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ORIGINAL ARTICLE

Automatic EPAP intelligent volume-assured pressure support is
effective in patients with chronic respiratory failure:

A randomized trial

JEREMY E. ORR,1 JOHN COLEMAN,2 GERARD J. CRINER,3 KRISHNA M. SUNDAR,4 SHEILA C. TSAI,5

ADAM V. BENJAFIELD,6 MAUREEN E. CROCKER,6 LESLEE WILLES,7 ATUL MALHOTRA,1

ROBERT L. OWENS1 AND LISA F. WOLFE2

1Department of Medicine, University of California, San Diego, La Jolla, CA, USA; 2Department of Medicine and Neurology,

Northwestern Medical Hospital, Chicago, IL, USA; 3Department of Medicine and Surgery, Lewis Katz School of Medicine at

Temple University, Philadelphia, PA, USA; 4Department of Medicine, University of Utah, Salt Lake City, UT, USA; 5National

Jewish Health, Denver, CO, USA; 6ResMed Science Center, San Diego, CA, USA; 7Willes Consulting Group, San Diego, CA, USA

ABSTRACT

Background and objective: Patients with chronic respi-
ratory failure are increasingly managed with domiciliary
non-invasive ventilation (NIV). There may be limited
ability to provide NIV titration for these complex
patients, and ventilatory requirements and upper airway
support needs may change over time. Therefore, an
automatically adjusting expiratory positive airway pres-
sure (AutoEPAP) algorithm may offer advantages over
manually adjusted EPAP for treating these patients. This
study compared 4% oxygen desaturation index (ODI4%)
values during the use of an AutoEPAP algorithm versus
manual EPAP titration with the intelligent volume-
assured pressure support (iVAPS) algorithm.
Methods: This prospective, single-blind, randomized,
crossover study was conducted at six US sites. Patients
with chronic respiratory failure (neuromuscular dis-
ease, chronic obstructive pulmonary disease, obesity
hypoventilation and other aetiologies) and an apnoea–
hypopnoea index of >5/h who were already established
NIV users underwent a single night of NIV with the
iVAPS manual EPAP and iVAPS AutoEPAP in the sleep
laboratory in random order.
Results: A total of 38 patients constituted the study popu-
lation. Mean ODI4% was statistically non-inferior with
AutoEPAP versus manual EPAP (P < 0.0001). There was no
difference in the effect on ODI4% across respiratory failure
subgroups. Ventilation parameters and gas exchange were
similar with either NIV mode, indicating equally effective
treatment of respiratory failure. Sleep parameters were
improved during AutoEPAP versus manual EPAP.
Conclusion: A single night of NIV using the iVAPS with
AutoEPAP algorithm was non-inferior to a single night
of iVAPS with manual EPAP titration in patients with
respiratory failure.

Clinical Trial Registration: NCT02683772 at clinicaltrials.gov

Key words: chronic obstructive pulmonary disease, neuro-

muscular disease, non-invasive ventilation, obesity hypo-

ventilation syndrome, respiratory failure.

INTRODUCTION

Over recent years, increasing numbers of patients with
neuromuscular disease (NMD), chronic obstructive pul-
monary disease (COPD), obesity hypoventilation syn-
drome (OHS) and other forms of chronic respiratory
failure are using non-invasive ventilation (NIV) for respi-
ratory support.1 Optimization of settings for NIV, includ-
ing determination of fixed expiratory positive airway
pressure (EPAP), requires time-consuming manual titra-
tion by experts. Guidelines recommend the use of
attended polysomnography (PSG) as part of this process;
however, these resources are not always available. Titra-
tion of ventilation based on bedside evaluation is com-
monly practiced but has been noted to decrease the
quality of sleep and therefore is not ideal.2 In addition,
prescriptions based on the current condition only reflect
requirements on that single visit. A patient’s condition
often changes over time due to disease progression,
changes in body weight, alterations in prescribed medica-
tion, tissue oedema and variable posture.3–5
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SUMMARY AT A GLANCE

Automated expiratory positive airway pressure
(EPAP) titration may be helpful in treating patients
with respiratory failure and upper airway obstruc-
tion. This study demonstrates that, for a single
night’s titration, an automated EPAP algorithm is as
effective as manually set EPAP for treating
desaturation, without compromising ventilation and
potentially improving sleep quality.
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Advances in technology demonstrate that NIV
devices could meet changes in ventilation demand by
automatically adjusting inspiratory pressure via the
volume-assured pressure support (VAPS) algorithm.
VAPS has already been examined for the treatment of
chronic respiratory failure, OHS and NMD.6–11 There is
growing evidence that VAPS is as effective as manually
titrated pressure support (PS) ventilation for treating
respiratory insufficiency or failure.6,10,12–15

Some conditions that could be treated with VAPS
may also have a component of upper airway obstruc-
tion; patients might therefore benefit from automati-
cally adjusting EPAP (AutoEPAP). Such an AutoEPAP
algorithm has recently been incorporated into the intel-
ligent VAPS (iVAPS) mode to help maintain airway
patency. A recent randomized clinical trial of the iVAPS
AutoEPAP algorithm showed non-inferiority to fixed
EPAP in patients with chronic hypoventilation,16 pre-
dominantly in patients with OHS and COPD who are
not ventilator-dependent.
The goal of this study was to compare the ability of

the AutoEPAP algorithm to manage upper airway
obstruction compared with manual EPAP in iVAPS
mode in chronic respiratory failure patients receiving
NIV. The hypothesis was that the automatic settings
determined by the AutoEPAP algorithm would be non-
inferior to manual EPAP in preventing desaturation.
We also aimed to examine the effect on ventilation
parameters, gas exchange and sleep quality.

METHODS

Study design
This prospective, multicentre, single-blind, random-
ized, crossover, non-inferiority trial was conducted at
six sites in the United States. The study protocol was
approved by the Western Institutional Review Board
(IRB) and the IRB at each participating centre, and
patients provided written informed consent before
enrolment in the trial. The trial was conducted in
accordance with the principles of Good Clinical Prac-
tice and the Declaration of Helsinki. Study oversight
and monitoring were provided by the ResMed Medical
Affairs Department (San Diego, CA, USA). The study
was registered at clinicaltrials.gov (NCT02683772).

Patients
Eligible patients were adults with documented chronic
respiratory failure. Sleep hypoventilation was defined
as those with historical transcutaneous carbon dioxide
(TcCO2, increase of ≥10 mm Hg and/or daytime hyper-
capnia, defined as PaCO2 > 45 mm Hg). In addition to
hypoventilation, all subjects had previously docu-
mented sleep apnoea or an apnoea–hypopnoea index
(AHI) ≥5/h from a diagnostic study or recorded from
the patient’s NIV device. The rationale for this criterion
was to include subjects with a range of upper airway
collapsibility, which might be reflected in a prior sleep
apnoea diagnosis or otherwise with episodes of discreet
respiratory events leading to an elevated AHI. Subjects
had been using NIV in spontaneous-timed (ST) or
VAPS mode for ≥3 months and had EPAP settings

reviewed within the previous 12 months. Exclusion
criteria included non-compliance with NIV (average
usage of <4 h/night); use of oxygen therapy ≥5 L/min;
acute disease exacerbation requiring hospitalization
within the last 3 months; acute illness or medical insta-
bility; untreated non-OSA sleep disorders; surgery of
the upper airway, nose, sinus or middle ear within the
previous 90 days; and inability to provide informed
consent and/or comply with the study protocol.

Procedures
All participants completed two overnight, in-laboratory
PSG studies, one each using manual EPAP and Auto-
EPAP in iVAPS mode on NIV (Astral 150, ResMed Corp.),
assigned in random order, usually on two consecutive
nights. The subject was blinded to the intervention by
shielding the display of the Astral ventilator. To perform
titration, the titrating technician was aware of the inter-
vention. All sites were instructed to set the NIV device in
VAPS mode (iVAPS) as close to the patient’s current NIV
settings as possible. On the night that the patient was put
on iVAPS with AutoEPAP, sites were instructed to keep
the range ‘open’, so the algorithm could be tested across
the full range (EPAP: 5–15 cm H2O and PS: 4–20 cm
H2O). All sites and investigators were instructed to place
each patient’s clinical need and safety first. Therefore,
clinically required NIV setting adjustments were permit-
ted. On the manual EPAP night, technicians titrated the
EPAP according to the American Academy of Sleep Med-
icine accredited laboratory standards, utilizing respiratory
effort belts, snoring and desaturations in the absence of
flow signals.17 On each PSG night, TcCO2 was measured
using a bedside monitor (SenTec Digital Monitor, SenTec
Inc Fenton, MO, USA). All PSG studies were scored by a
registered polysomnographic sleep technologist without
knowledge of the intervention according to the American
Academy of Sleep Medicine criteria in a central core lab-
oratory at the University of California, San Diego, USA.
To assure blinding of the scoring laboratory, no data
from the Astral ventilator, mask pressures or respiratory
flow were recorded in the PSG software.

Outcomes
The primary outcome was the 4% oxygen desaturation
index (ODI4%). Secondary objectives assessed whether
the AutoEPAP algorithm was effective for treating respi-
ratory failure and included the device-reported AHI,
TcCO2 and sleep parameters during use of NIV with
AutoEPAP versus manual EPAP.

Sample size
The study was powered to demonstrate ODI4% non-
inferiority between NIV with AutoEPAP versus manual
EPAP based on a non-inferiority margin of 2. Sample
size calculations assumed an expected mean difference
in ODI4% of 0, with an SD of 1.55, power of 80% and
two-sided alpha of 0.05. Power calculations based on a
paired two-sided t-test showed that 23 patients would
be sufficient. To allow for dropouts and to maximize
study power, a decision was made to enrol up to
40 subjects.
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Statistical analysis
All statistical analyses were generated using SAS ver-
sion 9.3 (SAS Institute Inc. Cary, NC, USA) or later. All
programming code was independently peer reviewed
for accuracy. Heterogeneity of response across sites
was tested using analysis of variance (ANOVA) based
on a two-sided P-value of 0.15.
The intention-to-treat (ITT) population included all

randomized patients who began the first study PSG night.
The evaluable population included all patients from the
ITT population who fulfilled the inclusion/exclusion
criteria and completed study assessments as defined in
the protocol. All primary and secondary endpoint ana-
lyses were performed on the evaluable population, while
safety analyses included the ITT population.
Descriptive statistics were calculated for continuous

variables, and frequencies and percentages were calcu-
lated for categorical data. Tests for normality were gen-
erated for continuous variables, as appropriate, and in
addition, data were inspected for symmetry and severe
outliers. For paired comparisons of continuous variables,
the distribution of the data was considered, and in cases
where the results were skewed, a Wilcoxon signed-rank
or sign test was used, as appropriate. Otherwise, a
paired t-test was utilized based on an alpha of 0.05.
The null (H0) and alternative (H1) hypotheses for the

primary endpoint were based on a non-inferiority test
using a non-inferiority margin (d) of 2 events/h, where
μA − B is the mean paired difference in ODI4%
between AutoEPAP and manual EPAP:

H0 : μA−B>d AutoEPAP algorithm is inferiorð Þ
H1 : μA−B ≤ d AutoEPAP algorithm is non− inferiorð Þ

The primary hypothesis was tested using a one-sided
paired t-test of the difference, and the 95% upper one-
sided confidence bound for the mean paired difference in
ODI4% between manual and AutoEPAP was calculated. A
crossover analysis was performed to investigate the influ-
ence of a possible period effect on the primary endpoint.
Subgroup analyses were performed on the primary

endpoint based on disease type (COPD, NMD and OHS
and other combined) and ventilator dependency (depen-
dent vs non-dependent). An ANOVA was generated to
compare differences in the primary endpoint between
AutoEPAP and manual EPAP across subgroups.

RESULTS

Study population
Between April 2016 and July 2017, a total of 43 patients
were enrolled and provided informed consent; 42 of
these were randomized and met the inclusion/exclusion
criteria. The trial was stopped after recruitment goals
were met. Three patients were found to be ineligible
after randomization, and one patient had a protocol
violation. Therefore, 38 patients were included in the
evaluable population (Fig. 1). The majority of patients
were males (73.7%), and the most common primary

Night #2

Night #1

Informed Consent
(n = 43)

Randomized (n = 42) 
Intention-to-treat 

population

Did not fulfil inclusion/
exclusion criteria

(n = 1)

Did not fulfill inclusion/
exclusion criteria (n = 3) 
Protocol deviation (n = 1) 

Randomized and eligible 
(n = 38)

Evaluable population

Overnight PSG with
iVAPS AutoEPAP

(n = 15)

Overnight PSG with
iVAPS Manual EPAP

(n = 23)

Overnight PSG with
iVAPS manual EPAP

(n = 15)

Overnight PSG with 
iVAPS AutoEPAP

(n = 23)

Figure 1 Study flow diagram.

AutoEPAP, automatic expira-

tory positive airway pressure;

iVAPS, intelligent volume-

assured pressure support;

PSG, polysomnography.
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diagnosis was NMD (45%) (Table 1). Data regarding
subject characteristics by study site and diagnosis are
presented in Tables S1 and S2 (Supplementary Infor-
mation). In the 24 patients with available data, AHI at
enrolment was 30.9 � 26.3/h (range: 5.3–105.8). NIV
device settings were not significantly different
between the two study nights (AutoEPAP and manual
EPAP) (Table 2).

Primary endpoint
Mean ODI4% was lower during NIV with AutoEPAP
versus manual EPAP (Table 3, Fig. 2).Treatment order
had no effect on the results (P = 0.35), and data were
homogeneous across study sites (Kruskal–Wallis
P-value <0.15). AutoEPAP was statistically non-inferior
using the proposed one-sided paired t-test using a sig-
nificance level of 0.05 and a non-inferiority margin of
2 events/h (P = 0.01). However, testing showed that the
data had a non-normal distribution (Shapiro–Wilk test,
P < 0.0001). A non-parametric test (Wilcoxon signed
rank) highlighted the non-inferiority of AutoEPAP com-
pared with manual EPAP (P < 0.0001) (Table 3). The
mean difference in ODI4% between AutoEPAP and
manual EPAP was not significantly different between
subgroups based on disease type (i.e. neuromuscular,
COPD or OHS and other combined) (Fig. 2) (P = 0.49)
or ventilator dependency status (P = 0.34).

Secondary endpoints
Settings for iVAPS mode and resulting device output
on the two PSG study nights are shown in Table 2.
Mean EPAP and inspiratory positive airway pressure
(IPAP) were higher during AutoEPAP, but ventilation
and mean rapid shallow breathing index (a marker of
work of breathing) were similar on both nights. Mean
oxygen saturation and TcCO2 were similar with the
two NIV modes (Table 4). On average, patients spent
significantly less time in Stage N1 sleep, more time in
rapid eye movement (REM) sleep and had signifi-
cantly fewer arousals during AutoEPAP versus manual
EPAP (Table 4). Data for subgroups of neuromuscular,
COPD and OHS or other subjects are reported in
Tables S3–S5 (Supplementary Information). Data for
ventilator dependent and non-dependent subgroups
are reported in Tables S6 and S7 (Supplementary
Information).

Adverse events
No serious adverse events were reported during the
study. One non-serious adverse event (asthma exacer-
bation) occurred during the second PSG night (manual
EPAP) in one patient, which resolved after utilization of
routine treatment. This was determined by the site
investigator to be not related to the device or
device mode.

DISCUSSION

In the therapy of obstructive sleep apnoea, automatic
EPAP algorithms have long been shown to be effective
in assessing and treating upper airway obstruction.
Many patients have complicated issues with sleep-
disordered breathing because they have both chronic
hypoventilation as well as abnormalities in upper air-
way collapsibility. As both factors need to be
addressed, the goal of this investigation was to evaluate
the ability of an automatic EPAP algorithm in VAPS
mode to control upper airway obstruction while
remaining effective at treating hypoventilation, without
requiring titration by a sleep laboratory technician.

Table 1 Demographics, clinical characteristics and NIV

settings at baseline

Patients (n = 38)

Gender, n (%)

Male 28 (73.7)

Female 10 (26.3)

Age (years)

Mean � SD (median) 55.33 � 16.01 (58.53)

Minimum, maximum 18.0, 81.0

Race, n (%)

Asian 1 (2.6)

Black/African American 8 (21.1)

Native Hawaiian or other

Pacific Islander

1 (2.6)

White 23 (60.5)

Unknown/not available 5 (13.2)

Body mass index (kg/m2)

Mean � SD (median) 31.41 � 9.84 (30.12)

Minimum, maximum 15.0, 57.2

Primary diagnosis, n (%)

Chronic obstructive

pulmonary disease

11 (28.9)

Neuromuscular disease 17 (44.7)

Obesity hypoventilation syndrome 4 (10.5)

Other 6 (15.8)

Apnoea–hypopnoea index (events/h)

Mean � SD (median) 30.91 � 26.29 (17.80)

Minimum, maximum 5.3, 105.8 (24)

Ventilator dependent, n (%)

No 31 (81.6)

Yes 7 (18.4)

Device mode at enrolment, n (%)

Bi-level ST 12 (31.6)

VAPS 26 (68.4)

Device settings at enrolment

IPAP (cm H2O)

Mean � SD (median) 16.8 � 4.7 (17.0)

Minimum, maximum (n) 6, 29 (29)

EPAP (cm H2O)

Mean � SD (median) 7.4 � 3.4 (6.0)

Minimum, maximum (n) 4, 16 (37)

Back-up rate (breaths per min)

Mean � SD (median) 8.74 � 6.22 (12.00)

Minimum, maximum (n) 0.0, 18.0 (38)

Duration of NIV treatment (years)

Mean � SD (median) 3.16 � 3.75 (1.66)

Minimum, maximum 0.2, 17.0

EPAP, expiratory positive airway pressure; IPAP, inspiratory

positive airway pressure; NIV, non-invasive ventilation; ST,

spontaneous-timed; VAPS, volume-assured pressure support.
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The results of this study showed that AutoEPAP was
non-inferior to manual EPAP for improving ODI4%, as
a measure of upper airway obstruction, in patients with
respiratory failure secondary to a variety of underlying

hypoventilation disorders. The mean difference
between AutoEPAP and manual EPAP in normalizing
ODI4% was similar across disease types and ventilator
dependency.

Table 3 ODI4% during non-invasive ventilation with automatic versus manual expiratory positive airway

pressure (n = 38)

AutoEPAP

Manual

EPAP

Paired

difference

95% Upper one-sided

confidence bound P-value

ODI4% (/h) 3.16 � 5.67 7.61 � 18.87 −4.45 � 17.23

(−96.7, 10.1)
0.27 0.0134†

<0.0001‡

Values are mean � SD (range), unless otherwise stated.
†One-sided paired t-test.
‡Wilcoxon signed-rank test.

AutoEPAP, automatically adjusting EPAP; EPAP, expiratory positive airway pressure; ODI4%, 4% oxygen desaturation index.

Table 2 Non-invasive ventilation device settings and reported pressures during study nights

Mean � SD (median)

Minimum, maximum (n)

iVAPS AutoEPAP

(n = 38)

iVAPS manual EPAP

(n = 38) P-value

iVAPS settings

EPAP setting (cm H2O) N/A 7.6 � 3.5 (6.5) N/A

4, 16 (38)

Minimum EPAP setting (cm H2O) 6.3 � 2.5 (5.0) N/A N/A

4, 15 (37)

Maximum EPAP setting (cm H2O) 15.0 � 1.3 (15.0) N/A N/A

9, 20 (37)

Minimum PS (cm H2O) 3.2 � 1.2 (4.0) 3.1 � 1.2 (3.0) 0.57

2, 6 (37) 2, 6 (38)

Maximum PS (cm H2O) 19.4 � 2.0 (20.0) 19.3 � 2.2 (20.0) 0.53

10, 20 (37) 10, 22 (38)

Target Va (L/min) 6.03 � 2.31 (5.20) 6.01 � 2.32 (5.20) 0.32

3.6, 16.7 (37) 3.5, 16.7 (38)

iVAPS report parameters

EPAP median (cm H2O) 10.24 � 3.02 (10.50) 7.04 � 3.28 (5.80) 0.0002

4.2, 14.8 (36) 3.8, 15.6 (37)

EPAP 95% (cm H2O) 13.30 � 2.30 (14.20) 7.42 � 3.29 (6.40) <0.0001

6.4, 16.0 (36) 4.0, 16.0 (37)

IPAP median (cm H2O) 19.82 � 6.11 (18.00) 17.43 � 5.26 (16.60) 0.0003

11.0, 34.8 (36) 7.8, 28.0 (37)

IPAP 95% (cm H2O) 25.93 � 6.55 (24.00) 23.06 � 5.06 (23.80) 0.0001

16.2, 35.6 (36) 12.4, 32.0 (37)

Vt median (L) 0.486 � 0.131 (0.456) 0.460 � 0.131 (0.432) 0.06

0.35, 1.00 (36) 0.27, 1.00 (37)

Vt 95% (L) 0.744 � 0.160 (0.744) 0.698 � 0.198 (0.702) 0.18

0.43, 1.00 (36) 0.11, 1.00 (37)

RR median (BPM) 16.8 � 3.3 (16.0) 17.3 � 3.7 (17.0) 0.35

12, 26 (36) 12, 27 (37)

RR 95% (BPM) 21.9 � 4.5 (21.0) 21.5 � 5.3 (20.0) 0.78

15, 32 (36) 14, 38 (37)

RSBI 37.02 � 12.27 (36.05) 40.94 � 16.04 (36.82) 0.13

16.0, 66.7 (36) 16.0, 81.5 (37)

Values are mean � SD (median), with minimum, maximum values (n) below. P-values generated from a paired t-test or sign test,

as appropriate.

AutoEPAP, automatically adjusting EPAP; BPM, breaths per minute; EPAP, expiratory positive airway pressure; IPAP, inspiratory

positive airway pressure; iVAPS, intelligent volume-assured PS; N/A, not applicable; PS, pressure support; RR, respiratory rate; Va,

alveolar ventilation; Vt, tidal volume.
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AutoEPAP resulted in higher delivered mean EPAP
levels than those set under manual EPAP. While higher
EPAP might improve upper airway resistance and
potentially facilitate triggering, one concern might be a
negative effect on ventilation, work of breathing or
sleep quality. However, we did not observe any statisti-
cally significant difference in modes with respect to
ventilation parameters, or gas exchange, suggesting
that AutoEPAP did not impair respiratory mechanics,
and PS was appropriately maintained by the iVAPS
algorithm. In addition, parameters reflecting sleep
quality were improved, including decreased arousals
and increased REM sleep.
We utilized ODI4% as the primary outcome rather

than AHI as AHI determined by the device would not
meet current standards for classifying hypopnoeas and
would be utilizing the same algorithms being used to
auto-titrate the EPAP level. Moreover, transient hypo-
ventilation may be seen in this population, which may
be mistaken for upper airway obstructive events when
relying solely on flow signals. The effectiveness of Auto-
EPAP on ODI4% without worsening ventilation sug-
gests that the algorithm is able to appropriately classify
events as obstructive; if events were due to hypo-
ventilation, they might have persisted or even wors-
ened at higher EPAP levels. The ODI4% findings were
similar to those observed in the device-measured resid-
ual respiratory event index, which were similar
between AutoEPAP and manual titration.
The results of our study show an outcome similar to

a recent investigation of AutoEPAP in patients with
both chronic hypoventilation and upper airway
obstruction.16 However, there were some differences
between the studies. We evaluated both ventilation-
dependent and non-dependent patients using a home
ventilator, versus non-dependent patients using a bi-
level device in the previous study. In addition, NMD

was predominant in our study, whereas OHS was most
common in the prior study. The studies also had differ-
ent primary endpoints—ODI4% in our case and AHI in
the previous study. Given the differences between the
studies in terms of primary outcome measures and
underlying diseases, their combined results provide
growing evidence of the efficacy of AutoEPAP.
Auto-titrating NIV may have benefits with respect to

sleep quality. A prior study of auto-titrating PS reported
less percent stage N1 sleep and fewer arousals com-
pared to standard NIV.13 Similarly, patients in our study
spent significantly less time in stage N1 sleep with
AutoEPAP versus manual EPAP, and the mean number
of arousals was significantly lower. This finding could
indicate easier sleep initiation and a trend towards a
longer period of deep sleep during use of automatic
versus manual settings.13 Patients receiving home-
based NIV have reported more restful sleep when using
iVAPS compared with conventional high-intensity NIV,
although objective sleep quality parameters were not
significantly different.6 It is possible that trends towards
improved sleep during iVAPS could be enhanced when
iVAPS is used with AutoEPAP versus manual EPAP, but
this remains to be determined in future studies.
Adherence to therapy is another important factor to

consider during long-term use of NIV. In one study,
iVAPS led to one additional hour per night of use com-
pared with standard PS.14 Such improvements in
adherence could have an impact on patient
outcomes,18 and therefore, future studies are warranted
on whether the addition of AutoEPAP further
improves use.
Strengths of this study include its randomized design,

multicentre performance, centralized and blinded scor-
ing of sleep studies, experienced clinicians/investigators
and the inclusion of a heterogeneous population reflec-
tive of a clinical population. However, there were a
number of limitations. The two NIV modes were only
compared over a single night of therapy. Therefore,
comparative longer term effects of the AutoEPAP mode
need to be investigated, including effectiveness and
compliance, particularly given the higher EPAP pres-
sures observed with AutoEPAP. We studied patients
already using NIV, in whom previous EPAP settings
were available. While this primarily had the effect of
minimizing the need for manual titration, we cannot
generalize our findings to an NIV-naïve group. We did
not collect detailed lung function or blood gas informa-
tion and instead relied on the referring clinician diagno-
sis and patient history. Most patients had been on NIV
for years, and collecting contemporary data would have
been difficult but, nonetheless, may have provided addi-
tional information. The study cohort had few women,
who may benefit from different AutoEPAP algorithms
from men.19 Finally, we cannot draw specific non-
inferiority conclusions for each group as our numbers in
each group were relatively small, and this would require
a dedicated study for each group rather than our
approach of showing overall non-inferiority.
In conclusion, a single night of NIV using iVAPS with

AutoEPAP was non-inferior to iVAPS with manual
EPAP with respect to mean ODI4% in a group of
patients with respiratory failure secondary to NMD,
COPD, OHS and other causes. There was no suggestion

0

5

10

15

20

25
O

D
I4

%

NMDAll subjects COPD OHS/other

Figure 2 Difference in 4% oxygen desaturation index (ODI4%)

between automatically adjusting expiratory positive airway pres-

sure (AutoEPAP) ( ) and manual EPAP ( ) in all subjects, and

subjects grouped by aetiology of respiratory failure. Obesity

hypoventilation syndrome (OHS) and other binned together due

to small sample size. ODI4% while using AutoEPAP was non-

inferior to manual EPAP in all subjects. There were no significant

differences in ODI4% across the subgroups of neuromuscular

disease, chronic obstructive pulmonary disease (COPD) and

OHS and other combined. Three outliers not displayed where

ODI4% > 40.
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of compromise in ventilation, and sleep parameters
improved while using AutoEPAP. Additional research is
needed to compare these modes over longer treatment
durations and to evaluate the use of AutoEPAP iVAPS
in NIV-naïve patients.
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