
Lawrence Berkeley National Laboratory
LBL Publications

Title
Dualities in M-Theory and Born-Infeld Theory

Permalink
https://escholarship.org/uc/item/7xk8t55m

Author
Brace, Daniel M, Ph.D. Thesis

Publication Date
2001-08-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xk8t55m
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


LBNL·48160 

ERNEST ORLANDO LAWRENCE __ 
BERKELEY NATIONAL LABORATORY 

Dualities inM-Theory and 
Bom-Infeld Theory 

Daniel M. Brace 

Physics Division 

August 2001 

Ph.D. Thesis 

! 

o o 
~ 

r 
CII 
Z 
r 
I 

oIolI 
0: .... 
01 
tS 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Dualities in M-Theory and Born-Infeld Theory 

Daniel Milton Brace 
Ph.D. Thesis 

Department of Physics 
University of California, Berkeley 

and 

Physics Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, CA 94720 

August 2001 

_LBNL-48160 

This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, 
Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, 
and by National Science Foundation Grant No. PHY-95-14797. 



Abstract 

DUALITIES IN M-THEORY AND BORN-INFELD THEORY 

by 

Daniel Brace 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Bruno Zumino, Chair 

We discuss two examples of duality. The first arises in the context of toroidal 

compactification of the discrete light cone quantization of M-theory. In the pres­

cence of nontrivial moduli coming from the M-theory three form, it has been con­

jectured that the system is described by supersymmetric Yang-Mills gauge theory 

on a noncommutative torus. We are able to provide evidence for this conjecture, 

by showing that the dualities of this M-theory compactification, which correspond 

to T-duality in Type I1A string theory, are also dualities of the noncommutative 

supersymmetric Yang-Mills description. One can also consider this as evidence for 

the accuracy of the Matrix Theory description of M-theory in this background. 

The second type of duality is the self-duality of theories with U(l) gauge fields. 

After discussing the general theory of duality invariance for theories with complex 
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gauge fields, we are able to find a generalization of the well known U(l) Born-Infeld 

theory that contains any number of gauge fields and which is invariant under the 

maximal duality group. We then find a supersymmetric extension of our results, 

and also show that our results can be extended to find Born-Infeld type actions 

in any even dimensional spacetime. 
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Chapter 1 

Introduction and Outline 

String theory is the most promising candidate for a unified theory of gravity and 

the other interactions already present in the standard model of particle physics. 

Five consistent string theories are known to exist in ten dimensions. One of them 

is an open unoriented superstring theory called Type 1. There are two closed 

superstring theories called Type IIA and Type lIB, depending on whether the 

GSO projection on left and right movers leads to a nonchiral or chiral space­

time theory. Finally there are two heterotic string theories, one with gauge group 

50(32) and one with gauge group E8 x E8. Lower dimensional string theories 

can then be obtained by compactification on a small manifold. Due to the large 

number of resulting theories it seemed that one of the initial promising features 

of string theory, its uniqueness, was lost. Furthermore, some of these theories do 

not have a unique classical vacuum, and perturbative corrections do not remove 

this degeneracy. 

Some hope existed that nonperturbative corrections would select a specific 

vacuum, perhaps the one describing our world. However, only a perturbative 

formulation of these string theories is available, and it seemed until recently that 

no real progress could be made without a full nonperturbative formulation of 
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string theory. Nevertheless, access to nonperturbative aspects of string theories 

was possible though an analysis of their low energy formulation as supergravity 

theories. Any relations between the five known string theories would have to be 

mirrored by their low energy descriptions. These relations are known as duality. 

It has been known for some time that supergravity theories in four dimensions 

with extended supersymmetry are self-dual. For example,Cremmer and Julia [1] 

showed that the N = 8 supergravity theory is invariant under a noncompact E7 

duality group. In fact, the requirements of self-duality and supersymmetry greatly 

facilitated finding the correct form of the N = 8 supergravity Lagrangian. 

A simple example of a self-dual theory is electromagnetism without matter. 

The equations of motion and the Bianchi identity for electromagnetism are 

where FILv = 4t:ILva/3 Fa/3 is the Hodge dual of the field strength. One can see 

immediately, that the equations of motion and Bianchi identities remain valid 

when one replaces the field strength with its dual, and thus the theory is said to 

be self-dual. In fact, the theory is invariant under a continuous 80(2) duality 

group which rotates the field strength and its dual. 

Shortly after the appearance of duality in extended supergravity [2, 1] the 

theory of duality invariance of theories with ·abelian gauge fields was developed 

in [3, 4]. However, there are very few examples of duality invariant interacting 

gauge theories where the Lagrangian is known in closed form. The most famous 
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is the Born-Infeld theory [5, 6, 7, 8, 9, 10] and in the latter part of this thesis we 

study its generalization to more than one abelian gauge field. 

The self-duality found in four dimensional extended supergravity can be un­

derstood as arising from duality structure of string theory, although in practice it 

is the duality structure of supergravity theories that has helped in understanding 

the dualities of string theory. In higher dimensions, a large number of nonpertur­

bative supergravity solutions were found and used to access the strong coupling 

regime of string theory. This is possible in theories with extended supersymmetry 

by using the so called BPS states, which are states in small representations of the 

supersymmetry algebra. Since the dimension of these representations is an integer 

which Gannot vary continuously, the states in these short multiplets cannot leave 

the representation as one changes continuous parameters, such as the coupling 

constant. Most importantly, for BPS states the supersymmetry algebra requires 

that certain relations between the masses and charges be satisfied, and this allows 

one to know the masses of these states even at strong coupling. 

An important discovery due to Polchinski [11] was that the nonperturbative 

solutions of the low energy supergravity theories which carry Ramond-Ramond 

charges could be understood, in terms of the world sheet conformal field theory 

describing the string dynamics, as hypersurfaces in space-time where strings can 

end. These hypersurfaces are named Dirichlet branes or D-branes for short. 

The surprise came in 1995 when it was realized [12, 13] that most of the known 

string theories at strong coupling were not new, strange and hard to understand 
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theories, but in fact were described by other already known string theories. This 

relation between different string theories is known as string duality. Evidence for 

these dualities can be obtained by trying to identify in one theory nonperturbative 

massive BPS states which, when followed to strong coupling, become light, and 

can be identified as the fundamental degrees of freedom of the dual theory. All the 

known string theories were unified into a web of theories with each theory at strong 

coupling or small volume equivalent to another theory at weak coupling or large 

volume. The relation between large and small volume theories had been known 

since the late nineteen-eighthes as target space duality or T-duality. For example 

Type IIA and Type lIB are T-dual to each other after toroidal compactification. 

A more complicated version of target space duality occurs for compactific~tion on 

Calabi-Yau spaces and is known as mirror symmetry. A further unification discov­

ered by Strominger [14] involves theories compactified on Calabi-Yau manifolds of 

different topology. String theory can move continuously from one such theory to 

another using the the conifold transition. This is a mechanism involving massless 

black hole condensation. 

However, not all the corners of this web were described by known string the­

ories. In one particular corner describing the strong coupling dual of Type IIA 

string theory there is an eleven dimensional theory whose low energy description 

was given by eleven dimensional supergravity. This is the theory with the largest 

allowed number of supercharges, but it is nonrenormalizable. It was conjectured 

that there exists a consistent eleven dimensional theory, called M-theory, such that 
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its low energy is eleven dimensional supergravity. Sometimes the name M-theory 

is used to describe the whole web and sometimes only the strong coupling dual of 

the Type IIA string. 

The main thrust of the first part of this thesis is the study of a certain compact-

ification of M-theory, which we will describe shortly, in the presence of arbitrary 

moduli. The main mathematical ingredient in this study to which we turn next 

is noncommutative geometry. A classic mathematical result of Gel'fand states 

that compact topological spaces are in one-to-one correspondence with commu-

tative C* -algebras. In one direction, to a topological space X, one can associate 

the algebra of continuous functions C(X). Conversely and rather nontrivially, 

the spectrum of a commutative C* -algebra is equivalent to a compact topological 

space. This important result allows for a dual description of topological spaces 

and brings powerful algebraic methods into the realm of topology. On the other 

hand, if one drops the commutativity requirement, a C* -algebra A describes what 

is called by correspondence a quantum space. 

To illustrate, consider the algebra of functions on a two,..torus C(T2). An 

arbitrary element f of this algebra has the Fourier expansion 

f = L fk,IU~U~, (1.1) 
k,IEZ 

where Ui = eUi are the generators of this algebra. In general some restrictions are 

imposed on the c-number coefficients /k,l (such as they form a square-summable or 

rapidly decreasing sequence). Very importantly (1.1) is a global statement. In the 
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opposite direction, if we know that all the algebra elements have the form (1.1), we 

immediately recognize that they can be identified with functions on a two-torus. 

Thus one can read the topological compact space from the commutative algebra. 

Since (Ji are local coordinates on the torus, the generators Ui commute. Instead 

we can consider the algebra whose elements have the form (1.1) but with Ui's 

satisfying 

U U. 27ri0u. U 1 2 == e ·2 1, (1.2) 

where (), also called the deformation parameter, is a real number. This algebra is 

known as the algebra of 'functions' on the noncommutative torus. 

Just as one can define a field theory on a commutative space, one can also do so 

on a noncommutative space. The first part of this thesis is devoted to investigating 

the conjecture of Connes, Douglas and Schwarz, which states that supersymmetric 

Yang-Mills gauge theory on noncommutative tori provide a description of the 

toroidal compactification of the discrete light cone quantization of M-theory. 

1.1 Toroidal Compactification of the DLCQ of M-theory 

One of the strongests candidate descriptions of M-theory was provided by 

Banks, FishIer, Shenker and Susskind (BFSS) in [15]. Instead of thinking of the 

Matrix model as an auxiliary theory used for regulating a membrane theory, they 

conjectured that the large n Matrix model is M-theory. Membranes are then 

obtained as low energy excitations, but the Matrix model also describes a host 
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of other states such as M5-branes, or after compactification to lower dimensions, 

strings and D-branes. A further refinement of the BFSS conjecture was given by 

Susskind [16], who proposed that each momentum sector of the discrete light cone 

quantization (DLCQ) of M-theory is described by a maximally supersymmetric 

Matrix model with the momentum identified with the rank of the gauge group. 

The conjecture was further clarified by Sen and Seiberg [17, 18]. They used an 

infinite boost and a compensating rescaling to show that the DLCQ Hamiltonian 

of the original M-theory, where the light-cone variable is identified with period L, 

is given by the Hamiltonian of an auxiliary M-theory compactified on a vanishingly 

small space-like circle of radius R. This is then equivalent to a weakly coupled Type 

IIA string theory, which will be referred to, following Sen [19], as the auxiliary 

Type II string theory. At the same time, the original light-cone momentum is 

mapped into Ramond-Ramond DO brane charge. The string coupling and string 

mass scale are given by the R -+ 0 limit of 

where M p is the eleven dimensional Planck mass. 

In this limit as proposed by Witten [20], and discussed extensively in [21], the 

excited string states decouple and the dynamics of n DO branes is determined by 

the maximally supersymmetric Matrix model [22, 23, 24]. 

Toroidal compactification of M-theory can be obtained by considering Matrix 

theory on the covering space of the torus and imposing a periodicity constraint on 
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the dynamical variables [15, 25, 26]. The constrained system is formally equivalent 

to a U(n) super Yang-Mills (SYM) gauge theory on a dual torus. On the other 

hand, upon compactification on a d-dimensional torus T d , M-theory has additional 

moduli from the three form of eleven dimensional supergravity. Connes, Douglas 

and Schwarz [27], conjectured that these moduli correspond to the deformation 

parameters 8 ij of a noncommutative super Yang-Mills (NCSYM) gauge theory. 

Further studies of this subject followed in [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 

38, 39, 40, 41]. 

In [27], where compactification on a two-torus was considered in some detail, 

it was suggested that the SL(2, Z) noncommutative duality group of the NCSYM 

gauge theory [42, 43, 44, 45, 46] corresponds to the T-duality in the DLCQ direc-

tion and one of the space-like compact directions of M-theory. However, Rieffel 

and Schwarz [34] later showed that NCSYM gauge theories on higher dimensional 

tori have an SO(d, d IZ) duality, and conjectured that this is the realization, in 

the NCSYM theory, of the auxiliary Type II string theory T-duality. 

In general, as will be extensively discussed in the first part of this thesis, two 

NCSYM theories are dual to each other if there exists an element A of the duality 

group SO(d, d /Z) with the block decomposition1 

A=(: !), (1.3) 

--------------------------
IThe SO(d, d IZ) subgroup of the T-duality group O(d, d IZ) is the subgroup that does not 

exchange Type IIA and IIB string theories. 
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such that their defining parameters are related as follows 

e (Ae + 8)(Ce + 'D)-I, (1.4) 

(}j (Ce + 'D)ik(Ce + 'D)jl Ckl , (1.5) 

-2 
gSYM JI det(Ce + 'D) I g~YM' (1.6) 

ij S(A)'f/, (1.7) 

X S(A)X· (1.8) 

Here S(A) denotes the Weyl spinor representation of A. The deformation 

parameter of the noncommutative torus e is ad-dimensional antisymmetric ma-

trix, Gij is the metric defining the torus of the NCSYM, and gSYM is the gauge 

coupling constant. The integral chiraJ spinor 'f/ contains the Chern numbers of 

the bundle. For example, for compactification on a three torus, 'f/ contains the 

rank of the group and the magnetic fluxes, and for a four torus it also includes 

the instanton number. The chiral spinor X in (1.8) determines the parameters of 

the Chern-Simon type terms which can be added to the NCSYM action. In the 

auxiliary Type IIA string theory, X is closely related to the R-R moduli. 

The relation (1.4) was first written in [34]. Equation (1.7) appeared in [38] 

where S(A) was identified as a canonical transformation and was independently 

found in [47] and identified as a chiral spinor transformation. Equation (1.5) was 

implicit in [38] and was first written in [47] where equation (1.6) was also derived. 

Finally, deriving (1.8) was the main thrust of [48]. 

The first part of this thesis is an investigation of this duality conjecture and 
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some of its consequences. In Chapter 2, an extension of the method used in [36, 40] 

will be employed to construct twisted bundles over two and three-tori. Then we 

will explain in some detail how to solve the boundary conditions for sections in the 

fundamental and adjoint quantum bundle. Using the special form of the transition 

functions in the given gauge, we will find different equivalent forms of the general 

solution for fundamental sections. 

In Chapter 3, we will show explicitly how to construct an action of the duality 

group SO(d, d IZ) on NCSYM theories. Under these duality transformations, the 

rank of the gauge group and the magnetic flux numbers transform together in a 

Weyl spinor representation, and the deformation parameters transform by frac-

tional transformations. We will also obtain the transformation properties, under 

the duality group, of the gauge coupling and the metric. One can then directly 

compare these relations with the string theory T-duality predictions. We will then 

discuss the more abstract language of projective modules, as presented in [27] and 

references therein, and give the explicit map between this formulation and the 

more elementary formulation in [36, 47]. We will also explain the notion of Morita 

equivalence [42, 27, 34, 38, 39] applied to our specific case2 . Finally, we will end . 
the chapter with a discussion of the general theory of gauge transformations on 

the noncommutative torus and find an explicit gauge transformation that trivial-

izes one of the transition functions. With trivial transition functions, T-duality 

2For an expanded coverage of noncommutative geometry, see [66] and for a brief description 

see [67]. 

10 



transformations take the standard form, allowing us to interpret the expectation 

value of the gauge field as the location of the D-strings on the dual torus. 

In Chapter 4, we will include nonvanishing Chern-Simon couplings. The values 

of the Chern-Simon couplings are determined by the Ramond-Ramond moduli of 

the compactification. One finds perfect agreement between the transformation 

properties of the couplings derived from NCSYM or the auxiliary Type II string 

theory. 

In Chapter 5, we will study the BPS spectrum corresponding to electric fluxes 

of the noncommutative supersymmetric Yang-Mills (NCSYM) gauge theory [49] 

compactified on a torus. This gives a description of the BPS spectrum of the 

DLCQ of M-theory compactified on a dual torus. Since the spectrum is invariant 

under the T-duality group O(d, d IZ), where d is the dimension of the compact­

ification torus, one can first calculate the spectrum in the simplest case, which 

corresponds to a NCSYM gauge theory on a trivial bundle. Then one can use a 

duality transformation to rewrite the result in terms of the defining parameters of 

. a dual theory on a nontrivial bundle. Alternatively, one can also obtain this re­

sult directly by quantizing the free system of collective coordinates of the twisted 

U(n) theory. To obtain the spectrum one has to mod out by gauge equivalent 

configurations and show that the zero modes of the gauge field live on a compact 

space, a torus. In the classical case, one can find a global gauge transformation 

whose sole effect is a shift in the zero mode of the gauge field. Then the electric 

fluxes which are the conjugate variables are integrally quantized. However, for 
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a nonvanishing deformation parameter the gauge transformation also results in 

a finite space translation [27, 50, 51, 52]. Then, just as for the electric charge 

of dyons [53], by a Witten-Olive type effect, the electric flux spectrum for states 

carrying momentum contains an additional term proportional to the deformation 

parameter. The spectrum obtained is in agreement with the spectrum conjectured 

in the literature and obtained by imposing U~duality invariance. 

1.2 Non-linear Electromagnetic Duality 

The remainder of this thesis is devoted to the study of self-duality. In Chapter 6 

we present in some detail the theory of duality invariance for a theory of complex 

gauge fields with holomorphic duality transformations. This is an extension of the 

theory of duality invariance which was developed in [3, 4] and briefly discussed 

in [54]. However, the duality group can be larger than that presented in [54]. In 

fact, for a gauge theory with n complex gauge fields, the largest possible duality 

group is U(n, n). We also discuss how to obtain such a theory from a theory with 

a U(n) x U(n) duality group, which is the ~aximal compact subgroup of U(n, n), 

by introducing an additional n-dimensional matrix valued scalar field. 

In Chapter 7, we describe a Born-Infeld Lagrangian written in terms of aux­

iliary fields, with a U(n, n) duality group. Its form is closely related to the La­

grangian introduced in [55, 56] but differs in two ways. We use a different reality 

structure for our fields and introduce a dynamical scalar field such that the duality 

group is extended to a noncompact group. We find that it is possible to eliminate 
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the auxilliary fields using some new mathematical results concerning unilateral 

matrix equations. In particular, we show that certain solutions of unilateral ma­

trix equations can be written as a sum of terms which are symmetric in the.matrix 

coefficients as well as terms which are commutators. 

In the theory with auxiliary fields, it does not seem possible to work with real 

gauge fields, but this can be done in the Lagrangian with the auxiliary fields elim­

inated. As will be shown in Chapter 8, this leads to a Born-Infeld theory with an 

Sp(2n, JR) duality group. This is the first example of an interacting gauge theory 

whose Lagrangian is known to all orders and whose duality group is as large as the 

duality group of the Maxwell theory with the same number of gauge fields. We go 

on to show how to supersymmetrize the Born-Infeld Lagrangian in the formulation 

with auxiliary fields. We also present the form without auxiliary fields of the su­

persymmetric Born-Infeld Lagrangian with a single gauge field and a scalar field. 

This theory is invariant under S£(2, JR) duality, which reduces to U(l) duality 

if the value of the scalar field is suitably fixed. Versions of this theory without 

the scalar field were presented in [57, 58, 59]. Finally, we generalize our construc­

tion to arbitrary even dimensions by using antisymmetric tensor fields such that 

the rank of their field strength equals half the dimension of space-time. First, 

we consider theories with a U(n, n) duality group using complex antisymmetric 

tensor fields; then we discuss theories with real antisymmetric tensor fields. These 

have an Sp(2n, JR) duality group if half of the space-time dimension is even and 

O( n, n) if it is odd. The fact that the duality group depends on half the dimension 
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Chapter 2 

Super Yang-Mills on the Noncommutative Torus 

In the first section, we review the standard toroidal Matrix compactification 

leading to a SYM gauge theory on the dual torus. Then we present the conjec­

ture [27J that in the presence of nonvanishing NS antisymmetric moduli Bij , the 

translation generators implementing the quotient conditions do not commute, such 

that Matrix compactification leads to a noncommutative super Yang-Mills gauge 

theory on a dual noncommutative torus. 

In Section 2.3, we study adjoint quantum bundles on noncommutative tori of 

arbitrary dimension which admit a constant curvature connection which is not 

valued in the su( n) subalgebra and have transition functions of a special simple 

form. 

In Section 2.4, we show how to expand the sections of the adjoint bundle of a 

U(n) gauge theory in terms of matrix valued functions on a dual noncommutative 

torus. The dual deformation parameter 8' lies on the same SO(d, d IZ) orbit as 

the original 8. We perform most of the calculations on tori of arbitrary dimension, 

but later we will concentrate on the two and three-tori. 

In Section 2.5, we describe the quantum bundles corresponding to the two 

dimensional compactification and rewrite some of the known two dimensional re-
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lations in a form that admits immediate generalization to higher dimensions. We 

also give the solution for arbitrary adjoint bundles over three dimensional tori. 

In Section 2.6, we consider the noncommutative SYM action on a twisted 

quantum bundle after a brief description of the quantum integral. 

Finally, in Appendix A we prove a theorem showing that the chiral spinor 

representations of SO(d, d IZ) are integral, and also show that the spinor repre-

sentation of SO(3,3IZ) is in fact SL(4,Z). 

2.1 Matrix Compactification 

In this section we present a review of Matrix theory compactification. In the 

limit of large string mass the dynamics of n DO branes, in uncompactified space-

time, is determined by the maximally supersymmetric Matrix Model action [22, 

23, 24], 

This action is obtained by dimensional reduction of the ten dimensional N = 1 

SYM gauge theory. Alternatively one could work with the IKKT functional [65] 

obtained by dimensionally reducing, in all direCtions including time, the Euclidean 

ten dimensional SYM action. 

The compactification of Matrix theory on a d-dimensional torus is obtained by 

considering an infinite number of DO branes living on Rd, the covering space of 
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the torus, and then imposing the following quotient conditions [15, 25]. 

27fe{+XI, i,I=l, ... ,d, 

xa, a=d+1, ... ,9, (2.1) 

The last equation in (2.1) contains the quotient condition for fermions. Here I runs 

over the compact directions, and the e[ form a basis defining the compactification 

lattice. The U/s are unitary operators. One can define new matrix coordinates 

which obey the simpler quotient conditions 

(2.2) 

In terms of the new variables the action takes the form 

SDO = _l_Jdt Tr (G .. xiXj + ~_l-G .. Gkl[Xi Xk][Xj Xl]+ 
2g

5 
tJ 2 (27f)2 tJ , , 

Lxaxa+-( 1)2LGij[Xi,xa][Xj,xa]+ (2.3) 
a 27f a 

(2~ l' E[X·, X'][X· , X'J + fermions) , 

where we have introduced the metric Gij = LI e[ eJ. In (2.3), the trace over 

infinite dimensional matrices is formally divided by the infinite order the quotient 

The original solution of the quotient condition assumed that the translation 

operators commute 
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The standard way to solve (2.2) is to introduce an auxiliary Hilbert space on which 

Xi'S and U/s act. In the simplest case this is taken to be the space of functions 

on a d-dimensional torus taking values in en. Then if one lets the U/s be the 

generators of the algebra of functions on the torus 

where ai are coordinates on the covering space of the torus, the Xi'S satisfying (2.2) 

must be covariant derivatives 

(2.4) 

The partial derivative is with respect to ai, and Ai are n-dimensional hermitian 

matrices. The action (2.3) can be rewritten as ad-dimensional SYM action, by 

replacing the Xi'S with covariant derivatives as above, and rewriting the trace over 

the infinite dimensional matrices as 

Here tr is an n-dimensional trace, and the new coordinates ai are to be integrated 

from zero to 211". The action becomes 

(2 )2-d ~~--
SDO = 11" .. J dt J dda Vdet(Gii) tr (GpvG{p[DP, D{][DV

, DP]-
49svdet(GtJ ) 

2.: Gpv [DP, xa][Dv, X a] + 2.:[Xa, X b
] [xa, X b

] + fermions) , 
a a<b 

where the scalar fields xa have been rescaled by a factor of 211". We have written 
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the action in standard form l so that one can read off the SYM gauge coupling 

, (2.5) 

Thus the gauge coupling g~YM equals the string coupling on the T-dual torus. 

The square root factor accounts for the expected dilaton shift under T-duality. 

Following [27] we consider the general case when the unitary operators Ui do 

not commute. Consistency of the quotient conditions requires that the U/s must 

commute up to a phase 

U .U. - e-27ri9iiU·U· 
t J - J t· (2.6) 

Connes, Douglas and Schwarz conjectured that the deformation parameters 8 

correspond to certain moduli of the compactification of the DLCQ of M theory on 

tori. If ryi j - represents a three cycle wrapped around the transversal directions Xi 

and x j and the light cone direction x-, then 

8 ij = (21)3 { C, 
1r IY'J-

where C is the antisymmetric three form of eleven dimensional supergravity. Writ-

ten in terms of the auxiliary type IIA string theory variables, 

1 { 
8 ij = (21r)2 J"(ii B, 

---------------------------
1 Note that the positions of all the indices are switched. For example the metric has upper 

indices. This just reflects the performed T-duality under which the metric is repla~ed with the 

inverse metric. Another way to understand the index position is that T-duality is a canoni-

cal transformation which exchanges coordinates and momenta and therefore reverses the index 

structure. 
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where B is the NS two form. 

N ext we give a heuristic explanation of the noncommutativity of the translation 

generators (2.6). Consider for simplicity compactification on T2 and assume that 

there is only one DO-brane. Then the covering space depicted in figure 2.1 contains 

an infinite number of T2 cells labeled by two integers. The matrix element X;q 
is associated to the oriented string starting on the DO-brane at q = (ql, q2) and 

ending on the DO-brane at P = (PI, P2). We define the translation operators such 

that their matrix elements are given by 

(2.7) 

The translation generators then commute since each acts trivially in one subspace. 

Next consider the effect of turning on the modulus B = Bl2dx I dx2. Since the 

covering space is topologically trivial and BI2 is constant one can eliminate it by 

a gauge transformation 

B' = B+dA, (2.8) . 

where for example A = B12X2dxl. Eliminating B comes at a price. One must 

modify the operators Ui implementing the periodicity condition. 

Just as the wave function of a charged particle changes under electromagnetic 

gauge transformations 

the wave functional of strings w[r], where r is the curve where the string is located, 

20 



• 

Figure 2.1: The covering space of T2 with one DO-brane per cell 

must transform under the gauge transformation (2.8) as 

For the choice of A made above the wave functional of each string acquires the 

phase exp( i /27fB12 J x2 dx l
). The exponent is just the area under the string so 

the relative phase of strings related by a translation in the Xl direction vanishes. 

For the x 2 direction the relative phase is exp(27fi812 (Pl - ql))' This requires a 

redefinition of the translation generators 

(2.9) 

(U ) - 27ri812ql5; 5; 
2 pq = e Up1q1 Up2q2 -1' 

Then a direct computations shows that the U/s satisfy (2.6). 

In the noncommutative case it is convenient to introduce another set of trans-

lation operators Ui which satisfy 

a·u· - e27ri8ijU· ·U· 
l J - J l' (2.10) 
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The U/s generate the algebra of functions on a quantum torus. We denote this 

algebra, Ae. Also note that the U/s are the generators of Ac-e). An expanded 

discussion of this and other issues in noncommutative geometry can be found 

in [66, 67]. 

This algebra can be realized as a subalgebra of the quantum plane algebra, 

which is generated by (Ji satisfying 

[(J~ (J -] = - 27ri8 --z, J ZJ' (2.11) 

Then one can realize the generators of Ae as 

To realize the Ui generators we also introduce partial derivatives satisfying2 

Now one can write the Ui generators as 

Note that both (Ji and 8 i act as translation generators on the (J/s, and the exponent 

in the U/s is just the linear combination that commutes with all the (J/s. Thus 

For vanishing 8 one sees that Ui and Ui coincide. 

2Just as in the classical case, one can also introduce quantum exterior forms do-i , which 

anti-commute with each other and commute with all other variables. 
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The simplest example of solutions of the quotient conditions (2.2) are quantum 

connections on trivial bundles 

(2.12) 

In the noncommutative case the matrix elements of Aj are elements of Ae. Again 

using the representation (2.12) of Xi in the Matrix model action one obtains a 

NCSYM action [49]. However we postpone writing this action until we study more 

general solutions which are connections on nontrivial bundles. 

For the commutative case, matrix compactification on Td results in a SYM 

gauge theory in d + 1 dimensions on the dual torus. In the limit when the size of 

the original torus vanishes the dual torus becomes R d
, therefore one obtains the 

opposite of dimensional reduction. If one starts from a Euclidean lO-dimensional 

SYM and dimensionally reduces in all directions including the Euclidean time 

one obtains the IKKT [65] functional. Matrix compactification of one direction 

in the IKKT functional results in the finite temperature action of the original 

theory (2.3). 

2.2 Twisted Quantum Bundles on T2 

There exist more general solutions of the quotient conditions (2.2) which are 

connections on twisted bundles. They correspond to compactification of the DLCQ 

of M-theory in the presence of transversely wrapped membranes. Again the solu­

tion is a sum of two terms, a constant curvature connection 'Vi and a fluctuating 

23 



part 

(2.13) 

x a Xa(Zi), 

~ ~(Zi)' 

Here the Z/s are n x n matrices with operator entries and, just like the U/s for the 

trivial bundle, commute with the U/s, but now are sections of the twisted bundle 

whose exact form will be discussed shortly. However, while for the trivial bundle 

Ai, X a and the spinorial components of.~ are n x n matrix functions, in (2.13) 

Ai,Xa and the components of ~ are one-dimensional functions but with matrix 

arguments. Later, this will allow us to establish a relationship between a SYM on 

a twisted U(n) bundle and one on a U(l) bundle. 

In this chapter we concentrate for simplicity on the two dimensional case. 

Following [36], up to a gauge transformation the constant curvature connection 

can be written as 

VI = ai, V2 = a2 
- ijal, 

where j is the constant field strength 

(2.14) 

Such a gauge field can only exist in a non-trivial bundle. One can introduce 

transition functions Oi such that the sections of the fundamental bundle satisfy 

the twisted boundary conditions 

n1 (ab (2) <I>(al' (2), 
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Similarly the adjoint sections satisfy 

(2.16) 

Consistency of the transition functions of the bundle requires that 

(2.17) 

This relation is known in the mathematical literature as the co cycle condition. 

The covariant derivatives transform just as the adjoint sections 

A particular solution for the transition functions compatible with the constant 

curvature connection (2.14) and satisfying the cocycle condition is given by 

(2.18) 

where U, V are n x n unitary matrices satisfying 

UV = e-27rim/nvu. 

Using the representation given in [36] one has 

U - e27rikm/nJ 
kl - k,l, 
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where the subscripts are identified with period n. 

One can express the above matrices in terms of the standard 't Hooft matri-

ces [68] denoted here by U' and V' and satisfying 

The relation is given by 

(2.19) 

The phase in (2.19) is due to the nonstandard definition of U used in [36]. This 

has certain advantages but similar phases will appear when comparing the results 

of [36] with similar results where the standard 't Hooft matrices were used. We 

also introduce a unitary matrix K which changes the representation so that V'is 

diagonal, and satisfies 

(2.20) 

Note that n is quantized since one is considering a U(n) gauge theory and m 

is quantized since the magnetic flux f through T2 is quantized 

m 
2nJ = 0' n+m 

where 0 = 8 12 . In M-theory m is the transversal membrane wrapping number. 

One can solve the boundary conditions (2.15) for the fundamental sections as 

in [36] generalizing a previous result for m = 1 in the commutative case presented 

in [26]. Using the ordered exponential explained below, the general solution has 
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the form 

The ordered exponential [36] is defined for two variables whose commutator is a 

c-number 

E(A B) 1 ~ .!., AlBl. 
_ ' = 1 - [A, B] LJ l=O t .. 

The normalization is such that 

E( -B, A)E(A, B) = 1 

and it has the following desirable properties similar to the usual exponential 

E(A + c, B) = E(A, B)eCB , (2.21) 

E(A, B + c) = eCAE(A, B). 

The 1>j functions are defined on the whole real axis and are unrestricted except for 

the behavior at infinity. They should be considered as vectors in a Hilbert space 

on which all the elements of the algebra are represented. 

Next we explain in some detail how to obtain this result. First define 

The second boundary condition (2.15) implies that the definition of 1> is consistent, 

I.e. k-independent. Using vn = lone also finds that 1> is a periodic function in 
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The other boundary condition gives 

It is convenient to separate out a factor to eliminate the above twist 

and to require a simpler periodicity condition for ~ 

Then the function f must satisfy 

This is satisfied exactly for 

where the ordered exponential defined above was used in the right hand side. One 

can Fourier transform ~ in al 

~(al' a2) = L eipU1 cpp(a2) 
pEZ 

and using the property (2.21) of the ordered exponential one obtains 

Let p = ms + j with j = 1, ... , m and s is an integer. Then the solution can be 

written as 
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where <Ps,j def <Pms+j. Periodicity in a2 then implies <Ps-l,j(a2 + 27m) = <ps,j(a2) 

so that using this recursively one has <ps,j(a2) = <po,j(a2 + 27rns). Finally after 

defining ¢j(x) def <Po,j(27r(x - 1)) one obtains 

This is the result mentioned above up to another redefinition 

While the solutions for the sections of the fundamental bundle given in [36J are 

suitable for showing the equivalence to the projective modules of [27J as will be 

discussed in Section 3.3, the appearance of the ordered exponential is somewhat 

inconvenient. Using the special form of the transition functions one can rewrite the 

solution in an equivalent but simpler form. The transition functions in this gauge 

do not contain al and it is convenient to order all al to the right in the solution. 

Using vn = 1 in the second condition (2.15) one can express all n components of <P 

in terms of a single function with period 27rn in a2. After Fourier transforming in 

a2 and imposing both boundary conditions (2.15) one obtains the general solution 

<Pk(al, (2) = L e2rri(u2 /2rr+k)p/n e2rri(u!/2rr-p /m)m/n {j3p(ad 27r - p/m), 
pEZ 

where only m of the {j3p functions are independent, since 

Using the same technique one can show that an arbitrary adjoint section has 
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the following expansion 

,T,( ) "" zsz-t 'J.'al,a2 = L....J Cst 12' (2.22) 
s,tEZ 

Here Cs,t are c-numbers and 

where b is an integer, such that one can find· another integer a satisfying an - bm = 

1. For nand m relatively prime one can always find integer solutions to this 

equation. Again, let me emphasize that the Z/s commute with the, U/s. They are 

generators of the algebra of functions on a new quantum torus 

Z Z 21fif}' Z Z 
1 2 = e 2 1, 

where ()' is obtained by an S£(2, Z) fractional transformation from () 

0' = a() + b . 
m()+n 

Now we outline how to obtain this result. First note that 

In the last equality we used the fact that un = 1, and the exponential formula to 

shift al' Using both boundary conditions one has 
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Next, expand the section as 

w(a a) = ""' eiSUl/(n+m()e-itu2/nw 1, 2 L...J s,t, 
s,tEZ 

where W s,t is a n x n matrix and can be expanded as 

n+io n+jo 

W s t = ""' ""' Cs t i J-V'iU'j. , ~ L-t ", (2.23) 
i=io j=jo 

Here io, jo are two arbitrary integers, allowing us to freely shift the summation 

limits assuming that Cs,t,i+n,j = Cs,t,i,j+n = Cs,t,i,j' Then one can obtain further 

restrictions on the Cs,t,i,j coefficients using th~ boundary conditions (2.16). For ex-

ample using the first equation (2.16) and comparing like coefficients in the Fourier 

expansion one has 

C - _e27ris /(n+m() - C _ _ e-27rimi/ne-27rism()/[n(n+()] 
s,t,t,] - s,t,t,J . 

From this and the similar relation obtained by imposing the second equation (2.16) 

one sees that Cs,t,i,j vanish unless (s + mi) / n = k and (t + j) / n = s for k and s two 

integers. These equations have multiple solutions. However, if (i, j) and (i', j') are 

two solutions then i - i' E nZ and j - j' E nZ. This ensures that only one term 

survives in the sum (2.23) over i and j. Choosing for later convenience io = sb 

and jo = mbt one has 

n+sb n+mbt 
w(al' (2) = L eiSUl/(n+m()e-itu2/n L L Cs,t,i,j V'iU'j. 

s,tEZ i=sb j=mbt 

Since nand m are relatively prime let a, b E Z such that an - bm = 1. Then 

k = as, l = at, i = bs, j = mbt 
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is an integer solution inside the i and j summation range. Dropping the i, j indices 

since they are determined by sand t one has 

which is just (2.22) after an additional phase redefinition of Cs,t to' accommodate 

the phase difference between U and U'm. 

2.3 Twisted Quantum Bundles on Tori 

In this section we construct quantum U (n) bundles on d-dimensional noncom-

mutative tori which admit constant curvature connections with vanishing su( n) 

curvature. This is done by finding explicit transition functions compatible with 

such a connection. We employ a method which is a straightforward generalization 

of [36, 40]. Using a gauge transformation the constant curvature connection can 

be brought into the form 

(2.24) 

where F is an antisymmetric matrix. This differs from the gauge used in the 

previous section, but is very convenient for the higher dimensional cases. From 

now on this gauge will be used throughout the thesis unless otherwise stated. 

Define the constant curvature to be 

'dk . ["j "k] .r (0) = 1, v ,v , 

Then, using the commutation relations (2.11) one can calculate 

F(o) = (2F + 21rF8F). 
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In general, such a connection can only exist on a non-trivial bundle. One can 

introduce transition functions ni such that the connection satisfies the twisted 

boundary conditions 

(2.25) 

One can try to find solutions for the transition functions of the form 

(2.26) 

where P is an arbitrary constant d-dimensional matrix and the Wi's are constant, 

unitary n-dimensional matrices. The boundary conditions (2.25) imply the fol-

lowing equivalent relations 

27rF = P(l- ep)-l = (1 - pe)-lp . 

Note that P must be antisymmetric because of our gauge choice. Consistency of 

the transition functions of the bundle is the cocycle condition 

In our case it implies 

w-w- - e-211"iM
i
j /nw- TV:-

~ J - J ~, (2.27) 

where the antisymmetric matrix M is given by 

M = n(2P - pep). 
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By taking the determinant of both sides of (2.27) one finds that M must have 

integer entries. In the classical case Mij corresponds to the value of the first 

Chern class on the (ij) two-cycle of the torus. In the auxiliary Type IIA string 

theory, M is interpreted as D2 brane winding. This interpretation remains true 

in the quantum case. 

Let q be the greatest common divisor of n and the nonvanishing entries of M 

q = gcd(n, Mij). 

Next one defines ii and M which have relatively prime entries 

n = qii, M = qM. 

It is convenient to consider Wi's which have block diagonal form with q identical 

blocks along the diagonal 

Here Wi are ii-dimensional matrices. Alternatively one can write this in tensor 

product notation 

The transition functions are also block diagonal and can be written 

(2.28) 

To find expliCit boundary conditions, following't Hooft [69], one makes the ansatz 

(2.29) 
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where ai and bi are integers and U and V are the clock and shift matrices [68, 69] 

Vkl = b"k+1,I, k, l = 1, ... ,ii, 

and the subscripts are identified with period ii. They satisfy 

Then (2.27) leads to the following relation 

(2.30) 

For two or three dimensional tori, one can find integers ai and bi such that (2.30) 

holds for arbitrary M, as will be shown in Section 2.5. In higher dimensional cases 

the ansatz is not sufficiently general to describe arbitrary bundles. In particular, 

one can always perform a change of lattice basis such that the only nonvanishing 

components of Mare Md-l,d = - Md,d-l, while in general, an arbitrary antisym-

metric matrix can not be brought into such a form. Furthermore, for d > 3, even 

in the commutative case, generic bundles do not admit connections with vanish-

ing su(n) constant curvature. A more general construction could be obtained by 

allowing for an arbitrary constant curvature connection. 

2.4 Adjoint Sections on Twisted Bundles 

In this section we analyze the structure of adjoint sections on twisted bundles. 

The scalar and fermion fields are examples of such sections. We also write the 
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connection as a sum of a constant curvature connection yri, and a fluctuating part 

Note that Ai is also an adjoint section. Since it is the difference between two 

connections it transforms covariantly under gauge transformations. It should not 

be confused with a gauge potential. Adjoint sections are n-dimensional matrices 
, 

with entries which are elements of the quantum plane algebra (2.11) and obey the 

twisted boundary conditions 

(2.31) 

Next we try to find the general solution of (2.31) and write it in unconstrained 

" form, reflecting the global properties of the bundle. First consider the simpler 

example of a U(n) NCSYM on a trivial bundle over a two-torus. Since ni = 1 

one has 

where Eab are n-dimensional matrices with one nonzero entry, (Eab)ij = 0ioJ, and 

Wf;i2 are c-numbers. In other words, each matrix element of the adjoint section 

is an arbitrary function on the quantum torus. For a twisted U(n) bundle with 

magnetic flux m, such that nand m are relatively prime, one can show [27, 36, 40] 

that the adjoint sections have the expansion 
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where now the coefficients Wili2 are c-numbers, and Zi are n-dimensional matrices 

with noncommutative entries satisfying 

Z Z 27ri(}'Z Z 
1 2 == e 2 1· 

Thus the Z/s satisfy the commutation relations of a generators of the quantum 

torus. This shows that the set of sections is isomorphic to the set of functions on 

a duaI'torus, and is very similar to the set of adjoint sections of a U(l) NCSYM 

theory. For two and three dimensional adjoint bundles with arbitrary magnetic 

fluxes, we will show that the general solution takes the form 

d == 2,3. (2.32) 

Here Bab are q dimensional. 

Begin by writing W in tensor notation 

q 

w(ai) == L B ab 0 wab(ai), 
a,b=l 

where wab(ai) are n-dimensional matrices with noncommutative entries. Imposing 

the boundary conditions (2.31) and using (2.28) one obtains 

wab(a· + 21rot) == w· wab(a·) w-:- 1 
l . l J l J.' (2.33) 

A less restrictive but very convenient constraint is obtained by shifting ai by 21rn 

using (2.33) 

(2.34) 

In (2.34) all the matrix factors disappear since Uii == Vii 1. The ai depen-

dent exponential of (2.26) survives and acts like a translation operator due to the 

37 



commutation relations (2.11). This implies the following periodicity relation 

(2.35) 

where 

Q-1 = 1- pe. 

Next we try to find solutions of the form 

i = 1. . . d. (2.36) 

Here Sj and tj are integers and the exponent was chosen so that it is compatible 

with the constraint (2.35) if the matrix N has integer entries. One can show that 

Zi is compatible with the boundary conditions (2.33) if 

(2.37) 

where ai and bi are defined by (2.30). In the next two sections we will consider 

in detail the two and three dimensional cases, and find ai, bi
, Sj and tj such 

that (2.30) and (2.37) hold. Furthermore, for properly chosen integers ai, bi, Sj 

and tj, one can show that an arbitrary adjoint section can be expanded in terms 

of the Z/s as in (2.32). For a proof of this statement in two dimensions see [40]. 

It is convenient to define another matrix which will be used shortly, 

(2.38) 

In the remainder of this section we calculate the commutation relations satisfied 

'by the Z/s and the constant curvature connection (2.24). Using their explicit 
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form (2.36) one finds, after some matrix algebra, 

(2.39) 

where 

8' = ii-2N T QT 8QN - ii-1L. (2.40) 

From (2.39) one can see that the algebra generated by the Z/s is the algebra of 

functions on the quantum torus with deformation parameters given by 8'. After 

some further matrix algebra and using the following identities, 

Q 1 + 21rF8, 

Q2 1 + 21rF(o)8 = (1 - M8/ii)-I, 

QT 8 8Q, 

one can rewrite 8' as a fractional transformation 

8' = A(8) def (A8 + 8)(C8 + 1))-1. . (2.41) 

Here 

A=(: ~), (2.42) 

and the d-dim~nsional block matrices are given by 

(2.43) 

One can check that 

(2.44) 
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and thus A is an element of O(d, d IR), i.e. it satisfies 

where 

(2.45) 

In the two and three dimensional examples that will be discussed later, A is in fact 

an element of SO(d, d IZ). This is the subgroup with determinant one and integer 

valued entries in the basis where the metric is given by (2.45). The Weyl spinor 

representations of SO(d, dlZ) are also integral, that is the representation matrices 

have integer entries. This statement, which is implicit in papers discussing T-

duality of Type II string theory, will be proven in the Appendix A. Since the spinor 

representation of SO(d, d IZ) will be used extensively in the following sections, 

recall that the vector and spinor representations are related by 

S-l S - A P 
fS- s fP' 

and the gamma matrices satisfy 

(2.46) 

(2.47) 

Finally, one can show by direct calculation that the commutation relations of 

the constant curvature connection and Zi have the form 

(2.48) 
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where there is no sum over j and H = (n - M8)-1 N. Note that H can also be 

written in terms of 8 and some of the block components of A 

H- 1 = C8 +V. (2.49) 

Finally, the following identities will be useful in later sections 

H n-lQ2N, 

detH (qdet(Q)/n)2, (2.50) 

det(Q2) (1 _ tr(:8))_2. 

M 27rnQ-l F(o) Q-T, 

Mijcijl 
.. k 

MZJcijkQI' 

Note that with the exception of the last relation all the others are valid for tori of 

arbitrary dimension provided one works on the bundles discussed in Section 2.3. 

2.5 Two and Three Dimensional Solutions 

Although the twisted two dimensional case has been discussed extensively in 

the literature [27, 35, 36, 40], we will review it here in a form that readily admits 

generalization to higher dimensional compactifications. I will then give a complete 

description of the three dimensional adjoint bundles. 

In the two dimensional case the antisymmetric matrices 8 and M have the 

form 

( ~ ) ( ) o () 0 m 
8= M= 

-() 0' -m 0 
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where 0 is the deformation parameter and m is the magnetic flux, which is inter-

preted as the number of D2 branes wrapping the two-torus. 

One cq,n verify that the integers 

where n = qn and m = qm, satisfy (2.30). Then choosing Si = (0,1) and ti = (b,O), 

where b is an integer such that an - bm = 1, one has N = 12 . One can now 

use (2.38) and (2.43) to find 

(2.51) 

where c is a two dimensional matrix with the only nonvanishing entries given 

by C12 = -C21 = 1. Group elements of the form above are in an SL(2, Z) sub-

group of SO(2, 2/Z). This subgroup is isomorphic with one of the Weyl spinor 

representations of SO(2, 2/Z). This feature is not generic for higher dimensional 

compactifications and reflects the fact that SO(2, 2/Z) "-' SL(2, Z) x SL(2, Z), so 

that it is not simple. 

The algebra of the Z/s is then determined by 8' which is given by the fractional 

transformation (2.41). In two dimensions, the SO(2, 21Z) fractional transforma-

tion (2.41) can also be written in the more familiar form, used in [27, 36], as a 

SL(2, Z) fractional transformation acting on 0 

0'= aO+b. 
mO + n 

(2.52) 

One can also check that the other SL(2, Z) subgroup, made of elements of the 
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form 

acts trivially on (). This subgroup is generalized to SL(d, Z) in compactifications 

on a d-dimensional torus, and will play in important role later, but only for the 

two dimensional compactification it leaves e invariant. The Z/s then obey the 

following algebra 

Z Z 27ri(}'Z Z 
1 2 = e 2 1· 

As will be shown shortly, the rank of the gauge group and the magnetic flux 

transform in an integral Weyl spinor representation of SO(2,2IZ). Using the 

creation and annihilation operators introduced in the Appendix A one can write 

such a spinor as 

nlO) + mata~IO). (2.53) 

Using (2.46) one can show that the spinor representation of (2.51) transforms the 

above state into qIO). In the Weyl basis one can write the action as 

(2.54) 

where 

In Section 3.1 we will show, employing the expansion of the adjoint section in terms 

of the Zi generators (2.32), how to rewrite the original U(n) NCSYM action on a 

twisted bundle as a U(q) NCSYM action on a trivial quantum bundle over a torus 
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with deformation parameter 8'. The 3L(2, Z) transformation, which relates the 

deformation parameters and the spinors (2.53) of these two NCSYM, can then be 

interpreted as a duality transformation inherited from T-duality of Type II string 

theory. This can be seen as follows. The rank and the bundle of the NCSYM 

theory determine the D brane charges in string theory. These charges transform 

in a chiral spinor representation of the target space duality group [13]. Given nand 

m with greatest common divisor q, one can perform a T-duality transformation 

which takes the original D brane configuration into q DO branes. 

Of course the metric and anti symmetric tensor also transform under this dual-

ity, and in the proper limit, which we will explain in detail later, the antisymmetric 

tensor B transforms separately by fractional transformation just as in (2.41). Since 

the parameters 8 ij of the NCSYM theory are identified with Bij , the background 

expectation value of the NS antisymmetric tensor of the compactified auxiliary 

string theory, the expected transformation under target space dualities is (2.41). 

Next we turn to the three dimensional case which will be solved by first per-

forming an 3L(3, Z) transformation R to bring M in canonical form3 

M=RMORT , (2.55) 

where 

U 
0 :} MO= 0 (2.56) 

-m 

31t is always possible to bring an antisyrnmetric matrix in canonical form using 3£(3, R) but 

here one has to do this using an integral matrix. 
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While it is always possible to find such a transformation, (2.55) does not define 

it uniquely. We first find the solution corresponding to MO, and then obtain the 

general solution by using such an R. 

First note that MO corresponds to a background magnetic field with flux only 

through the (23) plane, which suggests that the solution should closely resemble 

the two dimensional one. As before, 

(a~) = (0, m, 0), (b~) = (0,0,1) 

satisfy (2.30). Similarly if one sets 

(s?) = (0,0,1), (t?) = (0, b, 0), (2.57) 

one can satisfy (2.37) with the NO matrix given by 

The diagonal entries of NO divided by n have the interpretation of wave numbers. 

Thus one can see that twisting the boundary conditions allows for fractional wave 

numbers in the second and third directions. Using (2.57) one finds 

(
0 ° ° 1 L

O 
= ° ° -b . 

° b ° 

45 



One can now use (2.43) to find the 80(3, 31Z) matrix 

1 0 0 0 0 0 

0 a 0 0 0 b 

AO = 
0 0 a 0 -b 0 

(2.58) 
0 0 0 1 0 0 

0 0 -m 0 it, 0 

0 m 0 0 0 n 

Everything so far is just as in the two dimensional case. Note however that in 

general e will not be in canonical form, that is, it will not have a form similar 

to (2.56). 

Now, write the general solution for an arbitrary M as 

t · - to 
t - j' 

N=RN° , 

(2.59) 

Just as in the two dimensional case one finds, using (2.46), the Weyl spinor rep-

resentation matrices corresponding to (2.58) and (2.59) 

a -b 0 0 

SO = 
-m n 0 0 

0 0 1 0 

0 0 0 1 

3=3
0 (~ ;T ). 
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The rank of the group and the magnetic flux matrix M define a state in the Weyl 

spinor Fock space 

Now one can check that S acts on this spinor as 

q n 

0 M23 

=5 
0 M 31 

0 M12 

It will be convenient to denote the components of the spin or as 

rJ= 

n 

M23 

M 31 

M12 

(2.60) 

As will be shown later (2.60) can be used to relate the original theory to a U(q) 

theory on a trivial bundle. In Appendix A we show that the Weyl spinor rep­

resentation of 50(3, 31Z) is in fact isomorphic to 5L(4, Z). In this case, in the 

auxiliary Type IIA string theory, the DO and D2 branes form q bound states, and 

the transformation above corresponds to aT-duality transformation that maps 

the original D brane configuration into a q DO branes. 

2.6 Noncommutative Super Yang-Mills Action 

After discussing how to perform integration on a noncommutative torus we will 

be ready to write the noncommutative Super Yang-Mills action. In the classical 

case the integral is a linear map that associates to a function its zero mode Fourier 
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coefficient. Similarly for an element of Ae of the form a = E aili2 ... idUtlu~2 ... U~d 

define the integral as 

/ 
dd def ( )d 

0" a = 21r aoo ... o. (2.61) 

One can check that this definition has all the desirable properties of the classical 

integral, such as linearity and translation invariance in O"i. For definiteness, in the 

remainder of this section we discuss the three dimensional case. 

When twisted U(n) theories are considered, it was found in [27, 36] that the 

integral must be normalized in a particular way to find a duality invariant spec-

trum. The normalization can also be obtained directly as the Jacobian of a change 

of integration variables. Note that the integrand, which is the trace of an adjoint 

section, obeys the following periodicity 

Since trw(O"i) does not have periodicity 21r in O"i it can not be expanded in terms of 

the Ui variables. One can define new variables ai = O"jQ{R~ and Ui = eUi , where 

R is an arbitrary SL(3, Z) transformation. In the following sections we take R to 

be the matrix that brings M into canonical form (2.55). Then 

(2.62) 

where det( Q-1) is the Jacobian of the coordinate transformation, and the second 

integral can now be performed as discussed above, since the integrand· has an 

expansion in terms of the Ui variables. Using the expansion (2.32) of W one 
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obtains 
q J d\TtrW(a) = (27r)3 n I det(Q-l)1 :Ewggo' 

a=l 

The Super Yang-Mills action on a noncommutative three-torus is given by 

1 'k'k'I'1 
4GijGkl(F - F(o»)(FJ - F(o»)+ (2.63) 

~ :Exaxa - ~ :EGij[Di,Xa][Dj,xa]+ 
a a 

where pj = i [Di, Dj] and :11/ = i [Vi, Vj]. We have subtracted the constant part 

of the field strength in the second line of equation (2.63). This is equivalent to 

adding a constant to the Lagrangian, or equivalently to the Hamiltonian, and has 

the effect of setting the vacuum energy to zero. The noncommutative pure gauge 
I . 

theory action was written first in [49] and the maximally supersymmetric U(n) 

NCSYM gauge theory action was written in [27, 38]. 

For the compactification of the auxiliary Type IIA string theory without 

wrapped D2 branes, the above action can be obtained directly from the Matrix 

action. One has to show that the trace over infinite dimensional matrices reduces 

to a finite dimensional trace and an integral. A formal argument for the commu-

tative case was given in [25] and discussed in detail in [70]. The same argument 

extends to the noncommutative case. A brief argument was given in [27] showing 

how to extend this construction when there are D2 branes wrapped on the torus 
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in the auxiliary Type IIA string theory,corresponding to magnetic fluxes in the 

NCSYM gauge theory. Here we just make the assumption that the NCSYM action 

is in~ependent of the D2 brane charges and that adding D2 branes only. results 

in changing the quantum adjoint bundle. We will provide evidence for this in 

Section 3.2. 
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Chapter 3 

Dualities of the Matrix Model from T-Duality of 

the Type II String 

In Section 3.1, we will start with the U(n) NCSYM action (2.63) on a twisted 

quantum bundle with magnetic fluxes M and deformation parameter 8, and show 

that after a sequence of field redefinitions it can be rewritten as a U(q) NCSYM 

action on a trivial bundle over a quantum torus with deformation parameter 8'. 

Then, in Section 3.2, we will take the small a' and small compactification 

volume limit in the auxiliary Type IIA string theory and obtain the transforma-

tion properties of the metric, antisymmetric tensor, and string coupling constant. 

These are then compared with the transformation in Section 3.1 using the standard 

. 
relations between String theory and SYM gauge theory. 

Section 3.3 shows the relationship between the physical language used in these 

constructions and the more abstract mathematical language of Connes and Rieffel. 

The last section contains some gauge equivalent formulations closely resembling 

standard constructions in the commutative case. 

3.1 80(3, 31Z) Duality of Super Yang-Mills 
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Using the matrix H defined in (2.48), one can make the following constant 

curvature and field redefinitions 

In terms of the new variables, the commutator of the constant curvature connection 

and the Z/s takes the simple form, 

and the curvature can be expressed as 

One can now rewrite the action in terms of the hatted variables and perform the 

change of coordinates (2.62) 

~ L:xaxa - ~ L:G~JDi,xa][1Y,xa]+ 
a a 

~ L:[Xa
, Xb][Xa

, X b] + fermions) . 
a,b 

We have introduced a new gauge coupling and metric given by 

(3.1) 
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(3.2) 

and used (2.50) to make these substitutions. 

Next we introduce primed variables aL U; and partial derivatives a'i satisfying 

U' def iu' 
i = e " 

U'U' - 21Ti8'·U'U' i j - e 'J j j' 

Comparing the algebra satisfied by Zi and Vi on one hand and U; and a~ on the 

other, one can see that all the commutation relations are the same except that the 

Vi,S do not commute while the a'i's do. The dynamical variables of the theory are 

the c-number coefficients appearing in the expansion (2.32) of the adjoint sections 

in terms of Z/s. Since in the action, the constant curvature covariant derivatives 

only appear in commutators with the Z/s and not with each other, substituting 

U; and a'i for Zi and Vi leaves the dynamics invariant. A similar construction 

was also considered in [38]. The integral and trace of the U(n) theory can be 

translated to a U(q) integral using the definition of the integral (2.61) 

j d3& ~tr\ll(Zi) = j d3a' trq \lI(Uf) = (271i t \lIggo' 
a=l 

Making these substitutions one obtains the U(q) action 

SU(q) = ._1_ jdt j d3a' Jdet(G'ij ) tr (!G,.;:,Oi;:,Oj_ 
g~ q 2 ~ 

SYM 
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~ Exaxa - ~ EG~j[D'i,xa][D'j,xa]+ 
a a 

~ E[Xa
, Xb][X a

, X b] + fermions) , 
a,b 

where 

are the U(q) connection and curvature. This shows that the original U(n) theory 

is equivalent to a U(q) NCSYM theory with gauge coupling given by (3.1) and 

defined on a trivial adjoint bundle over a noncommutative torus with deformation 

parameter 8' and metric given by (3.2). 

In general two NCSYM theories are dual to each other if there exists an element 

A of 50(3, 31Z) with Weyl spinor representation matrix 5, such that their defining 

parameters are related as follows 

(3.3) 

fi n 

£123 M23 

=5 
£131 M 31 

(3.4) 

£112 M12 

(3.5) 

(3.6) 

where we used (2.49) in the last two equations. While 8 in (3.3) and the rank and 

magnetic flux numbers in (3.4) transform separately and the duality group action 
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can be seen explicitly, the transformation of the gauge coupling and the metric 

also depends on 8. Note that C8 + V satisfies a group property. If A3 = A2Al 

and 8' = Al(8) then 

(3.7) 

For a nonvanishing ii, the sign ambiguity that exists when one tries to associate 

to a SO(3, 31Z) transformation its spinor representation matrix, can be removed 

by requiring that ii is positive. Strictly speaking, one should not consider duality 

transformations for which ii vanishes since in this case the description in terms of 

gauge theories becomes singular. 
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3.2 Target Space Duality 

Next we show that the SO(3, 31Z) duality discussed in the previous section is 

the realization in NCSYM gauge theories of T-duality in the auxiliary Type IIA 

string theory. This relation is described by the following diagram. 

n, Mij U(n), Mij 

IIA 9s NCSYM 
9SYM 

~ 

G ij Gij 

Bij 8 ij = Bij 

t t 
q, M'ij = 0 U(q), M'ij = 0 

9~ 
I 

IIA ~ NCSYM 9SYM 

G~j G'ij 

B~j 8~j = B~j 

The right side of the diagram sh~ws the equivalence described in Section (3.1). 

The horizontal arrows represent the Connes, Douglas and Schwarz conjecture [27]. 

The left side of the diagram contains the string coupling, D brane charges, and 

compactification moduli of the two auxiliary Type IIA string theories correspond-

ing to the NCSYM's on the right. The additional moduli corresponding to 

Ramond-Ramond backgrounds are set to zero in this chapter and will be con-

sidered separately in Chapter 4. Note that the NCSYM metric is the inverse of 
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the Type IIA metric as indicated by the index position, the . deformation parame-

ter equals the NS antisymmetric tensor, and the rank and magnetic flux numbers 

translate into DO brane number and D2 brane winding. Finally the SYM and 

string coupling are related by (2.5). 

For compactification on T2, the duality transformation (2.54) can be written 

as an 8L(2, Z) mapping class group transformation conjugated by a T-duality in 

the Xl direction 1. The sequence of duality transformations is shown in figure 3.1. 

Under T-duality in the xl-direction the two DO-branes are mapped into Dl-strings 

wrapping the horizontal cycle and the D2-brane into a Dl string wrapping the 

oblique cycle. The T-dual torus is not rectangular for a nonvanishing (). In fact the 

Dl-strings can be in a lower energy state obtained by minimizing their total length. 

This corresponds to the fact that the original DO and D2-branes form a bound 

state. Under the 8L(2, Z) mapping class group transformation we can arrange the 

Dl-string along the horizontal axis of the torus. This is just a relabeling of the 

defining l-cycle of the torus. Finally after another T-duality in the xl-direction 

we arrive at the final configuration which contains a single DO-branes and the final 

NS-NS modulus given by ()f. 

In the remainder of this section we calculate the relation between the pa-

rameters of the two auxiliary Type IIA string theories. First we describe how the 

metric, antisymmetric tensor and the string coupling transform under an arbitrary 

IThe T-duality in the xl-direction is an element of 0(2, 21Z) of negative determinant .. 
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/77 
/t=.1 ====Z-:j::.1 ======1/ 

n=2 m=l 

8 

T 
__ 1_ c:::::::::=:; 

~~=-----------~'----------~ 

! SL(2,Z) 

n'=l m'=O 8' 

Figure 3.1: The covering space of T2 with one DO-brane per cell 

T -duality transformation, and then take the limit 

a' ---+ 0, Gij ---+ 0, (3.8) 

keeping d-2Gij constant. This is the limit proposed by Seiberg and Sen [18, 17] 

and briefly discussed in the introduction. However, in this limit the auxiliary Type 

IrA string metric vanishes. Instead we calculate directly the inverse metric of the 

NCSYM theory which, after including factors of a', is given by a'-2Gij . 

Under the T-duality group SO(d, d IZ), the metric and NS antisymmetric ten-

sor2 transform together by fractional transformations [71] 

G' + B' = (A(G + B) + B)(C(G + B) + 'D)-I. (3.9) 

Using the identification between e and B one obtains H-I = CB + 'D. Then, 

2 Hopefully, there is no confusion between B, denoting the NS tensor, and B, which is the 

upper right block of A. 
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after some matrix algebra, one can write the symmetric and antisymmetric part 

of (3.9) as 

C' (3.10) 

B' (3.11) 

One derives this using the fact that HC is antisymmetric. This can be shown using 

which follows from (2.44). Note that (3.10) and (3.11) have simple expansions in 

_ G. For an elementary T-duality in the Xl direction the string coupling constant 

transforms as 

, C-I / 2 
9s = 9s 11 . (3.12) 

Taking the limit (3.8) in (3.11) one can see that the antisymmetric tensor itself 

transforms by fractional transformation3 

B' = (AB + 8)(CB + 'D)-I. (3.13) 

To find the duality transformation of the metric, we reinstate factors of a' 

in (3.10) since the 80(3, 31Z) transformations are defined to act on dimensionless 

fields. Now, take the limit (3.8) and to first order in the dimensionless metric 

(3.14) 

3This is consistent with the fact that the action by fractional transformations preserves the 

antisymmetry of the matrices. 
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Making the identification B 

in (2.49). 

8, one recognizes above the H- matrix defined 

Finally, using (3.12), one can also calculate how the string coupling transforms· \ 

under duality. It was shown in [34] that the SO(d, d IZ) group is generated by a 

set of simple elements. These are written explicitly in the Appendix A. For each 

of these generators, one can check using (3.12) that the string coupling transforms 

as 

9~ = 95 1 det(CB + D)I-1
/

2
• (3.15) 

In fact (3.15) is true for an arbitrary transformation because CB + D satisfies the 

group property (3.7). 

Comparing the T-duality relations (3.13), (3.14) and (3.15) with the NCSYM 

duality relations (3.3), (3.5) and (3.6), using (2.5) to relate the string and gauge 

couplings, one sees that indeed the two dualities coincide. 

3.3 Projective Modules and Morita Equivalence 

A quantum vector bundle is a projective A-module [,. First, consider the 

classical commutative picture. The set [, of global sections of a vector bundle over 

a base space X has the structure of a projective module over the algebra C(X). 

Having a module essentially means that one can add sections and can multiply 

them by functions. Not all modules over a commutative algebra are vector bundles. 

For example, the set of sections on, a space consisting of a collection of fibers of 
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different dimensions over a base space also form a module. However, projective 

modules over the algebra of functions on a topological space are in one to one 

correspondence with vector bundles over that space. By definition, a projective 

module is a direct summand in a free module. A free module £0 over an algebra A 

is a module isomorphic to a direct sum of a finite number of copies of the algebra 

£0 = A E9 ... E9 A. 

Trivial bundles correspond to free modules since the description of their sections 

in terms of components is global, and each component is an element of C(X). 

For every vector bundle, one can find another one such that their direct sum is 

a trivial bundle. In dual language this implies that the module of sections £ is 

projective 

£0 = £ E9 £f. 

Again it is nontrivial to show the converse, that every projective module is iso-

morphic to the set of sections of some vector bundle. Finally, projective modules 

over noncommutative algebras are the quantum version of vector bundles. 

In the noncommutative case, one distinguishes between left and right projective 

modules. Multiplying fundamental sections from the right with elements of Ae 

preserves the boundary conditions (2.15), while multiplication on the left gives 

something that is no longer a global section. Thus the set of sections of the 

fundamental bundle form a right projective module over the Ae algebra which I 
<1t 

will denote F;;. This is no longer true for the adjoint sections, since in (2.16) the 
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transition functions multiply from both the left and right. However, one can check 

that the adjoint sections are both left and right projective modules over the AC-8) 

algebra. Also a fundamental section is a left projective modules over the AC-8) 

algebra. This is because the exponents of the U/s satisfy 

(3.16) 

thus the U/s can be commuted over the transition functions in (2.15) and (2.16). 

Additionally, the fact that F;;'m is both a left AC_8)-module and a right A8-module 

can be understood as follows. Since [Ui , (Jj] = 0 one also has 

where we dropped the derivatives when there was nothing to their right. Let a be 

an element of AC -8) 

Thus multiplying on the left with a is equivalent to multiplying on' the right with 

a 

a<P = <Pa, (3.17) 

arguments and with all the factors written in reversed order. 

In the remainder of this chapter, we only consider the two dimensional case 

and use the gauge (2.14). The construction in Chapter 2 is equivalent to the 

projective modules discussed in [27]. By solving the boundary conditions one goes 
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from a local to a global description. Here we present explicit formulae for this 

equivalence. First one has to express the left actions on the fundamental sections 

as actions on the Hilbert space [36]. For example the action of the Zi generators 

is given by 

(Z J.) () J. ( 1) (Z2J.)}.(x) = e-21rij/me21rix/(n+mO)J.}.(x). 1'1-' j X = If'j-a X - - , If' If' 
m 

This can be written as 

I where Vi and Wi are operators acting on the Hilbert, space as 

These operators satisfy the following relations 

V, 1l" - e-21ri /[m(n+mO)]1l" V, W W - e21ri / mW' W [1( W·] - 0 1 v2 - v2 1, 1 2 - 2 1, vi, }-

and can be used to express other operators acting in the Hilbert space. For example 

Now we present the correspondence between [27] and the approach followed 

here4
. The two integers p and q and the angular variable (}eDs labeling the pro-

jective module ll;~DS of [27], and (}~DS can be expressed in terms of the quantities 

used here 

p = n, q = -m, (}eDs = 8 12, (}~DS = 8~2· 
-------------------------

4We follow here the same notation as in [36, 40] except for an overall minus sign in the 

definition of O. 
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Then F;;,m '" 1l~,::'m. The Hilbert space representation of [27] written in terms 

of the function I(s, k) with s E Rand k E Zq is linearly related to the ¢k(X) 

representation 

Here K, is an m x m representation changing matrix defined as in (2.20) but for 

m-dimensional 't Hooft matrices, and S>. is the rescaling operator (S>.f) (x, k) = 

f()..x, k) which can be expressed using the ordered exponential 

I 
Also, using lower case to distinguish them from our current notation which follows 

[36], the operators in [27] represented in the ¢k(X) basis are given by 

V - TTn+mO V - TTn+mO W - e2-rrin/mw.n w - e2-rri/mw o - V2 , I - VI , 0 - 2' I - I 

Next we introduce the Morita equivalence of two algebras [42, 43, 34, 38], 

which can be used to describe a subgroup of the T-duality group of the M-theory 

compactification in the language of noncommutative SYM gauge theory. 

Two C* -algebras A and A' are Morita equivalent if there exists a right A-

module E such that the algebra EndAE is isomorphic to A'. Here EndAE denotes 

the set of endomorphisms of the A-module E. It consists of linear maps T on £ 

where linearity is not only with respect to c-numbers but also with respect to right 

multiplication by elements of A 

T(ifJf) = T(ifJ)l, ifJ E £, 1 E A. 
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An example of Morita equivalent algebras is Ae and Ae', As discussed above, 

the projective module associated to the quantum fundamental bundle F:! m is a , 

right Ae-module. One can prove that EndAeF;;'m is isomorphic to A~,. Here we 

just show that the two algebras have the same generators. Using (3.17) one has 

T(cI>a) = T(acI» and T(cI»a = aT(</J) and since T is an endomorphism one obtains 

T(acI» = aT(</J), which can also be written as [T, a] = O. But the Z/s were found 

exactly by requiring that they commute with U/s so T E Ae', 

The physical interpretation of Morita equivalence is that a U(n) SYM gauge 

theory on the twisted bundle with magnetic flux m is equivalent to a U(1)-gauge 

theory on a dual quantum torus Ae', This can be seen as a consequence of the 

discussion following equation (2.13). The gauge field components Ai, the scalar 

fields X a , and the components of e are not matrix valued, rather they are one-

dimensional. The final result is a matrix because the Z/s are matrices. On the 

other hand, one can ignore the internal structure of the Z/s and just regard them 

as the generators of Ae" thus allowing us to reinterpret the original theory as a 

noncommutative U(1) gauge theory on the quantum torus Ae', 

Since e is a continuous variable, one can interpolate continuously, through non-

commutative SYM theories, between two commutative SYM th.eories with gauge 

groups of different rank and appropriate magnetic fluxes. This SL(2, Z) duality 

subgroup has a nice geometric interpretation in the T-dual picture of [28] where 

it corresponds to a change of basis of the dual torus lattice [32]. 
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3.4 Gauge Transformations 

In this section, we consider a gauge equivalent formulation of the previous 

results closely following the treatment of Taylor in [70] of the corresponding com­

mutative case. In that paper a gauge transformation was considered so as to 

change the standard 't Hooft transition function into trivial transition function 

in the X 2 direction. When the transition functions are trivial T-duality has the 

standard form, i.e. the gauge field translates directly into the position of a D­

string on the dual torus. A similar gauge transformation can be performed in the 

noncommutative case. 

First let us consider a general gauge transformation g(dl, 0"2). Just as in the 

classical case the covariant derivatives transform as D~ = g-l Dig resulting in the 

following transformation for the gauge fields 

As a result the new transition functions are given by 

!1~ (O"l, 0"2) = g-l(O"l + 211", 0"2)!1l (0"1, 0"2)g(0"1, 0"2), 

!1~(0"1' O"i) = g-l(O"I, 0"2 + 211")!12(0"1, 0"2)g(0"1, 0"2). • 

(3.18) 

(3.19) 

Again all this is just as in the classical case except that one has to take into account 

the noncommutativity of the O"i's. 

It will be useful to consider first the e = 0 commutative case. Then one knows 
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both the original gauge fields (2.14) and the transformed ones 

where Q = ~diag(O, 1, ... , n - 1), and I use primes for all variables in the new 

gauge. Than the differential equation for the gauge transformation is 

which can be integrated to give 

(3.20) 

where the integration constant K is the n x n matrix (2.20). It was fixed by 

requiring a trivial n~ as given by (3.19). Using the gauge transformation (3.20) 

one can can now calculate both transition functions 

(3.21) 

where Tk = diag(O, ... ,0,1, ... ,1), k = 1, ... , n with the first n - k entries van-

ishing and the last k equal to unity. 

Next we discuss the noncommutative case. The first thing to notice is that the 

original quan'tum transition functions (2.18) are () independent and only contain 

the (j2 variable. Similarly the classical gauge transformation (3.20) only depends 

on (j2 so that the classical computation of the new transition functions is also valid 

in the quantum case. Using (3.18) the new gauge fields are given by 

At2 = m (jl + n Q. 
n + m() 27f n + m() 
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Since (3.16) implies [Ui , g] ~ 0 one can see that the gauge transformation is 

compatible with the quotient conditions (2.2). One can use the gauge transforma-

tion to obtain the generators of the sections of the adjoint bundle 

The explicit formulae for the fundamental sections in the new gauge is 

rt,.1 ( )"'"' iu r (0"1 k - nr) 
'1!k O"b 0"2 = ~ e 2 Xk-nr -2 + . 

rEZ 1f m 

The XS functions are defined over the real axis and must satisfy 

so that only m of them are independent. Again, note that since the transition 

functions only contain 0"2 and all were ordered to the left of 0"1 in the solution for 

the sections of the fundamental bundle, they have the same form in the noncom-

mutative and in the classical case. 
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Chapter 4 

Adding Ramond-Ramond Backgrounds 

For d ~ 2, in addition to the compactification metric there are moduli which, 

in terms of the auxiliary Type IIA string theory [17, 18], correspond to the 2-

form of the NS-NS (Neveu Schwarz-Neveu Schwarz) sector and the R-R (Ramond-

Ramond) forms. Next we .will extend the result of Chapter 2 by allowing arbitrary 

R-R backgrounds. 

In Section 4.1, .we review the transformation properties of the R-R moduli 

under the duality group [72, 73, 74]. The dimensionally reduced action of Type 

IIA supergravity is invariant under the T-duality group! SO{d, d). By deriving 

the nonlinear sigma model which describes the scalar fields of the supergravity, 

one can extract the transformation properties of the R-R backgrounds under the 

duality group. In particular, we will show that appropriately defined fields, which 

are combinations of the R-R forms and the NS-NS two-form, transform in a spinor 

representation of the duality group. 

In Section 4.2, we will identify the Chern-Simon parameters of the gauge the-

ory with the R-R moduli and then show that the duality transformations relating 

different NCSYM theories can be extended to include these terms. In the pro­

IThe equations of motion are invariant under the full U-duality group EdH(dH). 
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cess, we will also obtain the transformation properties of the parameters and show 

that they coincide with the transformations expected from string theory and de-

rived in Section 4.1 using the dimensional reduction of IO-dimensional Type IIA 

supergravity. 

Finally, in Appendix B we present some results, used in the main text, re-

garding transformation properties under the T-duality group in the limit of small 

compactification volume and decoupling of string excitations. 

A similar proposal for the additional terms in the noncommutative action was 

made in [50]. 

4.1. Duality of Seven Dimensional Supergravity 

Type IIA superstring theory compactified on a d-dimensional torus is invari-

ant under the T-duality group SO(d, d IZ). The low energy supergravity effective 

action describing this compactification is in fact invariant under the continuous 

group SO(d, d). This action can be obtained directly from the IO-dimensional 

Type IIA supergravity by dimensional reduction. In this section we derive the 

transformation properties of the R-R moduli under the discrete duality group. 

/ 

Since this is a subgroup of the corresponding continuous group which is a sym-

metry of the low energy IO-dimensional supergravity action, one can obtain these 

transformation properties by analyzing the symmetries of the the nonlinear sigma 

model which describes the dynamics of the scalars in the supergravity action. 

The NS-NS scalars are described locally by an O(d, d) / O(d) x O(d) nonlinear 
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sigma model. Taking into account the T-duality group, the NS-NS nonlinear sigma 

model is in fact defined on 

O(d, d IZ) \ O(d, d) /O(d) x O(d). 

On the other hand simple counting arguments suggest that the R-R scalar fields 

transform in a chiral spinor representation of the duality group. This statement is 

almost correct except that the fields which transform in thespinor representation 

are some redefined fields involving not only the R-R fields but also the NS-NS two 

form. 

The lO-dimeQ.sional supergravity action written in terms of the string metric 

is given by 

s = ! dlOxVg e-2,p (R + 4(\7 <p)2 _ _ 1_H2) 
2·3! 

_! d10xVg (_1_F2 + _1_F'2) 
2·2! 2· 4! 

-l ! F(4) /\ F(4) /\ B + ... , 

where we have not written the terms containing the fermionic fields. The first line 

contains only NS-NS fields while the second contains the kinetic terms of the R-R 

forms. The various field strengths are defined as follows 

H dB, 

F dA(l) , 

F(4) dA(3) , 

F' F(4) + A(l) /\ dB, 

71 



where the subscript indicates the rank of the form. Note that R-R fields couple 

to the NS-NS fields through the metric and through the F,2 term, which depends 

on the antisymmetric NS-NS two-form. 

Next we perform the dimensional reduction along coordinates Xi for i = 1,2,3. 

The massless scalars from the NS sector can be organized in the symmetric ma-

trix [75] 

( 
G-I -G-IB) 

M = BG- I G _ BG- I B . 
(4.1) 

Note that M is also an element of the group SO(3, 3). Using a result from Ap-

pendix B, one can obtain the Weyl spinor representation of M 

( 

det G-1/ 2 

S(M) = 
det G- I j2 b 

det G- I
/
2 bT 

) 

det GI / 2 G- I + det G-I/2 b bT ' 

where b = *B, and the star denotes the operator which transforms an antisym-

metric matrix into its dual column matrix. The star operator always dualizes only 

with respect to the compactified coordinates. 

One obtains additional scalars from the dimensional reduction of R-R forms. 

As mentioned above these fields do not have simple transformation properties 

under the T-duality group but one can define the following odd rank forms 

(4.2) 

and organize them in a column matrix which, as will be seen shortly, transforms 
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in a chiral spinor representation of the duality group 

Cl23 

Cl 
x= 

C2 

C3 

The other fields can also be organized in representations of the duality group 

such that the action obtained by dimensional reduction from IO-dimensional su-

pergravity is explicitly invariant. The six vectors obtained from the dimensional 

reduction of NS-NS fields transform in the fundamental representation while the 

7-dimensional dilaton and the 7-dimensional space-time metric and 2-form are sin­

glets. The four vectors obtained from the R-R forms transform in a chiral spinor 

representation and, after dualizing the 3-form, the rest of the bosonic fields form 

a chiral spinor of 2-forms. 

For our purpose, it will be enough to consider the nonlinear sigma model part 

of the action containing the kinetic terms of the scalar fields of the theory 

where 9J.Lv and <I> are the 7-dimensional metric and dilaton, and we have not written 

the kinetic term for the dilaton. The nonlinear sigma model part of the action is 

written in a form that is explicitly invariant under SO(3, 3) and in fact the whole 

supergravity action could be written in invariant form. The duality transforma­

tions of the scalar fields are given by 

Nt A-T MA- l , 

S(A)X· 
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To prove the invariance of the action we used 8(AT) = 8(Af. 

The main purpose of this section was to obtain the relations (4.2) which show 

how the fields X with simple transformations properties under the T-duality group 

are related to the R-R forms. 

4.2 T-duality of the Chern-Simon Type Terms 

In this section, we discuss how to modify the NCSYM action so that it de-

scribes the DLCQ of M-theory in the presence of arbitrary moduli. In the auxil-

iary Type IIA string theory the additional moduli are constant R-R backgrounds 

corresponding to generalized Wilson lines. Then we show that the action which 

includes the new terms is also invariant under the duality group 80(3, 31Z) and 

that the parameters of the new terms transform exactly as expected from string 

theory. 

First we will guess the form of these terms using our experience with the 

commutative case which corresponds to a vanishing NS-NS background 2-form 

B. In this case the compactified Matrix model corresponding to n DO-branes 

is described by a U(n) supersymmetric Yang-Mills theory. This is obtained by 

performing a T-duality transformation along all the compact directions. However, 

for nonvanishing R-R moduli, the action contains an additional Chern-Simon type 

term [76, 77, 78, 79, 80] 

S· - 1 ! (27r:F '"' A(k») cs - 4(2 )3 . tr e ~ , 
7f k odd 
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where A(k) are the the T-dual R-R fields. Note also that under T-duality in all 

directions the dual of B also vanishes if B was zero. This is why only F appears 

in the exponent while in general one would also subtract the dual of B. 

Next, consider the effect of a nonvanishing B on this action. If ,ij represents a 

two cycle wrapped around directions Xi and x j , then the deformation parameters 

are defined rby 

8 ij = (2~)2 iii B. 

In the super Yang-Mills part of the action the only change required by a nonvanish­

ing B was to make the coordinates noncommutative with deformation parameter 

8. The metric and gauge coupling constant are the same as those obtained by 

T-duality from the Matrix model for a vanishing NS-NS 2-form. We emphasize 

that the metric of the NCSYM gauge theory is not the T-dual metric obtained 

by first taking the inverse of E = G + 8 and then extracting the symmetric part. 

The NCSYM metric Gij is just the inverse of the original metric. Thus one must 

distinguish between a T-duality in all directions and the noncommutative Fourier 

transformation relating the Matrix model and the NCSYM gauge theory. 

Let us explain why the NCSYM metric is 8 independent. To compactify the 

Matrix model on a torus we will first consider the Matrix model on the covering 

space and then impose a quotient condition. If the B modulus is nonvanishing, 

after going to the topologically trivial covering space, it can be gauged away. 

However this gauge transformation does not leave the wave functions of strings 

invariant and thus one must transform the translation operators implementing 
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the quotient condition. The new translation operators do not commute and their 

noncommutativity is measured by 8. 

Imposing the new quotient conditions on the Matrix action results directly in 

the NCSYM gauge theory. The only difference with the B = 0 case is that one has 

to use noncommutative Fourier transformations instead of the standard Fourier 

transformations when going from the Matrix model to the NCSYM gauge theory. 

This however does not result in a different metric and gauge coupling constant. 

The main point of this discussion was to show that one ca~ trade a nonvanishing B 

field for noncommutative coordinates on the dual super Yang-Mills gauge theory. 

We assume that the parameters of the Chern-Simon terms are also the same 

as for vanishing 8, except that the new terms are defined on a noncommutative 

torus. In particular for compactification on a three torus one has 

Just as in the commutative case these terms are topological, supersymmetric and 

gauge invariant. In this action 8 only appears through the noncommutativity of 

the coordinates and A(O) and A(2) are the T-dual R-R forms2 calculated as if the 

NS-NS 2-form vanishes 

The I-form R-R field A(l} has a lower index and should not be confused with 

2When we write the R-R forms in components we will drop the rank of the form as it is 

possible to identify the form from the position and number of indices. 
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the Yang-Mills gauge field Ai. With this distinction in mind we will write the 

action (4.4) in the dual Matrix theory language using the R-R backgrounds on the 

original torus 

Scs = I dtTr (XiAi + 2~ XiX
j 
Xk Aijk) , 

where Tr is the formal trace over infinite dimensional matrices divided by the 

infinite order of the quotient group [25]. It is convenient to write the action in 

component notation 

Scs = ~ I dt I (~:~3 tr (Cijk (21f pi Ajk + (21f)2 pi Fjk A) ) , (4.5) 

where the magnetic and electric field strengths in the temporal gauge are 

In the original conjecture [15], the large N limit of Matrix theory describes the 

infinite momentum frame of M-theory. Large N corresponds toa decompactifica­

tion of the light-cone direction and in this limit the e and A(l) can be set to zero. 

Note that in M-theory these moduli correspond to C-ij and g-i and can be elimi­

nated by a gauge transformation and a reparametrization when x- is noncompact. 

In that case only the last term in (4.5) survives, the action becomes commutative 

and reduces to the action considered in [80, 81]. 

The action (4.5) is invariant under the 80(3, 31Z) duality group of the auxiliary 

string theory. Consider a Chern-Simon type action defined on a 7]-bundle. Here 

TJ isa 80(3, 31Z) spinor containing the rank of the group and the magnetic flux 

numbers. We perform the same sequence offield redefinitions used in [47], where it 
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was shown explicitly for the case of vanishing R-R moduli, that the U(n) NCSYM 

action is equivalent to a U(q) NCSYM action on a trivial bundle, where q is the 

greatest common divisor of n and the magnetic fluxes M. Let H = (Ce + 1))-1 

be the matrix defined in [47], where C and 1) are the lower block components 

of the 80(3, 31Z) transformation relating the original NCSYM gauge theory to 

the theory on the trivial bundle with U(q) gauge group. Then one can make the 

following constant curvature connection and field redefinitions 

The curvature can be split into a constant term and a fluctuating piece 

(4.6) 

;:Ok = H~ jOt. 

Using the matrices Q and R defined in [47] one can perform a change of integration 

variables a = aQR, which introduces a Jacobian factor 

(4.7) 

. Making the substitutions (4.6), (4.7) and collecting similar terms one finds 
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where 

qA' = (ndetQ-c-l detH) A, 

A 'ij - H' d t Q~i' (Aij + 2 "...ij A) Cijk q - k Cijl n e 11"/"(0) • 

One can now rewrite the action in terms of new operators a~, a'i, and U' , and a q 

dimensional trace. See [47] for a more detailed discussion of this substitution. 

More generally the action is invariant under duality transformations if the 

Chern-Simon parameters are related as follows 

(4.8) 

where C and V are the lower block components of the 80(3, 31Z) matrix relating 

the two theories, and the star operator is the duality operator acting only with 

respect to the compact coordinates. 

Next we write the Chern-Simon parameters in term of the fields C discussed 

in Section 4.1 

(4.9) 

(4.10) 

To obtain a compact form first define the column matrices u and v with compo-

nents 

1 Ok 
-MJ C-°k - nCo 2 tJ ') 
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If X transforms as a spinor, u and v are the block components of a 80(3,3IZ) 

vector as shown in the Appendix (B.8). Then using the identities (2.50) listed in 

Chapter 2, the transformation (4.8) can be written as 

(4.11) 

(u ~ Gv) = (C8 + V)-T(U - 8v). (4.12) 

Comparing (4.11) and (4.12) with (B.6) and (B.4) in Appendix B one sees that 

the R-R fields must transform in a spinor representation of 80(3, 31Z) 

x = S(A)x. 

Thus the duality transformations of all the parameters of the NCSYM, in-

eluding those of the Chern-Simon type terms, coincide with the transformation of 

moduli of the Type IIA strings compactified on a torus in the limit of vanishing 

Using the transformation properties of gS~M and A(O) it follows that the com-

plex coupling 

T - A(O) + 41fi 
- 2 

9SYM 

also transforms simply under the T-duality group with the same 8 dependent 

factor appearing in (4.8). 

Finally note that the BPS spectrum correspo'nding to the electric fluxes ob-
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tained in [52] is modified in the presence of nonvanishing R-R moduli 

(4.13) 

This result agrees with the small volume limit of the spectrum formula in [50] and 

reduces for vanishing 8 ij to the result of [82, 81]. In [83] it was shown that shifts 

in the electric flux spectrum correspond to inequivalent geometric quantizations. 

These different quantizations are equivalent to the standard canonical quantization 

if one also includes topological terms in the action. 
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Chapter 5 

T-duality of the BPS Spectrum 

As shown in Chapter 2, the action of a U(n) NCSYM, with magnetic fluxes 

Mij, can be written as the action of a U(q) NCSYM on a trivial quantum bundle, 

where q is the greatest common divisor of nand Mij. Thus these two theories 

must have identical spectra. The action contains magnetic backgrounds which we 

chose as in [47] so that the vacuum energy vanishes. 

1 'k 'k 'l 'l 
"4GijGkl(P' - F(o))(FJ - F(o))+ (5.1) 

~ I:xaxa - ~ I:Gij[Di,xa][Dj,xa]+ 
a a 

~ I:IXa,xb][xa,Xb] +fermions). 
a,b 

All the equations in this chapter where d is unspecified, are valid for the two and 

three dimensional case, but some may have to be modified in higher dimensions. 

For simplicity we will consider the case when nand Mij are relatively prime. Then 

one can find a duality transformation A such that ii = 1 and M = 0 as was shown 

in [47]. From this point on, when we discuss the U(n) theory we will use the the 

d-dimensional block matrices (2.42), with A the particular transformation that 

takes the U(n) theory into a U(l) theory. For example the constant background 
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field strength can be expressed in terms of the block components of A as 

(5.2) 

One can write the connection as a sum of a constant curvature U(l) connection 

Vi, a zero mode A~o), and a fluctuating part Ai 

Note that Ai does not contain the zero mode. The Z/s are n-dimensional matrices 

which generate the algebra of adjoint sections. For example, in the two dimensional 

case one has. [49, 27, 36, 40, 47] 

I 
where U and V are the clock and shift matrices and Q is a two dimensional matrix 

which reduces to the identity in the commutative case. Substituting this in the 

action gives 

. where the dots stand for terms containing only Ai. Thus clas$ically the zero modes 

decouple, and the action is just that of a free particle 

./ 

where the mass matrix is given by 

1 (21r)d-2 Jdet(Gkl) 
M -- - In - -tr(M8)1 G--ZJ - 2 2 ZJ· 

9SYM 
(5.3) 
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In the commutative case the first factor on the right hand side of (5.3) reduces to n 

and arises from taking the trace. The origin of this factor in the noncommutative 

case was discussed in [27, 47]. The corresponding Hamiltonian is then l 

(5.4) 

where Mij is the inverse mass matrix and E}O) is the momentum conjugate. to A(o) 

E(O) _ 1 B 
i - 27ri BA(o) . 

Note that E}O) correspond to zero modes of the electric field. 

5.1 The U(l) BPS Spectrum 

Before calculating the spectrum of (5.4) directly, we will use the duality invari-

ance of the spectrum and obtain it by using the simpler dual U(l) theory. We will 

use primes for all the variables in the U(l) theory. In this case the mass matrix 

takes the form 

(5.5) 

Just as in the commutative U(l) supersymmetric gauge theory [84] the zero modes 

live on a torus. To see this consider the gauge transformations 

These gauge transformations are single valued and leave the trivial transition 

functions invariant. Under these gauge transformations the connection transforms 

IThis only includes the energy coming form the electric zero modes. 
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as 

U,-l(!J/i 'A,i 'A,i(U'))U' _!J/ i '(A,i JOi) ,;A,i(e-27ri8/-kU') j U - 1, (0) - 1, k j - U - 1, (0) - Uj -. J k· 

For vanishing 8' the effect of these gauge transformations is just a shift of the 

zero mode and one has the following gauge equivalences A'(o) rv A'(o) + <>j. Note 

that <>(j) for j = 1, ... ,d fonn a basis for a lattice L' and the configuration space 

is R d / L'. The conjugate momenta are then quantized 

and the spectrum of zero modes is then given by 

However in the noncommutativecase one can see that the above gauge transfor-

mations also produces a translation in the k direction proportional to 8jk. This 

results in a modification of the spectrum similar to the Witten-Olive effect [53], 

Let as define the total momentum operator operators PI such that 

(5.6) 

where \lI is an arbitrary field of the theory, The momentum p'i defined by (5,6) is 

not the standard gauge invariant total momentum but the difference between the 

two is the generator of a gauge transformation with the gauge parameter equal 

to the i-component of the gauge field. Thus on gauge invariant states the total 

momentum defined above and the gauge invariant momentum have the same effect, 
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The operator generating the gauge transformation is [50, 51] 

(5.7) 

Translation by an integral number of periods on a trivial bundle must leave the 

physical system invariant. The operators generating these translations are given 

by 

(5.8) 

The operators (5.7) and (5.8) act as the identity on physical states so one obtains. 

the quantization 

E'.(O) + 8'·kP ,k = n'· p'j = m,j 
J J J' , 

where nj and m j are integers. The spectrum of zero modes is then given by 

This result has the following geometric interpretation. In the sectors of nonvan-

ishing momentum the wave function for the zero modes is not strictly speaking a 

function but rather a section on a twisted bundle over the torus Rd / L' with twists 

5.2 Dual U(n) BPS Spectrum 

Using the duality transformations (1.5) we can express the spectrum in terms 

of the U (n) parameters 

£U(n) = ~ 9~YM I det(C8 + D)I-1/ 2 

2 (21f)d-2y'det(Gij ) 
(5.9) 
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where we also performed a duality transformation on the quantum numbers [50, 51] 

(5.10) 

Next consider in more detail the two dimensional case. The parameters of the 

U(l) and U(n) NCSYM are related by the 80(2, 21Z) transformation [47] 

A= 
( 

aI2 be) 
-me nI2 ' 

(5.11) 

where e is a two dimensional matrix with the only nonvanishing entries given by 

e12 = -e21 = 1. In this case (Ce + V)~ = (n + Om) J} and the spectrum is 

where mi = eijmj. This result2 has the expected factor of In + Oml in the denom-

inator. In the DLCQ formulation of M theory this factor is proportional to the 

kinetic momentum in the compact light-like direction and is expected to appear 

in the denominator of the DLCQ Hamiltonian. 

Next the spectrum is obtained directly in the U(n) theory. We will do this in 

two ways. First, consider the generators of the adjoint algebra, the Z/s. These 

generators satisfy 

Zk(O"i + 27fJ{) = OjZk(O"i)Ojl. (5.12) 
--:-2E-x-p-r-es-se-d-i-n-te-r-m-s-o-ft-h-e-st-r-in-g-c-oupli~g constant of the auxiliary string theory the spectrum 
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Besides having the privileged role of generators for the sections of the adjoint 

bundle, the Z/s can also be used to perform gauge transformations since they are 

unitary. Next, rewrite (5.12) as 

(5.13) 

The right hand side of (5.13) gives the transformation of the transition functions 

under the Zi gauge transformation. One can see that, just as in the U(l) case 

where the gauge transformations Uf left the transition functions trivial, the Z/s 

leave the transition functions invariant. Following the same strategy as in the U(l) 

case, where we used the Uf to find the configuration space of the zero modes, we 

will use here Zi 

Note that again we have separated the zero mode of the gauge connection and we 

have used the identity [47] 

One can express the gauge transformed connection as 

(5.14) 

where we used 

(ce + V)-l = (A - e'cf 
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and (5.2) to rewrite the extra shift in the zero mode. 

Next we define the momentum operator by its action on the fields of the theory. 

For example on the gauge fields pi acts as 

(5.15) 

Note that pi also acts on the zero mode A~o). This can be understood as follows. 

When defining the momentum there is a choice whether to include as part of the 

system the magnetic background :F/.&). The standard gauge invariant momentum 

for which the momentum density is tr( Fij E j ) can be written as the sum of two 

terms. The first is just the momentum translating the part of the system that does 

not include the magnetic background and whose momentum density is tr«Fij -

Ftt))Ej ). The second term is an operator shifting the zero mode of the gauge 

field as in (5.15). Then our pi can be identified, up to the generator of a gauge 

transformation, with the total momentum that includes the magnetic background. 

Furthermore, one can identify, up to the generator of a gauge transformation, the 

first term on the right hand side of (5.15) as the action of the momentum operator 

that translates only the fluctuating part. As will be seen later it is the momentum 

whose density is tr(Fij Ej ) that appears in the SO(d, d IZ) duality transformation. 

A convenient way of writing the action of pi on the gauge field is 

Then using (5.14) one sees that the quantum operator which implements the gauge 
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transformation above is given by 

(5.16) 

The momentum operator pi has integer eigenvalues since the space is a torus with 

lengths 27r. One can also see this by considering the operator 

(5.17) 

This acts trivially on every operator in the U(n) theory. In particular the combi-

nation of operators in the exponent has no effect on the zero mode. The condition 

that (5.16) and (5.17) should act as the identity on the physical Hilbert space is 

equivalent to the quantization 

A/(EkO) + 8 k1PI) + Bjkpk 

Cjk(EkO) + 8 k1 PI) + TYkpk m'j. 

Since the matrices A, B, C, and V are the block components of an element of 

SO(d, d/Z) this is equivalent to 

E (O) 8 pk_ 
j + jk - nj, pj = mj , 

where nj and m j are integers. Using the Hamiltonian (5.4) and the above quan-

tization the electric flux spectrum is 

(5.18) 
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which is identical to the result (5.9) obtained by duality. 

Finally we present an alternative derivation of the spectrum using the gauge 

transformations exp(iO"i) where O"i = OjQii and Qii is a matrix defined in [47] and 

equals the identity for vanishing deformation parameter or magnetic background. 

This derivation is closely related to the derivation of the spectrum in [50, 51]. 

As discussed in [47] gauge invariant quantities such as the Lagrangian density 

have periodicity 27r in the O"i variables. Then one can use Ui = exp(iO"i) as a 

gauge transformation just as one used U; in the U(l) theory. Note first that 

Ui is a globally defined gauge transformation. It is convenient to write it as 

quotient condition [27]. The effect of this gauge transformation is 

-27T6i-Vj(~i 'Ai 1 'Ai(Z)) 27T6i- Vj . s;i e J v - 'I, (0) - 'I, k e J + 'I, U i' 

The operator implementing this gauge transformation in the Hilbert space is 

Again, on gauge invariant states this operator acts trivially and together with the 

quantization of the momentum results in the same spectrum (5.18) as using Zi. 

Note that the second method of deriving the U(n) spectrum is similar in spirit to 

the derivation of the U(l) spectrum. For example the gauge transformation is an 

element of the U(l) subgroup. However, the first derivation is instructive since it 

exhibits inside the U(n) theory the dual U(l) theory variables such as p,i and E:. 
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Chapter 6 

Duality Invariance 

In the remainder of the thesis, we will be discussing self-duality of the type 

first noticed in the Maxwell electromagnetic theory, which is invariant when one 

/replaces the field strength with its Hodge dual. Very few theories with this type of 

invariance are known. The U(l) Born-Infeld is one example. Although in certain 

limits it reduces to the Maxwell theory, the Born-Infeld theory is non-linear. We 

will, in fact, find a number of generalizations of this theory which possess non­

linear self-duality. In this chapter, we describe how the theory of self-duality 

introduced in [3, 4] is modified when we consider complex abelian gauge fields. 

We begin by considering a linear action of the duality group which mixes the 

field strengths and their duals but not their complex conjugates. We will refer to 

this as a holomorphic action. Under these conditions, the largest allowed duality 

group is U(n, n) where n is the number of complex gauge fields. If we do not 

require a holomorphic action, n complex gauge fields are equivalent to 2n real 

gauge fields in which case the largest possible duality group is Sp(4n, R). Later, 

in Section 8.1, we will also introduce a Born-Infeld action with real gauge fields 

which we show to have the largest allowed duality group given the number of gauge 

fields. However, the arguments leading to this involve Lagrangians with complex 
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gauge fields. 

Consider a theory of n complex abelian gauge fields and a scalar field S which 

is an n-dimensional complex matrix. Here we do not require S to be symmetric 

and as a result we find a larger duality group than the one appearing in [54]. The 

gauge fields only enter in the Lagrangian through their field strengths Fa, where 

a = 1, ... ,n, and their complex conjugates pa 

L = L(Fa, pa, S, ... ) . (6.1) 

The dots in (6.1) represent possible auxiliary fields which could also be present 

in L. As we will show later, with the scalar field S present the duality group is 

noncompact while without the scalar field only the maximal compact subgroup 

survives. We can also add to this Lagrangian a kinetic term for the scalar field S. 

As explained in [3] additional physical fields, e.g. spinors, can also be introduced, 

but we shall not consider them explicitly in this paper except in Section 8.2 where 

the supersymmetric Born-Infeld theory is discussed. 

The dual field strength, or rather the Hodge dual of the dual field strength, 

G-a_I Ga pa . d fi d 
/-Lv - 2 c/-Lvpa ,IS e ne as 

-=-a 8L 
G =2--

/-LV - 8Fa/-Lv 
(6.2) 

Throughout this paper we will assume that we are in four space-time dimensions, 

except in Section 8.3, where we will show how to generalize our results to theories 

in even space-time dimensions. 

The equations of motion and Bianchi identities transform, covariantly under 
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the following holomorphic infinitesimal transformations 

(6.3) 

Let <P denote all the scalar fields appearing in the Lagrangian and <pp. = Bp.<p. The 

infinitesimal transformations of the scalar fields are given by 

(6.4) 

where f"i are components of a vector field on the scalar field space. The most gen-

eral Lagrangian, neglecting possible fermionic fields, has the form L(F, F, <p, <pp.) . 

Its variation under (6.3)(6.4) can be written as 

where b</J L is given by 

The variation of the Lagrangian must satisfy certain consistency conditions. First 

note that 

Using (6.2) we obtain 

b G = 2~ (bL) - e c Be - Be c t e - G D 
BY . BF BF ' 

(6.5) 

and this should be consistent with the variation obtained from (6.3) 

(6.6) 
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Equating (6.5) and (6.6) we obtain the consistency condition 

o ( 1 - t - 1 - t -) - oL- -G(C +C)G- -F(B +B)F = of 4 4 
(6.7) 

oL (D + At) + !C(C _ ct)OG _! oC (C - ct)G + !F(Bt - B) . 
of 4 of 40F 4 

The right hand side of the above equation must be a total derivative since the left 

hand side is one. This is possible if 

At+D=cI, Bt=B, Ct=C, 

where c is a real parameter. These are the relations of the fundamental represen-

tation of the U (n, n) x IR* Lie algebra 1. We will only consider the case when c 

vanishes. Thus we assume 

At = -D, Bt = B, Ct = C . (6.8) 

The relations (6.8) define the fundamental representation of the Lie algebra of 

U(n, n). However, in general the transformations (6.4) of the scalar fields can be 

implemented only for a subgroup H of U(n, n). The duality group H depends 

both on the field content and the nature of the interactions of the scalar fields. 

Using (6.8) the consistency condition (6.7) can be written as 

- oL--FBF--GCG =0. o ( 1 - - 1 - -) 
of 2 2 

(6.9) 

Another consistency condition is obtained by applying the Euler operator 

o 0 
O</Ji - OIL o</Jt 

1 R * denotes the group of nonvanishing real numbers. 
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on the variation of the Lagrangian. Just as in the derivation of [3], by assum-

ing (6.8) we obtain 

(6.10) 

where Ei is the left hand side of the equation of motion for the field ¢i 

A sufficient condition to satisfy the consistency equation (6.9) is given by 

(6.11) 

This is equivalent to the invariance of the following combination 

1 - - 1 -:::: 
L- -FG- -FG 4 4 . (6.12) 

Using (6.11) in (6.10) we obtain 

(6.13) 

showing that the equations of motion for the scalar fields form a multiplet under 

the duality group H. In the examples discussed in this paper the duality group will 

be U(n, n) for complex gauge fields and Sp(2n, JR) for real gauge fields. Ignoring 

a possible JR* factor, present only for a nonvanishing c, we will refer to these as 

the maximal noncompact duality groups. 

The corresponding finite duality transformations are given by 

(6.14) 
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Here M is an U (n, n) matrix satisfying 

(6.15) 

where M and IK have the block form 

M= IK= 
(

a b) ( 01) 
cd' -1 0 

Note that the invariant IK defining U{n, n) is the usual off diagonal symplectic 

form .. This explains the similarity of our results with the real case discussed in [3]. 

One can check that (6.15) implies the following relations for the block components 

of M 

(6.16) 

The infinitesimal relations (6.8) can be obtained from the fiIiite relations (6.16) 

usmg 

In much of this paper we consider Lagrangians which do not depend on the 

scalar field S, i.e. they depend only on the gauge field strengths and perhaps 

auxiliary scalar fields, and are invariant only under the maximal compact subgroup 

U(n) x U(n) of U{n, n). Then there is a way to introduce the scalar field S which 

extends the duality group to U(n, n). The maximal compact subgroup U{n) x U{n) 

is the subgroup of U(n, n) obtained by requiring (6.16) and 

a = d, b = -c. 
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The corresponding infinitesimal relations are (6.8) and 

A=D, B= -C. 

Let £'(F, P) be a Lagrangian describing a theory invariant under U(n) x U(n), 

where we suppress the dependence on the auxiliary fields. Then we define a new 

Lagrangian 

- t _ - t 1 --
L(F,F,Sl,R,R) = £(RF,FR) + "2 Tr(SlFF) , (6.17) 

where S1 is a hermitian n-dimensional matrix and R is a nondegenerate n-

dimensional matrix. This Lagrangian describes a theory invariant under U(n, n) 

if we transform the scalar fields S1 and R as discussed below. As we will see, the 

duality invariance of the theory described by £, implies that L depends on Rand 

Rt only through the hermitian positive definite matrix 

(6.18) 

We also define S S1 + iS2 . Under the duality group S transforms by fractional 

transformation 

Sf = (as + b)(cS + d)-1 , (6.19) 

whose infinitesimal form is 

6S = B + AS - SD - se S . (6.20) 

It is also convenient to write down the transformation of S2 

(6.21) 

98 



In (6.21) and below we use the notation -t for the hermitian conjugate of the 

inverse. 

N ext we show that the Lagrangian L defined in (6.17) corresponds to a U (n, n) 

duality invariant theory. We follow closely [64] where the case of real gauge fields 

was considered. The proof in [64] generalizes the introduction of a single complex 

scalar field for a U{l) interacting theory discussed in [9, 10]. Using the fact that 

£(F, F) satisfies (6.11) with compact duality rotations we have 

(6.22) 

(6.23) 

The relation (6.22) corresponds to transformations with A = 0 while (6.23) is 

obtained by setting C = O. We now introduce some convenient notation 

F = RF g'::: = 2o£{F,F) , of (6.24) 

Given a Lagrangian £ which depends on F but not its derivatives, we may 

rewrite (6.22) and (6.23) as 

(6.25) 

(6.26) 

We would like to show that under an infinitesimal U{n, n) duality transforma-

tion the change in the Lagrangian L defined in (6.17) satisfies the duality condi-

tion (6.11) 

1 - - - -
(OF + OF + OSI + OR + oRt)L = 2{FBF + GCG) . (6.27) 
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· A transformation law for R which is consistent with the relation Rt R = S2 

and the duality transformation (6.21) of S2 is given by 

R' = R(cS + d)-I, 

whose infinitesimal transformation is oR = -R(CS+D). This choice is somewhat 

arbitrary since equation (6.23) is equivalent to the Lagrangian £, being invariant 

under left multiplication of the gauge field strength by unitary matrices U 

£'(U F, Put) = £(F, PJ . 

This ensures that left multiplication of R by a unitary matrix leaves the Lagrangian 

L invariant. It follows that the Lagrangian L only depends on S2 and not on 

the specific R chosen 2 , as we have already mentioned. Any variation of the form 

8R = nR-R(CS+D), where n is anti-hermitian, would still preserve the relation 

Using the above transformation of R one can show that (6.27) is equivalent to· 

the vanishing of the following expression 

Using the relation g = R-t(G-S1F), which follows from (6.2) and (6.24), the first 

and second lines of this expression are equivalent to the left hand side of (6.25) 

2Note that S2 is a positive definite hermitian metric and R is a vielbein. The Lagrangian 

only depends on the metric and the arbitrariness in the choice of vielbein introduces a U(n) 

gauge invariance. 
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and (6.26) respectively. Thus (6.27) is satisfied concluding the proof that the 

theory with the Lagrangian L is invariant under U{n, n). 

Conversely, if we are given a Lagrangian L with equations of motion invariant 

under U{n, n) we can obtain a theory without the scalar field S by setting S = 

i. Then the duality group is broken to the stability group of S = i which is 

U(n) x U(n), the maximal compact subgroup. Thus we can easily move between 

the theory with a scalar field S and the theory without S. 

We also give the infinitesimal transformation of F and g 

RCRtg - iRCRtF , (6.28) 

of -RCRtF - iRCRtg . 

The last term in (6.28) is a unitary transformation and could be canceled by using 

a different choice for the transformation of R. The first term is an infinitesimal 

duality transformation belonging to the maximal compact subgroup U(n) x U(n). 

Note however that it is a space-time dependent duality transformation. 

Next we find the differential equation that a Lagrangian must satisfy if the 

equations of motion are invariant under the maximal compact duality group. We 

are therefore considering a Lagrangian without the scalar field S. We will also 

assume that the auxiliary fields have been eliminated, the field strengths appear 

in the Lagrangian only through the Lorentz invariant combinations 

(6.29) 

and that the Lagrangian is a sum of traces (or of products of traces) of monomials 
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in a and /3. If the Lagrangian has such a form, equation (6.23) is satisfied. Then 

under a compact duality transformation the variation of the Lagrangian is 

where we define 

Using the definitions (6.2) and (6.29), we find that (6.22) is equivalent to 

(6.30) 

This is a generalization of the differential equation introduced in [10] where the 

case of a single real gauge field was considered. Equation (6.30) is invariant under 

the following transformation 

a' a, (6.31) 

/3' -/3 . 

If one considers a self-dual theory with n real field strengths FR , where now a 

and /3 are defined by aab = 1/4 FRFk and /3ab = 1/4 FRFk, equation (6.30) still 

holds. In this case one can extend the duality group from U(n) to Sp(2n, IR) by 

introducing scalar fields as in [64]. Although these remarks will be central in later 

arguments, their proofs closely resemble those in the case of complex fields, so we 

omit them. 
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Chapter 7 

The Abelian Born-Infeld Action 

In this chapter, we introduce a generalization of the U(l) Born-Infeld action 

with complex gauge fields and with a U(n, n) self-duality group. In Section 7.1, 

we write the action using auxiliary fields, which greatly simplifies the check of 

duality invariance. We go on to eliminate the auxiliary fields in Section 7.2. 

We are then able to write down an explicit action without auxiliary fields by 

using a mathematical result about unilateral matrix equations, which is proven in 

Section 7.3. 

I 
7.1 Born-Infeld with Auxiliary Fields 

In this section, we describe a U(n, n) duality invariant nonlinear gauge theory 

with n complex gauge fields [54]. The use of auxiliary fields in the Lagrangian is 

inspired by the work of [55, 56] ·and simplifies the check of duality invariance. 

We begin with the following Lagrangian introduced in [54] 

(7.1) 

where N = a - if3. As mentioned in Chapter 6, here we do not require S to be 

symmetric. The auxiliary fields X and A are n dimensional complex matrices. If we 

could solve their equations of motion and use the solution in the Lagrangian (7.1) 
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we would find a Lagrangian which depends only on a, f3 and S. Obtaining this 

Lagrangian is the main thrust of this chapter. 

If we set S = i in the above Lagrangian, the theory is only self-dual under the 

maximal compact subgroup U(n) x U(n),as discussed in Chapter 6. However, if 

we now reintroduce the scalar field as in (6.17), the new Lagrangian is the same 

as (7.1) only'after field redefinitions of X and),. We can also add a kinetic term for 

the scalar field S. This term must be duality invariant since, as we will see shortly, 

the rest of the Lagrangian already sati~fies the self-duality condition (6.11). For 

example we can add a nonlinear a-model Lagrangian defined on the coset space 

U(n, n)/U(n) x U(n) with the metric given by 

(7.2) 

The metric (7.2) is Kahler since it is obtained from the Kahler potential 

(7.3) 

This Kahler potential changes by a Kahler transformation under (6.20); this en­

sures that the metric is duality invariant. 

It will be convenient to decompose the auxiliary fields into hermitian matrices, 

as we have already done for S, 

To prove the duality of (7.1) we first note that the last term in the Lagrangian 

can be written as 

ReTr [i),(a - if3)] = Tr( -),2a + ),1f3) . 
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If the field A transforms by fractional transformation and the Ai's and the gauge 

fields are real this is the U(l)n Maxwell action, with the gauge fields interacting 

with the scalar field A, and this term by itself has the correct transformation 

properties under the duality group [3]. Similarly for hermitian a, f3 and Ai this 

term by itself satisfies equation (6.11). It follows that the rest of the Lagrangian 

must be duality invariant. The duality transformations of the scalar and auxiliary 

fields are 

S' (as + b)(cS + d)-I, (7.4) 

A' (7.5) 

x' (7.6) 

To show the invariance of Tr[i(A - S)x] it is convenient to rewrite (7.4) as 

The proof of invariance of the remaining term which can be written as 

is straightforward using the following transformations obtained from (7.4), (7.5) 

and (7.6) 

X 2 (7.7) 
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The Lagrangian has also a discrete parity symmetry which acts on the fields 

as 

a' a, 

/3' -13, 

s' -s , (7.8) 
:::" 

X' X, 

A' -'x. 

Although the theory of duality invariance presented in the previous section 

guarantees that this theory is self-dual, one can also check directly that the equa-

tions of motion obtained by varying the auxiliary fields are preserved under duality 

rotations. These equations of motion are 

1 
i(X - 2XS2Xt + 0; - i/3) = 0 , (7.9) 

i(A - S - iS2XtA2) = 0, (7.10) 

and indeed these two equations form a multiplet under duality transformations. 

Using the explicit forms (7.9) and (7.10) one can check that 

Alternatively, one can obtain these equations directly from (6.13). 

7.2 Elimination of the Auxiliary Fields 
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In this section, we study the equation of motion (7.9) and attempt to solve for 

X. We then give the form that the Lagrangian assumes after the elimination of 

the auxiliary fields. This form is a generalization of the well-known Born-Infeld 

Lagrangian to more than one gauge field. 

Using the equation of motion (7.9) in the Lagrangian (7.1), we obtain 

I (7.11) 

where X is now a function of G, f3 and 52 that solves (7.9). For n = 1, we have to 

I solve a second order algebraic equation and we obtain 

1 - Jl + 252G - 5if32 . 

X = 52 + ~f3 . 

Apart from the fact that the gauge fields are complex, the result is the Born-Infeld 

Lagrangian 

(7.12) 

In fact, for n = 1 we could have taken the gauge fields to be real even in the 

formulation with auxiliary fields as in [56], in which case the duality group becomes 

the 5p(2, m,) subgroup of U(l, 1) obtained by requiring a, b, c and d to satisfy (6.16) 

and to be real. 

We now study equation (7.9) for arbitrary n. First notice that (7.9) can be 

simplified with the following field redefinitions 

(7.13) 

f3 = Rf3Rt, 
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where, as in (6.18), Rt R = 8 2 , The equation of motion for X is then equivalent to 

~ l~~t ~ '4 0 X - -XX + a - 1,tJ = . 
2 

(7.14) 

This is the same equation we would have obtained for X if we would have set the 

scalar field 8 = i initially, and thus broken the duality group to U(n) x U(n). For 

the rest of this section we will take this point of view, unless otherwise stated. Since 

we can always reintroduce the scalar field via the prescription given in Chapter 6 

we choose to drop the tildes in the above equation. Then the equation of motion 

obtained by varying A gives the following equation for X 

1 . 
X - 2"xxt + a - i{3 = 0 , (7.15) 

and after solving this equation the Lagrangian reduces to 

L=ReTrx· 

Let X = Xl + iX2 where Xl and X2 are hermitian. The anti-hermitian part 

of (7.15) implies X2 = {3, thus xt = X - 2i{3. This can be used to eliminate X 

from (7.15) and obtain a quadratic equation for xt. It is convenient to define 

Q = ~xt which then satisfies 

(7.16) 

where 

1. 1 
p = --(a - 1,(3), q - --(a + i(3) . 

2 2 

The Lagrangian is then 

L = 2ReTrQ . (7.17) -. 
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If the degree of the matrices is one, we can solve for Q in the quadratic equa-

tion (7.16) and then (7.17) reduces to the Born-Infeld Lagrangian. 

For matrices of higher degree, equation (7.16) can be solved perturbatively and 

by analyzing the first few terms in the expansion we conjectured in [54, 85] that 

the trace of Q can be obtained as follows. First, find the perturbative solution of 

equation (7.16) assuming p and q commute. Then the trace of Q is the trace of 

the symmetrized expansion 

Tr Q = ~ Tr [ 1 + q - p - S V 1 - 2 (p + q) -: (p - q)2] , (7)8) 

where the symmetrization operator S will be discussed in the next section. We 

have also found an explicit formula for the coefficients of the expansion of the 

trace of Q 

[ ( r+S-2)(r+s) 1 Tr Q = Tr q + L S (pr qS ) . 
r,s2:1 r - 1 r (7.19) 

In the next section, we will prove that for a unilateral matrix equation of order 

N, the perturbative solution is a sum of ter~s which are symmetrized in all the 

matrix coefficients as well as terms which are commutators. Since equation (7.16) 

is a unilateral matrix equation, the trace of Q will be symmetrized in the matrix 

coefficients q and p - q. This is equivalent to symmetrization in q and p, and also 

equivalent to symmetrization in a and 13. Because we know the solution Q when a 

and 13 commute, and now we know the ordering prescription, our conjecture (7.18) 

follows. In terms of a and 13, the Lagrangian becomes 

(7.20) 

109 



.,. 

where we have reintroduced the scalar field S and enhanced the duality group to 

U{n;n). 

7 .3 Unilateral .Matrix Equations 

In this section, we prove a theorem regarding certain solutions of unilateral 

matrix equations. These are Nth order matrix equations for the variable <p with 

matrix coefficients Ai which are all on one side, e.g. on the left 

(7.21) 

The matrices are all square and of arbitrary degree. We may equally consider 

the Ai's as generators of an associative algebra, and <P an element of this algebra 

which satisfies the above equation. We will prove that the formal perturbative 

solution of (7.21) around zero is a sum of symmetrized polynomials in the Ai and 

of terms which are commutatorsl. The same is true for all the positive powers of 

the solution. 

By repeatedly inserting <p from the left hand side of (7.21) into the right hand 

side we obtain the perturbative expansion of <p as a sum 

where each DM is a product of the Ai matrices. Any ordered product of these 

matrices will be referred to as a word. However not every word appears in the 

I If the degree of the matrices is one the perturbative solution is convergent if Ao and Al are 

sufficiently small. 
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perturbative expansion of <p. We reserve the letter D for words that do appear2. 

Next we obtain the condition that a word must satisfy in order to be in the 

expansion. First note that because of (7.21) any word DM can be written as the 

following product 

(7.22) 

. for some value of s, where the DM/S are also words in the expansion. Conversely, 

if all the DM/s are words in the expansion, DM defined in equation (7.22) is also 

a word in the expansion. By iterating (7.22) we obtain the following equivalent 

statement: for every splitting of D M into two words D M = WI W2 the second word 

can be written as a product of terms in the expansion of cp 

It is convenient to assign to every matrix a dimension d such that d( <p) = -1. 

Using (7.21), the dimension of the matrix Ai is given by d(Ai) = i-I and d(DM ) = 

-1. Then we obtain the following intrinsic characterization of a word in the 

expansion of cp. It is a word D such that for every splitting into two words 

D = WI W2 , where W2 has at least one letter, we have 

d(Wd 2: 0 and d(D) = -1 . (7.23) 

2This notation originated from an earlier version of the proof where the perturbative ex-

pansion of ¢ was calculated diagrammatically and the diagrams were denoted by D. Although 

we will not use diagrams here, note that they are very useful in calculating the perturbative 

expansion of the solution. 
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Note that (7.23) is a necessary and sufficient condition for a word to be in the 

expansion of </> . 

Suppose that W is an arbitrary word such that d(W) =-1. Then, as we will 

show, there is a unique cyclic permutation D of W such that D is a term in the 

expansion of </>. Let us write W = DNI DN2 ... DNk WI, where DNI is the shortest 

word starting from the first letter such that d( D Nl) = -1. D Ni is defined in the 

same way, except we start from the first letter after the word DNi_1 • Finally WI is 

whatever is left over. We use the notation D Ni since they correspond to terms in 

the </> expansion. To see this, note that the total dimension of a word can increase 

or decrease when a letter is added on the right, but if it decreases it can only do 

so by one unit. This is when the letter added is Ao. Combining this with the fact 

that DNi is the shortest word which satisfies d(DNJ = -1 then implies that if DNi 

is a product of two words the dimension of the first word is greater than or equal 

to zero. This is just the condition (7.23). Then using the fact that d(Wd = k - 1 

one can check that the cyclic permutation of W defined as D = WIDN1 ." DNk 

satisfies (7.23), thus it belongs to the expansion of </>. Note that all the other 

cyclic permutations lead to words that are not in the expansion. Assuming the 

converse implies that two distinct terms in the expansion can be related by a cyclic 

permutation. But this is impossible: if we write D = WI W2 , then d(Wd :::: 0 and 

thus d(W2 ) :::; -1, so that its cyclic permutation W2W I does not satisfy (7.23). A 

similar argument can be used to show that all different cyclic permutations of a 

term in the expansion of </> lead to distinct wo~ds. 
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Consider the trace of the sum of all distinct words of dimension d = -1 and 

of order ai in Ai. We can group together all words that are cyclic permutations of 

each other, and replace each group by a single word with coefficient E~o ai. Using 

the result of the previous paragraph, we can choose this word to satisfy (7.23). 

Thus we have 

( ) 

N -1 ( ) 
Tr L: DM = (L:ai) Tr L: W , 
. order {a;} i=O order {a;} 

(7.24) 

where the sum in the right hand side is over all distinct words of some fixed order 

{ai} and of dimension d(W) = -1. 

We define the symmetrization operator S as a linear operator acting on mono-

mials as 

S(Ago Arl ... A~) = ao!al~ ... a~! ( L: w), 
( Ei=o at) . order {a;} 

(7.25) 

where the sum is over distinct words of fixed order {ai}. Equivalently, a word 

can be symmetrized by averaging over all permutations of its letters. Not all 

permutations give distinct words and this accounts for the numerator on the right 

side of equation (7.25). The normalization of S is such that on commutative Ai's 

S acts as the identity. 

Combining (7.24) and (7.25), we can obtain the solution for the trace of ¢J to 

all orders 

(E!f a· - 1)1 
" ,=0' . T S(Aao Aal AaN) 
~ II I r 01···N, 
{ai} aO·al···· aN· 

Tr¢J (7.26) 

E (i-l)ai=-1 

where the sum is over all sets {ai} restricted to words of dimension d = -1. More 

generally, if the Ai's are considered to be the generators of an associative algebra, 
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we can replace the trace in (7.26) with the cyclic average operator which was 

defined in [85J.. This is true since in the proof we only used the cyclic property ofthe 

trace which also holds for the cyclic average operator. Therefore, the solution </J can 

be written as a sum of symmetric polynomials and terms which are commutators. 

This is the statement we set out to prove. Notice that our derivation implies that 

the coefficients in (7.26) are all integers. 

Using the same kind of arguments we used to derive equation' (7.26), we can 

also prove that the trace of positive powers of </J is given by 

(I:!" a· - 1)' '"" z=o Z • T S(Aao Aal AaN) 
~ " ,r 01'" N' 
{ai} aO·al· ... aN· 

(7.27) 

I: (i-l)ai=-r 

Furthermore we can write a generating function for (7.27) 

N 

Tr log(l - </J) = Tr log(l - L Ai)1 . 
i=O d<O 

(7.28) 

On the right hand side of (7.28) one must expand the logarithm and restrict the 

sum to words of n"egative dimension. Since d( </Jr
) = -r we can obtain (7.27) 

by extracting the dimension d = -r terms from the right hand side of (7.28). 

Note that all the terms in the expansion of Tr log(l - L~o Ai) are automatically 

symmetrized. 

It is possible to give a simple proof of(7.28) without going through the com-

binatoric arguments above, which however give a construction of the solution and 
, 

its powers themselves, not only their trace. First note that we can rewrite equa-

tion (7.21) as 
N 

1 - </J - L Ak(l - </Jk) 
k=l 
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The right hand side factorizes 

N N k-I 

1- LAi = (1- L L Ak<lr)(l-"- ¢) . 
i=O k=I m=O 

Under the trace we can use the fundamental property of the logarithm, even for 

noncommutative objects, and obtain 

N N k-I 

Tr log(l - L Ai) = Tr log(l- L L Ak¢m) + Tr log(l - ¢) . 
i=O k=Im=O 

Usio.g d(Ak) = k - 1 and d(¢) = -1 we have d(Ak¢m) = k - m - 1 and we see 

that all the words in the argument of the first logarithm on the right hand side 

have semi-positive dimension. Since all the words in the expansion of the second 

term have negative dimension we obtain (7.28). 

If the coefficient AN is unity, we have the following identity for the symmetriza-

tion operator 

S(AaoAai AaN)1 - S(AaOAai AaN- I ) o I' .. N AN=I - 0 I' .. N-I . 

This is obviously true up to normalization; the normalization can be checked in 

the commutative case. 

The trace of the solution of (7.16) can now be obtained from (7.26) by taking 

N = 2 and setting A2 to unity. The restriction on the sum of (7.26) in this case 

reads ao - a2 = 1. The sum can then be rewritten 

(7.29) 

Using ¢ = Q, Ao = q, Al = P - q, the combinatoric identity 

(a +c b ) min(a,c) (a) ( b ) 

m=m~O'C-b) m c - m 
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and the resummation identities 

r 00 00 

L L L L 
r2:1 a=O a=O r=max(a,l) 

00 00 00 a+b-l 

L L L L 
r=max(a,l) b=r-a+l b=max(1,2-a) r=max(a,l) 

one can show that (7.29) reduces to (7.19). 
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Chapter 8 

Extensions of the Born-Infeld Action 

In this final chapter, we discuss extensions of our results from Chapter 7. In 

Section 8.1, we argue that by replacing the complex gauge fields of Chapter' 7 with 

real ones, we obtain a Born-Infeld theory with the maximal duality group. We 

discuss supersymmetric extensions in Section 8.2. And finally, in Section 8.3, we 

find that similar Born-Infeld theories can be defined in flat spacetime of any even 

dimension. 

8.1 Real Field Strengths 

We now show that our results imply the existence of a Born-Infeld theory 

with n real field strengths which is duality invariant under the maximal duality 

group 8p(2n, lR). We first study the case without scalar fields, i.e. 81 = 0 and 

82 = R = 1. Consider a Lagrangian £ = £(a, (3) which describes a self-dual 

theory with complex gauge fields. We will assume that the Lagrangian is a sum 

of traces (or of products of traces) of monomials in a and (3. It follows that 

this Lagrangian satisfies the self-duality equations (6.30). This remains true in 

the special case that a and (3 are real. That is £ = £( a, (3) satisfies the self­

duality equation (6.30) with a = aT = a and (3 = (3T = fl. We now recall that 
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equation (6.30) is also the self-duality condition for Lagrangians with real gauge 

fields provided that a and /3 are defined in the following way 

(8.1) 

where Fit denotes a real field strength. This implies that the theory described 

by the Lagrangian .cR = .c(o:(Fit), /3(FJt)) is self-dual with duality group U(n), 

the maximal compact subgroup of Sp(2n, lR). The duality group can be ex-

tended to the full noncompact Sp(2n, lR), the maximal duality group of n real 

field strengths [3], by introducing the scalar fields S via the prescription (6.17) 

which also applies to the real case provided S is symmetric [64]. 

In our case the Lagrangian L = Tr[Xl(c'i,,8) + Sl/3,] , where X(ii,,8) is the 

solution of (7.15), defines a duality invariant theory because it is obtained from 

the Lagrangian with auxiliary fields (7.1) that is explicitly self-dual. Therefore 

L R = Tr [Xl (ii,,8) + Sl/3,] , with the field strengths taken real is also self-dual. 

Using (7.20) we obtain an explicit formula for the Born-Infeld Lagrangian with 

real gauge fields describing an Sp(2n, lR) duality invariant theory 

8.2 Supersymmetric Theory· 

In this section, we briefly discuss supersymmetric verSIOns of some of the 

Lagrangians introduced. First, we discuss the supersymmetric form of the La-

grangian (7.1). Consider the superfields va = ~(Vla + iv:n and va - ~(Vla -
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iV.t) where v;a and V2
a are real vector superfields, and define 

Both W a and Wa are chiral superfields and can be used to construct a matrix of 

chiral superfields 

The supersymmetric version of the Lagrangian (7.1) is then given by 

I where 5, A and X denote chiral superfields with the same symmetry properties 

as their corresponding bosonic fields. While the bosonic fields S and A appearing 

in (7.1) are the lowest component of the superfields denoted by the same letter, 

the field X in the action (7.1) is the highest component of the superfield x. A 

supersymmetric kinetic term for the scalar field S can be written using the Kahler 

potential (7.3) as described in [86]. 

Just as in the bosonic Born-Infeld, one would like to eliminate the auxiliary 

fields. However we have not been able to do this exactly except for n = 1, and 

unlike the bosonic case we do not even have a conjectured form of the Lagrangian 

without auxiliary fields. For n = 1 just as in the bosonic case the theory with 

auxiliary fields also admits both a real and a complex version, i.e. we can also 

consider a Lagrangian with a single real superfield. Then we can integrate out the 

auxiliary superfields and obtain the supersymmetric version of (7.20) 
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where 

If we only want a U(1) duality invariance we can set S = i and then the action (8.3) 

reduces to the supersymmetric Born-Infeld action described in [57, 58, 59]. 

In the case of weak fields, the first term of (8.3) can be neglected and the La-

grangian is quadratic in the field strengths. Under these conditions, the combined 

requirements of supersymmetry and self duality can be used [87] to constrain the 

form of the weak coupling limit of the effective Lagrangian from string theory. 

8.3 Extension to Arbitrary Even Dimensions 

In a space-time of arbitrary even dimension, D = 2p we define the matrices 

b 1 -b b 1 - -b 
aa = - Fa F /-Ll···/-Lp f3a = - Fa F /-Ll···/-Lp 

p! /-Ll···/-Lp , p! JLl···JLp , 
(8.4) 

where pa = lip! c Favl ... vp is the Hodge dual of Fa. The dual field JLl ... JLp JLl ... JLpVl···Vp 

strength is given by 

Since F = (-1 )p+1 F and Pc = (-1)P Fa, for all even dimensions the matrix a is 

hermitian, while f3 is hermitian if D = 4v and anti-hermitian if D = 4v + 2. It is 

also convenient to define 

N={ a - if3, if D = 4v , 

a + f3, if D = 4v + 2 . 
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With these definitions the Lagrangian (7.1) gives a U(n, n) duality invariant theory 

in arbitrary even dimensions. 

However, if the dimension of space-time is D = 4v + 2, where v is integer it is 

convenient to make the following field redefinitions 

A = i>., 5 = is . 

The new fields have the decomposition 

where Al and 51 are hermitian and A2 and S2 are anti-hermitian. The minus sign 

was introduced so that we have 

(8.5) 

Then SI is positive definite and we can write 51 Rt R with R an arbitrary 

nonsingular n-dimensional matrix. 

We also perform a similarity transformation on the U(n, n) duality group, such 

that the transformation properties of the new fields simplify. Let us define two 

2n-dimensional matrices with the block form 

lK= 1H= ( 01) (01) 
-1 0' 1 0 

and let the matrices T and M have the block decomposition 

M=(:;), T=(::) 
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Then one can define the U(n, n) group as the group of matrices satisfying either 

one of the two relations \ 

MlKMt = lK, T1HTt = 1H . (8.6) 

The two definitions are related by a unitary transformation M = U-1TU where 

( 

ei7r/4 

U= 
a 

(8.7) 

The n-dimensional matrices fl., fl., ~ and d satisfy 

(8.8) 

The action of U(n, n) on the scalar fields is given by 

A' (8.9) 

Note that the positivity of 8 1 is compatible with the above transformation law of 

s. 

The Lagrangian, written in terms of the redefined fields, takes the form 

(8.10) 

Our conjecture regarding the Lagrangian without auxiliary fields is independent 

of the dimension of space-time and if it holds we can eliminate the auxiliary fields 

to obtain the Lagrangian 

(8.11) 
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where 

(8.12) 

Note also that S2 appears in the last term of the Lagrangian (8.11), and this is 

consistent with S2 and f3 being anti-hermitian in space-times of odd half dimension. 

Also, there is a change of sign in front of the ~2 term under the square root in (8.11) 

due to the change in the definition of N. 

If the half-dimension of space-time is odd it is consistent to take all the fields 

to be real in either the Lagrangian with auxiliary fields (8.10), or in the La­

grangian (8.11) where the auxiliary fields have been eliminated. Then we obtain 

a theory invariant under an O(n, n) duality group. It was shown in [60, 64] that 

the maximal connected duality group for a theory of dimension D = 4v + 2 with 

n antisymmetric tensors is SO(n, n). In the analysis of [60, 64] only infinitesimal 

duality transformations were considered, and from these one can only show dual­

ity under the connected component of the group. In [62, 63] the group O(n, n) 

was considered. Note that, as discussed in Appendix C, O(n, n) has four disjoint 

components embedded in U(n, n) which is a comiected group. Finally, one can 

also obtain a theory invariant under the O(n) x O(n) maximal compact subgroup 

of O(n, n) by setting S = -1 in the Lagrangian (8.11). 
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Appendix A 

Chiral Spinor Representations of SO(d, d IZ) 

In the first part of this appendix it will be shown that the Weyl spin or repre­

sentations of SO(d, d IZ) are integral, i.e. have matrix elements which are integers. 

In the final part, it is proven that for d = 3 the Weyl spinor representation is in 

fact isomorphic to S L( 4, Z). 

The gamma matrices obeying (2.47), where the metric has the form (2.45), 

are already, up to normalization, the standard creation and annihilation operators 

used to generate the Fock space for Dirac spinors in the Weyl basis. These are 

defined as 

and satisfy the canonical anti-commutation relations 

As usual, the Dirac spinor and vector representations are related through for­

mula (2.46) in the main text 

To prove that the Weyl spinor representations are integral we will use a theorem 

presented in [38] where it was shown that the whole group SO(d, d IZ) is generated 
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by a special subset of group elements. An explicit construction of the Weyl spinor 

representation matrices corresponding to the group elements in that subset is given 

and shown to be integral. The subset contains three types of elements. The first 

type are generators of the form 

(A.l) 

The second type of generators forming a SL(d, Z) x Z2 subgroup have the form 

( 
R 0 I ), detR = ±1. 
o RT -

(A.2) 

These are the T-duality generators corresponding to a change of basis of the of 

the compactification lattice. 

The final generator is given by 

o 1 

o 1 

Od-2 
(A.3) 

1 0 

1 0 

Id-:-2 

It corresponds to T-duality along the Xl and x2 coordinates. The full dual-

ity group is in fact O(d, d IZ) but here we will only consider its restriction to 

SO(d,dIZ) which is the subgroup that does not exchange Type IIA and IIB. 

The full T-duality group is then obtained by adding to the above list one more 

generator corresponding to T-duality in a single direction. 

Using (2.46) one can check that the Dirac spin or representation corresponding 
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to the first type of generator (A.l) is 

1 
exp( -n- -a-a-) 2 ZJ Z J • (AA) 

This has a finite expansion and is manifestly integer valued in the standard Fock 

space basis obtained by acting with the creation operators on a vacuum state. 

One can prove that the full 8L(d, Z) group is generated by its 8L(2, Z)ij sub-

groups acting on the xi and x j coordinates. One can use this to find the spinor rep-

resentation matrices corresponding to generators of the second type (A.2). Since 

each 8L(2, Z)ij is generated by its Iij and 8ij transformations, which in the (ij) 

subspace where i <:: j have the form 

it is enough to find the spinor matrices for these generators. The spinor represen-

tation of Iij is given by 

(A.5) 

The exponential (A.5) has a finite expansion and its matrix elements are integer 

valued. Similarly the spinor representation of 8ij is given by 

(A_6) 

Let us define A = a}ai - at aj for fixed values of i and j. In terms of number 

operators Ni = at ai we have A 2 = - Ni - Nj + 2NiNj . Since Ni can be either zero 

or one, A2 is zero or minus one. The Fock space can be split into a direct sum 

of two subspaces, defined by the eigenvalues of A2. On the subspace defined by 
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A2 = 0, one also has A = 0 and thus the spinor representation (A.6) reduces to 

the identity. On the subspace defined by A2 = -1, the exponential can be written 

as cos(7r/2) + Asin(7r/2) = A. On both subspaces, the representation matrix of 

the transformation is integer valued. A formula for the spinor representation of 

the 8ij generators which is valid on both subspaces is given by, 1 + A + A2. The 

. second type of generator (A.2) also contains elements with detR = -1. A spinor 

transformation corresponding to such a generator is given by 

(A.7) 

Finally, the generator (A.3) has the spinor representation 

(A.8) 

It has a finite expansion given by (al - at)(a2 - a~), which can be obtained using 

((al - at)(a2 - a~))2 = -1, and in this form it is manifestly integral. 

Since the Fock space basis used splits into two subsets of definite chirality, it 

follows that the Weyl spinor representations of 80(d, d IZ) are also integral. 

In the remainder of the appendix it is shown that the Weyl spinor repre-

sentation of 80(3, 31Z) is isomorphic to 8L(4, Z). First note that for the Lie 

algebra corresponding to the continuous Lie groups we have the equivalence 

80(3, 31R) rv 8l(4, R). The spinor representation of the first group is isomorphic 

to the fundamental of the second. Since in the first part of the appendix it was 

shown that the spinor representations are integral it is reasonable to expect that 

they form a subgroup of SL( 4, Z). In fact we will show that they are isomorphic 
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to the whole 8L(4, Z) group. 

One can represent the Weyl spinor state nlO) + ~Mija!a}IO) as the column 

~ , .; 

, ' n 

M23 
(A.9) 

M 31 

M12 

Using operators of the form (A.5) and (A.6) one generates an 8L(3, Z) subgroup 

of the form 

(A.I0) 

where R is the same matrix appearing in (A.2). We will now show that the Weyl 

spinor representation also contains 8L(2, Zhi subgroups which act on the first and 

the i+l entries of the column spinor (A.9). These subgroups tDgether with (A.I0) 

generate the entire 8L(4, Z) group. The T-duality generator (A.8), denoted below 

Let us also consider a transformation G given by 

1 0 0 0 

0 1 
G= 

0 0 
ad - be = 1, 

0 0 a b 

0 0 c d 

which is an element of an 8L(2, Z) su~group of elements of the form (A.I0). By 
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conjugating G with the T12 generator 

d c 0 0 

T1-,}GT12 = 
b a 0 0 

(A.ll) 
0 0 1 0 

0 0 0 1 

one finds an 8L(2, Zh2 transformation acting on the first and second entries. 

All the other 8L(2, Zhi subgroups can be obtained by conjugating (A.ll) with 

elements of the form (A.I0). Thus we have found Weyl spinor representations 

generating the entire 8L(4, Z) group. In fact the representation is isomorphic to 

8L(4, Z) since all the spinor representation matrices (A.4), (A.5), (A.6), (A.7) and 

(A.8) are integral and have unit determinant. 

129 



Appendix B 

Duality Invariants at Small Compactification 

Volume 

This Appendix contains some mathematical results regarding the spinor rep-

resentation of the T-duality group and duality invariant quantities in the small 

volume limit. The group SO(d, d) is the group of 2d-dimensional matrices A sat-

isfying AJ AT = J where J is a matrix with the block form 

It will be useful to know how to calculate the Weyl spinor representation matrix 

of an SO(3,3) group element A with the block form 

First note that if A is invertible A has a block Gauss decomposition 

( 1 0 ) (A 0 ) (1 A-1B) 
A = CA -1 lOA -T 0 1 . , (B.1) 

where one can show using the group relations that CA- 1 and A- 1B are antisym-

metric. This decomposition is in fact true for generic SO(d, d) matrices. For d = 3 

one can give the expliCit spinor representation matrices for each factor in (B) thus 

130 



obtaining the spinor representation of a generic 80(3,3) matrix A 

8 = ( 1 0 ) ( det A 1/2 

*(CA-1
) 1 0 

(B.2) 

The star denotes the duality operator. When acting on antisymmetric 3-

dimensional square matrices it gives the dual column matrix. 

Invariants can be constructed using two column matrices transforming in the 

vector representation of 80(d, d IZ) and the symmetric 80(d, d IZ) matrix M 

In the limit when G goes to zero, using the block Gauss decomposition of M 

(B.3) 

and after identifying B with 8 one obtains the following invariant 1 

Using the transformation of G under the duality group (1.5) one can write the 

transformation of u - 8v 

(u - 8v) = (C8 + V)-T(u - 8v). (BA) 

The spinor representation matrix of M can be calculated using (B.2) 

8(M) = 
( 

1 0) ( detG-
1

/
2 

b 1 0 
o· )(lbT

) 

det G1/ 2G-1 0 1 . 

ITo obtain a finite result, one should insert appropriate factors of a' in (B.3) and also take 

a' to zero as discussed in the Introduction. 

131 



Then one can also form the invariants 'T}TS(M)X using two chiral spinors 

Xo 'T}o 

Xl 'T}l 
X= , 'T}= 

X2 'T}2 

X3 'T}3 

In the limit of vanishing G, the invariant becomes 

(B.5) 

From (B.5) one obtains the following transformation law 

One can also check the relations (B.4) and (B.6) directly using the transforma-

tions (1.4) of 8. 

Given two chiral spinors X and 'T} first write them as Dirac spinors 

Then using the same definition for ai and at as in Appendix A one can form the 

" 80(3, 31Z) vector 

(B.7) 

where iJD = 'T}tT. Here T is a matrix acting on Dirac spinors and plays the same 

role as 'Yo when one forms barred spinors in Minkowski space. It is given by 

Writing out all the spinor components in (B. 7) one has 

(B.B) 
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Then u - 8v transforms as in (BA) under the duality group. Such an expression, 

involving two chiral spinors and 8, is used in the main text. 
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Appendix C 

Parametrizations of Coset Spaces G / If 

In this appendix we show that the field S provides a global parametrization 

of the coset space G/H where G is U(n,n), Sp(2n,JR) or O(n,n) and H is the 

maximal compact subgroup of G. We will concentrate on U(n, n) but the same 

argument applies for the other groups. 

Cosets are equivalence classes of group elements g of G under right multipli­

cation with arbitrary elements h of H 

g r-v gh . 

We denote the coset containing g by gH. The maximal compact subgroup of Gis 

defined as 

It is the intersection of U(n,n) with U(2n) i.e. U(n) x U(n). 

Next consider the map ¢ : G / H ~C defined by 

¢(gH) = ggt , 

where 

c = {s E Gist = s, s positive definite} 
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is the subset of hermitian positive definite group elements of G. This map is 

well defined since for any two elements 9 and g' in the same coset, g' = gh and 

g'g't = ghhtgt = ggt. Furthermore this map is one to one. We show first that the 

map is surjective. Let s be an arbitrary hermitian positive definite element of G. 

Then 

I s = (a b) = (1 bd-
1

) (d-
t 0) ( 1 0). 

c dOl 0 d d-1c 1 
(C.1) 

The last equality in (C.1) can be checked using the group relations (6.16). The 

decomposition exists whenever d is invertible, but since s is positive definite and 

d is the restriction of s on an n-dimensional subspace d is also positive definite. 

Note also that dt = d and (bd- 1)t = bd-1 = d-1c. Then 9 defined as 

9 = (1 bd-
1

) ( d-
1

/

2 J 
o 1 0 d1/ 2 

satisfies s = ggt, thus the map <p is surjective. To show that the map is also 

injective note that ggt = g'g't is equivalent to g'-1g(g'-1g)t = 1. Then h = g'-1g 

is an element of G satisfying hht = 1, that is it belongs to the maximal compact 

subgroup H and we have 9 = g' h so 9 and g' belong to the same coset. 

If we define S2 = d-1 and S1 = bd-1 we can rewrite (C.1) as 

s = (1 S1) (S2 0 ) (1 0). 
o 1 0 S;;1 S1 1 

This decomposition can also be written in terms of S2 and S = S1 + iS2 as 
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Left multiplication on the group G induces an action of the group G on the coset 

space 

Using the decomposition (C.2) one can easily show that the fractional transforma-

tion (6.19) of S is equivalent to this action. The form (C.2) is very convenient since 

the first term is invariant under the action, while the second term only contains 

5 and S2 and these have the simple transformation properties (6.19) and (6.21). 

If we make all the matrices above real we obtain the parametrizations of 

5p(2n, JR)/U(n). If we change the basis with the unitary matrix U defined 

in (8.7) and then require all the matrices to be real we obtain the coset space 

O(n, n)/O(n) x O(n). 

Since the map 1> is injective we see that S, such that 52 is positive definite, is a 

global coordinate on the coset space U(n, n)/U(n) x U(n). Thus this coset space 

is connected. The group U(n, n) is a principal bundle over U(n, n)/U(n) x U(n) 

with a U(n) x U(n) fiber. The number of disconnected components of a principal 

bundle with a connected base is at most equal to the number of components of 

the fiber which in this case is one. Thus U(n, n) is connected. Using the same 

argument one can show that Sp(2n, JR) is connected while O(n, n) has at most 

four components. By an argument similar to the one used for the Lorentz group 

one can show that there are at .least four components. Thus, as mentioned in 

Section 8.3, O(n, n) has exactly four components. 
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