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DAMPING OF THE WAVE PACKET MOTION IN A
GENERAL TIME-DEPENDENT QUADRATIC FIELD

B. ,Remaud* and E. S. Hernandez**
Nuclear Science Division
Lawrence Berkeley Laboratory:
University of California
Berkeley, CA 94720
ABSTRACT -

We provide a frahewérk-for the-étudy of a quantal time—dépéndent
oscillator in the p;ésenCe of a loss mechanism. Previous approaches
to partiéi aspecﬁs of the prbbiem are analyzed and cast into a unified
global ﬁiéture. The appearance of exact invariants assbciéted.with
the damped motion of a gaussian wave“packet is discussed. Several
alterﬁative descriptioné of the situation afe analyzed aﬁd if is shown
that thé proper.geﬁeralization of the Hémiltonian formulaﬁion by
Kostin is adequate for the case under c¢onsideration. Applications to
a number of pfoblems in ﬁhich the mass of the 6sci11ator is a given

function of time are presented, including cases in which the mass

becomes infinite.
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2 rue de laHoussinidre, 44000 Nantes, France.

**Permanent address:Departamentode.Fisica,'Facultad Ciéncias
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I. INTRODUCTION .
The problem.of'quantizing;the‘&amped motion'of a particle in a
quadratic field has received considerable attention, A good survey
can be found‘in,Refl ll'fTheee’ﬁgeyigqe works usually deal with an
oscillator wlthﬂconstant mass and'etiffness placed in presence of a v
d1$31pauveforce F ~Yk, Y being also a constant. 1In addltlon, there
ex1sts a substant1a1 body of work concernlng the study of a c1ass1ca1
undamped harmonic osc111ator w1th arbltrary time dependence in its

2,3,4

: parameters. In those nonadlabatlc osc111ators a problem of

interest is the constructlon of 1nvar1ants of the motlon and this task
has been successfully carried-away hy Lewis and Symon.z’.'3 |

The present paper aims at unifying theae niewe‘in order to provide
a treatment of a quantal oscillator in presence.of a diesipationv
vmechanlsm, ‘in the most general 81tuat10n 1n whlch the mass; the
quadratlc field and the damplng are arbltrary functmons of tlme.. To
achieve this goal, we w111 generallze the handllng of the claselcal
problem to the case in which the time—-dependent OSCLIIator is also
damped (see Section II). We will see that it is possihle to find
exact invariants of the motion, in the spirit of Refs. 2,3. 1In
Section III, we take advantage of standard quantization rules and
derive equations of motion.for both the first and second moments of
the wave function. In Section IV, we introduce the proper generaliza-
tion of already estting quantal.descriptions of'damﬁing that do not
possess a classical eduivalent.lv An analysis'of“the approaches

presented in Sections III and IV allows us to chooseé one satisfactory



representation of the quantal problem, in the case in which the wave

function happené to be a gaussiah'wave packet. This restriction is

not a very dramatic one, since a number of applications can be derived

on that aésumptioﬁ. Some typical exaﬁplés will be ?reséhted and

discussed in Section V.
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II. THE CLASSICAL PROBLEM

I1.1 The exact invariant for a damped osc111ator.

In this chapter we will discuss the classlcal descrlptlon of the
'motlon of a damped oscillator. The f1rm ba31s for thls study 1s, of

course, the Newton equation:

P =-y(op - mogiox, (2.1a)

where P = m(t)X. ' v ' o (2.1b)

In this equation, the friction parameter Y, the mass m and the
frequencyll may depend on time. The energy is not a constant in time;
in such a case, it is a matter of great interest to build exact
incariant quantities. The study Of‘exact and adiabatic invariants for
classical oscillators has received considerable éttention from many
authors (cee, for example, papers from Lewisz, Symoh3 and
references quoted there). | |

The detailed treatment of the undamped cscillator by Symon may be '
'generalized. Although his starting point is a very particular
Hamiltonian representation, we will see that.it is possible to find an
exact invariant without any reference to a given Hamiltonian. We only

need to observe that when Y, m, and Q are constants, the solution of

(2.1) is

X =We—Yt/2 cos(\/ 02 -’ 2/4 ¢ + by ), ' (2.2)



where w and <% are also constants. An ansatz for the general v

solution of (2.1), consistent with (2.2), could be - ' ;

x=wo e )2 H[Faro ), (2.3)
where Q'(t) = \JQz(t) -‘Yz(t)/h . - (2.4)

The corresponding guess for the momentﬁm would be

P=1iz(t) e e i( j fde + ¢2(t))’

(2.5)
Here w, z, ¢1 and_¢2 are real functions of time. Eq. (2.1) leads

to equations of motion for w, z, ¢1, ¢2 and it can be seen that

the quantity defined as

| ERE .f;dt "Xiz + [wp Sax G —%’w)] 2 (2.6)

is an exaét constant ofnmotion. The details of the derivation are
giﬁén in the Appendix. "Notice that when y = 0, expression (2.6)
coincides with the one found by‘Symon.3 We shall oniy quéte here
that w satisfies the following non-linear second-order differential

equation:

wrwo+rw (RS- L1 (2.7)
- .



I1.2 General time dependent Hamiltonian

As already poinﬁed out in the Introdﬁétion, we\afe interésted in
finding a descriptiOn of a generai daﬁped oséiilator that allows
qﬁantization. Although the Equation (2.1) cénndt be derived from a
Lagrangian containing a conservative potentiai, we can write a time-
dependenf Lagrangian‘that'leads to the correct equations ofA@otion;

‘namely:

LR = A/ mewE@) 1 - 2w .
| | ” (2.
" This is a generalization of the Lagrangian proposed‘by Kanai;s Here
f£(t) contaips both the time-dependence of mass and friction, the only
requirement being fhét f(t) and Q(t)vare differéntiable fupétions of
time. . - | | |

The Equation (2.8) contains the following particular cases:

(i) f(t) =0, Q? = co/mo)undaﬁped oscillator with constant

mass and stiffness,

(ii) £(t) = log(m/mo), Qz(t) = c(t)/m(t), undamped ogcillator

with time dependent mass and stiffness,

(iii) £(t) = vt, Qz(t)=co/mo1damped oscillator with constant

parameters.

8)
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The canonical momentum is defined as:

F=2L-n X exp(£(e)). o © (2.9

o

It differs from the kinetic momentum P given by(2.1b} their

relationship being . -

P = (m /m(e)) exp(£(e))P. | (2.10)
Accordingly the Hamiltonian.associated with the Lagmngian (2.8) reads,

S " 2,0 o2

H= (P /2mo) exp(-£(t)) + (mo/2)i1 (t) X° exp(£(t)). (2.11)

Notice that in general we cannot identify H as the energy E of the

oscillator, since
| 2 2.2
E=T+V=(P"/2m) + (1/2)mQ°X . - (2.12)
Only when P and P coincide we have E = H, this happens in the absence

of dissipation no matter which is the time-dependence of m and Q.

The Hamilton's equations of motion are:

e
1]

P/m ewp(-£(t)) | (2.13)

e

~m; 522 X exp(£(t)) ‘ (2.13b)



If we introduce the kinetic momentum P(2.1b), we recognize the

Newton's equatioﬁ of motion:
X+ fx+0%x=0. | o (2.18)
In addition, Egs. (2.13) lead to the dissipatibﬁ rate:

o= (m/m -28) P2/2m + L@ .+ 2 Syme?x?. (2.15)
' 2'm 9} .

If we consider a damped harmonic oscillator with constant mass and
frequency, (see case (iii)vaﬁove), E takes the well-known form

E = -y(P"/m). , » (2.16)
If we introduce a time-dépendence for the mass, we have

£(t) = log m/m_+ yt = - ’ (2.17)
and,

= -(y + n/2m)P%/m . o (2.18)

We can see that the mass variation acts like an extra damping term

o - 3 . 3 . * ’
when m is positive. As E is not a constant in time we derive the



e

exact Invariant J. Here, as already mentibnéd, kinetic 'and canonical
momenta afe not identical; the methbd"of Symon3 to build J is more
conveniegt-sipce it is based nfon the Hamiltonian désctiption.

The idea is to construct a canonical transformation from (X;?) to

"o : , '
(X ,P ) such that the new Hamiltonian H takes the form

' ) ' _12 . . - . )
H = (1/2)Q (&)X~ +P 7). (2.19)
Then the J quantity defined as:

'2

J = 1,'/2(2('2 +P ) B N (2.20)

'is an exact invariant (%% = 0). The introduction of the damping

and its time variation does not change basically the philosophy of the
method; we find that the exact invariant for the motion des¢ribedAby
the general Lagrangian of Eq.(Z.ﬂ, is

2

3 =1/2 wixt + 120 F - m_ ¥ X exp(£))’ | (2.21)

where w is proportional to the time-dependent amplitude of the co-

ordinate X and satisfies the second order non-linear differential

‘equation.

onN

w+ fo+qly= [m W exp(Zf)] -1. . - (2.22)

,With a new definition of w these results are equivalent to those

displayed in Eqs. 2.6 and 2.7.
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ITI. THE QUANTAL PROBLEM

III.1 General form of the equations of mption
The problem of the quéntization of a damped harmonic oscillator
has been analyzed by several authors (seé,'for example, Hassel) in
_ the case of constant mass and stiffness. Two lines are usually v
followed: 1i) the séraightférward quantization of the classicél
Hamiltonian enforcing the pfinciple of corfespohdeﬁce and;:ii).the ’
construction of an ad-hoc Hamiltonian that does not possess a claésical
analogue. |
Both approaches are 1egitimaté if they satisfy-thé‘following

constraints: i) the expectation values

<®> and B = <P> T @G

E)
1

oA 2 R . ) .
(where X and p are respectively the quantal operators associated with the
canonical variables) must satisfy the classical equdtions of motion;

ii) the uncertainties in coordinate and momentum must fulfill the

Heisenberg relation.

These are general éonstraints that é:e intrinsic to the procedure
of qUaﬁtization; additional constraints may be provided depeﬁding on
the particular problem we want to analyZe.'

In addition t6 the expectation values x and § defined above, the
quantal operators X and P display fluctuations that do not have a
classical equivalence. Following Hasse6, we define %,¢, the
fluctuations of X and %, respectively, and the correlation o.

- A2 2 . c ‘ R - ’
X <X'D> ~-x _ _ (3.2a)
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6= <b% - B - L . (.2b)
0= 1/2<88 + BR> - xp . | o S (3.2¢)

A e : .
As X and p are canonical conjugates, they satisfy the Heisenberg
uncertainty principle:

x4 /4 . | L (3.3)

But most physical situations we are interested in are expressed
through gaussian wave packets and then, the inequality (3.3) becomes a

strict equality binding the three fluctuations

xb= o> +nilh . o (3.4)
' The time evolution of the first (Eq. (3.1)) and secondv(Eqs.v3.2)
moments of the wave packets‘can'be derived using the definition of the

total derivative of a given operator A

&5

= 5.Lﬁ - %—. [/A\’H-J . . . } (3.5)

The first moments x and p are’ fixed by the Ehrenfest's limit, and
the second ones are solutions of a set of three coupled first order
differential equations. .In most cases, these equations may be

decoupled and provide closed—forms.expressioﬁs forvxé namely:
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o 2
XX = 12607 + (O + 2(e)? =S ~ .6)

Here, g(t), h(t) and k(t) are well defined functions of time whose

explicit form depends on the particﬁlar description of the damping and

the time variation of the harmonic oscillator parameters.

This equation takes a simpler form, if we introduce the width u of -

the wave packet:

a(e) = (2/m)t/21/2 | - (3.7)

We obtain

. R 3] -1 S -

u + g(t)u + h(t)u = |k(t)u ' ' (3.8)
This is an equation describing a forced and damped oscillator.
-Although in the general case we do not dispose of analytical solu?

tions, they are available in a few simple situations that we explore

later.
It is interesting to notice that if we introduce the reduced width
W(t) through the definition

u(t) = Wt) exp (-1/2 jg(c)at): S (3.9)

‘We can rewrite the equatibn (3.8) in a compact form

Rl
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.e

W+ 20 = d(e)W ‘ | (3.10)

_ that proves to be useful when comparing different formalisms. The

reduced frequency «)(t) and the function d(t) can be shown to' be:

w>=h - 1/4g2-l/2é - ' ' (3.11a)

a =1 exp(2 | g(eran). , - (3.11b)

I11.2 Quantal Invariant Operators

As the center qf the quantal gaussian wave packets follows the
classical equations of motion, we always can derive a quantal operator
Jo which is‘a‘constant of motion.v Through the principle of_;orres_
pondence, we repléce in Eq. (2.6) the X and P variables by the associ-

ated quantal operators and we obtain:

2’ .
J = .e_:__ng. %— + s - il ~ Xoy) (35 + p2 (3.12)

2 w : 2

2 e .
+ m (W—gw)2£2

where w(t) is the aﬁplitude of the center of the wave packet, that

“fulfills the differential equation (2.7). -
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We can notice the formal'similitude between the evolution equa-
tions for the width (3.8) and for the amplitude (2.7); this remarks
may providg us another way of_writing the invariant operator in terms
of the width of the wave'packet;w(t). When the motion is governed by
eq. (2.1a), the functions g(t), h(t) and k(t) in eq. (3.8) must

satisfy the requirements.

g(t) = m/m (3.13a)
h(t) = 'Qz-yz/a - y/2 - %= - (3.13b)
(3.13¢)

and K(t) = m>(t).

This turns out to be the case for some pure quantal Hamiltonians (cf.

following sections).
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IV; QUANTAL HAMILTOﬁIANS

In this chapter we will present in a unified description the
various approaches used in the literature ﬁo stﬁdy dampéd oséillators
and we shall extend them to the general time depeﬁdent oscillator.
Since ali this épproaéﬁes have been chosen to provide the éxacf equa-—
‘tions of ﬁotion for X aﬁ& ps we will concentrate on the‘properties of
phe second moments. | ‘ -

IV.1 PRESENTATION OF THE VARIOUS HAMILTONIANS

a) General time-dependent quantal Hamiltonian. Straighfforward

quantization of the equation (2.11) gives us:

2 . '
f = (h2/2mo) %;? (exp(-r)) + (mb/g)gz(t)exp(f)ﬁg_ (4.1)

In order to wfite the Hamiltonian ﬁ, we have quantized the canonical
momentﬁm P whose relationship with the kinetic éne P is given by

Eq. (2.10). Tﬁis feature induces a difference between the fluctuation
¢ as defined in Eq. (3.2b) and the uncertainty in the kinetic momentum

Ap; we have:
- 2 - 2 | . c
Ap” = (m/mo) exp(=2£(t)) ¢. _ (4.2)

Thus, the uncertainty product of position and kinetic momentum

follows the law:

AxA p>(h/2)m/mc exp(-£(t)) -~ ' « ' (4.3)
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A
It is interesting to notice that if we define the energy operator E as:

ﬁ = (m/mo)ﬁ exp(—f(t)) ‘. (4.4)

the ﬁean value <B> fulfills exactly.the equation (2.15) for'tﬁeA
classical dissipaﬁion‘rate (seehHasse1 for the diécussion of the

- oscillator with constant masé and stiffness). |

Applying Eq. (3.5) to ‘the quantal operators in Eq. (3.2), we find

"the set of coupled first-order differential equations:

X = 2(moexp(f))_lo | (4.5a)
$= 2(m_em(D)2’0 | ~ (4.5b)
5 = ~(m exp(£)0° + (m_ exp(£) 0. (4.5¢)

We can easily check that the condition (3.4) defining a gaussian
wave packet'ié preserved by the above equatiénsof motion. Thus, we
are ensured that if the wave packet is gaussian at initial time, it
will keép its gaussian shape during its whole time evolution.

In Table I, we iist the actual form for the functions g(t), h(t),
k(t), wlt) énd d(t) as defined in the preceding section. In this
particular case, it can be'shown that. the motion of ¢ can be de-
coupled;‘and in the same way as for X, we can define a width v(t) for

the momentum distribution:
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w(e) = (2242 (4.6)
v(t) is solution of a second order differential equation:

V- (F+ 2DV = m'(f Pexploe)/v3. (4.1

From the formal similitude between eqs. (2.22) and (3.8) we can deduce

. 3 A L3 . »
an invariant J1 associated with the fluctuation:

- & A A Lo -
91 =U12ﬂ0 X l§ 2, sz—(l/Z) m exp(£)X(%p + p§)+% moeexp(Zfb(z)(IQ% (4.8)
With the help of Egqs. (4.5), this reduces to

A
5= o8 +xP2 =05 + BD : (4.9)

N
Taking the expectation value of Jl’ we obtain the following time

independent observable

3 =h2/2 + q>$<2 + xﬁz - opx. (4.10)
The various states of a gaussian wave packet in a harmonic oscil—‘
-lator well may be classified according to the eigenstates of 31;
Using Eq. (3.4), we can see that the minimum value 9y =‘K2/2 cor-
responding to the ground state is only reached when x =9 =0, i.e.,
for motionless wave packets centered at the origin, whatever is their

width.
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b) Hasse's Hamiltonians,

Hasse6 has shown that the Hamiltonian:

2 2

h ‘ | i
H o= b i-x—z- + (07 (0F + () @-0[f + 1-0p] B ey(0)

synthesizes the several non-linear quantal frictional potentials

presented in the»literature, namely:
€ = o, gives Albrecht>ﬁamiltoniaﬁz
£ =vl, giyes Sﬁssmann Hamiltonian%
€= :}/ngives Hasse Hamiltonianl,

We can assume any time-dependence for m, Y and (); the equations of

motion for the fluctuations are the same as for the time-independent

oscillator6
. ' ’ o
X = 2y X+ 2¢/m (4.12a)
. 1 2 .
¢ = -2y ¢ - 2mQo (4.12b)
. 2 . ' - N )
o =-mf2"x + ¢/m (4.12¢)

with Y = €v,

(4.11)
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These expressions are cénsisteﬁt with the conservatién of ghe
gaussiaﬁ shapé of the Qave packet (see Eq. (3.4)). Under this
fequirement, we can e#tract closed-form eqﬁations fgr thé second
moments. The results for X and the width are displayed in Table I.

Similar expressions can be found for ¢ and the momentum width v(t) as

follows:
. . -. 2 r * hg ot
v - @iy s [92-— oy 2 2%—) 2y | v =l (4.13)

‘which is to be compared with Eq. (4.7).

The frictional term in the Hamiltonian (4.11) has been deviced to
yield the correct Ehrenfest limit for the center of the wave packet.
It does not posess a classicél analogue. 1In fact, the expectation

N

value of the operator Vfr

A AA A
V. = H-T-V (4.14)
fr
is
.<6> ) . )
3, = YO | (4.15
Then the expectation value of the Hamiltonian is not the energy,

in general.
It is possible to derive an exact invariant of the motion in terms

of the amplitude w of the first moment (see Sec. III.2). We can

~ U :
observe that when y = vy/2 (Hasse Hamiltonian with ¢ = 1/2), w and
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the width u satisfy the same equation of motion (see Eq. (2.7) and

N~

Table I respectively). Accordingly, we can write an invariant Jl,

whose expectation value in this case can be shown to be

A e jydt
<Jp = %

[¢x2 + sz - 2G%p + h2/2] : (4.16)
The reader can easily verify with the help of the equations for the
first and second equations of motion that this observable is an exact

invariant, i.e.,:

SR -0 | (4.17)

"If at t =0, the wave packet under consideration is a minimum

uncertainty wave packet, the value of the invariant is simply:

ho\.2 2 ' ‘
<31>=Z_‘%‘(-fe +-<-%2: + 20 - ' (4.18)

The obvious.meaning is that the invgriant of the motion for the
quantal damped oscillator is essentially the sum of the potential and
kinetic energies in units of the potential and kinetic energies con-
'tained in the initial coordinate and momentum width, réspectively.

é) Kostin's Hamiltonian

It is also well-known that a former representation for friction on
a quantal particle is due to Kostin.9 The generélization fér the
general time-dependent oscillator reads:

2 2 | . .
w2 Jaog?(of? - By [m-lulj; -<m%)] , (4.19)
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where U and U* are the wave function and its complex-conjugate re-

spectively. It is useful to write the gaussian wave packet as [1,61:

Pp(x,t) = z—;—ﬁyl/h (& + é;) 1Mexp ‘ xz;()+ -% [p(}’c\-x? + J'L“,dtf _9]}'(4.20)

Here o is the complex time dependent width whose relationship with the
real fluctuation X is

3 1= ree™ (4.21)
In addition, L is the classical Lagrangian and 0 is a real»phaée
factor.

- In presence of the wave packet, the frictional term in Kostin's

Hamiltonian becomes:

Vep = yp(R0) + -l%x@-x)z(i - -(1;; A (4.22)

It is easy to verify that <V r> is exactly zero and then the expect-

f

) L. . L .. N
ation value of the energy is identical to the expectation value of H.

The equations of motion for the second moments are, in this case:

¥ = 2a/m(t) o - | (4.23a)
. 2 | ' h2 (ti) | . ,

¢ =-2m(£)Q"(t)o - 2y(t)p + —EY—X— (4.23b)
. _ 2 d) ) '

o = -m(e)R°(t)y + i y(t)o. . (4.23¢c)
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As in the previous examples, the motion of y aﬁd ¢ can be decoupled
(see Tablekl.),

The invariant operator we can write is 3; associated with the
vamplitude w of thé coordinate.A As seen in Table I, the functions
g(t), h(t) and k(t) do not take the‘analytical form of Eqs. (3.13) .
and, as a consequence, we cannot write this exact invariant in terms of

the fluctuations.

IV.2 Discussion

The aim of this section is to provide arguments for the choice of
the best description of damping on a time—debendent’oscillator.‘ From
inspection of Table I, it turns out thaﬁ iﬁ the absence of damping the
three representations are identical, as should‘be expeéted.

a) The'generél time-dependent Hamiltonian pfesents a serious
shortcoming in presence of damping. If we examine the Equation (4.35
we realize that for sufficiently long time‘the uncertainty product
AxAp can be smaller than h/2. This is a common feature to all
descfiptions that use different operators to represent classical and
canonical moments. Senitzky10 has shown that this effect is due to
the neglection of the fluctuations in the loss mechanism itself. This
limitation hampers the use of the Hamiltonian (4.1) in the quantal
study of the damped harmonic oscillators.

b) A satisfactory description of damping should account for the
fact that any wave packet containing excited states must decay to the

ground-state. Accordingly, we would like to examine the solution for
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the damped harmonic oscillator with constant parameters, since this
analysis will provide a clue for the final choice of the best repre-
sentation for our general prqblém.

From Table I, we see that with Hasse's Hamiltonians, the equation

for the reduced width W(t) takes the following form:

2 -3

W+w W=W : - (4.24a)
. y '
where wz is a constant of time: wz = 92 -y 2 . © (4.24Db)

The most general solution can be written as:

W(t)vé wfl. (1 + A% 4 Bz)l/2

+ A cos 2w t + B sin 2y t . (4.25)

If we take the following initial conditions:

and W(t=0) =0

W(t=0) = W
o
we obtain
W ifw =wl (4.26a)
o o

wit) = 9 -1 . 2

W+ Wo) sin”pt ' otherwise (4.26b)
The constant solution corresponds to a fluctuation)(_=2 ;L . In

addition, if Wo is different from<u—1, we see from Eq. (4.26b)

that W will oscillate without decaying to the ground state as we
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should expect. It is specially puzzling that even if Wo takes its

ground-state value, the wave packet width will undergo oscillations.

These observations lead us to the conclusion that Hasse's

Hamiltonians are not completely adequate for the treatment of the

damped harmonic oscillator.

c) If we want to initiate the same study with the Kostin's

Hamiltonian, we recall the equation for the reduced width for the time

independent oscillator (in Table [):

W+ u?W = W“Bexp(yt) . o (4527a)

where =_SF - y2/4 - (4.27Db)

In this case, it is not easy to write down W(t) in the way of

Eqs. (4.26). 1Instead we will find useful to discuss the corresponding

equation for the width u:
U f yu + Qzu = m_zu_3h' ‘ | -' R (4.28)
We can easily realize that there is a constant‘solution:
u = (mg»—l/Z . o (4.29)
The corresponding fluctuation ) turns out to be

X = h/(ZmQ)

(4.30)
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and this is the actual dispefsion of the ground-state. It is illus-
trative to try a solution of Eq.(&.ZS)that differs only sligﬁfly from
the constant value (4.29). | —
Let us write u(t) as:
we) = @24 o - " 4.31)

. -1/2 -
with &(t) such that Ié(t) |<<(mQ) forvall t

Straightforward substitution of Eq.- (4.31) into Eq. (4.28) yields

8+ v6+ 2026 =0 LT a3y
It means that:
§ = 5oexp(~Yt/2)sin(29t + ¢B) . (4.33)

This shows that any state that differs only slightiy from the
ground state will decay to it.

We observe from Eq. (4.28) there do not exist steady solutions
with large deviations from the constant value (Eq. 4.29); since in
that éase, the right-hand side becomes negligible and u behaves like
the position of a damped oscillator.

This is illustrafed in Fig. 1. The time evolution of X and the
total energy are displayed for two different initial conditions,
namely, Xo = 0.2 and Xo = 4, in units of the ground-state

fluctuation. We observe that y reaches the ground-state value in less
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than three periods. The same is true fér x, although it should be
remarked that the number of oscillatioﬁs,undergqne by the fluctuation
~is twice that of'the coordinate. It isvalsé interesting to look at
the evolution of the energy. The slight initial différehce beEWéen
the two curves can be traced back t§ the contribﬁtion'bf the fluctua-

tions X and ¢ to the potential and_kinétic terms, respectively.

In view of these considerations, we believe that Kostin's
Hamiltonian description is adequate to face the study of a general
time-dependent Gaussian wave packet. In the following section, we

will present several appliéations of this formalism.
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V. Applications.

In the two next sections we are gbing to study some specific
interplays between mass variatién and damping, that might be_connected
with a number of physical situations. In subsec;ion (V.1) we will
present typical results for systems initially in the ground state,
that undéfgo a displacement and different mass variations. In sub-
section (V.2) we deal with a specific example inspired in situations
appeating‘in heavy-ion physics.

V.1l Departures from the ground state

The system we will consider is a displaced ground—stéte wave
packet, that presents at t =(O— the following characteristics:
m = 1, e, = 1, X = h/2, ¢y = h/2, o, = 0 ‘and X, = 1,
p. = 0; we consider that at t = 0 a mass variation law m(t) is super-
imposed on m .

a) Exponentially increasing mass. We choose the following varia-

tion law for m(t):

m=1; t{0

m=et 0,30 . (5.1)

In this example, the mass presents a singularity at infinite time.
Small values of A provide us a way of studying adiabatic behaviors.

As'g = A, the functions g(t) and w(t) (see Table 1) take the

following simple form:
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g(t) = v+ ) | ‘ | , (5.2a)

W2(e) = e - L (2 & - 5w

Eq. (3.8) then becomes,

. . At -2\t -
u+ (Y#)u + e tu = e Z,Fu 3 (5.3)

One can solve this equation for sufficiently large time under the

assuﬁption that u remains finite. We find
u(t) = A& + B (v+) lexp(-(¥+1)e) | G

and the séme result holds for the displacement x(t). Since the in-
creasing mass will cause the kinetic energy.to vanish, the asymptotic
energy would be only potential and depending on the final constant
values of x and u. |

Typical results are shown in Fig. 2. We see that irrespectively
of the value of A, the fluctuation Y remains. almost identical to the
adiabatic value h/(Zm(t)Q(t)). It is insensitive to changes in the
strength of the damping parameter when \ is small enough (X = 0.1 in
units of the unperturbed frequency). For larger )\, a slight devia-
tion from the adiabatic trend is observed according to different'y;s.
In contrast, damping has large effects on the evolution of the coordi-

nate and momentum: this is reflected in the energy curves.
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We'obéerve that for large damping (Y ='1.) itztakes half a periodb
>to dissipate most of the initial emergy; while for small f(y ¥0.1),‘
‘dissipation is slower and presents smooth oscillations. Both regimes
converge asymptotically towards tﬁe adiébatic trend E =‘0.5 how(t).

b) Singularity at finite time. |

To illustrate the case Qhen the mass becomeé infinite at a finite

time we choose the representation:

S m

1 for t40

g
|

= exp(thT, - )7, 0 . (5.5)

T1 is ' a parameter that fixes both the position of the singular-
ity and the rate of increase of fhe mass.

The striking result of Fig. 3 is the fact that the final energy
presents an inversion as a function of the damping paraﬁeter y. As in
the prec® ding case, the final energy is purely potential. For values
of Y close to.the critical one (i.e., vy = 2Q), the flqctuation X over-
compensate$ the attenuation of the position x, prbviding a large
potential energy. In addition, we notice that the final displacement
is not zero for small damping. The acfual Value”of this displacement
depends on the initiél bhéseg ac;ordiﬁgly we may éxpect the final
energy to present some range of variations for small v's.

‘Invéontrést‘with the first example, we see that the evolution of X

presents large departure from the adiabatic trend. During the

process, there is an interplay between the role of damping and mass



30

variation. For small times when m/m is cloee to zero, the damping

parameter Yy determines the slope with which X comes apaft from the

adiabatic curve. Afterwards, the term m/m overcomes y and accounts
for the final state of the system. | :

¢ ) Periodic mass variation.

A veriable mass provides a mean oflsimuletipg an input or removal
of energy into the system. An e#plicit represeptation that accounts
for several interesting features is a perio&ic perturbatioe'on a
constant mass, iﬁe: |

-

m=1 <0

)
m =1 +dsinkt , 20 ‘ (5.6)
with a<1.

‘

This time va;iation in the mass can be ﬁféced to some external
oscillating field; consequently, we can expeet some resonant be-
havior. A search through a wide range of parameters u>an& A ailowed
us to obtein the results displayed in Fig. 4. In this case, the
frequency‘of the mass is twice that of the unperturbed_oscillator.
The first poiné to notice is that betﬁ the energy and the fluctuation
oscillate with the frequency of the maes; the deformation in the peaks
of the energy curve can be associated with the facf that the p051t10n
X 1is osc1llat1ng w1th the shifted frequency of the damped osc111ator
Second, the resonant behavior disappears when the strength of the
damping becomes close to the critical value. In this case, ‘x and E

perform constant amplitude oscillations around the ground—state values.
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Selection of the parameters o and ) other than those corresponding
to Fig. 4, yields modulation of the displayed curves and a much

- smoother increase of the amplitudes.

. _ v V.2 Infinite mass system at t = 0.
fd | It has been suggestedll’12 that the charge equilibration process
-during heavy-ion reactions may be pictured as the relaxation of a
coliective coordinate placed in a quadratic potential. As thié
equilibration is impossible when the ions are far apart (before and

after the reaction), this suggests that the collective coordinate cor-

responds to an oscillator whose variable mass is infinite at t 0,

- reaches a finite value during the interaction time and becbmés
infinité again when the :go ions split apart; Not willing té get into
the physicél details, we are going to take a simplified representation

-of the above mentioned situation; namely, an oscillator with constant

stiffness ¢ = 1, a constant damping Yy and a mass given by the law

T

exp(—-1)? if Oge<r, (5.7)
“m(t) = 1 if T1 t T1 + T2
t :
3 132 . <
, | EXP(W 1) if T1+T2\t<’Tl+ Tz + T3 .

A typical pattern for m(t) is presented in Fig. 5 for a particular

selection of the intervals T sT, and T

1°72 3"
When m(t) is very large, we can simplify the equations of motions

for both first and second moments (Eqs. 2.1 and 4.23) provided that

the initial p is finite and the initial ¥ is not zero.
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In that case, we have

X = X ! ' (5.8a)_
*o
P =§%“';r(1?-1éXP(-Yt)) ) X o (5.8b)
X %;(o. S o S - (5.8¢)
.2 %o 2 |
¢vf /4)%_+ ;5(17exp(-yt)) , | _ - (5.84d)
% k _ e
O"" -Y— [lfexp(-Yt)] ‘ | (5.?6)

Theée a?e the quations'goverﬁing the initial motiéﬁ when the
initial cogrelatién.o is,zero,iand it is intere;tiﬁg thét“they‘are
Vindependent of:the écﬁual valuevof the mass. A similar feétﬁre is
expected in.thé vicinity of the second singﬁla; poinf |

= T_+T,+T,.
t Tl ?2 3
In Fig. 6 we display the energy time dependence for various
damping parameters and typical value of the time_ihtervalé. In that

case, the equation governing the time-evolution of E is
E = -(y+n/2m)(¢+p°) /m + W2 Y/ (hxm) C(5.9)

‘For this particular mass law E = 0 for t = 0 and
t = T1+T2+T3; This feature is clearly represented in the
Figure‘6; ‘
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Due to the action of the damping on ¢ and pz, dramatiq effécts
are induced on the dissipation rate even when &/m is large: the height
ofvfhe plateau is strongly dependent on the value of y; in additionm,
the larger the Y parameter the shorter the elapsed time before
reaching this plateau.

As in a preceeding example (Sec. V.1b), the final energy is only

potential and depends upon the final value of fluctuations and dis-

placements, In Fig. 6, we see that when y= OQ'there is a larger
residual displacement that is determined by the history of the system
(;nitial displacement, length of the plateau, etc.). A sensible
amount of damping on a sufficiently long plateau causes x to vanish,
accordingly phé final energy is given by the fluctuations only. These
are displayed in Fig. 7. We have assumed a small initial Widﬁh that
infends to represenf a well-localized wéve packet. This actual value
is critiéal to determine the amplitude of the fluctuation
oscillations. The wide oscillations of the undémped case are smoothed
away by finite vy Vaiﬁes and disappear completely when y is close to
the critical damping. |

Forvsufficiently (not too) large value of aamping, the system
1odses memory of its past history.in a couple of ﬁeriods; In that

case, the whole problem reduces to the study of the evolution of an

initial ground state when a pertubation in the form of an increasing

mass is superimposed.
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For smaller amounts of damping, the final results are much more
sensitive to the particular selection of the time intervals and
initial conditions.

For the sake of:completeness, in Fig. 8 we display the time evolu-
tion of the coordinate x. 'it is worthwhile to remark that-although
the frequency of the width oscillations is twice as large'as that of

the cbordinate, both ¥ and x follow essentially the same pattern.



35

VI. CONCLUSIONS

We have generalized both the existing procedures forlfhe study of
a>cléssica1, undamped, time-dependent oscillator and the methods for
describing a quantal, damped, time—iﬁdependent oscillatéf. We have
been able to provide tools for the analysis of a:general.quantal,
damped, timefdepeﬁdent oscillator in the case in which the quantél
state can be represented by a“gaussian wave packet. We have shown
that alfhough thé conservation of enetrgy is destroyed under the cir-
cumstances enforced by oﬁr definition of the oscillator,'it is pos-
sible to find‘an.eiact iﬁvariént of the motion that is related to the

amplitude of the coordinaté. Under some particular conditions, it may

be also connected with the fluctuations.

We have found crite;ia to select, among those that are available
to us, the only correct description for damping.bf a gaussian wave
backet in a quadratic field, This description is correct in ;he~sense
that.it bbtﬁ preserves tﬁe uncertainty principle and yiel&s the
expected asympotic behavior. We have shown that this formalism holds
e?en iﬁ the case of a mass reaching an infinite value, Kostin's
frictional pﬁfential prOvidés the right decay of any gauésian wave
packét to the ground state, in the presence of dissipation; We have
illustrated in a number of éxamples possible applications of this
method. One partiéular case that deserved our attention was the time
evolution of the ground-state when a perturbation, i.e., a aisplace—
mentvand a time—vafiation in the mass, is applied.. Thete is a

definite interplay belween damping and mass variation; some important
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features are: a) when the logarithmic derivative m/m is smaller than
unity, the fluctuation Y remains close to the adiabatié limit
#/2m(£)Q(t) and damping is a second-order effect in its evolution. In
this siguation, démping is mainly used to dissipate the energy of the
motion; b) when m/m becomes large (for example in the vicinity of é v
singularity.at a finite time) strong deviations from this adiabatic
trend can be observed. Nevertheless, the initial slope of the |
departure is determined by the vaiue of the dampihg parameter. ﬁe
have also seen that a perturbation on the ground-state can.account for
a resonant behavior; in this case the pregénce of dissipatiﬁn prqvides
attenuations of the motion and of the increase‘in the amplitude of the
fluctuatioﬁ x;.the critical damping ensures steady oscillations in
both the fluctuation and the energy.
An interésting problem beariné some connection to the excitation
of collective modes in some nuclear (i.e., heavy ion) reactions is
'that of an initially infinite mass, lowering to a finite constant
value and rising to infinite afterwards (Section V.2). Such a situa-
tion ihvolves a number of parameters, namely, initial width and dis-
placement of the wave éacket, duration of tﬁe mass‘décrease, lengéh of
the plateau, duration of the mass incréase, and démping. Only a
detailed treatment of the physics here contained cén_fix their actual -
values. However, we have illustrated the exbected behavior of the |
wave packet for a particular selection of the parémeters. We beligve
»that the most important point to be remarked is that démping is

essential in determining the evolution pattern. From the exhibited
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curves we see that it takes some time for the motion to start. This
is due té the fgct thétrinifially the mass isvvefy heavy. When the
mass takes a reasonable finite value, time evolution in x, ¥ and E can
bé ébser;ed. However, the slope of this eVolufion is»completely'
differéntvaccordiﬁg fobthe actual value of ¥. Even a.small amouﬁt of
damping is able to.cause»a gdensitive departure from the ﬁndamped
motion. In presence of iarge damping, the whole motion shéuld not be
critically depenéent on thé details‘of the mass evolution.

As a final statement, we should remark that since there is no

_unique quantal description of friction, any particular application of

dissipation models should be preceded by a critical examination as we
have intended here for the case of a gaussian wave packet in the most

generalvharmonic field.
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Appendix The invariants of the motion for a classical damped

oscillator.
As we introduce the ansatz (2.3) and (2.5) in the Newtonian
equations (2.1) (2.2), splitting thq‘reSuItingvexpressidns into real

and imaginary parts we obtain the following -system: ' -

v - Xw=2Z sin(¢~4) el (A.1)
z +,g-z = -2 w sin($; - ¢2) o (A.Z)”.

by = Zcos(P =) -2 . . - o (A.3)

. 2 : o ,

Gy =m e Jeosh - ) -0 | (a.)

The quantity

* ,*v
. Xydt X P-XP

U= 5T =z w gos(¢1 -;¢2) | I ~ (A.5)

can be shown to be a constant of the motion and can be fixed equal to
unity with a suitable normalization of X and P. Its meaningIWill
beécome evident below since we shall see that the ansatz (2.3), (2.5)
leads to a canonical transformation td new vdriables X'; P',‘in

terms of which an invariant can be constructed.

As we square Eq. (A.1), the normalization U =1 (A.6) ailows us to

write the expression

2 .1 2% - Y2 : _
z 5 + m (w 2w) . (A.7)

<
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_If we now differentiate Eq. (A.6) and use (A.1), (A.2), we find the:

following equation for the time evolution of w(t):

T T o
W"_’_W“-l +W(Q _2-,“2m)q:n-§;—2' : _ _ (A8)

An equivalent procedure leads to a similar equation for z,

L] L ] .' 22
oo tm 2800 Y 0'2 Y Ym YR _m S
z + z(m IL-§)+Z( ' +§ 2m "EF) z2

(A.9)

The normalization (A.6) requires that we multiply X, P byacon-
venient constant Ae1¢°. Acéqrdingly, the most genefal (real) solu-
tions of Newton equation for a time-dependent, damﬁéd oscillator can

be sampledvas.shown below:

[ ~
X(t) = e 2 [chos "(4)0-’- jn'dt,)cosq;l-Awsin@J jn'dp)sin%] | (A.10)
- ¥
P(t) = e  [—Azcos(?O+j Q'dt)singb—Azsin(¢Q¥ Iﬂ'dt)cos¢2] - (A.11)

If we adopt the definition

X'(t)‘ A'c‘os(ﬁbo +Iﬁ'dt) ‘ . ) (A.12)

‘ P'(t)

A sin(¢° +.[Q'dt) (A.13)
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we realize that Eqs. (A.10), (A.1ll) represent a linear transformation

v i .
from (X ,P ) into (X,P). The determinant is, precisely,

; -[XQE
A= -e z z W <':os(<;>l—'?52) =
| [
]2

= -e o (AL14)

From (A.12), (A.13), it becomes obvious that the quantity

‘ ' . . .
J = %(X 2+P 2) = %AZ ‘ S (A.15)

is a constant. Inversion of the system (A.10), (A.11) and substitu-—

tion into (A.15) allows us to reach the alternative forms,

Ydt 2 o N
3 =_ej_2_ [.’.‘.2.+ (v —-mX(w'—%w)]z.] | (A.16)
w
or
vdt {2 ' . - o :
J = ejz {BE + [zX + 2——2(2 + %z)] 2] - (A7)
zZ m§ .

This quantity is the invariant for a general time-dependent,
damped oscillator and it generalizes the one obtained by Symon3 for

a general quadratic, non-dissipative time-~dependent Hamiltonian.
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TABLE CAPTIONS
Table 1. Comparison among the functions g(t), h(t)-k(t),(uz(t), and
| d(t) appearing in Eﬁs.b(3.6) énd (3.10) in text for the
vério;s.Hamiltonians analyzéd‘iﬁ thevpaper.
VNofice that if £(t) E'ln(m/ﬁo) + S'Y(t)dt, the reduced
S

frequencies w2 for the GID and Hasse (i.e., Y =Y/2)

Hamiltonians are identical.
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- FIGURE CAPTIONS

lFig; 1.
Fig. 2.
Fig. 3.
" Fig. 4.

Time evqlutiéns 6f énergy, fluétuatioﬁ and positiqn of a
gaussian wave packet.in units ofhﬁé/z, ﬁ/(ngﬂo) and
hl/z/(moﬁg)l[z Qespec§ive1y.. The timevunit is the

natﬁral periba; These caléulaéions correspond to Kostin's
potehfial wifﬁ‘constant.mass and stiffness; Ehe daﬁping
parameter is 0.5 ig units of the inVerse periéd. The full
lines correspond tovan'iﬁitial fluctuétion Xé = 0.2, the
dashed lines are for an initial X, = 4. The initial dis-

placement X, is alwayé equal to 1.

The same as.Fig. 1, but for an exponentially increasing

mass. Full lines correspond to the damping parameter

Y = 0.1, dashed-dotted lines correspond to Y= 1. Both lines

coincide in the time evolution of X when &/m Q.l. The
initial conditions are that of a displaced wave packet with
the ground state width.

The same as Fig.>1, but with a mass going to infinity at

t = 2. The full, dashed and dashed-dotted lines correspond
respectively to Y= 1.99, 0.5 and 0.. The initial conditions
are the same as in Fig. 2.

The same as Fig. 3, but with a mass with a periodic perturba-
tion m = ] +.0.SSin(2ﬂt). The dashed and full lines corres-

pond to Y = 0.25 and Y= 1.99 respectively. The initial con-

ditions are the same as in Fig. 2.



~ Fig. 5.

Fig. 6.
Fig. 7.
Fig. 8.
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Typical evolution of the inverse of a mass that goes to

infinity at t = 0 and t = 5 (see Eq. (5.7) in text). The

time intervals are T, = 1 and T2=T3=2.

Time evolution of the total energy for the oscillation whose
méss evolution is displayed in Fig. 5. The full, dashed and
daéhed—dottedvlines correspond to damping parameters

Y =1.99, 0.25, 0, respectively. The initial values are

Xo = 0.2 and xo = 1.

Time evolution of the fluctuation X corresponding to the
situation of Fig. 6.

Time evolution of the position x corresponding to the

situation of Fig. 7.
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GENERAL TIME-DEPENDENT -

HASSE KOSTIN
(GTD)HAMILTONIAN HAMILTONIANS HAMILTONIAN
g(.t)l ' £ m/m v+ m/m
' e o
h(t) o’ 02—y 2=y m/my ok
k(t) miexp(Zf) n? m?

Zoy  ela1/u(hHio1/2F

a(t) _ 1

' m .2 i
h (t) + (ﬁ) o

1

: ~m 2 %
h(t) + =) - 5=

exp(yt).

it
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