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Abstract

Exploring the Augmentation of Fuzzing Techniques with Interface Awareness

by

Jake Corina

Device drivers are an essential part in modern Unix-like systems to handle opera-

tions on physical devices, from hard disks and printers to digital cameras and Bluetooth

speakers. The surge of new hardware, particularly on mobile devices, introduces an ex-

plosive growth of device drivers in system kernels. Many such drivers are provided by

third-party developers, which are susceptible to security vulnerabilities and lack proper

vetting. Unfortunately, the complex input data structures for device drivers render tra-

ditional analysis tools, such as fuzz testing, less effective, and so far, research on kernel

driver security is comparatively sparse.

In my thesis, I present DIFUZE, an interface-aware fuzzing tool to automatically

generate valid inputs and trigger the execution of the kernel drivers. We leverage static

analysis to compose correctly-structured input in the userspace to explore kernel drivers.

DIFUZE is fully automatic, ranging from identifying driver handlers, to mapping of device

file names, to constructing complex argument instances. We evaluate our approach on

seven modern Android smartphones. The results show that DIFUZE can effectively

identify kernel driver bugs, and reports 32 previously unknown vulnerabilities, including

flaws that lead to arbitrary code execution.
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Chapter 1

Introduction

Smartphones and other mobile devices occupy a central part of our modern lives. They

are the last thing many of us interact with at night and the first thing we reach for in

the morning. We use them to carry out financial transactions, to communicate with

family, friends, and coworkers, and allow them to record location, audio, and video.

Increasingly, they are used not just for personal and commercial purposes, but also to

facilitate government activity.

The importance of the security of these devices is obvious. If an adversary compro-

mises the device that has, in a very real sense, become our gateway to the connected

world, he gains an enormous amount of power. Therefore, much effort has gone into

ensuring the security of smartphones. This security is achieved using sophisticated appli-

cation sandboxing, by leveraging many userspace attack mitigation techniques (such as

Address Space Layout Randomization, Data Execution Protection, and SELinux), and

by making security a first-tier development goal. However, there is a weakness in the

security of mobile devices: their kernels.

Unlike userspace applications, for which a number of vulnerability mitigation tech-

niques are available and used, the kernels of modern operating systems are relatively

vulnerable to attack despite available protections [1]. As a result, as vulnerabilities in

userspace applications become rarer, attackers turn their focus on the kernel. For exam-
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Introduction Chapter 1

ple, over the last three years, the share of Android vulnerabilities that are in kernel code

increased from 4% (in 2014) to 39% (in 2016) [2], highlighting the need for techniques to

detect and eliminate kernel bugs.

The kernel can itself be split into two types of code: core kernel code and device

drivers. The former is accessed through the system call (syscall) interface, allowing a

user to open files (the open() system call), execute programs (the execve() system

call), and so on. The latter, on POSIX-compliant systems (which describes Linux and

FreeBSD/MacOS and covers over 98% of the mobile phone market), are typically accessed

via the ioctl interface. This interface, implemented as a specific system call, allows for

the dispatch of input to be processed by a device driver. According to Google, 85% of

the bugs reported against the Android kernel (which is a close fork of Linux) are in driver

code written by third-party device vendors [2]. With the continually growing number of

mobile devices in use, and with the criticality of their security, automated approaches

to identify vulnerabilities in device drivers before they can be exploited by attackers are

critical.

While automatic analysis of the system call interface has been thoroughly explored

by related work [3, 4], ioctls have been neglected. This is because, while interaction

with syscalls follows a unified, well-defined specification, interaction with ioctls varies

depending on the device driver in question. Specifically, the ioctl interface comprises

structured arguments for each of a set of valid commands, with both the commands

and the data structures being driver-dependent. While this has security implications

(i.e., a number of pointers, dynamically-sized fields, unions, and sub-structures in these

structures increase the chance of a vulnerability resulting from the mis-parsing of the

structure), it also makes these devices hard to analyze. Any automated analysis of such

devices must be interface-aware, in the sense that, to be effective, it must interact with

ioctls using the command identifiers and data structures expected by them.

2
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In my thesis, I propose DIFUZE, a novel combination of techniques to enable interface-

aware fuzzing, and facilitate the dynamic exploration of the ioctl interface provided by

device drivers. DIFUZE performs an automated static analysis of kernel driver code to

recover the specific ioctl interfaces, including the valid commands and associated data

structures. It uses this to generate inputs to ioctl calls, which can be dispatched to

the kernel from userspace programs. These inputs match the commands and structures

used by the driver, enabling deeper exploration of the ioctls with fewer cycles wasted.

The recovered interface allows the fuzzer to make meaningful choices when mutating the

data; typed fields like pointers, enums, and integers should not be handled as simply a

sequence of bytes. DIFUZE stresses assumptions made by the drivers in question and

exposes serious security vulnerabilities. In our experiments, we analyzed seven modern

mobile devices and found 36 vulnerabilities of which 32 were previously unknown (4

vulnerabilities found by DIFUZE were patched during the course of our experiments),

ranging in severity from flaws that crash the device in question (Denial of Service) to

bugs that can give the attacker complete control over the phone.

In summary, my thesis makes the following contributions:

Interface-aware fuzzing. We designed a novel approach to facilitate the fuzzing of

interface-sensitive targets, such as the ioctl kernel driver interface on POSIX

systems.

Automated driver analysis. We developed a fuzzing framework, that can automat-

ically analyze the kernel sources of a device. For every driver, the tool identifies

all the ioctl entry points, as well as the corresponding structures, and device file

names. We apply our technique to analyze seven devices, identifying 36 vulnerabil-

ities. These vulnerabilities, ranging from DoS to code execution flaws, demonstrate

the efficacy and impact of our approach. We responsibly disclosed these vulnera-
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bilities to the respective driver vendors.

DIFUZE prototype. We implemented our system, dubbed DIFUZE, and open source

it in the hopes that it will be useful for future security researchers.

4



Chapter 2

Background and Related Work

In this section, we will explain the unique challenges that we must overcome (and why

these challenges make existing state-of-the-art systems inapplicable to ioctl fuzzing), in-

troduce the platform (Android) in which our fuzzing tool operates, and compare previous

work on finding program vulnerabilities.

2.1 POSIX Device Drivers

The POSIX standard specifies an interface for the interaction of userspace applications

with device drivers. This interface supports interaction with the device through device

files, which are special files that represent the userspace presence of the kernel-resident

device drivers. After a userspace application obtains a handle to the device with the

open() system call, there are multiple ways in which the application can interact with

these files.

Different devices require different system calls to fulfill their functionalities. For

example, read(), write(), and seek() are presumably applicable for a hard drive device

file (showing the contents of the hard drive as, essentially, a single file). For an audio

device, read() might read raw audio data from the microphone, and write() might

write raw audio data to the speakers, and seek() might be unused.

5
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However, some functionality cannot be implemented through traditional system calls.

For example, for the audio device, how would a userspace application configure the

sampling rate at which to record or play audio? Such out-of-band actions are supported

by the POSIX standard through the ioctl() interface1. This system call allows drivers

to expose functionality that is hard to model as a traditional file.

To support generality, the ioctl() interface can receive arbitrary driver-specified

structures as input. It’s C prototype looks like int ioctl(int file descriptor, int

request, ...), where the first argument is the open file descriptor, the second argument

is an integer commonly known as the command identifier, and the type and quantity of

the remaining arguments are dependent on the driver and the command identifier.

Challenges. The aforementioned property makes ioctl system calls especially suscep-

tible to vulnerabilities: First, unlike with read() and write(), the data provided to an

ioctl() call are often instances of extremely complex, non standard, data structures.

Parsing of such structures is not trivial, and any mistake could introduce critical vulner-

abilities directly into the kernel context. Second, the generality of the data structure also

makes the analysis of ioctl() interfaces difficult, as an analyst must have knowledge

of how the driver in question processes different command identifiers, and what type of

data it expects for the optional arguments.

These are the core problems that we aim to solve. We designed DIFUZE to automat-

ically recover command identifiers and structure information, build the required complex

data structures, and fuzz devices with ioctl() interfaces to find security vulnerabilities,

with minimal required action by human analysts.

1In the original standard, this interface was only designed for certain types of devices, but this has
changed in modern implementations.
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2.2 Android Operating System

Android is designed as an operating system for smartphones. A recent report shows

that Android has dominated the smartphone OS market, with an 86.8% share in 2016

Q3 [5]. Although Android designers take cautious steps to safeguard the devices, there

are a number of vulnerabilities in smartphone systems [6]. Given the popularity and

increasing security problems of Android, we choose Android systems as the main target

platform to evaluate our analysis approach. Note that DIFUZE also works on other

Unix-like systems.

Android is based on the Linux kernel, which has a monolithic architecture. Although

kernel modules (such as device drivers) provide a certain level of modularity, the design

principle is still monolithic, in the sense that the entire kernel runs in a single memory

space, with all its parts being equally privileged [7]. Therefore, any vulnerability in a

device driver could compromise the entire kernel. Indeed, in 2016 more than 80% of the

bugs reported in the Android kernel were from driver code written by vendors [2]. The

Android Open Source Project allows vendors (e.g., Sony, HTC) to customize Android

kernel drivers to support new hardware, such as digital cameras, accelerometers, or GPS

devices. Because security often takes a back seat to time-to-market for such companies,

their development process is susceptible to the introduction of security vulnerabilities.

Thankfully, the openness of the Android system makes the source code publicly available

under the GNU General Public License [8]. This facilitates our approach, as it provides

access to high-level, semantically rich information about a driver.

7
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2.3 Fuzz Testing

Fuzzing is a well-known technique for program testing that generates random data

as input to the programs [9]. It has drawn much research attention, such as SPIKE [10],

Valgrind [11], and PROTOS [12].

Fuzzing. The key prospect in fuzzing is to generate “mostly-valid” inputs to execute

a target program, exercise a wide range of functionality, and trigger some corner case

leading to a vulnerability. Dynamic taint tracking is a widely-used strategy to generate

potential inputs. Dowser [13] and BuzzFuzz [14] use taint tracking to generate inputs that

are more likely to trigger certain classes of vulnerabilities. However, for ioctl functions,

which require highly constrained inputs, these techniques are less effective. Approaches

based on taint analysis exist to recover the input format used by the underlying pro-

gram [15, 16], but they cannot recover the cross-dependency between values, e.g., given

a particular command identifier an ioctl handler will expect a further argument of a

particular type.

Evolutionary techniques represent another common input generation strategy in fuzzing

systems [17, 18, 19]. VUzzer [20], and SymFuzz [21] combine static analysis with mutation-

based evolutionary techniques to efficiently generate inputs. However, these techniques

are ineffective in generating highly constrained inputs. DIFUZE solves the problem by

first collecting possible ioctl command values and then fuzzing only the unconstrained

values with the expected input format.

If the input format of a program is known, fuzzing can be enhanced with a specifi-

cation of the valid inputs. Peach [22] is one of the industry standard tools. However,

it cannot generate live data (i.e., data containing active pointers to other data), and, as

we show in Section 8, many device drivers require input structures that contain pointers.

Grammar-based techniques have been used to fuzz file formats [23], interpreters [24, 25],

8
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and compilers [26, 27], but these techniques require inputs to have a fixed format.

Kernel and driver fuzzing. Fuzzing operating system interfaces or system calls is a

practical approach to testing the operating system kernel [3, 4]. Most drivers use ioctl

functions, a POSIX standard, to interact with userspace. As discussed in Section 3.1,

ioctls are complex, and they require specific command values and data formats gen-

erated by users. Identifying valid command values and their associated data structures

are the two key problems in ioctl fuzzing. Some tools have been developed to test

ioctl interfaces for Windows kernels, such as iofuzz [28], ioattack [29], ioctlbf [30] and

ioctlfuzzer [31]. However, these tools depend on the extensive logging and tracing of

information provided by the Windows kernel, as well as the format of ioctl commands

specific to Windows. Moreover, many of these tools are simplistic in nature. They in-

volve simply attaching to processes and hooking the Windows ioctl call. Once hooked,

the tool mutates the values when a call is made. This is lacking in several aspects e.g.

the processes may not exercise the full capability of the drivers, and you cannot know

the type information of the incoming data. To solve this problem, DIFUZE analyzes

the source code of device drivers to identify valid commands and the corresponding data

structure. The analysis techniques that we use require no modification to the actual

device.

The extraction of valid ioctl commands was previously attempted by Stanislas, et al.,

but the state-of-the-art system was unable to scale to real-world kernel modules [32].

Conversely, as we show in Section 8, DIFUZE scales to (and finds vulnerabilities in)

large kernel modules on real devices.

Trinity [3] and syzkaller [4] are specifically developed for Linux syscall fuzzing. As

we show in Section 8, they perform badly when fuzzing ioctl handlers of device drivers.

Although syzkaller uses additional instrumentation techniques, like Kernel Address Sani-

tizer [33], to detect more bugs, these techniques cannot be directly used on vendor devices,

9
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since they require the analyst to reflash the devices using custom firmware, which is fre-

quently not supported. Several approaches [34, 35, 36, 37, 38] concentrate on fuzzing

specifically-chosen syscalls and drivers. However, they only focus on specific functions

and cannot be generalized to other syscalls and drivers. DIFUZE is the first completely

automated system that can be generalized to fuzz all Linux kernel drivers on a device

running an unmodified kernel.

2.4 Other Analyses

Aside from fuzzing, there are two other analysis techniques, symbolic execution, and

static analysis, that are related to our work. We will introduce these mechanisms and

explain how they affect our design.

Symbolic execution. Symbolic execution is a technique that uses symbolic variables

to generate constrained input and satisfy complex checks [39]. DART [40], SAGE [41],

Fuzzgrind [42] and Driller [43] combine symbolic execution with random testing to in-

crease the code coverage. BORG [44] uses symbolic execution to generate inputs more

likely to trigger buffer overreads. Engineering issues of performing symbolic execution

on the raw devices and the fundamental path explosion problem (made all the worse by

complex kernel systems) render these techniques impractical for kernel drivers.

Static analysis. Static analysis is a popular technique to find program vulnerabilities

without executing the program in question [45]. To maximize precision, these techniques

typically require source code to perform the analysis. Since many system kernels (in-

cluding the Linux kernel) and device drivers are open-source, kernel security can greatly

benefit from static analysis [46]. For example, Ashcraft, et al. developed compiler exten-

sions to catch integers read from untrusted sources in Linux and OpenBSD kernels [47].

Post, et al. used a bounded model checker to find deadlocks and memory leaks in Linux

10
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kernels [48]. Ball, et al. built a static analysis tool with a set of rules to prove the

correctness of Windows drivers [49].

One limitation of most static analysis tools is the production of many false positives.

Since our work leverages fuzzing for the actual vulnerability detection step, all identified

vulnerabilities are actual bugs, and false positives are avoided. Another drawback of static

analysis techniques is that the analysis often needs a manual specification of security

policies and rules. In contrast, we design DIFUZE to automatically identify kernel drivers

and construct valid data structures.

11



Chapter 3

Overview

In this section, we will provide an overview of our interface-aware fuzzing approach and

its application to vulnerability detection in device drivers through ioctl fuzzing. We

will also present an example that will be referenced throughout the thesis to assist the

curious reader in understanding our end-to-end system.

Figure 3.1 demonstrates the high-level workflow of the system. DIFUZE requires,

as input, the source code of the kernel (which will include the source code of the device

drivers) of the target host. Since Linux is licensed under the GNU General Public License,

any software that is linked against it, such as the kernel-driver interface code of device

drivers, must also be released. Thus, the kernel sources of Android devices are readily

available and can be used for our analysis.

Given this input, DIFUZE works through a number of phases to recover the interac-

tion interface for device drivers, generate the correct structures to exercise this interface,

and trigger the processing of these structures by the kernel of the target host. Because

the triggering of kernel bugs often renders a system unstable (leading to a hang or a

reboot), only DIFUZE’s final stage is done in vivo on the target host. The other stages

are executed on an external analysis host, their results are logged locally (for input re-

play, in case a bug is triggered), and then transferred over a network connection or debug

interface to the target host.

12
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Build System Instrument

ioctl Handler Identification

Device File Detection

Command Value Determination

Argument Type Identification

Finding the Structure Definition

Pointer Fixup

Sub-structure 
Generation

Type-Specific 
Value Creation

Structure Recursion

Execution (and 
Automatic Reboot)

XML 

Spec.

Interface Recovery

Structure Generation

On-device Execution

Fuzz 

Unit

Analysis Host

Analysis Host

Target  Host

Kernel Source Code
Backtraces to Record 

Vulnerabilities Being Triggered

Figure 3.1: The DIFUZE approach diagram. DIFUZE analyzes the provided kernel
sources using a composition of analyses to extract driver interface information, such as
valid ioctl commands and argument structure types. It synthesizes instances of these
structures and dispatches them to the target device, which triggers ioctl execution
with the given inputs and, eventually, finds crashes in the device drivers.

In more detail, these stages are:

Interface recovery. In its first stage, DIFUZE analyzes the provided sources to detect

what drivers are enabled on the target host, what device files are used to interact

with them, what ioctl commands they can receive, and what structures they

expect to be passed to these commands. This series of analyses are implemented

using LLVM, and are further described in Chapter 4. The end result of this stage

is a set of tuples of the device filename for the target driver, the target ioctl

command, and structure type definitions.

Structure generation. For each structure, DIFUZE continuously generates structure

instances : memory contents representing instantiations of the type information

recovered from the previous step. These instances are logged and transferred to

the target host, along with the associated target device filenames and target ioctl

command identifiers. This stage is detailed in Chapter 5.

On-device execution. The actual ioctl triggering component resides on the target

host itself. Upon receipt of the target device filename, the target ioctl command,

13
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and the generated structure instances, the executor proceeds to trigger the execu-

tion of ioctls. We discuss this stage in Chapter 6.

When a bug is triggered, and the target device crashes, DIFUZE logs the sequence

of inputs that was provided to the target ioctl for manual triage and analysis.

3.1 Example

To help the reader understand DIFUZE, we provide an example with a simple driver.

This example is presented in Listing 1 (the structure definitions), 3 (a wrapper around the

copy from user function, which presents minor complications to the analysis), Listing 4

(the main driver initialization code), and Listing 2 (the ioctl handlers themselves).

The function driver init in Listing 4 is the driver initialization function, which

will be called as part of kernel initialization. This function registers the device with a

name "example device" (line 8) and specifies that the function ioctl handler should

be invoked when a userspace application performs the ioctl system call (lines 10 and

11) on the device file (in this case, /dev/example device). Although the filename is

example device, the absolute path of the file depends on the type of device. The device

in the running example is a character device [50] and it will be created under the /dev/

directory, However, there are other types of device files, which will be created in different

directories. For instance, proc devices [51] will be created under the /proc/ directory.

We will refer to this example throughout the rest of the thesis as the “running exam-

ple”.

14
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1 typedef struct {

2 long sub_id;

3 char sub_name[32];

4 } DriverSubstructTwo;

5

6 typedef union {

7 long meta_id;

8 DriverSubstructTwo n_data;

9 } DriverStructTwo;

10

11 typedef struct {

12 int idx;

13 uint8_t subtype;

14 DriverStructTwo *subdata;

15 } DriverStructOne;

Listing 1: The structure definitions of our running example. DIFUZE automatically

recovers these and performs structure-aware fuzzing of the target driver.

15
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1 DriverStructTwo dev_data1[16];

2 DriverStructTwo dev_data2[16];

3 static bool enable_short; static bool subhandler_enabled;

4

5 long ioctl_handler(struct file *file, int cmd, long arg) {

6 uint32_t curr_idx;

7 uint8_t short_idx; void *argp = (void*) arg;

8 DriverStructTwo *target_dev = NULL;

9 switch (cmd) {

10 case 0x1003:

11 target_dev = dev_data2;

12 case 0x1002:

13 if(!target_dev)

14 target_dev = dev_data1; // program continues to execute

15 if(!enable_short) {

16 if (copy_from_user_wrapper((void*)&curr_idx, argp,

17 sizeof(curr_idx))) {

18 return -ENOMEM; // failed to copy from user

19 }

20 } else {

21 if (copy_from_user_wrapper((void*)&short_idx, argp,

22 sizeof(short_idx))) {

23 return -ENOMEM; // failed to copy from user

24 }

25 curr_idx = short_idx;

26 }

27 if(curr_idx < 16)

28 return process_data(&(target_dev[curr_idx]));

29 return -EINVAL;

30 default:

31 if(subhandler_enabled)

32 return ioctl_subhandler(file, cmd, argp);

33 }

34 return -EINVAL;

35 }

36

37 long ioctl_subhandler(struct file *file, int cmd, void *argp) {

38 DriverStructOne drv_data = {0};

39 DriverStructTwo *target_dev;

40 if(cmd == 0x1001) {

41 if(copy_from_user_wrapper((void*)&drv_data, argp,

42 sizeof(drv_data))) {

43 return -ENOMEM; // failed to copy from user

44 }

45 target_dev = dev_data1;

46 if(drv_data.subtype & 1)

47 target_dev = dev_data2;

48 // Arbitrary heap write if drv_data.idx > 16

49 if(copy_from_user_wrapper((void*)&(target_dev[drv_data.idx]),

50 drv_data.subdata,

51 sizeof(DriverStructTwo))) {

52 return -ENOMEM; // failed to copy from user

53 }

54 return 0;

55 }

56 return -EINVAL;

57 }

Listing 2: The ioctl handlers which expect very specific values for the command identifiers

and expect data to be presented in the proper structure for each command. The ioctl

processing is split across multiple functions.
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1 int copy_from_user_wrapper(void *buff, void *userp, size_t size) {

2 // copy size bytes from address provided by the user (userp)

3 return copy_from_user(buff, userp, size);

4 }

Listing 3: Like many real-world drivers, our example driver ships with a wrapped

copy from user function. Because of wrappers like this (and more complex ones), DI-

FUZE must support the analysis of nested functions.

1 static struct cdev driver_devc;

2 static dev_t client_devt;

3 static struct file_operations driver_ops;

4 __init int driver_init(void)

5 {

6 // request minor number

7 alloc_chrdev_region(&driver_devt, 0, 1, "example_device");

8 // set the ioctl handler for this device

9 driver_ops.unlocked_ioctl = ioctl_handler;

10 cdev_init(&driver_devc, &driver_ops);

11 // register the corresponding device.

12 cdev_add(&driver_devc, MKDEV(MAJOR(driver_devt), 0), 1);

13 }

Listing 4: The main driver initialization function of our running example. It dynamically

creates the driver file, the name of which must then be recovered by DIFUZE, and

registers the top-level ioctl handler, which must also be recovered.
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Interface Recovery

To provide structured input in the course of fuzzing device driver ioctls on a target

host, DIFUZE needs to recover the interface of that driver. The interface of a device

driver is comprised of the name/path of the device file used to communicate with the

device, the valid values for ioctl commands for that device, and the structure definition

of the ioctl data argument for the different ioctl commands.

To recover this data, DIFUZE uses a combination of analyses, implemented in LLVM.

As the Linux kernel does not lend itself to analysis (or even compilation) with LLVM, we

first developed an alternate build procedure. After this is done, we identify the filename

of the device files created by the device driver, find the ioctl handler, recover the valid

set of ioctl command identifiers, and retrieve the structure definitions for the data

arguments to those ioctl commands.

4.1 Build System Instrumentation

We take several steps to enable DIFUZE to perform LLVM analyses on Linux device

drivers.
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GCC compilation. First, we perform the manual step of setting up the kernel and

driver sources of the target host for compilation, using GCC. While this is generally

a well-documented process, the vendors of mobile devices do not go out of their way

to make their GPL-mandated source code releases easy to compile, so some manual

configuration effort is required. Once the source tree can be compiled with GCC, we run

a full compilation and log all executed commands.

GCC-to-LLVM conversion. We process the log of executed commands during the

compilation step with a GCC-to-LLVM command conversion utility that we created for

DIFUZE. This utility translates command-line flags from the format expected by GCC to

the format expected by LLVM utilities and enables the compilation of the kernel source

via LLVM. In its compilation, LLVM generates a bitcode file [52] for each source file. We

enable debug information to be embedded in the bitcode file, which helps us in extracting

the structure definitions as explained in Section 4.6

Bitcode consolidation. The analyses that DIFUZE undertakes operate on each driver

separately. As such, we consolidate the various bitcode files to create a single bitcode file

per driver. This allows us to carry out interface recovery analyses on a single bitcode file,

simplifying the analyses. This consolidated bitcode file is used in the following phases to

perform the analyses.

4.2 ioctl Handler Identification

As discussed in Section 2.1, much of the interaction with device drivers happens

through the ioctl interface. From userspace, the application calls the ioctl() system

call, passing in a file descriptor to the driver’s device file, a command identifier, and the

required structured data argument. When this system call is received in kernel space, the
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corresponding driver’s ioctl handler is invoked. This handler then dispatches the request

to different functionality inside the driver, depending on the command identifier. In the

case of our running example, the ioctl handler function is ioctl handler.

In order to recover valid command identifiers and the structure definitions of addi-

tional ioctl arguments, DIFUZE must first identify the top-level ioctl handler. Each

driver can register a top-level ioctl handler for each of its device files, and there are

several ways to do this in the Linux kernel. All of these methods, however, involve the

creation of one of a set of structures1 created for this purpose, with one of the fields

of these structures being a function pointer to the ioctl handler. A full list of these

structures, and corresponding field names is listed in Appendix A.1.

Our analysis to identify the ioctl handler is straightforward: using LLVM’s analysis

capabilities, we find all uses of any of these structures in the driver and recover the value

of the assignment of the ioctl handler function pointer. In the case of our running

example, we identify the write to the unlocked ioctl field of a file operations struc-

ture (Listing 4, line 9). We can then consider the function ioctl handler as the ioctl

handler.

4.3 Device File Detection

To determine the device file corresponding to an ioctl handler, we need to identify

the name provided in the registration of the ioctl handler (for example, in our running

example, the device file would be /dev/example device, from line 7 of Listing 4).

Depending on the type of device, there are several ways to register the file name in

the Linux kernel [53, 54]. For example, the registration of a character device [50] will use

the method alloc chrdev region to associate a name with the device. For proc devices,

1Specifically, there are 72 variations of these structures.
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the method proc create is used to provide the filename. Furthermore, as mentioned in

Section 3.1, depending on the device type, the directory in which the device file is found

may vary.

Given an ioctl handler, we use the following procedure to identify the corresponding

device name.

1. First, we search for any LLVM store instruction that is storing the address into

one of the fields of any operations structures listed in Appendix A.1.

2. We then check for any reference to the operations structure in any of the registration

functions [54].

3. We analyze the argument value for the device filename and return it if it is a

constant.

In case of the running example, Listing 4, we previously determine that the ioctl

handler function is ioctl handler. We identify that ioctl handler is stored in the

file operations structure (i.e., driver ops) at line 9 (Step 1), then check for the

usage of driver ops, as a parameter for the function cdev init at line 10 (Step 2).

The function cdev add implies that the device is a character device. We backtrack

to the allocation function for the device metadata (alloc chrdrv region) at line 7,

whose third argument is the device name, detect it as a constant string, and return

/dev/example device as the device name.

A driver could use dynamically created filenames, as shown in Listing 5. Unfortu-

nately, with the limitations inherent to static analysis, we miss such filenames and must

fallback to manual analysis (of course, if we wish to remain fully automatic we can simply

ignore these devices).

Next, we proceed on to identifying valid command identifiers accepted by a given

ioctl handler.
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1 VOS_INT __init RNIC_InitNetCard(VOS_VOID) {

2 ...

3 snprintf(pstDev->name, sizeof(pstDev->name),

4 "%s%s",

5 RNIC_DEV_NAME_PREFIX,

6 g_astRnicManageTbl[ucIndex].pucRnicNetCardName);

7 ...

8 }

Listing 5: Dynamically generated device name in RNIC driver on Huawei Honor phone.
DIFUZE fails to find the device name for this driver.

4.4 Command Value Determination

Given the ioctl handler, we perform a static inter-procedural, path-sensitive analysis

to collect all the equality constraints on the cmd value (i.e., the second argument of

the ioctl()). We then use Range Analysis [55] to recover the possible values for the

comparison operand. In the case of the ioctl example shown in Listing 2, we collect the

following constraints: cmd == 0x1003 (line 10), cmd == 0x1002 (line 12) and cmd ==

0x1001 (line 32 → Line 41). As the comparison operands are constants, running Range

Analysis on them results in constants: 0x1003, 0x1002 and 0x1001 respectively.

We consider only equality constraints on the cmd value. Based on our observation

that almost all the drivers use equality comparison to check for the valid command IDs.

There exists special ioctl functions, such as V4L2 drivers, in which the driver specific

functions are called in a nested manner by other drivers. We expand our solution for

these cases in Appendix A.2.

4.5 Argument Type Identification

The ioctl command identifiers and the corresponding data structure definitions have

a many-to-many relationship: each ioctl command may take several different structures

(for example, based on global configuration), and each command structure may be passed
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to multiple ioctl commands. To find these structures, we first identify all the paths to

the copy from user function, which the Linux kernel uses to copy data from userspace to

kernel space, such as line 16 in Listing 2→ line 3 in Listing 3. We ignore call-sites whose

source operand (i.e., the second argument of copy from user) is not the passed argument

to the ioctl function, since such cases cannot help us to determine the ioctl argument

type. At each of the remaining call-sites, we find the type of the source operand. This is

the type definition to which the user data argument to the ioctl handler must conform.

However, pointer casting could hide the actual structure type. Consider the running

example, where the copy from user in line 3 of Listing 3 is reachable from the ioctl

handler, ioctl handler in Listing 2 from multiple paths (like line 16, line 21, and line

32 → line 41). However, the actual type of the source operand at the call-site is void

*. In addition, the copy from user function might reside in a wrapper function and be

called indirectly by the ioctl function (such as line 16 in Listing 2→ line 3 in Listing 3),

which is distributed across different functions or files.

To handle this, we perform inter-procedural, path-sensitive type propagation to deter-

mine all the possible types that may be assigned to the source operand of a copy to user

function in each path. This gives us the set of possible types, for each given path, of the

user data argument to the ioctl handler.

To associate the command identifier to each of these structure types, we also collect

the equality constraints (as explained in Section 4.4) along the path while performing

the type propagation. The constraints on the command value on a path reaching a

copy from user function represent the possible command identifiers associated with the

structure type.

For the running example in Listing 2, we first identify all paths reaching a copy from user

call-site (Note that the actual call happens through the wrapper function copy from user wrapper).

Table 4.1, column 2 shows all the relevant paths. For brevity, we ignored the paths that
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Table 4.1: Relevant paths from ioctl handler (of Listing 2) to a copy from user call-site
Id Path cmd constraints Resolved command id User argument type
1 Line 10 → Line 11 → Line 16 → Line 3 (of Listing 3) cmd == 0x1003 0x1003 uint32 t

2 Line 10 → Line 11 → Line 21 → Line 3 (of Listing 3) cmd == 0x1003 0x1003 uint8 t

3 Line 12 → Line 16 → Line 3 (of Listing 3) cmd == 0x1002 0x1002 uint32 t

4 Line 12 → Line 21 → Line 3 (of Listing 3) cmd == 0x1002 0x1002 uint8 t

5 Line 30 → Line 32 → Line 41 → Line 3 (of Listing 3) cmd == 0x1001 0x1001 DriverStructOne

6 Line 30 → Line 32 → Line 49 → Line 3 (of Listing 3) cmd == 0x1001 0x1001 N/A

have the same constraints on cmd and reach the same call-site.

We also ignore Path 6 since the source operand is not the user argument (i.e., at

line 49 in Listing 2, the second argument of copy from user wrapper is not argp).

Finally, for the remaining paths, we identify the type of the destination operand of the

target copy from user call-site to determine the command value type. For example, for

Path 1 in Table 4.1, the type of argp is the same as the destination operand curr idx

at line 16 in 2, which is defined as uint32 t at line 6. For each command value, we may

get multiple types. For instance, as shown in Table 4.1, Path 1 and Path 2 have the

same cmd constraint values but different argument types. For each command value, we

associate all the possible argument types. For example, from Table 4.1, the command

value 0x1003 can be associated with argument types uint32 t and uint8 t. Next, we

need to extract the arguments’ structure definitions.

4.6 Finding the Structure Definition

Finding the definition of a type requires finding the definition of all the types it is

composed of. In the case of our running example, in Listing 1, extracting the definition

of type DriverStructOne requires extracting the definitions of both DriverStructTwo

and DriverSubstructTwo.

For each of the types identified in Section 4.5, we find the source file name of the

corresponding copy from user function using the debug information computed in Sec-
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tion 4.1. Knowing the source file, we use our GCC-to-LLVM pipeline to generate the

corresponding preprocessed file. As preprocessed files should contain a definition of all

the required types, we find the definition of the identified type. Then we run c2xml [56]

tool to parse the C struct definition into XML format from which the required definition

of the types is extracted.
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Structure Generation

After DIFUZE recovers the ioctl interface, it can begin generating instances of struc-

tures to pass to the on-device execution engine. The procedure for this is straightforward:

DIFUZE instantiates structures, fills their fields with random data, and properly sets

pointers to build complex inputs to ioctls.

Type-Specific Value Creation: Certain values are more likely to trigger increased

code coverage than others. For example, buffer lengths in system code are often aligned

to bit boundaries (i.e., buffers of size 128, 256, and so on), so values on or just under

a bit boundary are more likely to trigger corner cases (such as single-byte overwrites

due to careless string termination). This observation is common wisdom in the fuzzing

community, and previous work has widely used it [57]. DIFUZE leverages this concept

as well, and favors (but does not confine itself to) integers that are a power of two, one

less than a power of two, or one greater than a power of two in its generated integers.

There are some pointers that reference data that is either unstructured (char * point-

ers, for example), or for which the structure definition can’t be recovered (void * data).

For this data, DIFUZE allocates a page of random content.

Sub-structure Generation: Inputs to ioctls often take the form of nested struc-

tures, where a top-level structure contains pointers to other structures. DIFUZE gen-

erates these structure instances individually and sends them to the on-device execution
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component. This component, in the next stage, merges them into a nested structure

before passing them to the ioctl itself.
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On-device Execution

While prior stages of DIFUZE run on the analysis host, the actual execution of ioctls

must happen on the target host. As such, the structure generation component sends the

generated structures, along with the target device driver filename and ioctl command

identifier, to the on-device execution component. This component then finalizes these

structures and triggers the ioctl.

6.1 Pointer Fixup

Some structures comprise multiple memory regions connected by pointers. To save

space, the structure generation component transmits the different memory region in-

stances independently, along with metadata about how they can be combined, and the

on-device execution component builds the complete structure using this data. This pre-

serves bandwidth between the analysis host and target host, since the same data can be

used for differently built structures. For example, since the individual nodes of a tree

structure will be sent individually, these nodes can be used to create many different final

configurations of the tree structure.

Some structures are recursive. For example, a linked list node may contain a pointer

to the next linked list node. To set a bound on the number of combinations of structures
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that the on-device execution component attempts to create, DIFUZE limits the recursion

of such structures to a set threshold.

6.2 Execution

With the structure created, DIFUZE’s on-device execution component opens the

appropriate device file and triggers the ioctl system call with the ioctl command

identifier and the proper data structure. At this point, if a bug is triggered in the kernel,

one of two things will happen: the target host may crash outright, or the kernel thread

processing the device driver may terminate and log an error to the kernel log. The former

situation is detected by a heartbeat signal maintained between the analysis and the target

host. The latter is detected by the on-device execution component’s monitoring of the

target host’s kernel log. When DIFUZE finds a bug, it logs the series of inputs that had

been sent to the host device for later reproduction and triage.

System restart. When a bug is triggered, the target host will either be in an incon-

sistent state or will have crashed. In the former case, the on-device execution component

triggers a reboot of the device before resuming fuzzing on other ioctl commands and

other drivers. In the latter case, depending on the way the crash occurred, the device

sometimes restarts itself. When that happens, DIFUZE can resume without analyst

interaction. Otherwise, an analyst will need to reboot the device before fuzzing can

resume.
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Implementation

As shown in Figure 3.1, we engineered our system to be completely automated. The

user simply provides the kernel source archive, connects the target host (i.e., the mobile

phone) to the analysis host, and starts the on-device execution component on the target

host. After that, with a single command, our entire pipeline will be run.

Interface Extraction: We used LLVM 3.8 to implement the interface extraction

techniques. All components of the interface extraction are implemented as individual

LLVM passes. As mentioned in Section 4.4, We used an existing implementation of

Range Analysis [55] to recover valid command identifiers.

7.1 Interface-Aware Fuzzing

Our implementation of sections 5 and 6 is called MangoFuzz. MangoFuzz is the

combination of structure generation on the analysis host and on-device execution of

ioctls, which together achieve interface-aware fuzzing. It is an intentionally simple

prototype designed to test the effectiveness of interface-aware fuzzing, without other

optimizations that could influence the results.

MangoFuzz specifically targets ioctl system calls on real Android devices. Using the

methods described in section 5, it generates random sequences of ioctl calls, along with

30



Implementation Chapter 7

associated structures, and sends them to the on-device execution component running on

the target host.

For a “production-ready” variant of our approach, we also integrated DIFUZE into

syzkaller, a state-of-the-art Linux system call fuzzer. This integration has the goal of

creating the best possible tool, which we will contribute back to the community as an

open-source enhancement of syzkaller.

Syzkaller is a Linux system call fuzzer, which allows analysts to (manually) provide

system call descriptions, after which it will fuzz the associated system call. Syzkaller

can handle structures as system call arguments if they are manually provided the format

specifications. To integrate with DIFUZE, we automatically convert the results of our

Interface Recovery step to the format expected by syzkaller, automatically making it

interface-aware. Syzkaller is typically used on kernels compiled with coverage information

and KASAN (or another memory access sanitizer). However, there is a configuration for

running on real, unmodified Android devices, which can be used for our purposes.
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Evaluation

To determine the effectiveness of DIFUZE we evaluated both its interface recovery and

bug-finding capabilities. The evaluation is performed on seven different Android phones

from five of the most popular vendors, covering a wide range of device drivers. Table 8.1

shows the specific phones along with the vendor of the chipsets.

First, we evaluate the effectiveness and efficiency of the interface recovery, as it is

the core component of the system. To validate the results, we manually analyze a ran-

dom sampling of ioctls and structures and check them against our system’s recovered

interfaces. We then perform a comparative evaluation of the bug finding capabilities

of DIFUZE, using both MangoFuzz and our improvements to syzkaller as the actual

interface-aware fuzzer.

Table 8.1: Android Phones Used in Evaluation (Note that the kernel versions were
the latest Andriod kernels for each phone at the time of our experiment)

Vendor Device Chipset Vendor
Android Kernel

Version
Google Pixel Qualcomm 3.18
HTC E9 Plus Mediatek 3.10
HTC M9 Qualcomm 3.10

Huawei P9 Lite Huawei 3.10
Huawei Honor 8 Huawei 4.1

Samsung Galaxy S6 Samsung 3.10
Sony Xperia XA Mediatek 3.18
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Table 8.2: Interfaces recovered by DIFUZE on different kernels of the Phones. User ar-
gument type, long indicates C type long. CTU indicates copy to user as is discussed
below. The other three types refer to C pointer types (which require copy from user

in the ioctl handler).

ioctl handlers
Device Names

Valid Command Identifiers
User Argument Types

Automatically Identified long/CTU Scalar Struct Struct with pointers

E9 Plus 77 36 610 272 101 195 42
Galaxy S6 106 70 364 243 23 67 31
Honor 8 86 33 376 208 70 87 11
M9 171 122 563 216 83 149 115
P9 Lite 71 30 384 187 56 118 23
Pixel 193 136 611 270 87 151 103
Xperia XA 85 42 657 292 106 194 65
Total 789 469 3,565 1,688 526 961 390

8.1 Interface Extraction Evaluation

All the steps of interface extraction are run on the same experiment platform, a

machine with an Intel Xeon CPU E5-2690 (3.00 GHz) running Ubuntu 16.04.2 LTS. On

average, it took 55.74 minutes to complete the entire interface extraction phase for a

kernel.

We evaluate the effectiveness of different steps of our interface extraction on the

kernels of the devices listed in Table 8.1. Table 8.2 shows the interface extraction results

on different kernels. DIFUZE identified a total of 789 ioctl handlers in the kernels of

seven devices. The number of handlers also closely correspond to the number of drivers

on the corresponding phone.

Device Name Identification: Our approach for device name identification (Sec-

tion 4.3) is able to work on different vendor-specific devices. DIFUZE can automatically

identify 469 device names, accounting for 59.44% of the ioctl handlers. Most of the

identification failures come from kernel mainline drivers. The reason for this is because

the device names were generated dynamically (Listing 5 and Section 4.3). We manually

extracted those dynamically created device names.

Valid Command Identifiers: The fourth column of Table 8.2 shows the number

of valid command identifiers extracted across all the entry points of the corresponding
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Figure 8.1: CDF of percentage of ioctl handlers to the number of valid command identifiers

kernels. In total, DIFUZE found 3,565 valid command identifiers across all the drivers of

all kernels. The numbers of valid command identifiers vary considerably across different

kernels. As we will show in Tables 8.2 and 8.3, the number of crashes the fuzzer found is

positively correlated with the number of valid command identifiers.

Figure 8.1 shows the distribution of the number of valid command identifiers per

ioctl handler. 11% of the ioctl handlers do not expect any command. The code of

these ioctls is conditionally compiled and guarded by kernel configurations. During

our compilation, the ioctl handler code is disabled, so the corresponding ioctl han-

dler appears empty in the generated bitcode file, which leads to zero command value in

our command identification process. 50% of the ioctl handlers expect a single com-

mand identifier. Most of them are attributed to the v4l2 ioctl ops. As explained in

Appendix A.2, these are nested handlers that manage specific command. The majority
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(98.3%) of the ioctl handlers have less than 20 valid command identifiers. We manually

investigate the rest (1.7%) of the ioctls with more than 20 command identifiers, and

find that our approach over approximates the function pointers for some of the ioctl

functions. Although such over estimation causes extra invalid fuzz units in our subse-

quent fuzzing steps, it has marginal impact on the overall performance (especially given

that we have a small percentage of such cases).

User argument types: The last four columns in Table 8.2 show how an argu-

ment passed by the user (third argument to the ioctl handler) is treated. For 1,688

(47%) of command identifiers, we find no copy from user. This places us in one of two

categories. (1) the user argument is treated as C type long, and thus argument type

identification is not needed since the user argument is treated as a raw value (and hence

no copy from user is present). (2) Or, there is instead a copy to user, where the user

is meant to supply a pointer to some type for which the kernel will copy information to

the user. We do not care about type identification here either, as the kernel will not be

processing the user data.

For the rest 1,877 (53%) of the command identifiers, the user argument is expected

to be a pointer to a specific data type. i.e., a copy from user call should be used to

copy the data. Such pointer arguments can be further categorized as the following three

cases.

(i) 526 (15%) of the command identifiers expect scalar pointer argument, For example,

in our running case, as shown in Table 4.1, command IDs 0x1003 and 0x1002 belongs

to this category since they expect the user argument pointing to scalar types uint32 t

or uint8 t. (ii) 961 (30%) of the command identifiers expect the user argument to

point to a C structure with no embedded pointers. e.g., DriverStructTwo in Listing 1.

(iii) For 390 (11%) of the command identifiers, the date type is a C structure which

contains embedded pointers. In the case of our running example, as shown in Table 4.1,
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command ID 0x1001 belong to this category and expects the user argument to point to

DriverStructOne, which contains embedded pointers (Listing 1). These commands are

extremely hard to effectively fuzz without the argument type information, because the

user argument is expected to point to a structure, which itself contains pointers (and

needs to be valid user pointers as well).

Random Sampling Verification: We picked a random sample of five ioctls for

each of the seven Android phones in our test set and manually verified that the extracted

types were correct. These 35 ioctls had a total of 327 commands, of which we correctly

identified the argument and commands for 294 of them, yielding a 90% accuracy.

8.2 Evaluation Setup

To determine how well DIFUZE can find actual bugs in device drivers, and the effects

of using the extracted interface information, we test it both using our prototype fuzzer,

MangoFuzz, and using syzkaller. We will use the identifiers DIFUZEm and DIFUZEs

to represent DIFUZE when it is using MangoFuzz and syzkaller, respectively, as the on-

device execution component. Additionally, we evaluate the system by varying the amount

of the interface that we provide to syzkaller; this way, we can examine how different

levels of interface extraction influence the results. Specifically, we run the following

configurations of DIFUZE:

Syzkaller base. We specify that syzkaller should only fuzz using the system calls open()

(to open the device files) and ioctl (to trigger ioctl handlers). Its default con-

figuration contains several standard device filenames and the structures of some

standard types along with ioctls for common Linux devices.

Syzkaller+path. In this configuration, we add the specifications of extracted driver
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paths which syzkaller should try to fuzz. However, the rest of the interface infor-

mation is not provided.

DIFUZEi. Here, the extracted interface information of the device paths and ioctls

is used with syzkaller as the fuzzer. We expect that this configuration would be

able to trigger ioctl command handling, but will be unable to explore code that

handles complex structures.

DIFUZEs. This configuration integrates all of the interface recovery, including auto-

matic identification of ioctl argument structure formats, with syzkaller. We ex-

pect this to be the best-performing configuration, as it is able to leverage many of

the optimizations found in syzkaller.

DIFUZEm. The final configuration integrates our interface recovery with our simple

fuzzer prototype, MangoFuzz. This configuration is meant to explore the effect

that interface-aware fuzzing has on the number of discovered bugs, even when

other state-of-the-art optimizations are absent.

We evaluated the system on seven modern Android devices, including the current

“flagship” model of Google, along with other popular manufacturers such as Sony, HTC,

and Samsung. For each device, we first updated it to the latest available version and then

rooted the device. The on-device execution component is run as root to ensure that we

can fuzz all drivers, and not just those accessible from app-level permissions. However, as

discussed in Chapter 9, this component could also take the form of a standard application,

though this would come at the cost of lower accessibility to device files (and their ioctl

handlers). With this setup, we do not have code coverage feedback or KASAN enabled,

as this would require re-compiling the kernels and flashing a non-stock kernel. More

discussion on these compile-time instrumentations can be found in Chapter 9. Every
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one of the aforementioned DIFUZE configurations is run on each Android device for five

hours. If a crash occurs frequently in a single driver, we blacklist the buggy ioctl handler

to prevent the phone from repeatedly crashing and the resulting reboots interfering with

the experiment.

8.3 Results

We collected all crash logs and crashing sequences of system calls, manually triaged

them, and filtered out the small number of duplicates. In total, DIFUZE was able to find

36 unique bugs in the seven Android devices that were used for testing. An overview of

the found bugs is shown in Table 8.3.

We were unable to get syzkaller to work on the Galaxy S6 and DIFUZEm was unable

to trigger any bugs on it, making it the only Android device for which we found zero

bugs. On all of the other devices, we found anywhere from two vulnerabilities (in the

Honor 8) to fourteen vulnerabilities in the Xperia XA.

The base configuration of syzkaller (without interface information) was unable to find

any bugs in our tests. Giving it the correct paths of drivers (syzkaller+path) only yielded

three crashes across all devices. This suggests that blindly fuzzing kernel drivers is not

very effective, which is probably because such testing is undertaken by the vendor before

these devices are shipped.

When we add partial interface information in the form of the extracted ioctl num-

bers, DIFUZEi is able to find 22 bugs. Although this is impressive on its own, adding

the remaining interface information (the ioctl argument structure definitions) to the

interface substantially increased the number of bugs found by 54.5%, to a total of 34

bugs. This result shows the effectiveness of interface-aware fuzzing and, moreover, shows

the importance of both the recovered ioctl command identifiers and the structure in-
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Table 8.3: Bugs found by each fuzzing configuration per device
syzkaller base syzkaller+path DIFUZEi DIFUZEs DIFUZEm total unique

E9 Plus 0 0 4 6 6 6
Galaxy S6 - - - - 0 0
Honor 8 0 0 1 2 2 2
M9 0 0 3 3 2 3
P9 Lite 0 0 2 5 5 6
Pixel 0 1 2 5 3 5
Xperia XA 0 2 10 13 12 14
Total 0 3 22 34 30 36

formation to the analysis of ioctl handlers.

A particularly interesting result from our experiments is that DIFUZEm only found

four fewer bugs than DIFUZEs. Syzkaller is a state-of-the-art tool with a large number

of fuzzing strategies and optimizations built in, while MangoFuzz is a simple fuzzing

prototype with no optimizations except those described in Chapter 6. We believe this

shows that fuzzing with accurate interface information is quite powerful.

We briefly triaged each of the crashes and quickly classified the reason that the device

crashes. These results are shown in Table 8.4. These are often serious bugs even when

the crash itself might seem benign. For example, an assertion error could be triggered

by a more serious underlying bug that a malicious user could carefully craft to gain a

more powerful primitive. Even, when the assertion error was not triggered by another

bug, we discovered cases where we could bypass it leaving the device in a buggy state.

To demonstrate the severity of our results, we exploited one of the arbitrary write vul-

nerabilities to gain code execution in the kernel and escalate from app-level privileges to

root.

We are currently working on responsibly disclosing all of the vulnerabilities to the

vendors. While doing so, we found that four of the bugs were patched during the course

of the experiments. To the best of our knowledge the remaining 32 of the 36 bugs are
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Table 8.4: Types of Crashes Found by DIFUZE
Crash Type Count
Arbitrary read 4
Arbitrary write 4
Assert Failure 6
Buffer Overflow 2
Null dereference 9
Out of bounds index 5
Uncategorized 5
Writing to non-volatile memory 1

0-days.

In the next few subsections, we will present case studies of several bugs found during

our experiments, demonstrating their impact and the necessity of interface information

in their detection.

8.4 Case Study I: Design issue in Honor 8

One of the most interesting bugs in our collection was found not through an OS crash

(as is typical for kernel bugs), but by noticing very strange behavior from the target

host. After several fuzzing rounds on the Huawei Honor 8, we noticed that the serial

number of the device had changed, as shown in Listing 6. The serial number of the

device should be a read-only property and only the boot loader (which runs at the high

EL3 privilege level [58]) should be able to change it. However, this occurrence shows

that the serial number can actually be changed from a userspace application (running

at the least privilege level EL0) on Android by exploiting this kernel driver. Thus, this

represents a design-level vulnerability.

This bug was found while fuzzing the driver [redacted]. The Honor 8 has a partition

on flash, [redacted], which stores the device configuration information. Some of these

configuration options are unprivileged and can be modifiable by Android. This includes
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whether the device unlock is enabled and or whether ramdump is allowed, but notably

excludes properties such as the board identifier and serial number, which should only be

modifiable by the boot loader. However, the ioctl handler for the device [redacted]

provides a way to read and write these options. Additionally, it does not check the

type of configuration option, and a malicious userspace application can read or write the

privileged configuration options.

Adding a check to disallow modifications to privilege configuration options could fix

this issue. It should not be possible for Android kernel running at privilege level EL1

to read or write options that belong to the boot loader running at higher privilege. Of

course, the truly correct fix for this is to separate privileged and unprivileged options,

and store them on different partitions accessible by differently-privileged code.

# before fuzzing

HWFRD:/ $ getprop ro.serialno

RNV0216811001641

# after fuzzing

HWFRD:/ $ getprop ro.serialno

^RDO>l

Listing 6: A design issue found by DIFUZE while fuzzing [redacted] driver.

8.5 Case Study II: qseecom bug

In this section, we walk through an example of a bug that was found only with the

highest level of interface extraction (that is, type recovery/complex structure instantia-

tion). The relevant source is shown below, which we will reference.

1 static int qseecom_mdtp_cipher_dip(void __user *argp)

2 {

3 struct qseecom_mdtp_cipher_dip_req req;

4 u32 tzbuflenin, tzbuflenout;
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5 char *tzbufin = NULL, *tzbufout = NULL;

6 int ret;

7

8 do {

9 ret = copy_from_user(&req, argp, sizeof(req));

10 if (ret) {

11 pr_err("copy_from_user failed, ret= %d\n", ret);

12 break;

13 }

14 ...

15 /* Copy the input buffer from userspace to kernel space */

16 tzbuflenin = PAGE_ALIGN(req.in_buf_size);

17 tzbufin = kzalloc(tzbuflenin, GFP_KERNEL);

18 if (!tzbufin) {

19 pr_err("error allocating in buffer\n");

20 ret = -ENOMEM;

21 break;

22 }

23

24 ret = copy_from_user(tzbufin, req.in_buf, req.in_buf_size);

25 ...

26 } while (0);

27 ...

28 return ret;

29 }

30

31 long qseecom_ioctl(struct file *file, unsigned cmd, unsigned long arg)

32 {

33 int ret = 0;

34 void __user *argp = (void __user *) arg;

35 switch (cmd) {
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36 ...

37 case QSEECOM_IOCTL_MDTP_CIPHER_DIP_REQ: {

38 ...

39 ret = qseecom_mdtp_cipher_dip(argp);

40 break;

41 }

42 ...

43 }

44 return ret;

45 }

Our example is that of CVE-2017-0612 (this is one of the four bugs which was patched

during the course of the experiments) [59]. This bug was found by our system on Google’s

flagship Android phone, the Pixel. The ioctl function for the driver starts at line 31

and follows the common design of ioctls. The userspace application specifies cmd and

arg. Given the cmd QSEECOM IOCTL MDTP CIPHER DIP REQ, we enter

qseecom mdtp cipher dip on line 39. Inside this function, on line 9, we see our user

data copied into a struct qseecom mdtp cipher dip req req. In line 16, we see the

bug. tzbuflenin is calculated by calling PAGE ALIGN on our user controlled value of

req.in buf size. If a userspace application provides a large value here, PAGE ALIGN

will overflow, resulting in a value smaller than req.in buf size, specifically zero. Next,

on line 17, we see an attempt to kalloc this calculated size. Finally, on line 24, the

driver attempts to copy from user an embedded pointer in our struct to the allocated

buffer. This copy from user will result in a crash, as the size of the buffer was improperly

calculated. Note, however, for this crash to be observed, the user supplied req.in buffer

must be a valid pointer (else copy from user will fail gracefully, and return an error).

Thus, without a properly instantiated argument to the ioctl, this crash will never be

triggered.
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Discussion

We have shown that interface-aware fuzzing in DIFUZE has the ability to improve kernel

security by uncovering potentially harmful bugs. However, there are still some weaknesses

of this approach and directions for improvement, which we will review in this section.

9.1 Weaknesses

One problem, that we discovered while fuzzing, was that buggy drivers could crash

early on, preventing the fuzzer from exploring deeper functionality in the driver. There

are likely bugs that we never hit, simply because an earlier bug is triggered frequently,

and each time we hit that bug the phone will be rebooted. With current techniques,

our only recourse was to stop fuzzing that ioctl handler and move on to others on the

device.

Another weakness of DIFUZE is the inability to extract complex relationships between

fields of structures in the interface. It is not uncommon that one field of a structure relates

to another: for example, a length field could specify the size of a buffer. However, our

system does not recognize these relationships, which could potentially provide valuable

information to the fuzzer.
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9.2 Future Work

A valuable technique for fuzzing, found in many of the best fuzzers, is using run-time

coverage to guide the fuzzer. Currently, we do not use this technique. To use run-time

coverage information, we would need to re-compile and flash the kernel to the device,

which presents several challenges. First, to get fine-grained coverage information, a

development board is needed. This can be expensive or, in many cases, simply unavailable

for real-world devices. Second, it is not always possible to find the latest kernel sources

to recompile. This is acceptable for DIFUZE, as it is unlikely that ioctl interfaces

change radically between minor kernel updates, and the actual execution will still be

performed on the latest version of the software on the target host. However, if an older

(instrumented) kernel is flashed onto the target host, the bugs discovered as a result

might already be obsolete. Finally, some vendors do not make it easy to flash a new

kernel to the device by locking the bootloader and performing other security checks.

For these reasons, we did not instrument the kernel to insert code coverage measure-

ments or the Kernel Address Sanitizer (KASAN). Both KASAN and coverage information

could further improve the results of DIFUZE. KASAN helps to find bugs by detecting

memory corruption and triggering an assertion failure. Without it, exploitable bugs may

be triggered without causing the device to crash, simply because the corrupted memory

is not used by other functionality, or because no important data was corrupted. Coverage

information could improve the system by enabling deeper exploration of drivers as it will

try to mutate inputs that trigger previously-neglected driver functionality.
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Conclusion

In my thesis, I proposed interface aware fuzzing to increase the effectiveness of automated

analysis on interface-sensitive code such as Linux kernel drivers. We provided a set

of techniques to recover the ioctl interface specifications for fuzzing such code. We

implemented all our techniques in an automated pipeline that works directly on the

kernel source archive with a single command. We show that our technique is efficient

and effective in recovering components, device file names, valid command identifiers and

corresponding argument types of the interface for most drivers. We carry out a thorough

evaluation, using several different configurations of DIFUZE on seven models of Android

phones, to demonstrate that our implementation of interface aware fuzzing is effective,

finding 36 bugs, of which 32 are previously unknown vulnerabilities.

We are open sourcing our DIFUZE to provide the community with a tool to help

ensure the safety of modern mobile devices.
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A.1 ioctl Registration Structures

There are several structures that could be used by the Linux kernel drivers to register

an ioctl handler. Listing 7 shows the list of structures in the Kernel running on Huawei

P9.

A.2 Handling V4L2 Drivers

There are certain ioctl functions whose commands and arguments are first verified

by the Linux kernel before the driver specific functions are invoked. For example, Video

for Linux (v4l2) ioctls as shown in Listing 8, where the driver provides a standardized,

overrideable ioctl handler (set by drivers using the v4l2 ioctl ops structure, line 2 in

Listing 8) to ease the creation of video devices (such as cameras). The Linux kernel im-

plements the ioctl handler function video ioctl2 (line 10), which checks the provided

ioctl identifier and calls specific v4l2 handler functions provided by the driver itself.

Similar to other ioctl handlers, video ioctl2 also expects specific structures of the

user argument, depending on the command identifier. Furthermore, the dispatched v4l2

handler functions themselves also expect properly formatted input with proper command

codes passed in.
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This poses two analysis challenges. First, as mentioned in Section 4.1, we consider

only the functions defined by the driver. As such, we would miss the ioctl handler

video ioctl2, which is defined by the kernel. To handle this, we identify the v4l2

registration function video register device (line 32) and traverse the structures of its

arguments to identify the v4l2 ioctl ops data structure (line 32 → 29 → 13 → 17

→ 2), treating each function pointer in the structure as analogous to a top-level ioctl

handler. However, we need to face a second problem. In order to trigger the execution of

any of the functions registered via v4l2 ioctl ops, the proper standardized v4l2 ioctl

command identifier must be provided. Furthermore, the sub-handlers provided by the

driver introduce their own command identifiers as well. Thus, DIFUZE keeps track of a

nested interface for such devices.

To handle this, we first create a mapping between the command ID and the function

pointer, to identify which function in the set will be called for a given command value.

DIFUZE automatically extracts such information with LLVM. For the exmaple v4l2

driver in Listing 8, we generate a mapping called v4l2-function-mapping, as shown in

Listing 9. DIFUZE associates the sub-handler functions iris vidioc querycap and

iris vidioc s tuner (line 3 and line 4 in Listing 8), with v4l2-standard ioctl command

identifiers of 2154321408 and 1079268894 (line 1 and line 4 in Listing 9). These functions

would then be further analyzed to recover nested interface information.
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struct.media_file_operations

struct.video_device

struct.video_device

struct.v4l2_file_operations

struct.v4l2_file_operations

struct.block_device_operations

struct.tty_operations

struct.posix_clock_operations

struct.security_operations

struct.file_operations

struct.v4l2_subdev_core_ops

struct.snd_pcm_ops

struct.snd_hwdep_ops

struct.snd_hwdep_ops

struct.snd_info_entry_ops

struct.adf_obj_ops

struct.net_device_ops

struct.kvm_device_ops

struct.ide_disk_ops

struct.ide_ioctl_devset

struct.ide_ioctl_devset

struct.hdlcdrv_ops

struct.uart_ops

struct.fb_ops

struct.proto_ops

struct.tty_ldisc_ops

struct.watchdog_ops

struct.atmdev_ops

struct.atmphy_ops

struct.atm_ioctl

struct.vfio_device_ops

struct.vfio_iommu_driver_ops

struct.rtc_class_ops

struct.usb_gadget_ops

struct.ppp_channel_ops

struct.cdrom_device_info

struct.cdrom_device_ops

Listing 7: List of structures that can be used to register an ioctl handler.
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1 // v4l2_ioctl_ops initialized with required functions.

2 static const struct v4l2_ioctl_ops iris_ioctl_ops = {

3 .vidioc_querycap = iris_vidioc_querycap,

4 .vidioc_s_tuner = iris_vidioc_s_tuner

5 }

6

7 static const struct v4l2_file_operations iris_fops = {

8 // here video_ioctl2, implemented by kernel

9 // is the main ioctl handler.

10 .unlocked_ioctl = video_ioctl2

11 };

12

13 static struct video_device iris_viddev_template = {

14 //initialize file operations.

15 .fops = &iris_fops,

16 // initialize ioctl operations.

17 .ioctl_ops = &iris_ioctl_ops

18 };

19

20 static int __init driver_init() {

21 struct iris_device *radio;

22 int radio_nr = -1;

23 radio = kzalloc(sizeof(struct iris_device), GFP_KERNEL);

24 if (!radio) {

25 FMDERR(": Could not allocate radio device\n");

26 return -ENOMEM;

27 }

28 // copy the video_device structure.

29 memcpy(radio->videodev, &iris_viddev_template,

30 sizeof(iris_viddev_template));

31 // register the v4l2 device

32 video_register_device(radio->videodev, VFL_TYPE_RADIO, radio_nr);

33 }

Listing 8: Example of a v4l2 ioctl ops initialization and registering of a v4l2 device.

1 vidioc_querycap:2154321408

2 vidioc_g_priority:2147767875

3 vidioc_unsubscribe_event:1075861083

4 vidioc_s_tuner:1079268894

5 vidioc_g_audio:2150913569

Listing 9: An example v4l2-function-mapping, which contains entries in <function
name>:<command id> format.
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