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Abstract

A complete 5-dimensional SU(5) unified theory is constructed which, on compacti-
fication on the orbifold with two different Z2’s (Z2 and Z ′

2), yields the minimal super-
symmetric standard model. The orbifold accomplishes SU(5) gauge symmetry breaking,
doublet-triplet splitting, and a vanishing of proton decay from operators of dimension 5.
Until 4d supersymmetry is broken, all proton decay from dimension 4 and dimension 5
operators is forced to vanish by an exact U(1)R symmetry. Quarks and leptons and their
Yukawa interactions are located at the Z2 orbifold fixed points, where SU(5) is unbroken.
A new mechanism for introducing SU(5) breaking into the quark and lepton masses is
introduced, which originates from the SU(5) violation in the zero-mode structure of bulk
multiplets. Even though SU(5) is absent at the Z ′

2 orbifold fixed point, the brane thresh-
old corrections to gauge coupling unification are argued to be negligibly small, while the
logarithmic corrections are small and in a direction which improves the agreement with
the experimental measurements of the gauge couplings. Furthermore, the X gauge boson
mass is lowered, so that p → e+π0 is expected with a rate within about one order of
magnitude of the current limit. Supersymmetry breaking occurs on the Z ′

2 orbifold fixed
point, and is felt directly by the gauge and Higgs sectors, while squarks and sleptons
acquire mass via gaugino mediation, solving the supersymmetric flavor problem.



1 Introduction

The successful prediction of the weak mixing angle is a major achievement of particle theory

of recent decades [1]. It suggests that weak-scale supersymmetry with two light Higgs doublets

will soon be discovered at colliders, and there should be no exotic states in an energy desert

up to MU ≈ 1016 GeV. The physics immediately above this unification scale has been viewed

in three frameworks: 4 dimensional grand unified field theories [2], higher-dimensional grand

unified theories motivated by string theory [3], and string theory [4]. Grand unification in 4d

provides a simple and elegant understanding of the quantum numbers of the quarks and leptons

in a generation, but these successes are open to doubt because of several issues which require

considerable effort to overcome. Chief amongst these are

• How is the grand unified gauge symmetry to be broken?

• Why are the weak doublet Higgs bosons split in mass from the colored triplet partners?

• Why have we not already observed proton decay induced by dimension 5 operators?

• Why should the two Higgs doublets be light when the standard model gauge symmetry

allows a large mass term?

In this paper we study higher-dimensional grand unified field theories above MU , without

inputing suggestions from string theory, for example on the number of extra dimensions and the

gauge group. We follow a “bottom-up” approach, seeking simple solutions for the above issues.

Many of the methods we use, for example for gauge symmetry breaking and doublet-triplet

splitting, were introduced in the string-motivated context [3]. Recently, Kawamura has shown

how the first two issues highlighted above are simply and elegantly solved in the case of an

SU(5) unified gauge symmetry [5] using the orbifold S1/(Z2 × Z ′
2) previously introduced for

breaking weak-scale supersymmetry [6]. Orbifolding along one axis, using a parity which is + for

the weak direction but − for the strong direction, automatically breaks SU(5) to the standard

model gauge group, and gives zero modes for the Higgs doublets but not for the triplet partners.

There is no need for Higgs multiplets at the unified scale with a scalar potential designed to

give the correct unified symmetry breaking, and there is no need to arrange couplings in such

a way that only the Higgs triplets acquire mass. An important recent observation is that to

proceed further with construction of such theories it is necessary to consider how the quarks and

leptons transform under the Z2 ×Z ′
2 symmetry [7]. However, the brane interactions advocated

explicitly break the 5-dimensional SU(5) gauge symmetry. In this paper we require that all
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interactions preserve this symmetry.

In this paper we construct completely realistic unified theories based on the orbifold S1/(Z2×
Z ′

2). We show that the answer to the first question is that, from the 5d viewpoint, the unified

gauge symmetry is unbroken but takes a restricted form, while from the 4d viewpoint there is no

unbroken Georgi-Glashow SU(5). We show that higher dimensional unified theories generically

do not have proton decay from dimension 5 operators. In particular the usual dimension 5

proton decay, resulting from the exchange of the colored triplet Higgs multiplet [8], is absent

because a U(1)R symmetry forces a special form for the masses of these states. Furthermore,

this U(1)R symmetry forbids the appearance of dimension 5 operators which violate baryon

number in the superpotential. This also allows a fundamental distinction between Higgs and

matter fields, and provides an understanding of why the Higgs doublet multiplets are light even

though they are vectorial under the standard model: they are protected from a mass term by the

same bulk U(1)R symmetry that forbids proton decay at dimension 5. Thus we see that the four

issues of grand unification listed above are automatically solved in higher dimensional theories.

The framework for such 5 dimensional theories compactified on a S1/(Z2×Z ′
2) orbifold is given

in section 2, together with an elucidation of some of their general properties. A complete theory

is given with gauge group SU(5) in section 3.

In addition to these accomplishments, the complete theory constructed in section 3 illus-

trates several new results:

• Unified quark and lepton multiplets, and Yukawa couplings on orbifold fixed points, can

be made consistent with the orbifolding parity which restricts the unified symmetry.

• Even though the unified gauge symmetry is restricted at orbifold fixed points, the threshold

corrections to the weak mixing angle, both at the classical and quantum level, are small,

preserving the successful prediction for the weak mixing angle.

• The orbifold construction for the unified gauge symmetry breaking provides a natural

location for gaugino mediated supersymmetry breaking [9] — all the ingredients needed

for gaugino mediation are automatically present in the theory.

• Even though the theory possesses an SU(5) gauge symmetry which, from the higher

dimensional viewpoint is unbroken, the Yukawa couplings, which respect this symmetry,

need not have the usual SU(5) relations amongst the massless 4d states.

The first two points are crucial if these theories are to predict sin2 θw and provide an under-

standing of the quark and lepton gauge quantum numbers. The last two point allows us to
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construct completely realistic theories.

2 Unified Gauge Symmetry Transformations

on Orbifold Spacetime

In this section we introduce a class of higher dimensional unified field theories, concentrating

on the nature of the gauge symmetry transformation. We then discuss several features which

are generic to this class. For simplicity we consider a single compact extra dimension, y (= x5),

and assume a fixed radius with size given by the unification scale. We take the unified gauge

interactions in 5 dimensions to have gauge group G. The Higgs doublets also propagate in

5 dimensions as components of hypermultiplets. Using 4 dimensional superfield notation, we

write the vector multiplet as (V,Σ), where V is a 4d vector multiplet and Σ a chiral adjoint,

and the hypermultiplet as (H,Hc), where H and Hc are chiral multiplets with opposite gauge

transformations.

The form of the gauge transformations under G can be restricted by compactifying on the

orbifold S1/Z2 with a parity, P , which acts on the vector representation of G, making some

components positive and some components negative: P = (+,+, ...−,−, ...). The orbifold

symmetry on any tensor field φ is then defined by φ(−y) = Pφ(y), where P acts separately on

all vector indices of φ, and an overall sign choice for the parity of the multiplet may also be

included in P . It is understood that there is a relative minus sign between the transformation

of Hc(Σ) and H(V ), as required by the P invariance of the 5d gauge interactions. In certain

cases P is a discrete gauge transformation, but it need not be.

A non-supersymmetric theory with G = SU(5) and P = (−,−,−,+,+) was considered

by Kawamura [10]; here we discuss a supersymmetric version. The Higgs bosons are taken

to lie in a hypermultiplet (H,Hc)(x, y), with H and Hc chiral multiplets transforming as 5

and 5̄ representations. The orbifold projection accomplishes doublet-triplet splitting, in the

sense that H has a weak doublet zero mode but not a color triplet zero mode. However, the

projections work oppositely for Hc which contains only a color triplet zero mode. Similarly,

while the X gauge bosons have negative P and therefore no zero mode, the exotic color triplet,

weak doublet states in the chiral adjoint, ΣX , does have a zero mode. Such exotic light states

are generic to orbifolding with a single Z2 and lead to an incorrect prediction for the weak

mixing angle. These exotic states can be removed by introducing two sets of different orbifold

parities, giving additional structures to the spacetime, which we study in the rest of this paper.
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Figure 1: S1/(Z2 × Z ′
2) orbifold in the fifth dimension.

We choose to view this spacetime as illustrated in Figure 1. There are two reflection sym-

metries, y → −y and y′ → −y′, each with its own orbifold parity, P and P ′, acting on the

fields. Each reflection introduces special points, O and O′, which are fixed points of the trans-

formation. The physical space can be taken to be 0 ≤ y ≤ πR/2, and is the usual S1/Z2

orbifold. Nevertheless, we find it convenient to label the pattern in Figure 1 as S1/(Z2 × Z ′
2).

The components of the vector multiplet can be assembled into four groups, VPP ′, according to

their transformation properties. They have Kaluza-Klein (KK) mode expansions as given in

Eqs. (5–8), with φ → V . Before orbifolding the gauge transformations are arbitrary functions

of position ξ = ξ(y) for each generator (we suppress the dependence on the usual four dimen-

sions). However, the non-trivial orbifold quantum numbers of the gauge particles imply that

the most general set of gauge transformations are restricted to have the form

U = exp [i (ξ++(y)T++ + ξ+−(y)T+− + ξ−+(y)T−+ + ξ−−(y)T−−)] . (1)

The generators of the gauge group T are labelled by the P and P ′ quantum numbers of the

corresponding gauge boson. The gauge functions ξPP ′(y) also have the KK mode expansions

similar to those of Eqs. (5–8), with φ → ξ. At an arbitrary point in the bulk all generators

of the gauge group are operative. However, at the fixed points O the gauge transformations

generated by T−P ′ vanish, because ξ−P ′(y = 0, πR) = 0. Thus locally at these points the
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symmetry should be thought of as the subgroup H generated by the set of generators T+P ′.1

Similarly for the points O′; hence

G
O→ H, G

O′

→ H ′. (2)

Relative to the theory with arbitrary G gauge transformations on a circle, one can view the

orbifold procedure as leading to a local explicit breaking of some of these gauge symmetries at

the fixed points. In the model of the next section, H ′ is the standard model gauge group, so

that O′ is simply not affected by the unified gauge transformations. From the 5d viewpoint,

working on the orbifold spacetime, the gauge symmetry simply takes a restricted form — the

theory does not involve any gauge symmetry breaking.

Once a KK mode expansion is made, one finds that the 5d gauge transformation corre-

sponds to infinite towers of gauge transformations, which mix up KK modes of different levels,

associated with the KK gauge boson modes A(n)
µ . In this 4d picture, ∂y acts like a symmetry

breaking vacuum expectation value and mixes A(n)
µ with ∂µA

(n)
5 , giving a mass to the n 6= 0

modes. Without an orbifold procedure, the theory possesses an infinite number of gauge trans-

formations parametrized by an integer n for each generator. However, after the orbifolding,

some of the gauge transformations are projected out due to the non-trivial orbifold quantum

numbers of the gauge parameters, and n can no longer take arbitrary values. Therefore, from a

4d viewpoint, the orbifold procedure corresponds to imposing only the restricted sets of gauge

transformations on the theory. The unbroken gauge symmetry of the 4d theory is generated by

T++, and is the intersection of H and H ′.

Our class of theories includes many possibilities for G, P and P ′. We require that the

choice of G and P is such that H , the group of local gauge transformations at O, is, or

contains, SU(5). To obtain an understanding of the quark and lepton quantum numbers we

require that the three generations are described by brane fields at O in representations of H :

3(T10 + F5̄) for H = SU(5). Furthermore, Yukawa couplings of this matter to the bulk Higgs

field will be placed at O. Notice that the standard model quarks, leptons, gauge fields and

Higgs bosons are transforming under a unified symmetry group, such as SU(5), which from

the 5d viewpoint, is unbroken. How can this be possible? The answer is that this is not the

same 4d SU(5) symmetry that Georgi and Glashow introduced. While it acts in a standard

fashion on the quarks and leptons, its action on the gauge and Higgs fields, which live in the

1 If interactions on O contain Σ fields, there are additional constraints on the form of the interactions coming
from ∂yξ−P ′(y = 0, πR) 6= 0.
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bulk is non-standard. For example, consider the gauge transformation induced by the generator

TX , which is in SU(5)/(SU(3)C × SU(2)L × U(1)Y ), assuming that P ′ has been chosen such

that TX = TX+−. This assignment guarantees that if the Higgs doublets are h2++(y), as they

should be to possess zero modes, then the color triplet partners will be h3+−(y), and will not

have zero modes. Making a KK mode expansion, one discovers that the TX transformation

rotates the zero-mode h
(0)
2 into a combination of massive triplet KK modes h

(n)
3 , and, from the

4d viewpoint, this gauge transformation is broken. It is because ξX = ξX+− has no zero-mode

contribution that there is no 4d Georgi-Glashow SU(5) symmetry. A central thesis of this

paper is that the grand unified symmetry is an inherently extra-dimensional symmetry — it

is not a 4d symmetry which must be spontaneously broken, and it does not contain the 4d

Georgi-Glashow SU(5) as a subgroup.

The construction of theories of the type outlined above is not guaranteed. There are certain

consistency conditions that must be imposed. All interactions, both bulk and brane, must be

invariant under each parity, that is under y → −y and φ(−y) → Pφ(y), and similarly for

P ′. For the bulk gauge interactions this means that the group structure constants must obey

f âb̂ĉ = f âbc = 0, where a(â) runs over generators even (odd) under P . Important constraints

result because the brane interactions at O, which include the Yukawa couplings for the quarks

and leptons, must be symmetrical under both P ′ and the gauge symmetry H . Constructing

such interactions is non-trivial, and will be discussed in detail in the explicit theory of section

3.

The parity P ′ must be chosen so that h3 and VX are odd and have no zero modes. This

implies that the gauge symmetry H ′ at the fixed points O′ does not contain SU(5). Hence

brane interactions at O′ violate the Georgi-Glashow SU(5) symmetry. This raises the crucial

question as to whether the prediction for the weak mixing angle survives in these theories — is

Georgi-Glashow SU(5) necessary for a successful prediction of the weak mixing angle? We find

that it is not: the three standard model gauge interactions are unified into a single non-Abelian

higher dimensional gauge symmetry, so that a zero-th order relation amongst the three gauge

couplings is preserved. Threshold corrections have two origins: brane kinetic terms for gauge

fields located at O′, and SU(5) splitting of the KK multiplets of the Higgs and gauge towers,

which are inherent to our class of theories. In the next section we show that these threshold

corrections are under control and small. It is remarkable and non-trivial that, even if the brane

gauge kinetic terms violate Georgi-Glashow SU(5) strongly, the resulting tree-level corrections

to the weak mixing angle are negligible.
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Proton decay from color triplet Higgsino exchange vanishes in our class of theories. These

Higgsinos acquire mass via the KK mode expansion of operators of the form H∂yH
c. The

Dirac mass couples the triplet Higgsino to a state in Hc which does not couple to quarks and

leptons. It is well known that the dimension 5 proton decay problem can be solved by the

form of the triplet Higgsino mass matrix; in higher dimensional unification the structure of the

theory requires this dimension 5 proton decay to be absent. The form of the mass matrix is

guaranteed by a U(1)R symmetry of the 5d gauge interactions. As shown in the next section,

this can be trivially extended to the brane matter fields so that all proton decay at dimension

5 is absent, and R parity automatically results, giving proton stability also at dimension 4.

Since matter resides at O, where the gauge transformations include those of SU(5), the

Yukawa interactions are necessarily SU(5) symmetric, leading to the unified fermion mass

relation ms/md = mµ/me, which conflicts with data by an order of magnitude. Does this

exclude our framework? In 4d unified theories, acceptable mass relations follow from using

higher dimensional operators involving factors of SU(5) symmetry breaking vacuum expectation

values, 〈ΣSU(5)〉. Indeed the Yukawa matrices can be viewed as expansions in 〈ΣSU(5)〉/MPl [11],

allowing the construction of predictive unified theories of fermion masses [12, 13]. This option

is not available to us as there are no SU(5) breaking vacuum expectation values. We find that

our framework leads to an alternative origin for SU(5) breaking Yukawa interactions, and we

are able to introduce a new, highly constrained, class of predictive unified theories of fermion

masses. The only origin of SU(5) breaking at O is through the zero-mode structure of bulk

fields with non-zero wavefunctions at O. We therefore introduce a new class of bulk matter

in a vector representation of G as hypermultiplets (B,Bc) + (B̄, B̄c). The symmetry quantum

numbers of these fields are assigned such that brane interactions at O give mass terms and

Yukawa interactions which involve both the brane matter and the bulk matter. For example,

when G is SU(5), and B is taken to be a 5-plet, the brane interactions at O include the mass

terms B(B̄ + F5̄) and the Yukawa interactions T10(B̄ + F5̄)H5̄. This leads to realistic masses,

as discussed in the next section.

Below the compactification scale our theory is the minimal supersymmetric standard model.

While there are a variety of possibilities for supersymmetry breaking, it is readily apparent that

our class of theories provides a very natural setting for gaugino mediation. Gaugino mediation

[9] requires the standard model gauge fields to propagate in a bulk which contains at least two

branes. One brane has quarks and leptons localized to it, while the other is the location of

supersymmetry breaking. Clearly, in our class of theories the supersymmetry breaking should
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reside at O′.

3 An SU(5) Theory

3.1 Orbifold symmetry structure

In this section we construct a complete unified SU(5) theory in 5 dimensions and discuss some

of its phenomenological aspects. We begin by reviewing the bulk structure of the model of

Ref. [5]. The 5d spacetime is a direct product of 4d Minkowski spacetime M4 and an extra

dimension compactified on the S1/(Z2 ×Z ′
2) orbifold, with coordinates xµ (µ = 0, 1, 2, 3) and y

(= x5), respectively. The S1/(Z2×Z ′
2) orbifold can conveniently be viewed as a circle of radius

R divided by two Z2 transformations; Z2: y → −y and Z ′
2: y

′ → −y′ where y′ = y − πR/2.

The physical space is then an interval y : [0, πR/2] which has two branes at the two orbifold

fixed points at y = 0 and πR/2. (The branes at y = πR and −πR/2 are identified with those

at y = 0 and πR/2, respectively.)

Under the Z2 × Z ′
2 symmetry, a generic 5d bulk field φ(xµ, y) has a definite transformation

property

φ(xµ, y) → φ(xµ,−y) = Pφ(xµ, y), (3)

φ(xµ, y′) → φ(xµ,−y′) = P ′φ(xµ, y′), (4)

where the eigenvalues of P and P ′ must be ±1. Denoting the field with (P, P ′) = (±1,±1) by

φ±±, we obtain the following mode expansions [6]:

φ++(xµ, y) =
∞
∑

n=0

1√
2δn,0πR

φ
(2n)
++ (xµ) cos

2ny

R
, (5)

φ+−(xµ, y) =
∞
∑

n=0

1√
πR

φ
(2n+1)
+− (xµ) cos

(2n+ 1)y

R
, (6)

φ−+(xµ, y) =
∞
∑

n=0

1√
πR

φ
(2n+1)
−+ (xµ) sin

(2n+ 1)y

R
, (7)

φ−−(xµ, y) =
∞
∑

n=0

1√
πR

φ
(2n+2)
−− (xµ) sin

(2n+ 2)y

R
, (8)

where 4d fields φ
(2n)
++ , φ

(2n+1)
+− , φ

(2n+1)
−+ and φ

(2n+2)
−− acquire masses 2n/R, (2n+ 1)/R, (2n+ 1)/R

and (2n + 2)/R upon compactification. Zero-modes are contained only in φ++ fields, so that

the matter content of the massless sector is smaller than that of the full 5d multiplet.
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(P, P ′) 4d N = 1 superfield mass
(+,+) V a, HF , HF̄ 2n/R
(+,−) V â, HC, HC̄ (2n+ 1)/R
(−,+) Σâ, Hc

C , Hc
C̄ (2n+ 1)/R

(−,−) Σa, Hc
F , Hc

F̄ (2n+ 2)/R

Table 1: The (Z2, Z
′
2) transformation properties for the bulk gauge and Higgs multiplets.

In the 5d bulk, we have SU(5) gauge supermultiplets and two Higgs hypermultiplets that

transform as 5 and 5̄. The 5d gauge supermultiplet contains a vector boson AM (M =

0, 1, 2, 3, 5), two gauginos λ and λ′, and a real scalar σ, which is decomposed into a vector su-

permultiplet V (Aµ, λ) and a chiral multiplet in the adjoint representation Σ((σ + iA5)/
√

2, λ′)

under N = 1 supersymmetry in 4d. The hypermultiplet, which consists of two complex scalars

φ and φc and two Weyl fermions ψ and ψc, forms two 4d N = 1 chiral multiplets Φ(φ, ψ) and

Φc(φc, ψc) transforming as conjugate representations with each other under the gauge group.

Here Φ runs over the two Higgs hypermultiplets, H5 and H5̄. (Hc
5

and Hc
5̄

transform as 5̄ and

5 under the SU(5).)

The 5d SU(5) gauge symmetry is “broken” by the orbifold compactification to a 4d SU(3)C×
SU(2)L × U(1)Y gauge symmetry by choosing P = (+,+,+,+,+) and P ′ = (−,−,−,+,+)

acting on the 5. Each Z2 reflection is taken to preserve the same 4d N = 1 supersymmetry. The

(Z2, Z
′
2) charges for all components of the vector and Higgs multiplets are shown in Table 1.

Here, the indices a and â denote the unbroken and broken SU(5) generators, T a and T â,

respectively. The C and F represent the color triplet and weak doublet components of the

Higgs multiplets, respectively: H5 ⊃ {HC , HF}, H5̄ ⊃ {HC̄ , HF̄}, Hc
5
⊃ {Hc

C , H
c
F} and Hc

5̄
⊃

{Hc
C̄ , H

c
F̄}. Since only (+,+) fields have zero modes, the massless sector consists of N = 1

SU(3)C×SU(2)L×U(1)Y vector multiplets V a(0) with two Higgs doublet chiral superfields H
(0)
F

and H
(0)

F̄
. Thus, the doublet-triplet splitting problem is naturally solved in this framework [5].

The higher modes for the vector multiplets V a(2n) (n > 0) eat Σa(2n) becoming massive vector

multiplets, and similarly for the V â(2n+1) and Σâ(2n+1) (n ≥ 0). An interesting point is that

the non-zero modes for the Higgs fields have mass terms of the form H
(2n)
F H

c(2n)
F , H

(2n)

F̄
H

c(2n)

F̄
,

H
(2n+1)
C H

c(2n+1)
C and H

(2n+1)

C̄
H

c(2n+1)

C̄
, which will become important when we consider dimension

5 proton decay later.

How should quarks and leptons be incorporated into this theory? In this paper we con-
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centrate on the case where they are localized on a brane.2 An important point then is that

when we introduce brane-localized matter and/or interactions on some orbifold fixed point O,

they must preserve only the gauge symmetry with non-vanishing gauge transformations at this

point ξa
O 6= 0. This corresponds to the symmetry which remains unbroken on this fixed point

after compactification. Specifically, if we introduce the quark and lepton fields on the branes

at y = (0, πR) their multiplet structures and interactions must preserve SU(5) symmetry and

N = 1 supersymmetry, while if they are located on the y = ±πR/2 branes they only have

to preserve N = 1 supersymmetry and the standard model gauge symmetry. For the SU(5)

gauge symmetry to provide an understanding of the quark and lepton quantum numbers, they

must reside on the y = (0, πR) branes. Therefore, we put three generations of N = 1 chiral

superfields T10 ⊃ {Q,U,E} and F5̄ ⊃ {D,L} on the y = (0, πR) branes.

What are the transformation properties of the quark and lepton superfields under the Z2×Z ′
2

symmetry? The parities P under Z2 must obviously be plus. Then, the parities P ′ under Z ′
2

are determined by the requirement that any operators written on the y = (0, πR) branes must

transform SU(5) covariantly under Z ′
2. This is because if various terms in an SU(5)-invariant

operator on the y = 0 brane transform differently under the Z ′
2, the corresponding terms on

the y = πR brane are not SU(5) invariant, contradicting the observation made in Eq. (1). In

particular, since the kinetic terms for the T10 and F5̄ fields must transform covariantly under

the Z ′
2, there are only four possibilities for the assignment of the P ′ quantum numbers: (i)

P ′(Q,U,D, L,E) = ±(+,−,−,+,−) or (ii) P ′(Q,U,D, L,E) = ±(−,+,−,+,+).3 The case

(−,+,−,+,+) follows from requiring (−,−,−,+,+) on each 5 index, and the other three

possibilities result from overall sign changes on T10 and/or F5̄.

Once the P ′ quantum numbers for the brane fields are determined as above, we can work

out the transformation properties of the Yukawa coupling [T10T10H5]θ2 and [T10F5̄H5̄]θ2 located

on the brane. It turns out that P ′(T10T10H5) = P ′(T10F5̄H5̄) = − in the case (i), and

P ′(T10T10H5) = −P ′(T10F5̄H5̄) = − in the case (ii). Therefore, the Z2 × Z ′
2 invariant Yukawa

2 An interesting alternative is to put quarks and leptons in the bulk. Then, if we only introduce hy-
permultiplets (T10, T c

10
) and (F5̄, F c

5̄
) in the bulk, the low-energy matter content is not that of the minimal

supersymmetric standard model. However, if we further introduce (T ′

10
, T ′c

10
) and (F ′

5̄
, F ′c

5̄
) and assign opposite

P ′ parities for T10 and T ′

10
(and for F5̄ and F ′

5̄
), it is possible to recover the correct low-energy matter content.

The Yukawa couplings are placed on either y = (0, πR) or y = ±πR/2 branes. The resulting theory is not
“grand unified theory” in the usual sense, since D and L (Q and U, E) come from different (hyper)multiplets.
The proton decay from broken gauge boson exchange is absent, and there is no SU(5) relation among the
Yukawa couplings. Nevertheless, the theory still keeps the desired features of the “grand unified theory”: the
quantization of hypercharges and the unification of the three gauge couplings.

3 This assignment is different from that adopted in Ref. [7].
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interactions are

L5 =
∫

d2θ

[

1

2
{δ(y) − δ(y − πR)}

√
2πRyuT10T10H5

+
1

2
{δ(y) ∓ δ(y − πR)}

√
2πR ydT10F5̄H5̄

]

+ h.c., (9)

where ∓ takes − and + in the case of (i) and (ii), respectively. (We can easily check that the

above expression is invariant under both Z2 : {y → −y, T10T10H5 → T10T10H5, T10F5̄H5̄ →
T10F5̄H5̄} and Z ′

2 : {y′ → −y′, T10T10H5 → −T10T10H5, T10F5̄H5̄ → ∓T10F5̄H5̄}.) After

integrating out the extra dimensional coordinate y, we get SU(5)-invariant Yukawa couplings

in 4d:

L4 =
∞
∑

n=0

∫

d2θ

[√
2yu

(

1√
2δn,0

QUH
(2n)
F +QQH

(2n+1)
C + UEH

(2n+1)
C

)

+
√

2yd

(

1√
2δn,0

QDH
(2n)

F̄
+

1√
2δn,0

LEH
(2n)

F̄
+QLH

(2n+1)

C̄
+ UDH

(2n+1)

C̄

)]

+ h.c.,(10)

where the interactions between the zero-mode Higgs doublets and quarks and leptons are pre-

cisely those of the minimal supersymmetric SU(5) model. (Note that the SU(5) transformation

caused by the broken generators T â mixes different levels of KK modes, due to non-trivial pro-

files of the broken gauge transformation parameters ξâ(y) in the extra dimension.)

3.2 Gauge coupling unification

We now discuss some phenomenological issues of the model, beginning with gauge coupling

unification. Since the heavy unified gauge boson masses are given by 1/R, it is natural to iden-

tify 1/R = MU , the unification scale, and this is indeed correct to zero-th order approximation.

Then, the corrections to this naive identification come from two sources.

First, since the brane interactions only have to preserve symmetries which remain unbroken

locally at that fixed point, we can introduce brane kinetic terms for the SU(3)C , SU(2)L and

U(1)Y gauge fields at y = ±πR/2 with three different gauge couplings. (The operators on the

y = ±πR/2 branes do not have to preserve the full SU(5), since the broken gauge transforma-

tion parameters ξâ vanish on these branes.) However, we can expect that the effect of these

SU(5)-violating brane kinetic terms is small by making the following observation. Consider

the 5d theory where the bulk and brane gauge couplings have almost equal strength. Then,

after integrating out y, the zero-mode gauge couplings are dominated by the bulk contributions
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because of the spread of the wavefunction of the zero-mode gauge boson. Since the bulk gauge

couplings are necessarily SU(5) symmetric, we find that the SU(5)-violating effect coming from

brane ones is highly suppressed.

To illustrate the above point explicitly, we here consider an extreme case where the 5d

theory is truly strongly coupled at the cutoff scale M∗ where the field theory is presumably

incorporated into some more fundamental theory. Then, the bulk and brane gauge couplings

g5 and g4i defined by

L5 =
∫

d2θ

[

1

g2
5

WαWα +
1

2

{

δ(y − π

2
R) + δ(y +

π

2
R)
}

1

g2
4i

Wα
i Wiα

]

+ h.c., (11)

are estimated to be 1/g2
5 ∼ M∗/(24π3) and 1/g2

4i ∼ 1/(16π2) using a strong coupling analy-

sis in higher dimensions [14]. Here, g5 and g4i are the SU(5)-invariant and SU(5)-violating

contributions. Note that the brane contributions vanish for Wα
X , which is odd under Z ′

2, but

are non-zero and different for Wα
i , where i runs over SU(3)C , SU(2)L and U(1)Y , so that the

couplings g4i differ from each other by factors of order unity. On integrating over y, we obtain

zero-mode 4d gauge couplings g0i at the unification scale

1

g2
0i

=

(

2πR

g2
5

+
1

g2
4i

)

∼
(

M∗R

12π2
+

1

16π2

)

. (12)

Since we know that g0i ∼ 1, we must take M∗R ∼ 12π2 in this strongly coupled case. This shows

that the SU(5)-violating contribution from the brane kinetic terms on y = ±πR/2 (the second

term in the above equations) is suppressed by an amount equivalent to a loop factor 1/(16π2)

relative to the dominant SU(5)-preserving contribution (the first term). Of course, this is a

tree-level correction, and the brane contribution is small relative to the bulk term because of the

large volume factor 2πRM∗. Note that in the realistic case the theory is not necessarily strongly

coupled at the cutoff scale (M∗R
<∼ 12π2) as we will see later. Even then, however, it is true

that the brane piece is generically suppressed compared with the bulk piece, after integrating

out y, due to the volume factor 2πRM∗. For comparable values of the dimensionless couplings

g2
5M∗ and g2

4i, this corresponds, even in the case of M∗R = 4, to much less than a 1% correction

to the prediction of the weak mixing angle.

The second correction to gauge unification originates from the running of the gauge couplings

above the compactification scale due to the KK modes not filling degenerate SU(5) multiplets.4

4 We thank D. Smith and N. Weiner for discussions on this issue.
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From the 4d point of view, the zero-mode gauge couplings g0i at the compactification scale Mc

(= 1/R) is given by [15]

1

g2
0i(Mc)

' 1

g2
0(M∗)

− b

8π2
(M∗R − 1) +

b′i
8π2

ln(M∗R), (13)

where b and b′i are constants of O(1). A crucial observation is that the coefficient b is SU(5)

symmetric, ie. b is the same for SU(3)C , SU(2)L and U(1)Y . This is because the power-law

contributions come from renormalizations of 5d kinetic terms, which must be SU(5) symmetric.

Since the sum of the first two terms must be O(1) to have g0i(Mc) ∼ 1, the SU(5)-violating

contribution from the running (the third term in the right-hand side of the above equation)

is suppressed by a loop factor because the running is only logarithmic. Furthermore, the

differences b′i−b′j are smaller than the corresponding differences of the beta-function coefficients

at low energies ((b′3, b
′
2, b

′
1) = (0, 2, 6)), so that we arrive at the following picture. As the three

gauge couplings are evolved from the weak scale to higher energies, they approach each other

with the usual logarithmic running, and at the compactification scale Mc they take almost

equal values but are still slightly different. The further relative evolution above Mc is slower,

but finally the three couplings unify at the cutoff scale M∗, where our 5d theory is incorporated

into some more fundamental theory. Note that Mc < MU < M∗, where MU is the usual zero-th

order value of the unification scale, MU ' 2 × 1016 GeV. We assume the physics above M∗ to

be SU(5) symmetric.

To estimate the threshold correction coming from this second source, we consider the one-

loop renormalization group equations for the three gauge couplings. Assuming that the cou-

plings take a unified value g∗ at M∗, they take the following form:

α−1
i (mZ) = α−1

∗ (M∗) +
1

2π

{

αi ln
mSUSY

mZ
+ βi ln

M∗

mZ

+γi

Nl
∑

n=0

ln
M∗

(2n+ 2)Mc
+ δi

Nl
∑

n=0

ln
M∗

(2n+ 1)Mc

}

, (14)

where (α1, α2, α3) = (−5/2,−25/6,−4), (β1, β2, β3) = (33/5, 1,−3), (γ1, γ2, γ3) = (6/5,−2,−6)

and (δ1, δ2, δ3) = (−46/5,−6,−2). Here, we have assumed a common mass mSUSY for the

superparticles for simplicity, and the sum on n includes all KK modes below M∗, so that

(2Nl + 2)Mc ≤ M∗.
5 Contributions proportional to γi result from the KK modes of the Higgs

5 Terminating the sum of KK modes at M∗ may be justified in more fundamental theory such as string
theory [16].
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doublets and of the standard model gauge bosons and their N = 2 partners, while terms

proportional to δi result from the KK modes of the Higgs triplets and from the vectors and chiral

adjoints of the broken SU(5) generators. In 4d unified theories one typically only considers

threshold corrections from a few SU(5)-split multiplets with mass close to MU . In the present

theory there are SU(5)-split KK multiplets right up to M∗.

Taking a linear combination of the three equations, we obtain

(5α−1
1 − 3α−1

2 − 2α−1
3 )(mZ) =

1

2π

{

8 ln
mSUSY

mZ
+ 36 ln

(2Nl + 2)Mc

mZ
− 24

Nl
∑

n=0

ln
(2n + 2)

(2n + 1)

}

, (15)

where we have set M∗ = (2Nl + 2)Mc. The corresponding linear combination in the usual 4d

minimal supersymmetric SU(5) grand unified theory takes the form

(5α−1
1 − 3α−1

2 − 2α−1
3 )(mZ) =

1

2π

{

8 ln
mSUSY

mZ
+ 36 ln

MU

mZ

}

, (16)

where MU = (M2
ΣMV )1/3, and MΣ and MV are the adjoint Higgs and the broken gauge boson

masses, respectively [17]. Therefore, we find the following correspondence between the two

theories:

ln
Mc

mZ

= ln
MU

mZ

+
2

3

Nl
∑

n=0

ln
(2n + 2)

(2n + 1)
− ln(2Nl + 2), (17)

from the gauge running point of view. Since the experimental values of the gauge couplings

restrict MU to the range 1× 1016 GeV<∼MU
<∼ 3× 1016 GeV, we can find the range of Mc for a

given Nl. For instance, if we take Nl = 4 (M∗ = 10Mc), we find that the compactification scale

must be in the range

3 × 1015 GeV <∼ Mc <∼ 8 × 1015 GeV, (18)

which is somewhat lower than the usual 4d unification scale MU ' 2 × 1016 GeV.6 There is

also an independent bound on Nl coming from another linear combination (5α−1
1 − 12α−1

2 +

7α−1
3 )(mZ), but it is rather weak due to the experimental uncertainty of the strong coupling

constant α3(mZ).

The above estimate is not precise, since only the leading logarithmic contributions are

included. A detailed analysis of these corrections to gauge coupling unification will be given in

6 If the fundamental scale of gravity is M∗, the 4 dimensional reduced Planck mass, Mpl ' 2.4 × 1018 GeV,
can result if there are additional dimensions in which only gravity propagates with a size of the unification scale.
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Ref. [18]. Nevertheless, the number given in Eq. (18) is very encouraging in that the dimension 6

proton decay, p→ e+π0, induced by the exchange of an X gauge boson, may be seen in the near

future. The present experimental limit from Super-Kamiokande, τp→e+π0 > 1.6 × 1033 years

[19], is translated into Mc
>∼ 5 × 1015 GeV, remembering that the X gauge boson mass is

Mc and the coupling of the X gauge boson to quarks is
√

2 times larger than that of the

standard model gauge boson. Thus Nl ≥ 4, corresponding to a hierarchy M∗/Mc ≥ 10, could

be excluded by an increase in the experimental limit on τp→e+π0 by a factor of 6. In fact, if we

require Nl > 1, so that there is some energy interval where the theory is described by higher

dimensional field theory (M∗/Mc ≥ 4), we obtain an upper bound on the compactification scale

Mc < 1.4 × 1016 GeV, which means that increasing the experimental limit by a factor of 60

covers the entire parameter space of the model.

3.3 U(1)R symmetry

Knowing that 1/R is somewhat smaller than MU , one may worry about too fast proton decay

caused by an exchange of the colored Higgs multiplet, since they couple to quarks and squarks

through the interactions of Eq. (10). However, these dimension 5 proton decay operators are

not generated in our theory. The mass terms for the colored Higgs supermultiplets are

L4 =
∞
∑

n=0

∫

d2θ
(

1

R
H

(2n+1)
C H

c(2n+1)
C +

1

R
H

(2n+1)

C̄
H

c(2n+1)

C̄

)

+ h.c., (19)

coupling H to Hc. The conjugate fields, H
c(2n+1)
C and H

c(2n+1)

C̄ , do not couple directly to the

quark and lepton superfields because of the U(1)R symmetry shown in Table 2 and discussed

below. This symmetry is only broken by small supersymmetry breaking effects, so we predict

that there is no proton decay induced by dimension 5 operators.

In order to be complete, however, we must also forbid the brane interactions

L5 =
∫

d2θ
[

1

2
{δ(y) + δ(y − πR)}H5H5̄ +

1

2
{δ(y) ± δ(y − πR)}T10T10T10F5̄

]

+ h.c.,(20)

where ± takes + and − in the case of (i) and (ii), respectively. For this purpose, it is useful to

notice that the 5d bulk Lagrangian possesses a continuous U(1)R symmetry. This bulk U(1)R

is a linear combination of the U(1) subgroup of the SU(2)R automorphism group of N = 2

supersymmetry algebra and a vector-like non-R U(1) symmetry under which the Higgs fields

transform as H5(−1), H5̄(−1), Hc
5
(+1), Hc

5̄
(+1). The point is that we can extend this U(1)R to
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Σ H5 H5̄ Hc
5

Hc
5̄

T10 F5̄ N1

U(1)R 0 0 0 2 2 1 1 1

Table 2: U(1)R charges for chiral superfields.

the full theory by assigning appropriate charges to the quark and lepton superfields. The full

U(1)R symmetry, with charge assignments given in Table 2, allows the Yukawa couplings in

Eq. (9). Hence, imposing the matter quantum numbers of Table 2, all interactions of Eq. (20)

are forbidden by the U(1)R symmetry. This not only solves the problem of dimension 5 proton

decay completely (both from tree-level brane operators in Eq. (20) and from colored Higgsino

exchanges), but also naturally explains why the weak Higgs doublets HF and HF̄ are light.

Note that this U(1)R also forbids unwanted brane operators [F5̄H5]θ2 and [T10F5̄F5̄]θ2, since it

contains the usual R-parity as a discrete subgroup.7

3.4 Supersymmetry breaking

An important question is the origin of 4 dimensional N = 1 supersymmetry breaking. In 4d

it is well-known that the supersymmetry breaking must be isolated to some degree from the

particles and interactions of the minimal supersymmetric standard model. In fact, the argument

of Dimopoulos and Georgi shows that this isolation is only necessary for the matter fields [2].

It is therefore quite clear that the ideal location for supersymmetry breaking is the branes at

y = ±πR/2. Remarkably, one immediately finds that this results in a supersymmetry breaking

scheme which is precisely that of the gaugino mediation mechanism [9]. Since the gauginos and

Higgs fields are in the bulk they have direct couplings to the supersymmetry breaking field S,

which we take to be a gauge and U(1)R singlet, on the y = ±πR/2 branes

L5 =
1

2
{δ(y − πR/2) + δ(y + πR/2)}

[
∫

d2θSWα
i Wiα +

∫

d4θ(S†HFHF̄ + S†SHFHF̄ ) + h.c.
]

,

(21)

7 The above U(1)R allows the brane operator [H5H5̄]θ2θ̄2 on the y = (0, πR) branes. Thus, it is possible
to produce a µ term (a supersymmetric mass term for the Higgs doublets) of the order of the weak scale by
the mechanism of Ref. [20] after the breakdown of N = 1 supersymmetry, through a constant term in the
superpotential needed to cancel a positive cosmological constant arising from the supersymmetry breaking.
(The superpotential constant term comes from an explicit or spontaneous breaking of the U(1)R.)
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where coefficients of order unity, in units of M∗, are omitted. Note that F -component expec-

tation value for the S field breaks the U(1)R symmetry to R parity. This generates gaugino

masses as well as the µ and µB parameters, while the squarks and sleptons obtain masses

through radiative corrections so that the supersymmetric flavor problem is naturally solved.

Superparticle phenomenology is more tightly constrained than in a general theory of gaugino

mediation. The distance between the supersymmetry breaking and matter branes is known

quite precisely, and, furthermore, the proton decay constraint does not allow very large values

for M∗/Mc, so that the ratio of µB/µ is not a significant problem. It is also remarkable that,

even though we have a unified gauge symmetry with precise gauge coupling unification, there

is no unification of the three gaugino masses. They originate from the only location in the

theory where the gauge transformations ξX(y) are forced to vanish, so that the coefficients of

SWα
i Wiα in Eq. (21) is different for the SU(3)C , SU(2)L and U(1)Y terms.

3.5 Quark and lepton masses

The SU(5) invariance of Eq. (9) guarantees the successful mb/mτ mass relation [21], but is

not realistic, since it yields ms/md = mµ/me. As discussed at the end of the previous section,

if the unified symmetry is broken by an orbifold compactification, there is a new, constrained

mechanism for obtaining SU(5) breaking in fermion mass relations. Here we give a simple

specific realization of this mechanism which is sufficient to allow realistic fermion masses. We

add bulk hypermultiplets which transform as 5 + 5̄: (B,Bc) + (B̄, B̄c). We assume that they

have no bulk mass term, for simplicity. We assign both B and B̄ a U(1)R quantum number

of +1, so that these hypermultiplets should be thought of as matter fields rather than Higgs

fields. The Z2×Z ′
2 quantum numbers of these hypermultiplets can be chosen such that the zero

modes are either weak doublets or color triplets; both possibilities lead to realistic theories. The

SU(5) invariant brane interactions at y = 0 relevant for down-type quark and charged lepton

mass matrices are

L5 =
∫

d2θδ(y)
(

B(B̄ + F5̄) + T10(B̄ + F5̄)H5̄

)

, (22)

where coupling parameters are omitted. Corresponding interactions are placed at y = πR to

maintain the Z2 × Z ′
2 invariance of the theory. The lepton doublets and right-handed down

quarks are found to lie partly in B̄ and partly in F5̄, but in different combinations. Hence in

general the SU(5) relations between the down and charged lepton masses are removed. The

analysis is very simple when the mass terms of Eq. (22) are smaller than Mc. Suppose that the
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zero modes of B are weak doublets. In this case the lepton doublet lies partly in B̄ and partly

in F5̄, while the down quark lies completely in F5̄. Hence T10F5̄H5̄ contributes to both down

and lepton masses, while T10B̄H5̄ contributes only to the lepton masses. One can imagine that,

for some flavor symmetry reason, these mixing terms are only important for the 2-2 entry of

the Yukawa matrices, so that the Georgi-Jarlskog mass matrices follow [12].

Note that the above mechanism could, in principle, introduce supersymmetric flavor prob-

lem, since B and B̄ fields have supersymmetry breaking masses by coupling to S on the

y = ±πR/2 branes and give non-universal squark and slepton masses through the mixing

with F5̄. However, the amount of induced flavor violation strongly depends on the structure

of the Yukawa couplings. Suppose the Yukawa coupling of the B̄ field, [T10B̄H5̄]θ2, is of order

one. Then, the mixing between B̄ and the second generation F5̄ with angle of O(0.01) will

be sufficient to break unwanted SU(5) relations on fermion masses. In this case, the flavor

violating squark and slepton masses are suppressed compared with the gaugino masses, and

the induced flavor violating processes at low energy would be sufficiently small.

Neutrino masses can easily be incorporated into our theory. Introducing three right-handed

neutrino superfields N1’s, with U(1)R charge of +1, on the y = (0, πR) branes, we can write neu-

trino Yukawa couplings [F5̄N1H5]θ2 and Majorana mass terms for N1’s on the branes, accommo-

dating the conventional see-saw mechanism [22] to explain the smallness of the neutrino masses.

Alternatively, we could introduce N1’s on the y = ±πR/2 branes and forbid their mass terms

by imposing some symmetry such as U(1)B−L. Then, with appropriate couplings to heavy bulk

fields of masses ∼M∗, exponentially suppressed Yukawa couplings, exp(−πRM∗/2)[F5̄N1H5]θ2 ,

are generated via exchanges of these heavy bulk fields. This provides a mechanism of naturally

producing small Dirac neutrino masses in the present framework.

4 Conclusions

It is well-known that compactifying a higher-dimensional gauge field theory on a compact

manifold leads to gauge symmetry breaking. For example, compactification on a circle leads to

a mass for all gauge bosons corresponding to non-trivial gauge transformations on the circle.

The only gauge bosons which remain massless correspond to zero-mode gauge transformations.

Compactifying on an orbifold, with an orbifold symmetry which acts non-trivially on the gauge

bosons, constrains the form of the gauge transformations, and reduces the number of their

zero modes. This removal of zero-mode gauge transformations therefore decreases the gauge
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symmetry of the resulting 4d theory. Such a reduction can also be seen because the orbifold

symmetry removes some of the zero-mode states that would be necessary to realize the 4d gauge

symmetry. Kawamura [5] has shown that a 5d theory with SU(5) gauge symmetry compactified

on the orbifold S1/(Z2 ×Z ′
2) elegantly reduces the 4d gauge symmetry to SU(3)C × SU(2)L ×

U(1)Y , and that this is accompanied by a reduction in the zero-mode Higgs states to only those

that are weak doublets.

We have constructed a complete 5-dimensional SU(5) unified field theory compactified on

the orbifold S1/(Z2 × Z ′
2). The theory possesses the following features:

• Quarks and leptons are introduced at orbifold fixed points which preserve SU(5) invari-

ance, thereby yielding an understanding of their gauge quantum numbers.

• Quark and lepton masses arise from SU(5) invariant Yukawa couplings at these fixed

points, which can therefore display SU(5) fermion mass relations such as mb = mτ . Mixing

between heavy bulk matter and brane matter can lead to non-SU(5) symmetric mass

relations, as the zero-mode structure of the bulk matter is SU(5) violating.

• The mass matrix for the color triplet Higgs particles is determined by compactification,

and results in the complete absence of dimension 5 proton decay from the exchange of

these states.

• Until 4d supersymmetry is broken, the theory possesses an exact U(1)R symmetry. This

forbids all proton decay from dimension 4 and dimension 5 operators.

• The orbifold has fixed points where SU(5) is broken. This leads to corrections to gauge

coupling unification arising from non-SU(5) symmetric brane gauge kinetic terms and from

KK modes of gauge and Higgs multiplets which do not fill degenerate SU(5) multiplets.

We have argued that the former are negligibly small. The latter yield small corrections to

the weak mixing angle prediction, in a direction which improves the agreement between

supersymmetric unification and experiment.

• The X gauge boson, which induces p → e+π0, has a mass equal to the compactification

scale, 1/R, which is smaller than the usual 4d unification scale of 2×1016 GeV by a factor

between 1.4 and 4. We predict that p→ e+π0 will be discovered by further running of the

Super-Kamiokande experiment, or at a next generation megaton proton decay detector.

• Supersymmetry breaking occurs on a brane distant from the matter brane, resulting in

the generation of gaugino masses and the µ/µB parameters. This breaking is communi-

cated to matter by gaugino mediation, so that there is no supersymmetric flavor problem.
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While supersymmetry breaking breaks U(1)R, it preserves R parity. Since the full SU(5)

gauge transformations do not act on the supersymmetry breaking brane, the gaugino mass

parameters do not unify.

• See-saw neutrino masses arise on the matter brane.
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