently due to
higher concentration of organic carbon in the snow.
A postulated soil source appears to overwhelm
production in the snow at the mid-latitude sites,
leading to very high mixing ratios of some alkyl
halides. The data set on alkyl halides in firn air at
Summit is the most extensive, and shows a direct
relationship between their abundance and solar
irradiance, suggesting that a photochemical process
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is producing them from halogen and organic
precursors in the snow (Swanson et al., 2007, this
issue).

Gases produced in the snow, released into firn air
and then into the boundary layer have been the
focus of a series of intensive sampling campaigns; in
Antarctica, the Canadian Arctic, as well as Summit.
The most recent Summit snow photochemistry
campaigns are the focus of nearly half the papers
in this special issue and we turn now to a summary
of the key findings from these campaigns.

3. Summit snow photochemistry, summer 2003 and

spring 2004

These intensive sampling campaigns targeted two
related, but distinctive objectives. One priority was
to test our understanding of HOx cycling in the air
above the snow at Summit, by making simultaneous
measurements of OH, HO2+RO2, and the suite of
reactive gases currently felt to constitute the
important HOx precursors and sinks. Several of
the reactive gases are known to be elevated at
Summit due to fluxes out of the snow (e.g., NOx,
HONO, HCHO, HOOH). The second priority
objective was to improve our understanding of the
chemistry occurring within the snowpack, both on
snow grains and within the firn air filling pores
between snow grains.
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Campaigns were conducted in mid-summer and
in spring to encounter a wide range of actinic flux
and also temperature. Previous work has shown
that many of the reactive gases of interest display
large diel cycles, both in the firn air and in the
atmosphere just above the snow. Some have
interpreted these variations as evidence that produc-
tion in the snowpack is primarily photochemical
(e.g., Sumner and Shepson, 1999; Domine and
Shepson, 2002), while others have argued that
thermal sorption/desorption exerts primary control
on the mixing ratios of gases that partition between
ice and firn air (e.g., Hutterli et al., 2003).
Unraveling these processes has been difficult, since
temperature increases with greater solar flux (albeit
with a time lag that increases with depth in the
snowpack).

The contrast between mid-summer and spring is
large (Fig. 6), and is particularly striking if the
mixing ratios of HOx precursors in shallow firn air
are compared. However, it should be noted that
throughout the mid-day period in both seasons, the
mixing ratios of HCHO, HOOH and HONO are
significantly higher 5 cm into the snowpack than
they are at deeper depths. This enhancement in
shallow firn is greater in summer, when both the
actinic flux and the temperature are higher, but
even in spring the shallow firn appears to be a
strong source of reactive gases for the overlying
atmosphere.

Close inspection of Fig. 6 reveals subtle, but
important, differences in the diel patterns of the
three gases in shallow firn. The timing of the peak
mixing ratios shifts later in the day for HCHO than
HONO, with a hint of an even later peak in HOOH.
Nitrous acid peaks near local solar noon, and
decreases in phase with j-NO2 (though not as
smoothly), while HOOH mixing ratios track the
change in temperature more closely. The diel cycle
of HCHO at 5 cm depth resembles the sum of the
photon flux and temperature curves more closely
than it does either individual curve, while at 25 cm
depth the HCHO mixing ratio closely tracks
temperature. These patterns suggest that photoche-
mical production is the dominant source of HONO
in firn air, while thermal desorption is more
important for HOOH. Formaldehyde may be
showing comparable effects from both processes at
shallow depths, with increasing control by tempera-
ture deeper where the light is more attenuated. It
should be noted that NOx, particularly NO, tracks
actinic flux even more closely than does HONO.
Analysis of much additional data from firn air
sampling in both seasons is ongoing and will be
presented in forthcoming papers (e.g., Hutterli et
al., ‘‘Concentrations of reactive gases in firn air:
relationships to temperature and actinic flux’’, to be
submitted to Atmospheric Environment).

A critical component to understanding photo-
chemistry in the sunlit snowpack is improved
knowledge of the actinic flux at different depths.
We used two different techniques to measure
sunlight profiles in the snowpack: a new chemical
actinometry approach using acetonitrile/water as
the solvent for mixtures of different OH-generating
chromophores and benzene, and a spectroradi-
ometer with multiple fiber optic irradiance probes
to sample UV–vis radiation at multiple depths.
Galbavy et al. (this issue a, b) present the details of
the chemical actinometry and spectroradiometry
methods of determining snowpack photolysis fre-
quencies. Comparison of the two techniques to each
other, and to photolysis frequencies calculated with
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actinic flux derived from the TUV radiative transfer
model, found reasonable agreement for the quanti-
fication of j-NO3

� and j-HOOH in the snowpack.
These comparisons also revealed unexpected com-
plications in the use of the actinometry technique
for determination of j-NO2

�. Both of the measure-
ment techniques confirmed large enhancements in
photolysis frequencies right at the snow surface due
to multiple reflections of downwelling photons.
Similarly, both techniques found that the e-folding
depths increased from about 12 cm for j-NO3

� and
j-HOOH to 16 cm for j-NO2

�, consistent with the
shift in action spectra to longer wavelengths where
attenuation by snow decreases.

The very short lifetime of OH currently precludes
measuring it within firn air. Beyersdorf et al. (this
issue) report on an approach to constrain OH
mixing ratios in firn air by monitoring the relative
rates of destruction of a suite of introduced butenes,
chosen to have a range of OH reactivities but similar
diffusivities, while Anastasio et al. (this issue) used
ice pellets doped with benzoate to constrain the rate
of OH formation in/on ice surfaces in the near-
surface snowpack. Beyersdorf et al. (this issue)
found that their estimate of OH increased with solar
flux, on both diel and seasonal cycles. The highest
values were reached shortly after noon in early July
(3.2� 106mol cm�3), with a minimum that same
day near 1� 106mol cm�3. In contrast, the max-
imum on 15 April was 1� 106 and by 1 May the
daily peak had increased to 1.5� 106mol cm�3.
Mixing ratios of OH in firn air were comparable
to those above the snow in spring, but by mid-
summer the atmospheric levels were about twice
those estimated in firn air.

Anastasio et al. (this issue) measured OH photo-
formation rates in their ice pellets on the snow
surface around 200 nmol L�1 h�2 in summer. These
rates agreed closely with rates calculated from
photolysis of NO3

� and HOOH (using measured
snow concentrations and j-values calculated by
TUV). More than 95% of the production of OH
was attributed to the photolysis of HOOH at the
surface, and this source was even more dominant
when integrated over the top 20 cm of the snow-
pack. The calculations also suggest that more than
90% of OH production on snow grains in the snow
pack occurs in the top 10 cm, as j-HOOH decreases
rapidly with depth.

Regarding our understanding of HOx in the air
above the snow, Sjostedt et al. (this issue) present
the first measurements of OH and HO2+RO2 on
the Greenland ice sheet. As expected, the levels are
quite high, with overall medians for the summer of
2003 of 2.6� 108mol (HO2+RO2) cm�3 and
6.9� 106mol OH cm�3. Note that for OH these
values are nearly four times higher than observed at
South Pole (Mauldin et al., 2001, 2004). If attention
is restricted to several hours surrounding local
noon, the medians at Summit increase to 4.1� 108

and 8.4� 106mol cm�3 of HO2+RO2 and OH,
respectively.

Sjostedt et al. (this issue) compared the HOx

observations to a fully constrained photochemical
box model (the model used all available measure-
ments of NO, HONO, HOOH, HCHO, O3, j-
values, temperature, etc. and calculated the HOx

species). The median value of the ratio (model
estimated HO2+RO2)/(the observed value) (M/O)
was 1.16 and the values were strongly correlated
(r240.7), suggesting that our understanding of HOx

source and sinks during the summer at Summit is
reasonable. Interestingly, this analysis found photo-
lysis of O3 to be the major HOx source, unlike the
earlier model study by Yang et al. (2002). The
calculations reported by Yang et al. (2002) were
constrained by observations from the 1999 and 2000
seasons at Summit (but lacked HOx observations)
and found that elevated mixing ratios of HOOH,
HCHO and HONO (from the snow) enhanced HOx

production rates more than three fold compared to
just O3 photolysis. In contrast, similar comparisons
between observation and model predictions at
South Pole found HCHO and HOOH emitted from
the snow to account for nearly half of the HOx

source, with equal contributions from O3 and CH4

making up the balance (Chen et al., 2004).
Despite the success of the model at predicting

HO2+RO2 at Summit, predicted OH was consis-
tently 2–3 times lower than the observed values
(Sjostedt et al., this issue). The discrepancy between
modeled and observed OH increased dramatically
during periods of high wind and blowing snow.
During one such event observed OH exceeded
2� 107mol cm�3 (accompanied by a 5 ppb drop in
O3 and a decrease in HO2+RO2 to 2� 108

mol cm�3). Because we have several indirect lines
of evidence suggesting that halogen chemistry may
be important at Summit, Sjostedt et al. (this issue)
added a bromine reaction scheme to the photo-
chemical model and tested the impact of assuming
the presence of modest amounts of BrO. Assuming
an average abundance of 5 pptv of BrO improves
the median M/O ratio for OH (in fully constrained
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Fig. 6. Comparison of mixing ratios of selected HOx precursors in ambient and firn air at Summit on two example days. Temperature and

j-NO2 values are also shown. (a) is from mid-summer 2003 while (b) is from the spring 2004 campaign.
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model runs on a filtered data set) from 0.58 to 0.68,
while 10 pptv BrO yields median M/O of 0.83.
Encouragingly, the addition of 10 pptv BrO also
improves the median M/O for HO2+RO2 from 1.23
to 1.18.

4. Conclusions

Summit, Greenland has an illustrious history in
both ice core and air-snow exchange research. As
the International Greenland Environmental Obser-
vatory at Summit, this site also appears to have a
bright future. Year-round sampling programs like
those discussed herein are ongoing, and NOAA is
continually expanding their suite of year-round
measurements. In late winter 2005, NOAA was
able to observe the recovery of stratospheric O3

through profiles obtained from sondes launched at
Summit, this year supplies and personnel are in
place to launch O3 sondes from Summit through the
Arctic winter. Future snow photochemistry cam-
paigns are already funded or have been proposed.
For example, sampling and experimentation to
quantify the impact of photochemical processing
on organic compounds delivered to the surface
planned for 2006 will follow up on observations of
the decay of several specific organic chromophores
conducted in 2005. These investigations represent
the first steps toward understanding how snow
photochemistry modifies the record of organic
aerosols that may be recovered from ice cores.
Similarly, atmospheric and snow sampling to
constrain the processes controlling the isotopic
composition of nitrate at Summit were begun in
2005 and will be expanded in the future. Several of
the authors of this overview and companion papers
in this issue have proposed a collaborative cam-
paign to confirm or refute the postulated impor-
tance of halogen chemistry as a control on HOx

cycling at Summit (perhaps by extension demon-
strating a key role for halogen chemistry throughout
the free troposphere, or at least over most
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snow-covered terrain). Please share our excitement
about the results from this unique site, and consider
joining us in future research efforts on top of the
Greenland ice sheet.
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