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ABSTRACT 

We provide a framework for the study of a quantal time-dependent 

oscillator in the presence of a loss mechanism. Previous approaches 

to partial aspects of the problem are analyzed and cast into a unified 

global picture. The appearance of exact invariants associated with 

the damped motion of a gaussian wave packet is discussed. Several 

alternative descriptions of the situation are analyzed and it is shown 

that the proper generalization of the Hamiltonian formulation by 

Kostin is adequate for the case under consideration. Applications to 

a number of problems in which the mass of the oscillator is a given 

function of time are presented, including cases in which the mass 

becomes infinite. 
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I. INTRODUCTION 

The problem of quantizing 'the 'damped motion of a particle in a 

quadratic field has received considerable attention. A good survey 

can be found in Ref 1 These previous works usually deal with an 

oscillator with constant mass and stiffness placed in presence of a 

dissipatvforce F =-yX, y'being also a constant. In addition, there 

exists a substantial body of work concerning the study of a classical, 

undamped harmonic oscillator with arbitrary time dependence in its 

parameters. 2 ' 3 ' 4  In those nonadiabatic oscillators, a problem of 

interest is the construction of invariants of the motion,and this task 

has been successfully carried away by Lewis and Symon. 2 ' 3 	- 

The present paper aims at unifying these views in order to provide 

a treatment of a quantal oscillator in presence of a dissipation 

mechanism, in the most general situation in which the mass, the 

quadratic field and the damping are arbitrary functions of time. To 

achieve this goal, we will generalize the handling of the classical 

problem to the case in which the time-dependent oscillator is also 

damped (see Section II). We will see that it is possible to find 

exact invariants of the motion, in the spirit of Refs. 2,3. In 

Section III, we take advantage of standard quantization rules and 

derive equations of motion for both the first and second moments of 

the wave function. In Section IV, we introduce the proper generaliza-

tion of already existing quantal descriptiOns of damping that do- not 

possess a classical equivalent. '  An analysis of the approaches 

presented in Sections III and' IV allows us to choose one satisfactory 
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representation of the quantal problem, in the case in which the wave 

function happens to be a gaussian wave packet. This restriction is 

not a very dramatic one, since a number of applications can be derived 

on that assumption. Some typical examples will be presented and 

discussed in Section V. 
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II. THE CLASSICAL PROBLEM 

11.1 The exact invariant for a damped oscillator. 

In this chapter we will discuss the classical description of the 

motion of a damped oscillator. The firm basis for this study is, of 

course, the Newton equation: 

P = - y(t)P - m(t) 2 (t)X , 	 (2.la) 

• 	where P = m(t)X. 	 (2.1b) 

In this equation, the friction parameter )', the mass m and the 

• frequency.CL may depend on time. The energy is not a constant in time; 

in such a case, it is a matter of great interest tobiild exact 

invariant quantities. The study of exact and adiabatic invariants for 

classical, oscillators has received considerable attention from many 

authors (see, for example, papers from Lewis , Symon and 

references quoted there). 

The detailed treatment of the undamped oscillator by Symon may be 

generalized. Although his starting point is a very particular 

Hamiltonian representation, we will see that it is possible to find an 

exact invariant withoutany reference to a given Hamiltoian. We only 

need to observe that when Y, m, and 2 are constants, the solution of 

(2.1) is 

a. 

x = w e t /2  cos([y2/4t + 4) • 	 ( 2.2) 



5 

where w and 	are also constants. An añsatz for the general 
0 

solution of (2.1), consistent with (2.2), could be 

fYdt 
X = w(t) e 	2 	i(J2'dt +:1(t)), 	

(2.3) 

where 	(t) = \/Q2(t) - 2 (t)/4 	 (2.4) 

The corresponding guess for the momentum would be 

ydt 

p = iz(t) 6 f 2 	e 	 dt +2(t)) 	 (2.5) 

Here w, z, 	and 
2 
 are real functions of time. Eq. (2.1) leads 

to equations of motion for w, z, 	2 and it can be seen that 

the quantity defined as 

ydt 	
+ 	- 	( - w)] 	 (2.6) 

is an exact constant of motion. The details of the derivation are 

given in the Appendix. Notice that when y = 0, expression (2.6) 

coincides with the one found by Symon. 3  We shall only quote here 

that w satisfies the following non-linear second-order differential 

equation: 

1 	
(2.7) m 	 2 2m 	23 

mw 



6 

11.2 General time dependent Hamiltonian 
a 	 - 

As already pointed out in the Introduction, we are interested in 

finding a description of a general damped oscillator that allows 

quantization. Although the Equation (2.1) cannot be derived from a 

Lagrangian containing a conservative potential, we can write a time-

dependent Lagrangian that leads to the correct equations of motion; 

namely: 

= (1/2) ,rexp(f(t)) [*2 - 2 (t) •X2 ] 

(2.8) 

This is a generalization of the Lagrangian proposed by Kanai. 5  Here 

f(t) contains both the time-dependence of mass and friction, the only 

requirement being that f(t) and c(t) are differentiable functions of 

time. -- 

The Equation (2.8) contains the following particular cases: 

f(t) = 0, 	= c /mundamped oscillator with constant 
00) 

mass and stiffness, 

f(t) = log(m/m), c 2 (t) = c(t)/m(t)-undamped oscillator 

with time dependent mass and stiffness, 

f(t) = yt, Q 2 (t)c /m 1 damped oscillator with constant 

parameters. 

a 
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The canonical momentum is defined as 

UL  m X xp(f(t)). 	 (2.9) 

It differs from the kinetic momentum P given by(2.lb), their 

relationship being 

= (m/m(t)) exp(f(t))P . 	 (2.10) 

Accordingly the Hamiltonian: associated with the Lagmngian (2.8) reads, 

H = 	
2-

(/2m) exp(-f(t)) + (m/2).a2 (t) X2  exp(f(t)). 	(2.11) 

Notice that in general we cannot identify H as the energy E of the 

oscillator, since 

E = T + V = (P2 /2m) + (1/2)mQ2X2 	. 	 (2.12) 

Only when P and P coincide we have E H, this happens in the absence 

of dissipation no matter which is the time-dependence of m and 0. 

The Hamilton's equations of motion are: 

k = /m exp(-f(t)) 
	

(2.13a) 

= -m 	2 x exp(f(t)) 	 (2.13b) 

t 
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If we introduce the kinetic momentum P(2.1b), we recognize the 

Newtoii's equation of motion: 

X+fX+ 2X=O  

In addition, Eqs. (2.13) lead to the dissipation rate: 

S 	 • 	) 	 1 	 ') 
• 	 E = (xn/m -2f) PL 	

•
/ 2m + .±.( 	+2 )m 

)
X' 	 (2.15) 

2m 

If we consider a damped harmonic oscillator with constant mass and 

frequency, (see case (iii) above), E takes the well-known form 

	

= -y(P 2 /m) 	 • 	 (2.16) 

If we introduce a time-dependence for the mass, we have 

f(t) = log rn/rn + yt 	 (2.17) 

and, 

E = -( + 1/2rn)P/m,. 	 (2.18) 

We can see that the mass variation acts like an extra damping term 

when ti is positive. As E is not a constant in time we derive the 



exact InvariantJ. Here, as already mentioned, kinetic and canonical 

momenta are not identical; the methodof Symon3  to build J is more 

convenient since it is based upon the Hamiltonian description. 

The idea is to construct a canonical transformation from (X,i') to 

(x ,P ) such that the new Hamiltonian H takes the form 

H 	(1/2) 	(t)(X
'2

+ p ).. 	 (2.19) 

Then the J quantity defined as:. 

J=1/2(x 
'2 
 +p

'2 
 ) 
	

(2. 20.) 

is an exact invariant ( 	0). The introduction of the damping 

and its time variation does not change basically the philosophy of the 

method; we find that the exact invariant for, the motion described by 

the general Lagrangian of Eq.(2.2), is 

J = 1/2 w 2X2  + 1/2(w - m 	X exp(f)) 2 	 (2.21) 

where w is proportional to the time-dependent amplitude of the co-

ordinate X and satisfies the second order non-linear differential 

equation. 	. 	 . 

•. 	2 	r 2 3 
0 	

(2f)] -1 • 
	

. 	(2.22) fj + fw+Q w 	Im w exp 
L 

With a new definition of w these results are equivalent to those 

displayed in Eqs. 2.6 and 2.7. 



III. THE QUANTAL PROBLEM 	 - 

111.1 General form of the equations of motion 

The problem of the quantization of a damped harmonic oscillator 

1 
has been analyzed by several authors (see, for example, Hasse ) in 

the case of constant mass and stiffness. Two lines are usually 

followed: i) the straightforward quantization of the classical 

Hamiltonian enforcing the principle of correspondence and, ii) the 

construction of an ad-hoc Hamiltonian that does not possess a classical 

analogue. 

Both approaches are legitimate if they satisfy the following 

constraints: i) the expectation values 

(3.1) 

I'. 

(where x and p are respectively the quantal operators associated with the 

canonical variables) must satisfy the classical equations of motion; 

ii) the uncertainties in coordinate and momentum must fulfill the 

Heisenberg relation. 

These are general constraints that are intrinsic to the procedure 

of quantization; additional constraints may be provided depending on 

the particular problem we want to analyze. 

In addition tà the expectation values x and P defined above, the 

quantal operators X̂  and display fluctuations that do not have a 

classical equivalence. Following Hasse6 , we define ,4, the 

F- 

fluctuations of x and p , respectively, and the correlation cY. 

x = < A 2> _ 2 	
(3.2a) 
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2 	_2 
= <p> - p (3.2b) 

0= 1/2< 	+ OX̂ > -  xj. 	 (3.2c) 

Asand are canonical conjugates, they satisfy the Heisenberg 

uncertainty principle: 

(3.3) 

But most physical situations we are interested in are expressed 

through gaussian wave packets and then, the inequality (3.3) becomes a 

strict equality biiiding the three fluctuations 

= 	
2 + h 2 /4 	 (3.4) 

The time evolution of the first (Eq. 0.1)) and second (Eqs. 3.2) 

moments of the wave packets can be derived using the definition of the 

total derivative of a given operator A 

--- 	[,HJ . 	 (3.5) 
dt 	at 	lh 

The first moments x and F  are fixed by the Ehrenfest's limit, and 

the second ones are solutions of a set of three coupled first order 

differential equations. In most cases, these equations may be 

decoupled and provide closed-forms expressions for X , namely: 
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2 
- 1/2()2 + g(t) 	+ 2h(t)2 =k(t) 	 (3.6) 

Here, g(t), h(t) and k(t) are well defined functions of time whose 

explicit form depends on the particular description of the damping and 

the time variation of.the harmonic oscillator parameters. 

This equation takes a simpler form, if we introduce the width u of 

the wave packet: 

u(t) = (2/h)1'2 x 
1/2 	

(3.7) 

We obtain 

[k(t)u
1

u + g(t)* + h(t)u = 3J 
	

(3.8) 

This is an equation describing a forced and damped oscillator. 

Although in the general case we do not dispose of analytical solu-

tions, they are available in a few simple situations that we explore 

later. 

It is interesting to notice that if we introduce the reduced width 

W(t) through the definition 

u(t) = W(t) exp (-1/2J9(t)dt). 	 (3.9) 	
il 

We can rewrite the equation (3.8) in a compact form 
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+ w 
2 
W = d(t)W 3 
	

(3.10) 

that proves to be useful when comparing different formalisms. The 

reduced frequency)(t) and the function d(t) can be shown to be: 

= h - 1/4g2-1/2 (3.11) 

d = k1exp(2 J g(t)dt).. 	 (3.11b) 

111.2 Quantal Invariant Operators 

As the center of the quantal gaussian wave packets follows the 

classical equations of motion, we always can derive a quantal operator 

J which is a constant of motion. Through the principle of corres-

pondence, we replace in Eq. (2.6) the X and P variables by the associ-

ated quantal operators and we obtain: 

j = e t 	+ w 	- q( -, 	 + 	 ( 3.12) 

+ m2 (.._2-2 

where w(t) is the amplitude of the center of the wave packet, that 

fulfills the differential equation (2.7). 
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We can notice the formal similitude between the evolution equa-

tions for the width (3.8) and for the amplitude (2.7); this remarks 

may provide us another way of writing the invariant operator in terms 

of the width of the wave packet w(t). When the motion is governed by 

eq. (2.1a), the functions g(t),h(t) and k(t) in eq. (3.8) must 

satisfy the requirements. 

g(t) = t1/m 	 (3.13a) 

h(t) = 
	22/4 - -I2 - I m 
	

(3.13b) 

and k(t) = m2 (t) 
	

(3.13c) 

This turns out to be the case for some pure quantal Hamiltonians (cf. 

following sections). 
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IV. QUANTAL HAHILTONIANS 

In this chapter we will present in a unified description the 

various approaches used in the literature to study damped oscillators 

and we shall extend them to the general time dependent oscillator. 

Since all this approaches have been chosen to provide the exact equa-

tions of motion for x and p,  we will concentrate on the properties of 

the second moments. 

IV.1 PRESENTATION OF THE VARIOUS HAMILTONIANS 

a) General time-dependent .quantal Hamiltonian. Straightforward 

quantization of the equation (2.11) gives us: 

2 
= 	 2 (h2/2m o  ) 1- (exp(_f)) + ( 11 /2)2(t)exp(f)2. 	(4.1) 

0 

A 
In order to write the Hamiltonian H, we have quantized the canonical 

momentum F whose relationship with the kinetic one P is given by 

Eq. (2.10). This feature induces a difference between the fluctuation 

as defined in Eq. (3.2b) and the uncertainty in the kinetic momentum 

we have: 

Ap2 	(mfm) 2exp(2f(t)). 	 (42) 

Thus, the uncertainty product of position and kinetic momentum 

follows the law: 

AxA p'(h/2)m/m exp(-f(t)) 	 (4.3) 
e 
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A 

It is interesting to notice that if we define the energy operator E as: 

AA 
E = (m/mo)H exp'(-f(t)) (4.4) 

the mean value <E> fulfills exactly the equation (2.15) for the 

classical dissipation rate (see Hasse' for the discussion of the 

oscillator with constant mass and stiffness). 

Applying Eq. (3.5) to the quantal operators in Eq. (3.2), we find 

the set of coupled first-order differential equations: 

X 2(mexp(f)) 1 0 	 (4.5a) 

-2(m exp(f))Q 2 o 	 (4.5b) 

= -(m 
0 

exp(f)) 2X + (m 
0 

exp(f)) 1 	 (4.5c) 

We caneasily check that the condition (3.4) defining a gaussian 

wave packet is preserved by the above equations of motion. Thus, we 

are ensured that if the wave packet is gaussian at initial time, it 

will keep its gaussian shape during its whole time evolution. 

In Table I, we list the actual form for the functions g(t), h(t), 

k(t), w(t) and d(t) as defined in the preceding section. In this 

particular case, it can be shown that, the motion of 4 can be de-

coupled; and in the same way as for X, we can define a width v(t) for 

the momentum distribution: 
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v(t) = (2/h) 42 +12 
	

(4.6) 

v(t) is solution of a seco: d order differential equation: 

m 2 2exp(2f)/v3. 	(4.7) 

From the formal similitude between eqs. (2.22) and (3.8) we can deduce 

an invariant J associated with the fluctuation: 

2 lA2 1A 2 	ó2 = 	x x + 	p -(1/2) m exp(f))(( 	+ 	) 4 m2exp(2f 	x X. (4.8) 

With the help of Eqs. (4.5), this reduces to 

A 	A2 	o2A AA J i  = 	+Xp. -a(xp + px) (4.9) 

Taking the expectation value of J 1 , we obtain the following time 

independent observable 

J 1  =h2/2 + 	2 +Xp - 	x. 	 (4.10) 

The various states of a gaussian wave packet in a harmonic oscil-

lator well may be classified according to the eigenstates of 

Using Eq. (3.4), we can see that the minimum value J 1 	t 2/2 cor- 

responding to the ground state is only reached when x = 	= 0, i.e., 

for motionless wave packets centered at the origin, whatever is their 

width. 
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b.) Hasse's Hamiltonians. 

Hasse has shown that the Hamiltonian: 

H 	2m(t) 	
+ 	(t)Q2 (t) 2  + y(t)(-x){E + (i-)p - 	Ey(t) 

synthesizes the several non-linear quantal frictional potentials 

presented in the literature, namely: 

c = o, gives Albrecht Hamiltonian 

= 1, gives Siissmann Hami1tonian 

+1/2 gives Hasse Hamiltonian'. 

We can assume any time-dependence for m, y  and ç;  the equations of 

motion for the fluctuations are the same as for the time-independent 

oscillator 6  

X 	2y 	+ 2y/m 	 (4.12a) 

= _2y 	- 2mt2a 	 (4.12b) 

= -n2X + /m 	 (4.12c) 

'I 

(4.11) 

withy = Ly. 



These expressions are consistent with the conservation of the 

gaussian shape of the wave packet (see Eq. (3.4)). Under this 

requirement, we can extract closed-form equations for the second 

moments. The results for Xand  the width are displayed in Table I. 

Similar expressions can be found for q and the momentum width v(t) as 

follows: 

'I - civ + [Q2.2'( 
+ 2) 

+ 	

v = m2Q2 /v3 	 (4.13) 

which is to be compared with Eq. (4.7). 

The frictional term in the Hamiltonian (4.11) has been deviced to 

yield the correct Ehrenfest limit for the center of the wave packet. 

It does not poess a classical analogue. In fact, the expectation 

value of the operator V fr 

is 

A 	A A A 
V = fr H-T-V (4.14) 

Vfr 	= 	 (4.15) 

j'- 	the expectation value of the Hamiltonian is not the energy, 

in general. 

It is possible to derive an exact invariant of the motion in terms 

• of the amplitude w of the first moment (see Sec. 111.2). We can 

observe that when y = y/2 (Hasse Hamiltonian with c = 1/2), w and 
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the width u satisfy the same equation of motion (see Eq. (2.7) and 

Table I respectively). Accordingly, we can write an invariant 

whose expectation value in this case can be shown to be 

A
ydt 	2 	2 	 2 /2] . 	 (4.16) 

The reader can easily verify with the help of the equations for the 

first and second equations of motion that, this observable is an exact 

invariant, i.e.,: 

d< 	 (4.17) 
dt- 

If at t 	, the wave packet under considerationis a minimum 

uncertainty wave packet, the value of the invariant is simply: 

A =  h 	+<p 	+ 2 	 (4.18) 

The obvious meaning is that the invariant of the motion for the 

quantal damped oscillator is essentially the sum of the potential and 

kinetic energies in units of the potential and kinetic energies con-

tamed in the initial coordinate and momentum width, respectively. 

c) Kostin's Hamiltonian 

It is also well-known that a former representation for friction on 

a quantal particle is due to Kostin. 9  The generalization for the 

general time-dependent oscillator reads: 

H = 2rn(t) 	
+ .(t)Q 2 (t) 2  - 	[1fl.i -'-1 ' 	( 4.19) 
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where 11)  and P* are the wave function and its complex-conjugate re-

spectively. It is useful to write the gaussian wave packet as [1,6) 

11/4 
(x,t) 	(2)1/4 (! + 	exp f+ 	{p(-x) 

+ fL dt_OI}(4.20) 

Here c& is the complex time dependent width whose relationship with the 

real fluctuation % is 6  

1 -1 = Re(d. 1 ) 
	

(4.21) 

In addition, L is the classical Lagrangian and 0  is a real phase 

factor. 

In presence of the wave packet, the frictional term in Kost in's 

Hamiltonian becomes: 

Vfr = yp(-x) + 

It is easy to verify that <Vfr> 

ation value of the energy is id 

The equations of motion for 

- !..) 	 (4.22 
Ot 

is exactly zero and then the expect-

ntical to the expectation value of H. 

the second moments are, in this case: 

= 2/m(t) 	 (4.23a) 

2 
-2m(t)Q 2 (t)G - 2y(t) + .. y(t) 
	

(4.23b) 2 x 

= -m(t)Q2(t) + m(t) - 
y(t)  cy

(!. 
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As in the previous examples, the motion of x and c can be decoupled 

(see Table I.). 

The invariant operator we can write is J associated with the 

amplitude w of the coordinate. As seen in Table I, the functions 

g(t), h(t) and k(t) do not take the analytical form of Eqs. (3.13) 

and, as a consequence, we cannot write Uiis exact invariant in terms of 

the fluctuations. 

IV.2 Discussion 

The aim of this section is to provide arguments for the choice of 

the best description of damping on a time-dependent oscillator. From 

inspection of Table I, it turns out that in the absence of damping the 

three representations are identical, as should be expected. 

The general time-dependent Hamiltonian presents a serious 

shortcoming in presence of damping. If we examine the Equation (4.3) 

we realize that for sufficiently long time the uncertainty product 

AxAp can be smaller than h/2. This is a common feature to all 

descriptions that use different operators to represent classical and 

canonical moments. Senitzky 10  has shown that this effect is due to 

the neglection of the fluctuations in the loss mechanism itself. This 

limitation hampers the use of the Hamiltonian (4.1) in the quantal 

study of the damped harmonic oscillators. 

A satisfactory description of damping should account for the 

fact that any wave packet containing excited states must decay to the 

ground-state. Accordingly, we would like to examine the solution for 



23 

the damped harmonic oscillator with constant parameters, since this 

analysis will provide a clue for the final choice of the best repre-

sentation for our general problem. 

From Table I, we see that with Hasse's Hamiltonians, the equation 

for the reduced width W(t) takes the following form: 

2 + 	
= W 	 (4.24a) 

wlte.re 	is a constant of time: 2 = 2 - 	
2 • 
	(4.24b) 

The most general solution can be written as: 

W(t) = 	(1 + A2 + B2)2 + A cos 2w t + B sin 2w t 	(4.25) 

If we take the following initial conditions: 

W(t0) = W and W(t0) = 0 
0 

we obtain 

W 	 if W 	 (4.26a) 

W(t) = 
	2 	1 	2 W +(w W ) sin t 	 otherwise (4.26b) 

0 	0 

The constant solution corresponds to a fluctuationX = 	. In 
21flW 

addition, if W is different fromw , we see from Eq. (4.26b) 

that W will oscillate without decaying to the ground state as we 
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should expect. It is specially puzzling that even if W takes its 

ground-state value, the wave packet width will undergo oscillations. 

These observations lead us to the conclusion that Hasse's 

Hamiltonians are not completely adequate for the treatment Of the 

damped harmonic oscillator. 

c) If we want to initiate the same study with the Kostin's 

Hamiltonian, we recall the equation for the reduced width for the time 

independent oscillator (in Table I): 

w + 2W = W 3 exp(yt) 	 (427a) 

where W2 =  2 - 2/4 	
(4.27b) 

In this case, it is not easy to write down W(t) in the way of 

Eqs. (4.26). Instead we will find useful to discuss the corresponding 

equation for the width u: 

U + 	+ c 2u = m 2u 3 : 	 (4.28) 

We can easily realize that there is a constantsolution: 

u(mc?) -1/2 
	

(4.29) 

The corresponding fluctuation x turns Out to be 

X = h/(2mQ) 	 (4.30) 
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and this is the actual dispersion of the ground-state. It is illus-

trative to try a solution of Eq. (4.28) that differs only slightly from 

the constant value (4.29). 

Let us write u(t) as: 

	

U(t) = (mc2) 112 	(t) 	 (4.31) 

with 'S(t) such that j(t) I <<(mQ)h/'2  for all t 
Straightforward substitution of Eq. (4.31) into Eq. (4.28) yields 

	

6 + y + ( 2)2 6 = o 	 (4.32) 

It means that: 

= 	exp(-yt/2)sin(2k + 	) . 	 (4•33) 

This shows that any state that differs only slightly from the 

ground state will decay to it. 

We observe from Eq. (4.28) there do not exist steady solutions 

with large deviations from the constant value (Eq. 4.29); since in 

that case, the right-hand side becomes negligible and u behaves like 

the position of a damped oscillator. 

This is illustrated in Fig. 1. The time evolution of X and the 

total energy are displayed for two different initial conditions, 

namely, X0  = 0.2 and X0 = 4, in units of the ground-state 

fluctuation. We observe that x reaches the ground-state value in less 
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than three periods. The same is true for x,.although it should be 

remarked that the. number of oscillations undergone by the fluctuation 

is twice that of the coordinate. It is also interesting to look at 

the evolution of the energy. The slight initial difference between 

the two curves can be traced back to the contributionof the fluctua-

tions X and 0 to the potential and kinetic terms, respectively. 

In view of these considerations, we believe that Kostin's 

Hamiltonian description is adequate to face the study of a general 

time-dependent Gaussian wave packet. In the following section, we 

will present several applications of this formalism. 
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V. Applications. 

In the two next sections we are going to study some specific 

interplays between mass variation and damping, that might be connected 

with a number of physical situations. In subsection (v.1) we will 

present typical results for systems initially in the ground. state, 

that undergo.a displacement and different mass variations. In sub-

section (V.2) we deal with a specific example inspired in situations 

appeari,ng in heavy-ion physics. 

V.1 Departures from the ground state 

The system we will consider is a displaced ground-state wave 

I . 	
packet, that presents at t = 0 the following characteristics: 

m1, c= 1, ç-h/2, 0h/2, 00 0'andx0 	1, 

p0  = 0; we consider that at t = 0 a mass variation law m(t) is super-

imposed on m 
0 

a) ExpOnentially increasing mass. We choose the following varia-

tion law for m(t): 

m = 1 ; t<0 

m = eXt; 	 . 	. 	 (5.1) 

In this example, the mass presents a singularity at infinite time. 

Small values of A provide us a way of studying adiabatic behaviors. 

As 12  = A, the functions g(t) and w(t) (see Table 1) take the 

following simple form: 
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g(t) = 	+ x 	 (5.2a) 

	

e-Xt  - 1 (+A)2. 	 (5.2b) 

Eq. (.8) then becomes, 

-At 	-2Xt -3 
u + (1+A)u + e 	u = •e 	u 	 (5.3) 

One can solve this equation for sufficiently large time under the 

assumption that u remains finite. We find 

u(t) = A + B. (y+A) 1 exp(-(Y+A)t) 	 (5.4) 

and the same result holds for the displacement x(t). Since the in-

creasing mass will cause the kinetic energy to vanish, the asymptotic 

energy would be only potential and depending on the final constant 

values of x and u. 

Typical results are shown in Fig. 2. We see that irrespectively 

of the value of A, the fluctuation x remains, almost identical to the 

adiabatic value h/(2m(t)Q(t)). It is insensitive to changes in the 

strength of the damping parameter when A is small enough (A = 0.1 in 

units of the unperturbed frequency). For larger A, a slight devia-

tion from 'the adiabatic trend is observed according to different y 's. 

In contrast, damping has large effects on the evolution of the coordi-

nate 	and momentum: this is reflected in the energy curves. 
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We observe that for large damping (y = 1.) it takes half a period 

to dissipate most of the initial energy; while for small ' (-y =0.1) )  

dissipation is slower and presents smooth oscillations. Both regimes 

converge asymptotically towards the adiabatic trend E = 0.5 h w(t). 

b) Singularity at finite time. 

To illustrate the case when the mass becomes infinite at a finite 

time we choose the representation: 

m1 fort(0 

= exp(T1  - t)) 2 ,t>0 . 	 (5.5) 

isa parameter that fixes both the position of the singular-

ity and the rate of increase of the mass. 

The striking result of Fig. 3 is the fact that the final energy 

presents an inversion as a function of the damping parameter y.  As in 

the precP. ding case, the final energy is purely potential. For values 

of I close to the critical one (i.e., y = 20), the fluctuation X over-

compensates the attenuation of the position x, providing a large 

potential energy. In addition, we notice that the final displacement 

is not zero for small damping. The actual value of this displacement 

depends on the initial phase; accordingly we may expect the final 

energy to present some range of variations for small y's. 

In contrast with the first example, we see that the evolution of x 
presents large departure from the adiabatic trend. During the 

process, there is an interplay between the role of damping and mass 
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variation. For small times when in/rn is close to zero, the damping 

parameter y determines the slope with which x comes apart from the 

adiabatic curve. Afterwards, the term n/m overcomes and accounts 

for the final state of the system. 

c ) Periodic mass variation. 

A variable mass provides a mean of simulating an input or removal 

of energy into the system. An explicit representation that accounts 

for several interesting features is a periodic perturbation on a 

constant mass, i.e. 

ml ) 	 t<0 

m = 1 +csinAt , 	t0 	 (5.6) 

with a< 1. 

This time variation in the mass can be traced to some external 

oscillating field; consequently, we can expect some resonant be-

haviár. A search through a wide range of parameters a and X allowed 

us to obtain the results displayed in Fig. 4. In this case, the 

frequency of the mass is twice that of the unperturbed oscillator. 

The first point to notice is that both the energy and the fluctuation 

oscillate with the frequency of the mass; the deformation in the peaks 

of the energy curve can be associated with the fact that the position 

x is oscillating with the shifted frequency of the damped oscillator. 

Second, the resonant behavior disappears when the strength of the 

damping becomes close to the critical value. In this case, % and E 

perform constant amplitude oscillations around the ground-state values. 
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Selection of the parameters cy. and X other than those corresponding 

to Fig. 4, yields modulation of the displayed curves and a much 

smoother increase of the amplitudes. 

V.2 Infinite mass system at t = 0. 

It has been suggested 11 ' 12  that the charge equilibration process 

•during heavy-ion reactions may be pictured as the relaxation of a 

collective coordinate placed in a quadratic potential. As this 

equilibration is impossible when the ions are far apart (before and 

after the reaction), this suggests that the collective coordinate cor-

responds to an oscillator whose variable mass is infinite at t = 0, 

reaches a finite value during the interaction time and becomes 

infinite again when the two ions split apart. Not willing to get into 

the physical details, we are going to take a simplified representation 

of the above mentioned situation; namely, an oscillator with constant 

stiffness c = 1, a constant damping y and a mass given by the law 

T 
exp(—.-1) 

1 
m(t) = 

exp ( 	3 	2 T ~TT 	_1) 

if 0tr1 	 (5.7) 

if T1 tT + T2  

if T1 +T2 tr1 + T2  + T3  

A typical pattern for m(t) is presented in Fig. 5 for a particular 

selection of the intervals T 1 ,T2  and T3 . 

When m(t) is very large, we can simplify the equations of motions 

for both first, and second moments (Eqs. 2.1 and 4.23) provided that 

the initial p is finite and the initial x is not zero. 
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In that case, we have 

x = x 	 (5.8a) 

p 0 -2(1-èxp(--yt)) 	 (5.8b) 

X. =X 	 (5.8c) 

= h 2 /4y + — 
x 

(1 --exp( -yt)) 2 	 (5.8d) 

- 

XO  11-exp(-Yt . 	 (5.8e) 

These are the equations governing the initial motion when the 

initial correlation a is zero, and it is interesting that they are 

independent of the actual value of the mass. A similar feature is 

expected in the vicinity of the second singular point 

t = T +T2+T . 

In Fig. 6 we display the energy time dependence for various 

damping parameters and typical value of the time intervals. In that 

case, the equation governing the time-evolution of E is 

E = -(y+m/2n)(+p2 )/m + h 2 V(4xm) 	 (5.9) 

For this particular mass law E = 0 for t = 0 and 

t = T1+T2+T3 . This feature is clearly represented in the 

Figure 6. 
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Due to the action of the damping on and p2,  dramatic effects 

are induced, on the dissipation rate even when rn/rn is large: the height 

of the plateau is strongly dependent on the value of y; in addition, 

the larger the y parameter the shorter the elapsed time before 

reaching this plateau. 

As in a preceeding example (Sec. V.lb), the final energy is only 

potential and depends upon the final value of fluctuations and dis-

placements. In Fig. 6, we see that wheny= 0, there is a larger 

residual displacement that is determined by the history of the system 

(initial displacement, length of the plateau, etc.). A sensible 

amount of damping on .a sufficiently long plateau causes x to vanish, 

accordingly the final energy is given by the fluctuations only. These 

are displayed in Fig. .'T. We have assumed a small initial width that 

intends to represent a well-localized wave packet. This actual value 

is critical to determine the amplitude of the fluctuation 

oscillations. The wide oscillations of the undamped case are srnoothed 

away by finite y values and disappear completely when y  is close to 

the critical damping. 

For sufficiently (not too) large value of damping, the system 

looses memory of its past history in a couple of periods. In that 

case, the whole problem reduces to the study of the evolution of an 

•initial ground state when a pertubation in the form of an increasing 

mass is superimposed. 
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For smaller amounts of damping, the final results are much more 

sensitive to the particular selection of the time intervals and 

initial conditions. 

For the sake of completeness, in Fig. 8 we display the time evolu-

tion of the coordinate x. It is worthwhile to remark thatalthough 

the frequency of the width oscillations is twice as large as that of 

the coordinate, both X and x follow essentialiX the same pattern. 
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VI. CONCLUSIONS 

We have generalized both the existing procedures for the study of 

a classical, undamped, time-dependent oscillator and the methods for 

describing a quantal, damped, time-independent oscillator. We have 

been able to provide tools for the analysis of a general quantal, 

damped, time-dependent oscillator in the case in which the quantal 

state can be represented by a gaussian wave packet. We have shown 

that although the conservation of energy is destroyed under the cir-

cumstances enforced by our definition of the oscillator, it is pos-

sible to find an exact invariant of the motion that is related to the 

amplitude of the coordinate. Under some particular conditions, it may 

be also connected with the fluctuations. 

We have found criteria to select, among those that are available 

to us, the only èorrect description for damping of a gaussian wave 

packet in a quadratic field. This description is correct in the sense 

that it both preserves the uncertainty principle and yields the 

expected asympotic behavior. We have shown that this formalism holds 

even in the case of a mass reaching an infinite value, Kostin's 

frictional potential provides the right decay of any gaussian wave 

packet to the ground state, in the presence of dissipation. We have 

illust*ated in a number of examples possible applications of this 

method. One particular case ehat deserved, our attention was the time 

evolution of the ground-state when a perturbation, i.e., a displace-

ment and a time-variation in the mass, is applied. There is a 

definite interplay berween damping and mass variation; some important 
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features are: a) when the logarithmic derivative i/m is smaller than 

unity, the fluctuation x remains close to the adiabatic limit 

h/2m(t)Q(t) and damping is a second-order effect in its evolution. In 

this situation, damping is mainly used to dissipate the energy of the 

motion; b) when 	becomes large (for example in the vicinity of a 

singularity at a finite time) strong deviations from this adiabatic 

trend can be observed. Nevertheless, the initial slope of the 

departure is determined by the value of the damping parameter.  We 

have also seen that a perturbation on the ground-state can account for 

a resonant behavior; in. this case the presence of dissipation provides 

attenuations of the motion and of the increase in the amplitude of the 

fluctuation x;  the critical damping ensures steady oscillations in 

both the fluctuation and the energy. 

An interesting problem bearing some connection to the excitation 

of collective modes in some nqclear (i.e., heavy ion) reactions is 

that of an initially infinite mass, lowering to a finite constant 

value and rising to infinite afterwards (Section V.2). Such a situa-

tion involves a number of parameters, namely, initial width and dis-

placement of the wave packet, duration of the mass decrease, length of 

the plateau, duration of the mass increase, and damping. Only a 

detailed treatment of the physics here contained can fix their actual 

values. However, we have illustrated the expected behavior of the 

wave packet for a particular selection of the parameters. We believe 

that the most important point to be remarked is that damping is 

essential in determining the evolution pattern. From the exhibited 
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curves we see that it takes some time for the motion to start. This 

is due to the fact that initially the mass is very heavy. When the 

mass takes a reasonable finite value, time evolution in x, x and E can 

be observed. However, the slope of this evolution is completely 

different according to the actual value of Y. Even a small amount of 

damping is able to cause a sensitive departure from the undamped 

motion. In presence of large damping, the whole motion should not be 

critically dependent on the details of the mass evolution. 

As a final statement, we should remark that since there is no 

unique quantal description of friction, any particular application of 

dissipation models should be preceded by a critical examination as we 

have intended here for the case of a gaussian wave packet in the most 

general harmonic field. 

I 
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Appendix The invariants of the motion for .a classical damped 

oscillator. 

As we introduce the ansatz (2.3) and (2.5) in the Newtonian 

equations (2.1) (2.2), splitting the resulting expressions into real 

and imaginary parts we obtain the following system: 

• 	- 	w = .. sin(+1-2) 

+= _2 w sin(41 - 02) 

4, 1• =. cos (+ -)  - 

42 = m 
2  cos(41 	

+2 	Q  Tz 

The quantity 

(A.1) 

(A.2) 

• (A.3) 

(A.4) 

u = e ydt X P-XP= z w cos(1 - 	 • 	 (A.5) 
27117—  

can be shown to be a constant of the motion and can be fixed equal to 

unity with a suitable normalization of X and P. Its meaning will 

become evident below since we shall see that the ansatz (2.3), (2.5) 
t . 	I 

leads to a canonical transformation to new variables X , P , in 

terms of which an invariant can be constructed. 

As we square Eq. (A.l), the normalization U = 1 (A.6) allows us to 

write the expression 

z 2 	1 	2 	
y 2 	

(A.7) 
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If we now differentiate Eq. (A.6) and use (A.l), (A.2), we find the 

	

following equation for the time evolution of w(t): 	. 

+ w 	+ w(Q 2  - 	 22 	 . 	
. 	(A.8) 

An eqiivalent procedure leads to a similar equation for z, 

.2  2 
+ ( m 2 1) (ç2 .f (m YQ) = m 2 
	 . 	

(A.9) 

The normalization (A.6) requires that we multiply X, P byacon-

venient constant Ae°. Accordingly, the most general (real) solu-

tions of Newton equation for a time-dependent, damped oscillator can 

be sampled as. shown below: 

X(t) =e J2 
	[Awcos(+JQ ' dt)cosAwsifl(+JQ ' dt)si] 	(A.iO) 

ydt  

P(t) = e 	
2 	

(A.11) 

If we adopt the definition 

X(t) 	A os( 	+Jdt) 	. 	 . 	(A.12) 

P(t) = A sin(+ + J ' dt) 	 (A.13) 
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we realize that Eqs. (A.10), (A.11) represent a linear transformation 

from (X,P) into (X,P). The determinant is, precisely, 

f  ~,dt 
2 

A = -e 	z w 60s(4 1-) = 

 ydt  

= -e 

 

f2 	
(A.14) 

From (A.12), (A.13), it becomes obvious that the quantity 

J = ..(x 2+P 2 ) 
	

(A.15) 

is a constant. Inversion of the system (A.iO), (A.11)and substitu-

tion into (A.15) allows us to reach the alternative forms, 

j 
= eJ 	 + [w P - 	

(A.16)  mx(w -  4'v)] 

or 

JYdtp2 	
• = e 2 
	

+ [zX + 
p —

2 (z + z) 	2  ] 	 (A.17) 

• This quantity is the invariant for a general tim-dependeñt, 

damped oscillator and it generalizes the one obtained by Symon3  for 

a general quadratic, non-dissipative time-dependent Hamiltonian. 
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TABLE CAPTIONS 

Table 1. Comparison among the functions g(t), h(t) k(t), w 2 (t), and 

d(t) appearing in Eqs. (3.6) and (3.10) in text for the 

various Hamiltonians analyzed in the paper. 

Notice that if f(t) 	ln(m/mo) + 	
y (t)dt, the reduced 

frequencies w2  for the GTD and Hasse (i.e., y 	/2) 

Hamiltonians are identical. 
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FIGURE CAPTIONS 

Fig. 1. Time evolutions of energy, fluctuation and position of a 

gaussian wave packet in units ofh 0 /2, h/(2rnQ ) and 

hhI'2/(m2)1'2 respectively. The time unit is the 

natural period. These calculations correspond to Kostin's 

potential with constant mass and stiffness; the damping 

parameter is 0.5 in units of the inverse period. The full 

lines correspond to an initial fluctuation X 0 =  0.2, the 

dashed lines are for an initial X 0 =  4. The initial dis- 

- placement x is always equal to 1. 

Fig. 2. The same as Fig. 1, but for an exponentially increasing 

mass. Full lines correspond to the damping parameter 

0.1, dashed-dotted lines correspond to Y = 1. Both lines 

coincide in the time evolution of X when rn/rn = 0.1. The 

initial conditions are that of a displaced wave packet with 

the ground state width. 

Fig. 3. The same as Fig. 1, but with a mass going to infinity at 

t = 2. The full, dashed and dashed-dotted lines correspond 

respectively to y= 1.99, 0.5 and 0.. The initial conditions 

are the same as in Fig. 2. 

Fig. 4. The same as Fig 3, but with a mass with a periodic perturha-

tion m = 1 + 0.5sin(2fl.t). The dashed and full lines corres-

pond to y = 0.25 and y= 1.99 respectively. The initial con-

ditions are the same as in Fig. 2. 
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Fig. 5. Typical evolution of the inverse of a mass that goes to 

infinity at t = 0 and t = 5 (see Eq. (5.7) in text). The 

time intervals are T 1 	1 and T2 T3 2. 

Fig. 6. Time evolution of the total energy for the oscillation whose 

mass evolution is displayed in Fig. 5. The full, dashed and 

dashed-dotted lines correspond to damping parameters 

I = 1.99, 0.25, 0, respectively. The initial values are 

X = 0.2 and x = 1. 
0 	 0 

Fig. 7. Time evolution of the fluctuation X  corresponding to the 

situation of Fig. 6. 

Fig. 8. Time evolution of the position x corresponding to the 

situation of Fig. 7. 
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TABLE I. 

GENERAL TIME—DEPENDENT 	 HASSE 	 KOSTIN 

(GTD)HAMILTONIAN 	 1{ANILTONIANS 	HANILTONIAN 

g(t) 	 f n/m 	 y n/m 

2 	 2 	'2 	' 
h(t) 	 c2 —y —yn/m—y 

k(t) 	m2exp(2f) 	 m2 	 m2 

?(t) 	Q2 1/4() 2 1/2? 	k (t) + (_)2 	 b(t) + 
( 111 ) 2 

d(t) 	 1 	 1 	 exp(yt) 

L 
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