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CHAPTER 1
INTRODUCTION

In field theory a symmetry at the classical level is sometimes not a sym-
metry at the quantnvm level. In such a situntion ‘the amount by which an
effective action violates the symmetry, if it can not be removed by adding
a local functional to the cffective action, is called an anomaly. The gauge
anotnaly has been obtained by calculating Feynman diagrams [1-3], by the
point-splitting method [4,5], and also by the path integral method by noticing
that the measure of a fermion field is not invariant under a chiral transforma-
tion [6]. The anomaly was also understood in terms of differentinl gecometry
[7,8].

Anomalies themselves can be used for phenomenological applications since
they give the amount of current non-conservation. Furthermore, by solving
the anomaly cquation §W = Anomaly , we can get the eflective action W
which gives the eflective interactions among particles in the system. This
was first done by Wess and Zumino for the case of SU(3), x SU(3)n flavor
symnmetry and was applicd to the interactions among the pseudo-scalar and

vector particles succersfully [9].

Another important application is as a criterion for the consistency of
models of unified gange theories. In order to have unitarity and renornal-
izability, a model should not have an anomaly of a dynnmical s'ymvm:try
{10,11]. For example, in the Weinberg-Salam meodel the gauge: anomaly is
canceled ont for each generation when the lepton and the quark sectors are
combined. A gravitational anomaly was found recently, and the cancellation
of this anomaly hecame nn important criterion for medels which unify »lf the
internetions including the gravitational interaction {12,13].

In this thesis we study various tapics of anomalics in two dimensions,
The renson for interest in two-dimensional anomalics is that they contain
the main structures of higher dimensional anomnalies and have their own
interesting propertics. ‘The topics: of this thesis consists of the anonalies
of Yang-Mills gange theory, gravitational theory, and supersymmetric pange
theory.

In chapter 2-4 we study the gangs anomaly. We obtain the solution of
the anomaly equation (the Wess-Zumine term) with only gauge ficlds, with-
out auxilinry ficlds. \We show, up to the sccond non-trivial onler, that this
solution ngrecs with the result of Feyninan diagram calculation. By study-
ing the intimate relation between the nnomaly and the Schwinger term, we
find a method of obtaining the anomaly of D,,.J" (chiral carrent) from the
Schwinger terms of the cqual time conunutation relations. "Through this pro-

cedure we enn also understand easily the difficultics in quantizing anomalous



gauge theories. By studying the Schwinger model, we show that the point-
splitting method disagrees with the loop-diagrain method by the sign and
by the factor 1/2 for the anomaly of 8,J¢ and for the Schwinger term of
[J3(=z), J°(¥)]ETC respectively.

In chapter 5 we study the gravitational anomaly. We calculate Feynman
diagrams to get an effective action, and show, up to the second non-trivial
order, that this eflective action is in ngrcemcht with the anomaly obtained
by the differential geometric method.

In chapter 6-7 we study the supersymmetry anomaly. We obtain a super-
syminetric extension of the gauge anomaly, and find that this is the origin of
a supersymimetry anomaly in the \Vcss-Zumir;o gauge. We obtain an eflective
action whose variations give rise to the gunge and supersyminetry anomalies
in the Wess-Zumino gauge. We also find & supermultiplet which contains
d,J¢ and 3,,J" as components, and a corresponding anomaly superfield. We
confirm this anomaly superfield by dingram caleulations.

In order to make comparisons with references easicr, we use the metric of
chapters 2-5 and that of chapters 6-7 diflerently. However, there will be no

confusion since we specify the metric in each chapter.

CIIAPTER. 2

GAUGE ANOMALY

In this chapter we study Yang-Mills gange ficlds coupled to chiral ferinions.
We obtain a solution to the anomaly cqunl.ion} with only gauge fields, with-
out anxiliary fields. Similar problems were studied for the massless Dirac
fermion case, m_ld solulions were obtained in terms of gauge ficlds and anxil-
iary scalar ficlds, or in terms of auxiliary scalar ficlds alone {14-17]. owever,
we study the massless chiral fermion cnse and obtain the solution explicitly
in terms of gauge fields alone, which is a power series of gauge ficlds for the
non-Abelinn theory. Then we can compare this solution with the result of .
Feynman diagram calculations.

In scction 2.1 we obtain the gauge anomaly including the normalization
factor up to the sign by .using the differential geometric method. Tn section
2.2 we solve the anontaly equation to get the effective action which contains
only gauge ficlds. In section 2.3 we calculate one-loop diagrams up to O(A®)
in the eflective action. We show that this calculation agrees with the results

of scctions 2.1 and 2.2,

2.1 Gauge Anomaly
Our system is composed of o multiplet of left-handed fermions and a

multiplet of gauge fields. Its Lagrangian is given by

L =iby"(a 4 A, (2.1)



where

1 ;15,, =, Aa=AJT, [TT5) = finTh .

We use i, 7, k, - - for group indicics, and a, b, ¢, - - - for Lorentz indicies.

Our conventions for the metric and gamma matrices are given by

{v*,7*} = 29, 0=yt =1,

0 1 0 1 -1 0\
7= y 7 v B=10" = . (22

1 0 -1 0 0 1

We treat fermions as quantized fields and gauge ficlds as external classical

fields. Their infinitesimal gauge transformations are given by

Sap = ~AyY
(2.3)
0o = DA = 9,A 4 [As,A],

where

A= AT

In this paper we study the consistent anomaly which is given by a vari-
ation of a connected vacuum functional. We call this variation an anomaly
if we cannot make it vanish by adding a local functional to the connccted
vacuum functional. There is another kind of anomaly, & covariant anomaly
(which transforms covariantly), but this anomaly is not given by a variation
of a functional [13].

The consistent anomaly is defined b& an cquation which we will call an
anomaly equation :

SAW[A]=A-G(4), : (2.4)

B |

where
A-G(A) = /d:r: A;Gi(A) = [ non-Abelian Anomaly |, (2.5)

with ]ll:r = /(I(Volnmv:) .

In (2.4) W[A] is the effective netion, i.e., the connected vacunm functional.
(2.4) tells us by how mmch the quantuin effect of fermion fields canses the
systemn not to be gange invariant.

Since the consistent anomaly is given by a gauge vn.rintinn of W{A], we

have “a cousistency condition”, i,
(5niBns — Sas8a )WA] = &a, aug VA (2.6)
gives the consistency condition
/d:(A,,.s,\,(,'.- — Aha, ) = /«!m([/\.,z\,]).-G.- (2.7)

which can also be used ns a definition of the anomaly [4].

In onlcl; to obtain the two-dimensional non-Abelian anomaly which sat-
isfies the consistency condition (2.7), let us follow briefly the differential ge-
omnetric method given by Zumino [8]. ‘The Atiyah-Singer index of the Dirac
operator 7" D, = y*(0a + A,) is given by the integral of the Chern chnracter
[18,19].

(ny —n.)= /Mc;.(v'), (2.8)
where

Ch(V) = 'l'r[cxp(;i;l")] , (2.9)



with In the above derivation the overall sign of the anomaly is ambiguous. By

chance it turns ont that the above sign agrees with the Feynman diagrain

F=x Fyda®Ada®, Fay= 8,4y — B A+ Aadly — ApA, . (2.10)

8| -

calculation in section 2.3.

In order to obtain the two-dimensional non-Abelian anomaly, we start In the following light-cone coordinntes will be used often. The conventions

from the Chern character in four dimensions.

b

and properties of the light-cone coordinates and €™ which we will nse are

Ch(V)[4-dim]) = —( )2'1 (r?) given below.
(2.11)

= duns(A, F),
o(4.F) = \/—(T ta'), m.t=\f(=’oi$1) ‘7*?—%(7017').

where
L ! YRy =2, =Ty =0,
wi(A, F) = — 5 T AF ~ 34°) (2.12) '
. nt~ =9t =9, =n_, =1 {other u's are zcro) , 2.17
Then the two-dimensional non-Abelian gauge anomaly is given by w}(v, A, F) 4 1 1+ -+ (other 7 cro) ( )
ichi ; . . 0_ _m_ oo ety
which is first order in v when we expand w3(A + v, F') in powers of v, i.c., e =—c =1, e =-¢ =

Another form of the anomaly, which will be useful in the following analy-

1
wi(v,A,F) = —E;;Tr[vd/\] . (2.13)
sis, is obtained by adding the gange variation of a local functional  1/87Fr f d®z A, A"

The non-Abelian anomaly is normalized with an additional factor of 2r in )
to (2.15), i,

order to give the unique Z = &'V i.e.,

i

[2-ditn. non-Abelian Ano.] ———-/d’z'lr[l\r MAp(e™ 4 %))
(2.18)

. . 1 '
[2-dim. non-Abelian Ano.} = ~an /M Tr{vdA) . (2.19)

— — " \'
2"/.1 £ Tr[AD,A_).

By changing the form notation to the tensor notation, we have

2.2 Solution of the Anomaly Equation - Effective Ac-
[2-dim. non-Abelian Ano.] = ——El’—r /d’z'l'r[A@an,e"b] , (2.15) tion

The solution of the anomaly equation gives Lhe effective action of the

or G;(A) in (2.4) is given by

system. Wess and Znmino solved this cquation in the following way (8,9].

Gi{A) = —Zl;'l‘r[’l'.-a.,/h,e""] . (2.16)



Introduce £ fields which transform non-linearly under a finite gange trans-
formation as

et = clet (2.19)

where
A=ANT:, €E=4T;.

Then the solution of (2.4) is given in a compact form as

WAl = [da [ &t &GiAENE) + WelAdl, (220)

where

Aa(t) = €A, D et (2.21)

and W¢([A,¢] i.s an arbitrary gauge invariant functional.

In their original work, Wess and Zumino dealt with SU(3)y x SU(3)4
flavor symmetry and treated the pseudo-scalar octet as non-linearly realized
ficlds. Their solution describes the interactions among the pseudo-scalar and
vector particles in good agreement with experiments.

In this section we will pcrform. one more step to obtain a solution which is
a functional of only gauge fields, without independent £ fields. This solution
will be uselul since in section 2.3 it will be compared.with Feynman diagran
calculations which have only gauge fields as external ficlds. This solution
is also intercsting since it gives a system which contains only gauge ficlds.

In (2.20) we observe that instead of indcpendent £ ficlds, we can use the

functions £(A) of gange fiekls which transform as (2.19) when A transform
as gauge ficlds, if we can find such funclions.

In the Abclian case, we casily find such £(A) ns
1
{A) = ﬁ-('),,/\" , where [ = a0, (2.22)
since

, 1 na _ |t 1
E(A) = —[j(')..(/l )y = —ﬁ('),,(/l" + DAY = €(A) + ~ﬁf?,.0"l\ =E(A) +A,
(2.23)
which is the samc as (2.19) for the Abelian case.
Then in two dimnensions the solution of the anomaly equation can be given

with only gauge ficlds as

1 1
W[A]-_—/d’z/ dL (5 2aA") G(A(L) + WelA]
° (2.21)
v i )
:/d’m/o 0 (AN G M(O™) + Wela],
where ‘
A(l) = Ay - €N A = Ay 1D€(A) . (2.25)

Since the second term of (2.25) does not contribute in (2.21), we have

o
W[A] = ;—/d": (g7 AN Pabe™) 4 Wel 4] (2.26)

hig

Let us now consider the non-Abelian case in two dimensions. We notice

first that when € transform ns e’ = efel |

A, =et0,et (2.27)



transforms like a gauge field ns seen by
A, =e 9,
= c‘Ae"‘(').,(e‘e.A)
(2.28)
= c'A(e"‘(')uc‘)cA 1 e ha,er
=e Mt +e 0,6t .
Conversely, if we invert (2.27), we oblain £(A) which transform as (2.19)
when A transform as gauge fields.
We are going to oblain W|[A] as a functional of only A_ since in the next
section we will compare this with Feynman diagram calculations which have
only A_ as external ficlds. For this we will use the anomaly of the forin (2.18)

and invert (2.27) for a = —,
A_=et0_ct. (2.29)

Note that in (2.29) we relate only A_ with £ in this form, but A4 is not related
with £ and arbitrary, therefore our gauge ﬁcids A,'s are not restricted to be
pure gauge fields.

In the following procedure of inversion of (2.29), we will denote A_ by A
and z~ by =z for notational simplicity. Then (2.29) becomes

Az et do (2.30)
de

Let us multiply both sides of (2.30) on the right by e™¢ . Then we have

d d
€ e lf—el)et = ——e¢. 2.31
Ac e (dz:e Je e (2.31)

1

By defining

n=ct, (2.32)
(2.31) becomes

4, A

e = (2.33)

Solving (2.33) by iteration we get
n(x) = 9(—o00) — /_:o dry A(zy In(ry)
= n(—o00) ~ /_:o dxy Az )n(—o00) + [:o dx, /j‘ dzy A(z4)A(z2)n(-00)

- /_:o s ./_:, dz, /_z dry A1) A(z2) A(z3)1(—00) +
(2.34)

In (2.34), note that all 2's in this equation are <~ compenent, however  and
A are also dependent on £* even though we omitted writing this dependence
explicitly.

Let us take the boundary condition

fat z=-00)=0, ie., N{—co)=1. (2.35)

* We also assume that lim,_, ., A(z) = 0 suflicicntly rapidly. ) Then (2.31)

yecomes

et ¢ /_ dzy A(ry) -F/ dr, /" dzy A(z)A(z,)

+ /.:, dz, /_:, dz /_: dzy A1) A(z2) Aza) + -, (2.36)

thich can be given as a compact expression

oA _ ”[e’«'l'(—/_; de’ A(z'))) (2.37)

12



by defining the path ordered product P to mcan (2.36).

From (2.3G) we can get £(A) in a power scries of A,
—¢(A) = 1.1{1-[_ dz, A(z,)-l-/ dzy ] " dry A(za)A(z2) -} . (2.38)
UsingIn(1+z) =2 — 122 +...  (2.38) becomes

» r] »y 1 £ .
¢A) = /_w ey A(a:l)—~/_w dz, /_m dz A(m.)A(z,)—E([m dzy A(z:))*+0(A%)
(2.39)
where all the A's are A_ and they depend on both = and =+,
We are now prepared to oblain W[A] in terms of only gauge fields. Using

the anomaly in (2.18), we get from (2.20)

W(A] = —2-1; f &'z /o L dUTeE(A2)0, A1) (2.40)

where

A_(t) = etlA-) f_o~t(A-) | t{A-)g p-ttlA-) (2.11)

and §(A_) is given in (2.36), (2.37), or (2.39).

We can get W[A] as a power scries of A_ by the following procedure.
First expand A_(t) of (2.41) in terins of ¢ and integrale over ¢ in (2.40).
Then W[A} becomes a sum of products of £(A-)’s and A_'s. Next expand
the €(A_)’s in W[A] as power scries of A_ using (2.39). Then W([A] in (2.10)
becomes a sum of products of power scries of A_. As a last step, expand

these products to get W[A] as one power serics of A_.

13

After following this procedure, we get

WA} = »—ZL"I /(1 [ /(T) 24 A (=)
S IE@ @A)+ (A (=) ()]

- %g(m)t').A_(m) - %(/(m))za. A_(=)] +0(A"),
(2.12)

where

f(z) = f(=",2") = /_:d:,‘ A_(zy,zh),

9(z) = g(=", ") = f’“ dry /_i'; de; A (=7, 2")A (=z7,=") . (2.43)

In momentum space, (2.42) becomes

WiAl = o (1 [ 6“)3"2 18 40" A (1)1 (0)

dl’ ‘? 2«2 Pyq- — - :
43T /(2”)2 (Z—);iré (p+q 4D — LA (P)A-()A-(7)
+0(A") }.

(2.41)
As usual, (2.40) or (2.41) is ambiguous by a lacal functional of A,.

When we obtained (2.44) from (2.42), we used the convelution propertics

[@xat@itz) = [ 5 das e+ it

(2 )’

[ dz a(@)b(z)(=) = (2})’; (—;-), £r8(p 4 q+r)a(mha)é(r)  (2.45)

(where ia(p) is the Fouricr transform of a(z), etc.), and the propertics of f(z)

and g{z)

f(”) = 'A——(m '

LY L.



p &g r
[ #oateiote) = [ ks G e a4 i) S50

; . (246
—tp_ ar_ (2.46)

2.3 Comparison with Diagram Calculations

For our diagram calculations it is convenient Lo use the light-cone coordi-
nates given in (2.17) [12]. In these coordinates the condition for a left-handed
chiral fermion (1 -+ v5)¥ = v (where v5 = 4°7") becomes simply v+ = 0 or

v-¢ = 0. 'Then, from (2.1) we have the interaction Lagrangian
Lie. = iy, Ay, (2.47)

i.c., only the A_ component of the gauge field couples to the left-handed
chiral fermion. Then we have the following Feynman rules.

For a vertex, from iL;,, ,

"'7+A— ’ (248)

and for a propagator of a fermion,

iPaY _ iPev- Hipove _ -

i
pPHic 2pyp_+ic  2p_+ie/p,’

(2.19)

where we have climinated the 4, part since the vertex contains v, and
(v4)? =0.

Using the fact Tr(y47-)" = 2", we obtain the Feynman rule given in
Fig.1 for one-loop diagrams.

Diagram [2.1] gives the ampltude

i

dk i
Amp. = ~ [ CSTA-O-A- DN m N e s

(2.50)

15

-2A_

Ni 1

2p_ +ie/py

&’k

Fig.1 Feynman rule : Take Tr [ -—— ,and attach ( - ) sign for a fermion loop.

(2m)?

Then multiply the symmetry factor (1/n!) for an effective action.

k+p

Fig.2 Diagram [2.1)

16



17
where we followed the same procedure as (2.50), (2.51).
We attach the symmetry fnctor (1/3') and match this with 11¥,[A],
— 2 1 Pp 4 -
+ (p—4q) ValA] = L N R T NG B I35
(2m)? (2r) P-q-7-
< Tr{A_(MA_{)A_(r)] . (2.54)
Fig.3 Disgramn [2.2] Adding (2.52) and (2.54) to have W([A] up to O(AY),
We intcgfnte first over k. by using the residue method and then over k, to WiA) = _{ Ir /6-5;'12" 5(p + q)- " A_(p)A-(q)
get the result {12] d? -
.2, 1 p. 5 (r41- —ar-)
z r / Bk ML TR L Sl L2 i A_(A(r
) I '3 (2 )2 (2r )2 r8(p4q k1) Pogr. A_(p)A_(9)A(r)
P+
Amp. = —ZTr[A_(p)A_(-p)] - (2.51)
27 p- +0(A")} .
In order to obtain the effective action, we attach the symmetry factor  (1/21) (2.55)
and use the fact that the amplitude of a dingram calculation corresponds to Fhis is the same as (2.44) which was obtained by expanding the solution
iW/[A]. Then we get for O(A?) (2.40) of the anomaly cquation. Thercefore it hn.ﬁ been shown that (2.40)
&p agrees with the dingram ealculations up to the second non-trivinl order, e,

Wil4] = d’q 6’(p+q) Tr[/‘ (P)A-(2)] - (2.52)

(2m)

We call the lowest order of non-vanishing terms the first non-trivial order,

O(A?) in the eflective action.

It is also intercsting to sce explicitly how (2.55) gives rise to the anomaly

and so on. . . .
(2.18). We calculate 5, W|[A] in (2.4) by applying the gauge transformation

For tl t order in A(z), i.e., O(A?), we calculate Di 212
of Hhe flext order (2), i.e., 0(4%), we calculate Diagram (2.2] (2.3) to (2.55). 'lhcdcn\nh\c(r? ) in (2.3) corresponds to (ip,) in momentum

Amp. = —iTr{A-(p)A-(9)A-(r)]

dik 1 1 1
oy e r ik Frq Fiefe v ) (= p). Fieftk =)y

space since we take external momenta as incoming ns can be seen in Diagram

X

+(peq)

) PR ()AL @A)+ a),

=(-
(2.53)



{2.1] and Diagram [2.2]. I'rom the O(A?) term of W{A], i.é., WilA4},

S = 7 xa{ [ 2t C )T A )lia-A )

« &? -
- / (21 1)17 (2 ;zdzf‘ Sp+a+ T)EA—(J')[A-(Q)/\(') A()A-(9)]}
1

=L (—2‘5;'-;;d2q §%(p + g)(=ip.) A (p)A()

d’p d%q
4 Tr P dzr 62(1) +q - 1)(

'(I-_" r
(2m)? (2m)? q_)A—(P)A—(‘I)A( )}

(2.56)
From the O(A:’) term of W[A], i.e., W3[A],

&’y dq , ., (r+9- — q+p-)
x 31 dr&(ptq+r)——"—=
/(2 Y (2ny (Pt et )

A-(PA-(q)lir-A(r)]  + O(4%)

2, d’p d&'q
n ] Gy

+0(4A%).

AWl A] =i~

&r 8(p+ g+ ) - A () A_(9)A(r)
r- a-

(2.57)
When we' add (2.56) and (2.57), we see that the second tern of (2.56) is
cancelled by the first terin of (2.57). We then expect that the sccond term of
(2.57) will be cancelled by the first term of §51V3[ A}, where Wj[A] is the O(A*)
terin of W{A], and so on. Therefore we expect that the direct contribution
to the anomaly comes only from the two ].)oint vacuum functional. The
reason behind Lhis is that higher order dingrams are more finite and do not

contribute Lo the anomaly. Then we have consistently with (2.18)

QWA = %T"/ (::’),’dzq p + a)(—ir)A-(P)A(q) (2.58)

- —;—"1& [ @2 M(=)03 4. (=)

CHAPTER 3

ANOMALY OF D,J" FROM SCIHWINGER TERMS

After the discovery of the anomaly of 3,J¢ (whete J' = §iytygih), it
was soon understood thut the Schwing(:\; term of the equal time cominutn-
tion relation is another face of the anomaly [5]. Recently this relation has
been studied in the diflerential geometric method [20,21). In this chapter
we will show this relation clearly by obtaining the anomnaly of D, J" (where
Ji = s 5" A, 9) from the Schwinger terms of Lhe equal time cotmmntation
relations.

We first derive a classical relation l('?DG., = (Du,J")a. Then we calcu-
late the qual.ntum vercion of this relation. By this procedure we obtain the
anomaly of D,J" fromn the Schwinger terms. This relation also suggests the
situation that when 1),J" is anomnlous, the constraint G, | phys) = 0 does
not propagate in time. We confirin this explicitly at the quantum level. ‘This
feature causes a difficulty in quantizing an anomalous gauge theory.

In section 3.1 we obtain a classical relation GG, = (1,J%)a . In section
3.2 we obtain the anomaly of 9, J* from the Schwinger terms for the chiral
Schwinger model. In scction 3.3 we show that the result of section 3.2 aprees
with that of the eflective action method. In section 3.4 we show the difficulties

in quantizing anomalous gauge theorics, and sfudy the non-Abelian case.

3.1 9G4 = (D, J")a ; A Classical Relation
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In this section let us consider a four-dimensional chiral gauge theory which

is described by the Lagrangian
L = 1 v;:v Tt . 1- Ys
= —"’1'1;“ Fauv"'”/"y (0‘, ‘-‘1/‘“——2—)‘!/), (3])

. 1
where [Ao)’\b] = 1'fabt’\c y TT(A,A&) = '2’605 y A,, = Auu’\n y
Fuu — F‘:nlxn - OIIAV . auAll _ i[A“,A"] , un(l we use 1, = (}’ - =, _) .

(3.1) gives the equation of motion

D, F* = —~J¥, where J = J-y"l ;75/\.,1/1. (3.2)

(3.2) can be written in components as

6 . Ea - fnchb . Ec = “‘J,?y (33)
6 x Bu - 60-E.a - fnbc(AgE‘c + Zb X Bc = —jd [} (34)

where E* = F¥ p* = —%e"UF;,- (' = 1), that is,
E‘a = "6/‘: — ao;‘.a + fa'x:;ib/‘g ' (35)
T U,
Bo="V X Aa = 3 faeAb X Ae- (3.6)

In the following dcrivation, we trcat (3.3) and (3.4) as satisficd only at
the initial time, and derive how the Gauss law constraint G,(z) given in
the following (3.7) propagales in time. That is, we do not treat the time

derivatives of (3.3) and (3.4) as satisficd equations.

Galz) = J3(2) + V - Ea(2) — fare As(z) - Ec(2), 37

then
G = DI04V - Dolon = farPodn - Foe — fure At - DoFe.  (3.8)
Using (3.4) and (3.5) lor (')“f':‘,, and r')(,;i,,, we gol

00(7.. = (?().I'?

vV (.;.. + Y x B — fn’-r:;ib X Ilr -+ fu’r:i;:",/\r,.')

(3.9)
-~ Jan(—F» — MV\:,' + fl.:,;iaﬂg)  Ee
— fnlv;ih . (jc 1V x IL- - L.{.H.l x B+ Jenn i:\?)

Then after some enlenlations using (3.3)-(3.6), o vector identity and the Ja.

cobi identity we obtain the following relation.
AGa(x) = (D, J"(z)).. (3.10)

That is, the time derivative of G,(z) is equal to the covarinnt derivative
of the fermionic current. We can also write the left hand side of (3.10)
as a gauge covatiant form oG, since DoGy = Gy + far NGe = DG,
by using (3.3). In the above we derived (3.10) in fonr dimensions. In two
dimensions the corresponding derivation becomes sitnplee since Lhere is no B,.
in two dimensions, and the result is the same as (3.10). (3.10) is a classical
relation. We will olitain a quantum version of this relation in two dimensions

in scctions 3.2 and 3.4.

3.2 Anomaly of D, J" from Schwinger Terms
In this section we will obtain the anomaly of 3,J% (where J* = a‘y"'i;’" Y}

for the chiral Schwinger mndel by using the Schwinger terins of the equal time
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commutation relalions. When we calculate the Schwinger terms, we will use
the BJL (Bjorken-Johnson-Low) limit method which is summarized below
[1,5,22,23).

When we have a time ordered product of two operators

T() = [ d'ze"*(a | T(A(z)B(0)) | B), (3.11)

the equal time commutation relation of these two operators is obtained by

the following limiting procedure.
lim p°T(p) = —i / d3eF (a | [A(0,F), B(0,0)] | ). (3.12)
r®—so0 .

Then from (3.12) we have the following correspondence.

[4(0, %), B(0,0)) = ié(z) , if lim p°T(p) =1,
pee (3.13)
[A(0,7), B(0,0)} = - §(=) , if Jim 12T =o',

3

where §(z) = §(='), 8(z) = )

5(=").

If T(p) has & polynomial in p° (that is, 1, p°, (p°)?, - - +), we drop such terms
since Lthey do not contribute to the Schwinger terms.

The chiral Schwinger model is described by the Lagrangian

1 — 1—
L=~ FuF"™ 4 (8, — icA, 2"‘)./y. (3.14)
Our conventions are given by

=2, 9P =-g"=1,

23

e =" =1 (3.15)
From (3.14) we get the canonical conjngale momenta
(AN = " = B, n(ha) =iy, (3.16)

Then we assigu the Poisson brackets

(At 2), E*(t, ")) rp. = 02 8(z — '),

(3.17)

(i, z), Yot 2" Vpn. = 8.56(z — =').

‘Fhe equation of motion is given by the Hamiltonian / as
%f =(f,H)rn., (3.18)

when f is not dependent explicitly on the time, which is satisfied in our case.

Using (3.16) we obtain the Hamiltonian

Ho = / dz{7(A,)0 A, + 7(tha)Potha — L}

i S - — — ol =7
= [de(GB'E" + APyt S0 T = A B " 2]

(3.19)
From (3.16) we sce that n{Ay) =2 0" is a primary constraint [24-26] (where =

means a wenk condition in Dirac’s sense), and we get a sccondary constraint

] — ol —
G= (')u("'(Ao)) = ("(/10), Ho)pn. = Oy E' CV/"YO'—EZE’/’ =0. (3~20)

Since &G = (G, Ho)pp. = 0, at the Poisson bracket level the chiral Schwinger

model is consistent by having two first class constraints #(Ap) = 0 and
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G = 0. Then by incorporating these constraints we have
H' = Hy 4 an(Ap) -+ bG, (3.21)

where a, bare arbitrary functions of canonical coordin.atcs and momenta. In
(3.21) w(Aq) = 0 is always satisficd and JpAp = a is arbilrary, so w(Ao) nnd
Ao are not of intercst. Therefore we neglect these two canonical variables
{24]. Then we have the following Tamiltonian.
H=1IhL+1LH+1;,
Hy = [de(AE'E! + e A"y (157)y)
H; = [dz(uG) (3.22)

Iy = [ de(~i¥7'09) ,

where u is an arbitrary function of the canonical variables A', E!', ¢ and
Y.
Now let us consider a quantum theory. We change {3.17) and (3.18) to
the equal time commutation relations
[A'(t, =), E'(t,2)] = —i§(z — '),
(262 Yol 2} = Bugblz — 2, (323
8,0 = i[l1,0}.
If we calculate {H,G)] naively using (3.23), we get zero as in the cnsc of
using the Poisson brackets. Ilowever, we should be careful when there is an
anomaly.
Fitst lct us calculate various basic equal time commutation relations using

the BJL limit method which takes care of the quantuin clfect. Let us take

the gange Ap(2) == 0 in (3.14). Then
Pl = —0,AT, (3.21)

and the propagator of Lthe gauge ficld is given by

Pyt + pon,, o\ Puly
(p-n) (p-n)?

i, " (1.25)

Dyulp) = =l
p”-b1e
where n,, = (1,0).

We quantized gange fields as well as fermionic ficlds by considering onr
system as a sub-systemn of an anomaly-free larger system. Then we study
whether this sub-system is anomalous or not. For example, our system which
is composed of gnuge ficlds and left-handed chiral fermions can be considrred
as a sub-system of a larger anomaly-free systein which is composed of gouge
ficlds and Dirac fermions.

For [J%=), J°(y)Erc (where ETC means equal time commutator), we
consider

T(p) = / d*ze="=(0 | T(J()J°(0)) | 1), (3.26)

which cortesponds to Fig.1. Then

T(p) = (—in,)(~ in )" (p), (3.27)

where
d*k t cwl = i T
s - T " . 1
) (2m) [[‘7~k-{-‘7~ﬂ+icn 2y ktie ! 2 !
i l " . v ) 7]
= = (TP 2+ e 4 ).
ﬂ")

(3.28)
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k+p

A

- ol s = ol = s
L/ ————— —_—
b o

~-p

Fig.1

In the BJL limit,
. i
Jim PT(p) = -1,
where we follow the prescription of the BJL limit method to drop a term

which is proportional to p® in p®T(p). Then using the correspondence given

in (3.13), we obtain
(%), J°(0))sr. = ,}"6’(:). (3.29)

where the commutator is an equal time commutator, and the subscript S.T.
means Schwinger term.

For other equal time commutation relations we follow the same proce-
dure. For example, for [J%(x), 8, E}(y)|grc and [8,E'(2),8 E' (y)lerc, we
consider the Feynman diagroms in Fig.2 and Fig.3 respectively. After similar

calculations we obtain the following results.

— ol
b —

- s

T e

Fig2 . Fig.3

V=)0 Wsr. = [S(=), ' (Wlsr. = [V (=), ) (W))sr. = ~28'(= — y)k
[J°(2), B E' (9))sz. = V' (=), B E" (y))s1. = e8'(x ~ y)k
V=), B ()lsr. = [J'(2), E' ()]s = —eb(z ~ w)k
(o), A'Wls 7. = [J'(2), A'(¥)]sT. = ©

{ commutators among O, E'(z), E'(z) and A'(z) |s1 =0,
(3.30)

where
k= ——-—i §(z—-y)= 6(:' —y"), Sz -y) = ———6(::‘ - y')
4r’ Yy v y ar! ’

and all comnmtators are equal time commutators. We note the sipn of the

last term in
[J(2), J°(W)s 1. = ~28'(z — y)k = +[J%(=), T (W)]sr., etc.,
in contrast to

[E' (=), W)sr = 8(z — y)k = ~[J°(=), B' (y)lsr..



L
-

Then let us calculate (11, G(z)] using the results in (3.30). We first con-

sider I in (3.22).
[, G(=)] = [ a2'[u(=)G(=), G(x)
= [ &' (u(=)IG(E), Gla)] + (=), G=NIG()) (3.31)
~ [ de'u(=)G(),G()),
where we could decompose the commutator since a radiative correction does
not give rise to an anomaly. By using the basic commutation relations in

(3.30) we get
[G(2), G(o)] = 0B (2) + eJ°(e), ' y) + e =0.  (3.32)

‘Thercfore {H2,G(2z)] = 0, here and (3.33) we usc = instead of == by restrict-
ing the Hilbert space to the physical space which satisfies G(2) | phys) = 0.

Thercfore following relations are satisfied in the physical space.

29

For [H,G(=)), weshould calculate [{y'3y¢/(z), 8 £ (y)] and [¥y' (), J°(v))

which are not given in the table of (3.30). Since ¥v'd¢ has a derivative,
corresponding diagrams are more divergent, so we should }cgul:\rizc. Using
the Pauli-Villars regularization method, we obtain after a somewhat lengthy
calculation the result that T(p)'s of those diagrams have no (#) term when

we expand T'(p) in a Laurent series. Therefore Hy does not give an anomalous

contribution. Then
—idG(=x) = ({1, G (x)] = U, CG(z)]

= /ria:'[%ff}'(m')f’}'(m')-l- cA' (=) (), W E () 4 ed(=)]

= /':lr'{%l?'(m')[f’f'(:r'),r.l"(r)] + %[H'(m'),c.l"(m)]f’}'(m')

e (2)JI(x), 0 B ()]}

,
il

i 2 T EnlyYeny ’ 1 l_fz~ —
—Ec/:lm[L(1)6(m~z)+/\(z)0m,6(r ')}

: 2 Yo ’ L 9 ’
—4%(: /da: {EY(z)8(z ~2')+ A (x)(,)—x'ﬁ(m—-x)}

~ e B (@) - A (2))

(3.33)
‘Therefore we obtain n non-zero result for {11, G(x)], wherens it is zero at
the Poisson bracket level.

On the other hand, from the definition of G
oG = Qo(NE" 4 ¢J®) = ¢0pJ" 4+ N(WF') . (3 34)

BHEY(z) in the right hand side of (3.31) is calculated as
' BoEM=) = i[ll, E'(2))
= /dm'(ic[/\'(m'), EN @) (2) + ieA' ()T (=), B\ (=)
1 ieu(z)[J(='), B'(=)])
) (3 35)
= /dz'{.'r(-.f.s(z' —2)J'(=) in/l'(a:')(r:{;&(z' ~z))
2 icu(m')(c/{;ﬂx' - z))}

= e'(z) ;;i;(/"(m) + u(r)).
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Then (3.31) becomes
&2
30G = C(’)“J“ - Tal(/\l 4- ‘ll.) . (336)
m
Therefore by combining (3.33) and (3.36) we have for Ag =0
8,J%(z) = f;{E' (z) + dyu(z)} = f’;{(’)uA,(:n) +ou(z)).  (3.37)

In (3.37) u(x) should be dependent only on Ay(z), since the anomaly is a
local function and terins containing E?, 4 or ¥* would give rise to non-local

functions in (3.37) because of their dimensionalitics. Then
ul(z) = = {oAi(z) 4 DA (=)), (3.38)

where ¢ is an arbitrary constant. Therelore we calculated the anomaly of
9, J* using the Schwinger terms of the cqual time commutators. In the next
section we will show that (3.38) is consistent with the result of the effective
action method.

1t is sometimes allowed to add an arbitrary local function of the gauge

ficld A to G. If we do it, the right hand side of (3.33) changes, but §,,J" in

(3.37) does not change since the right hand side of (3.35) also changes by the
same amount as that of (3.33). However, in this paper we do not consider
such an ambiguily of G becausc the constraint G is given as (3.20) without
ambiguity when we follow the Dirac's treatment as we did from (3.14) to

(3.20). This is also true in the non-Abelian case in section 3.4.
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3.3 Comparison with the Effective Action Method

Let us calculate the effective action for the chiral Schwinger mod<l de-
scribed by (3.14). Then we can caleulate the anomaly of 3,0 following the
familiar method {27]. The only dingram which gives an anomnly is given in
Fig.4.

Then using " (p) in (3.28)

) d’p 1
iw[a] = ¢ / @) d’q8(p + )5 Au(P)1 (p)A(q)
ic? d*p

1 {74 v - 1] 17
== s e (p + '1),?{-71" P2 F 26 pap A Aul(a) -

8r Vis
#n) (3.39)

Using 64 A,.(p) = ip,,A(p) which corresponds to 8, A,,(x) = 8,,A(z) in coordi-

nate space,
. ie? £ d°p 5 : :
WA = —— | =55 Tas(p + lin, A"(0) — 2ip, ' (p)
+e™ip, Au(p)}A (1) (3.40)
ie? ;
== / d*zA(z) (™0, A(2) - 8, A"(2)) .
n

However, in (3.40) the sccond term which is proportional to 8, A" is o vari-

ation of a local term which is ambiguous in the loop calculation. When we

take care of this ambiguity, (3.40) becomes

iEAW([A] - _4L" / Pz (z) ("8, A(z) + <8,A"}, (3.41)
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Au(p) Au(9)

Iig.4
where ¢ is an arbitrary constant. On the other hand,
W -
— : —
SAW[A) = /d TR
= / d*zeJ"(z)9,A(z) (342)
= / d*zA(z){~ed,J"(z)} .

Then from (3.41) and (3.42)

8,J" = ﬁ{c“"a,,/l., +c8,A"} . (3.43)

In order to compnre (3.43) with (3.37), let us take Aq(z) = 0 in (3.43).

Then (3.43) becomes
8,J%(z) = f’-r-{&,A,(z) ~ B A ()} XD

This is the same as (3.38) since both ¢ and ¢ are arbitrary. Thercfore we
showed that the result of section 3.2 is consistent with that of the effective

action method.

3.4 Difliculties in Quantization and the Non-Abelian
Case
When we quantize a system with constraints 7, &= 0 [ollowing Dirac’s

methnd, we should have Lhe consistency conditions [21],
[Ga, Gu]) =2 UG, (;rah)

[, G = v.be,, (r.46)

where = was introduced in section 3.2

For the chiral Schwinger model in section 3.2 and 3:3, we have one con-
steaint G given in (3.20). At the Poizson hracket level both (3.45) and (.46)
are satisfied. However, at the quantum level (3.45) is satisfied as shown in
(3.32), but (3.46) is not satisficd as shown in (3.33). This means that when
we impose on the physical state | phys) the condition G | phys) = 0 at
an initial time, this condition is not satisfied at a later time. Therclore we
can not quantize the chiral Schwinger model consistently. References (28 30]
discussed this difliculty of quantization in similar ways.

It is intcresting that the classical relation (3.10) already suggests this
difficulty when D,,.J" is anomalous. Of course, this should be confinined by
calculations at the quantum level. We also note that we can nol have a sat-
isfactory situation by taking the right hand side of (3.33) as a new secomlary
constraint, since il we do that, the tiine derivative of this new constraint is

again not zero and gives risc to another new secondary constraint, and so on,



Then we will have too many constraints.

Now lct us consider a non-Abelian chiral gauge theory, which has con-
straints G,’s given in (3.7). At the Poisson bracket level both (3.45) and
(3.46) are satisfied. However, at the quantum level the Schwinger terins can
spoil this situation. Recently references [31-33] studied the condition (3.45)
and presented the result that this has a Schwinger term..

Let us consider the condition (3.46) for the system described by the La-
grangian in (3.1) in two dimensions. In this non-Abelian case the Hamilto-
nian is given by

1= [ do{( BB+ AT (M) + (1) + (-0}, (3.47)

which is similar to (3.22), and we have the following Schwinger terins like

(3.30) of the Abclian case.
V2 s @lst. = [Ja(=), s W)sr. = [a(=), Jy (W)lsr. = —6'(z — y)kéas

(=), 0 By ())sr. = [V (=), B Ey (v))st. = %5'(3 — y)kbas

[2e), Bils. = 2=, Bi(w)ls. = —38(c — n)kin

0

[V2(=), Ay(¥))sr. = [Ja(2), AL (v)]sr.

{ commutators among 8, E'(z), £'(z) and A'(z) |st. =0,

(3.18)
where &k = ——i. Then using these Schwinger lerms we obtain the following
result by the procedure which gave (3.33).

. 1 .
QWG, = i{H,G,} = -8—{E: —- gAY} (3.49)
"

(3.49) shows that the condition (3.46) is subject to the Schwinger terin and
this fact gives rise Lo a diflicnlty in quantization. Of course, when (3.45) has
a Schwinger term, it also causcs a difficulty in quantization [34].

Now let us calenlate (D,,J"), using the procedure in section 3.2, From

the definition of G,

NGCa = Doy + W(DE)) + fure M(DE]), {3.50)

where 99 Ay = Fy is used since we are taking the gange A, = 0. Using the

same procedure as (3.35) & E. in (3.50) is given by

1
QE: =J! - E;(A:‘ +1u,). (3.51)
Then (3.50) becomes
3G, = (D, J")a — -81—0,(/1; 4 1,), (3.52)
)

where we used fopApu, = 0 since u, is proportional to A, becanse of the

reason explained below (3.37). Then from (3.49) and (3.52) we have
1 , .
(D,,J")a = 8—; {00/1,,, -+ C()l A,,]} . (’51)

One can show that (3.53) agrees with the result of the effective nction me-thod

in the same way as in section 3.3 [27].
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CIIAPTER 4

ASPECTS OF THE POINT-SPLITTING METIIOD

As tools for colculating anomalies, the loop-diagram mcthod and the
point-splitting mmcthod have been important fl:Olll the beginning of the dis-
covery of the anomalies [1-5,35,36]. However, it is known that in four di-
mensions these two methods agree for the anomaly of 8,J%, but disagree for
the Schwinger term of [ J§(z), J%(y) Jerc (where “ETC” imncans “equal time
commutator”) [37-39). When we calculate the Schwinger term [35] by the
loop-diagram method, we use the Bjorken-Johnson-Low (BJL) limit method
(22,23]. In this chapter we study the two-dimensional Abelian gange the-
ory (the Schwinger model) [40-42], and we find that in this cnse the two
methods disagrce for both the anommly of 8,J¢' and the Schwinger term
of [ JR(z), J°(¥) Jere- .This result sh&ws that !;hé disagreement of the two
methods are more severe than it has been known.

In scction 4.1 we caleulate 8,J5 and [ Jg(z), J°(y) Jerc using the loop-
diagram method. In scclion 4.2 we calculale the same quantities using the

point-splitting method, and show that these two methods disagree.

4.1 Loop-Diagram Method
A. 9t

We consider the two-dimensional Abelian gange theory which is described

37 38
by the Lagranginn
L = 0y (D, — ic A . (v

Our convenlions and their properlics are given by

(Foyr=2wm, =g =y
0 1 0 1 ~1 0
¥ = v = cas =" = .
1o -1 0 0 1
(lo = "Em =1 ’ ‘7“‘75 = 5““‘71" 7"‘(‘757“7") = 2", ('2)

In order to obtain 8,J8 , let us start by including n mnss term —mafoh in

(4.1). Then using the equation of motion we get
8,J¢ = 2!’7"';7:;7/’, \\'ll;trc JE =y (13)
Let us regularize (1.3) as
3, (reg) = 2imiysh — APl (1.4)
where J(reg.) = 9y "yt — W5l .

In the above ¥ and Af arc the Pauli-Villars regulator ficld and its mass

respectively [1]. Then for the massless fermion case (m = 0) given by (4.1),
(4.4) hiccomnes

0,0l (reg.) = - 2iM U3 . (15)
In terms of " and R" in Fig.1, (4.5} is expressed as

ip, 0" (req) = —-24MR", (1.6)



Fig.1 ; ¥ and R¥

where we used the correspondence 8, ++ ip,,, since p,, is an incoming mo-

mentum. Then the anomaly is given by
0, J¢(renormalized) = Anomaly = A;im {-2iMR"A}. (4.7)

Let us calculate the right hand side of (4.7).

v dzk i i T . .
=] Gy esingepr s Tkt ypt Min(y-k+ M)ier’)
= 2iec’*p,MI,

(4.8)
&'k 1 1
where I = / (21r)’ k3 — M3 (k +p)’ — M2

1 d’l 1 .
=/ d:/(h), AT A M=k (- )

' . f g 1
= -/o "“/ @n) (& + M? — pz(1 - 2))?
_ /l dz in 1
TJo T (2n)2[M2—pz(1 —2)]

(4.9)
Then
Anomaly = lim {igc""p A(p)M? /I dz —-—l——}
Moo ' o o [M? - p2z(1 — )] (4.10)
L
= —e"ipA(p).

39

Fig.2 '

To get the coordinate space expression we use J,, +» ip,, again, then
8J! = Sea A, (a11)
o
B. [ J{(z), J°(¥) lerc
The BJL limi". mcthod says [1,5,43] that
when T(p) = / d*z e %=(0 | T(J2(2)J(0)) | ), (112)

Jim poT(p) = ~i / dz' ™' (0 | [ J5(0,2"), J°(0,0) ]10).  (4.13)
Therefore if we get p' in the left hand side of (4.13), it mecans that (0 |

[ J2(0,2"), J°(0,0) ]| 0) in the right hand side is —;2;8(z'), i.e.,

a \
p' e —5;5(::'). (4 14)

410
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T(p) in (4.12) is given by Fig.2 as

- &Pk 1 ,
T(p)=- G R (L+ ),Fr{(7 k4 - p)vovsy - o}

d’k 1 1
= -—2/ 6;)—2 Em;(”fukl + kopy + kypa)

—2pop1x(1l — ) .
2/ ‘/(2")2 [+ pra(i = )],, with l =k + p(1 — )

. dg z(1 - =)
= 4o /(, i | Gy - pai - )P

_il’um
m p?

(4.15)

Then
, im0 iy
"',‘_‘]L,T’OT(I’) T i Sh=r (4.16)
Therefore from (4.14)
011790, J°0,0) ] | 0) = —~-2-5(a*
(l[ 5(,1‘), (l)]l)—_;ga_:;(m)D
or
©O11956), P0) lere 10) = =S Zos(a! —9). (a17)
7 Oz} ) ’
4.2 Point-Splitting Method
A. 9, J¢
From (4.1) we have the equations of motion
Y0¥ = ey A,
(1.18)

T = ~ichr" A,

Let us define the axial current in the following gauge invariant form [1,4,5]

o € \ €
= Sp(-¢€) + ie/d“u Se(z = 5 =" Sely — = = ) Auly) - -,

In this scction we treat A, as an external firld

JE(xi€) = P(= + —)7 “Yarh(x — —)PJ’[!C/—z Au(y)dIy¥]. (1.19)

Using (4 18)

O, (1: €) = —icJi(z; f)[A,,(f + z) - Az~ 2) -8, / " A(y)d]

2= --tedg (7;8)e” | A () = 8, An(x) -+ O(e)]

= —icJ{(z;e)e”(F,,(x) + Ofe)],

where F, = d,A, -4,

(1.20)
Then

(01 3 J () L0) = =il ™[ Fup 4 O()],

, (1.21)
where 1™ = e™(0 | JE(z;¢) | 0).
From (1.19)

lnu ~ " € " € - ".g ) Iy
= e (0] (= ) (= - D) O)CTl‘ll'*L Ay

]

o EXR
~Tr{v (0 | TGz = S+ ) 1 0))eaplie [~ A (u)dt]

T3

1

st
~Tr{q"yse™ Sa(z — %,:c 4 %)cxp[ie/ : A(w)dy]},
r-3

(1.22)

where S,q(at,y)'is a fermion propagator in the external field A,,, and €° is

tuken as positive [5]. Sa(r,y) can be expanded in powers of A, as shown in

Fig.3.

€ €
Salz — =,z 4 =)

2’7 2 (1.23)

12
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Fig.3 Fermion propagator S4(z) in the external field A,

where Sf is a {ree fermion propagator.

The first term Sp(—e¢) in (4.23) or Fig.3 is as singular as 1/¢, and next
terms are less singular. Therefore when e goes to zcro, only this first term
contributes in (4.22)

Therefore from

. d2 ~ipxe 1
Sr(z) =1/(2"I))2 e 7,':,,

&p . AP
Sp(—€) = i/ (2"';, e:"""yp,ﬂ '

(4.24)

we have
. d’p ipa P
ap __ _ o a_ipe
I iTr{y 757’!}/—-—(2")2 e —p’
dp .. 0
= _9; ui. P ipe pﬂ 4.25
2ie l/ @) e e _p’) (1.25)

e
- 25",,/@1)’;?(%).

In (4.25) we apply the following property.

[, €2 1te) = 2nPf(P), (4.26)

where P is the value of p at infinity which is the boundary of the volume

13

R S & S

integral.
Pn,uﬂ ”nﬂ

)
/(12;)(?"(:?) = ig"_—1;5~ = i'.erT =im?, (1.27)

where we applied the averaging procedure. Then

o i ‘ v i Lt i1
" = —2;6' a"l s = —'2—":5 ", (‘1 28)
Using (4.28), (4.21) becomes
3 e
(019,J() 10) = — e Fopy = == DA, . (1 20)

(4.29) disngrees with the result (4.11) of the loop-dingram method by the

sign.

(4 04
B. [ J(z), J°(W) lerc
In order to calculate the “equnl time commutator” of two bilincars of
fermion fields, we take the scperation €® as spatial [1,33]. ‘The reason is that

we will use the equal time canonical commntation relation

{¥10,2"), ¥n(0,9")} = 8.pb(=' ~ o). (4.30)

Also, we take the point-splitting forn (4.19) only for J2(z) since the result

is the same as the case when we take the point-splitting form for both J{(x)

44



15 106
and J%(y). Then ' | ' CIHAPTER 5
(J0, %), 7°0.47)] : GRAVITATIONAL ANOMALY

el el = 9 I this chapter we study the purely gravitational anotaly in the system
= (9400, + SW(0,2" — ), 40,3 )n(0, 8" redoneslic [ MGz} |
=3

of the gravitational fickd coupled to a chiral fermion [44-46]. We oblain an

1 1 1 1 s c;.
{8(=' =o' - %) —8(=' -y + %)}d)’(o,m' + %)75111(0,2‘ — %)cmp[ie/:_; A(z)d="

eflective action by calculating Feynman diagrams in the light cone coordi-

I

a
~'5'5‘;,5(“" —-y')Jg(0, '),

nates, and we show that the anomaly given by this effective action anrecs

(4.31)
with that given by the differential geometric method. We will eall a general
Therclore
coordinate translormation an Einstein transformation and a genernl ceordi-
(011J5(0,2%¢"), J°(0,9")] | 0)
o nate translormation anomaly an Binstein anomaly respectively [13].
= ———=§(x" ~ y')e'(0 ] JP(0,z';€') | 0
dz! simTe In section 5.1 we obtain the anomaly up to the sign by using the differ-
a
= ——8(z' - y")I'°, where I** is defined in (4. 4.32 _ . .
dzt ( y )T, where is defined in (4.21) ( ) cntial gecomelric methad. In section 5.2 we solve the anomaly cquation. In
9 1 nt 10
= _5;:—16(": -y )-2—"5 » where we used (4.28) seclion 5.3 we show that the result of section 5.1 agrees with the diarram
i
T T2n oz (' —9"). calculations.

(4.32) is half of the result (4.17) of the loop-dingram mcthod.
5.1 Einstcin Anomaly

Let us consider a system of a left-handed chiral fremion interacting with
an cxtleenal gravitational ficld. It is described by a symmetrized Lagrangian

1

L= ee (47" Db = D™y (5.1)

where e, is a vierbein field and

- a n. b _ b
e=dete, el'c’ =8,

1 . w 1 :
1)" = ou - iwllv:z"r [ L” = 2’75.7 l ’
(5.2)

Since in two dimensions we have only one independent B which is prepor-



. Lional to v5, the term which contains the Cartun-Weyl connection wju. in
(5.1) is proportional to {¥%,~5} which vanishes. Therclore (5.1) becomes
simply

L= % ee(Py" 5:, ¥P), where(a 5;, b) = a(9,b) — (9,a)b . (5.3)

Under the Einstein transformation, the vierbein and the connection trans-

form as
8¢ e, = £20,e,” + 0,€%,° ,

(5.4)
8¢y, = €P0,0,0 - €LY + 8,8°T, Y — I‘h,"a,,ev — Ox0,¢" .

AN '

Let us teeat e,*, Iy, —8,6” as nmlricqs E , I'n, and A respectively,
ie.,

(E)=¢", (TS =6, (A)S=-38.¢", (5.5)
and decompose 8¢ into two parts

such that

LB =¢3,E

Ctr‘l = fpapl‘l + D,\{”I‘p ’
and

S\E = —-AE

(5.8)
A\ = DA = O\A + T A — AT .

We notice that L¢ is a Lie derivative with E as a scalar and [’y as a covariant
vector. 8y is the same as a Yang-Mills gauge transformation with I’y as a

Yang-Mills gange field. Repeated applications of 84 FE in (5.8) give

E' =e*E (5.9)

47

for a finile transformation. (5.9) reminds us of (2.19) in chapter 2 and will
be uscd when we solve an anomaly eqnation in section 5.2.
As in the Yang-Mills gauge theory case, we have an anomaly equation
§eWe = I, (5.10)
where Wy is an effeclive action which gives rise to an Einstein anomaly Il
under the Einstein transformation . Then from
[ber1 8es} = benean » 4 (5.11)
where
({6, &D)" = 30,6 — 670,67 (5.12)
we get a consistency condition
8¢, 1le, — 8¢, Hey = g, ey - (5.13)

Bardeen and Zumino showed that the Einstein anomaly which is the
solution of (5.13) is given by the same function as that of a Yang-Mills gauge
theory by replacing A, F by I, R respectively [13]. Therefore from (2.15) we

have the two-dimensional Einstein anomaly as
1
[2-dim. Einstein Ano.] o —Z—-Tr/dzz AD,Dyem . 15.14)
™

However, the normalization factor is different from that of the Yang Mills
gauge anomaly. The Atiyah-Singer index of the Dirac operator in the s: stem

(5.1) is given by the integration of the Dirac genus A(M) as [18,19]

ny - n_ :/ A(M), i5.15)
M
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where
i ME O (if2) 1 1
n{ = sin ' = Y 2 - - e, ),
A(M) I=Il sinh(2;/2) 1—omt 5760{7(1'1) ap2} + (5.16)

Then in four-dimensions, where we started to get the two-dimensional non-

Abclian gauge anomaly,

: 1 1 i

ny —Nn_ = _E'ipl = —‘571'/;"]?1(7 (A’))
=1 g [ (RAR) 5.17
“24.8m  In ) (5.17)

In (5.17) we have an additional factor of (—1/24) compared with (—1/8r?)Tr(F?)
in (2.11). Thercfore, with the correct norimalization factor we obtain the two-
dimcnsional Einstein anomaly as
[2-dim. Einstein Ano.] = (= —=)(= ) Tr / d'z AD,T\e”
247" Arw
= 5:; / &z (A),0,(T3), e (5.18)

1
= o [dza.0r, e

5.2 Solution of the Anomaly Equation - Effective Ac-
tion

The anomaly equation for the Finstein anomaly is given by
{«S(H’( = Il

He =~ [0 0,£70,U3 e .

i

(.19)

First let us consider only the 84 part of § = L¢ + &4 in (5.6). From (5.8)

and (5.9) we have the Lransformations caused by 84 as

’SAI‘.\ = ('),\I\ + l‘xl\ - Al‘x

(5.20)
M =AM
wlere we used the matrix notation of (5.5) and
=B (5.21)

Let us also write the anomaly ecquation (5.19) using only 85, It will be
shown Iater that the solution of this modified anamaly equation hias zers Lie
derivative.

SAWe = I

(7.22)

He = - [P Tr(AG ™) .
We notice that the first equation in (5.20) is the same as the Yang-Mills gange
transformation, and the second equation in (5.20) is a non-lincac teansfor-

mation like (2.19). Therefore, we obtain a solution of (5.22) in analogy with

(2.20) [13],
W[U, 1} = le-;' / 4= [, L Tr(= 10, (n.23)

where

|‘,\(!) — n""l',\c'" 3 c-l"ol‘nl" ) ("'2")

H0



Let us show that the Lie derivative of We[T", I1]in (5.23) is zero. (5.7) says
that E is a scalar under a Lie derivative, so If is also a scalar. (5.7) also says
that Iy is o covariant vector, then Ta(t) in (5.21) is also a covariant vector,
and then 8,Tx(t)e in (5.23) is a scalar density. Therefore the integrand of
W', H]in (5.23) is a product of a scalar and a scalar density, i.e., a scalar
density. Therefore,

W,[r, H] = / 'z M,
where M = 1/96r [ de Tr{(~H)Q,Cx(t)e”] is n scalar density. "Then
LW [T, H] = / &z (€40, M + (9,6") M) = / &z 0, (n"M) = 0. (5.25)
Combining (5.22) and (5.25), we have
BWe = (Le + 6a)We = 6AW = H . (5.26)
Thus it has been shown that (5.23) is a solution of the original anomnly

equalion (5.19).

5.3 Comparison with Diagram Calculations
As we have shown in section 5.1, our system is described by the La-
grangian

L=Zee™Pnd, v, (5.27)

where (1 + 95)¢ = 0, i.e., 7-¥ = 0 . Let us linearize the vierbein with the
symmetrized h,,, as

er=6"+h". 5.28)

~i{(p+p)h-(q) = (p+P)-his(q)}

. 2k
Fig.1 Feynman rule : Take Tr/ (—;;)—’,n.nd attach ( - ) sign for a fermion loop.

Then multiply the symmetry factor [T;{1/n;!) for an effective a-tion.

Then

e = 8" —h ' +O(h') from e} =8>, (5.29)
and
e = det(e,) = det(f +h) = exp{Tr{In(J + h)]} =1 4+ h,° + O(h?) . (5.30)
Using these expansions, we have the interaction Lagrangian
Lin. = 5(hv 0y D9~ h_ vy 8, 9) +O(R) . (5:31)

Then we obtain the Feynman rule given in Fig.1 for one-loop diagrams in
the same way as in section 2.3 of chapter 2.

Using the Feynman rule in Fig.1 we get the following amplitude fie Dia-



k+p

Fig.2 Diagram [5.1]

gram [5.1].

dk, dk

Amp. = (2n ),_ {2k +p)ah_—(p) — (2k + p)-hs_(p)}

x {(2k + P)+ho(=p) — (2k + p)-hy—(~1)}

1 1 1
“ e N e v,

(5.32)

= 2/:7riih__(p)h__(—-p) + (local terms) .
In the above calculation we followed the same procedure as that for (2.50) in
.chapter 2. We attach the symmetry factor (1/2!) to (5.32) and match this
to iV, ,

T (;‘"; qa=(p+q){”+h_-(v)h--<q)

+apiho-(P)h-s(0) + bp-pah_(P)has () (5:33)
+ep-prhos(P)h-+(q) + dpLh 1 (P)hs4(9)} -

In (5.33) we added a general local functional which is Lorentz invariant [12}.

In order to show that the diagram calculation gives the same anomaly as

"that obtained by the differential geometric method, let us try to adjust the

coefficients a, b, ¢ and d such that the variation of (5.33) gives rise to the
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O(h) term of (5.18). First we expand (5.18) for comparison,

(2-dim.Einstein Ano.

(I

(r.34)

= —977; — e '1""(7' + ) (& (@) - &)=}

(2 )
*ApZhy o (p) = 2pip b (p) 4 piho_(p)) +O(R?).
When the systein is assumed to have local Lorenlz invariance, we can use
the local Lorentz transformation as a restoring transformation to keep the
symmetrized h,, synunctric under the Finstein transformation in the follow-

ing way. From ¢, = . 4 I, nnder the genuine Finstein transformation

plus the local Lorentz transformation,
6("1-:1 = ("ol‘,'llfl + OI'E”("M -+ ,‘m) - gnb(’lu" + hub) ’ (."» 35)

where 8,6(x) is an antisymincetric parameter function for the local Lorntz

transformation. Then by choosing, 6., as

B, = *%(5’«& - &8,) +O(h), (% 36)
we have
6("!"‘ = %(nuea + anE‘.) -1 ()(’l) . (,". 37)

Since the varialion in (5.37) is symmelric, k,., is kept symmetric undee the

transformation if we started with a symmetric h,,,. Fach component of h,,,



(a) (b) (c)
Fig.3 Diagrams of the order of O(h?)
transforms as follows up to the lowest order in h, i.e., O(h%):
¢hia(p) = ips€4(p)
beh_+(p) = §(ps€-(p) + p-£4(p)) (5.38)

b¢h——(p) = ip-£-(p) -
It can be shown that W, in (5.33) with the following assignment of a, b, ¢

and d gives rise to (5.34) under § given by (5.38),
1 dzP 2 £ ﬁ
Wi= g [ Gap €980 + 0 CEh_(p)h ()
= 3pLh__(P)h-s(2) + P-Prho- (e (q) (5.39)

+2p-prh_s(p)h-y (@) — P h_s (P)his(9)}) -

Therefore, it has been shown up to O(h) in the anomaly that the anomnaly
(5.18) which was obtained by the differential geonetric method agrces with
the result of the Feynman diagram calculation. In the above diagram calcu-
lation we did not include the diagram in Fig.3(a) which is the same order in
h as the diagram in Fig.3(b) since this dingram wonld give ba local functional.
Actually in our systein the vertex in Fig.3(c) does not exist wh‘en we expand
the Lagrangian (5.27) using (5.28), (5.29) and (5.30). Then the diagram in

Fig.3(a) docs not exist.

(a)

(b)

Fig.4 Diagrams of the order of O(h?)

()

+{p——4q)

r=-(p+9q)

Fig.5 Diagram [5.2]

et us now show that diagram calculations agree with (5.18) up the next
order, ie., O(h?) in the anomaly. For this we nced to calculate only the
diagram in Fig.4(a), since ll‘ne diagram in Fig.4(b) does not exist becanse of
the absence of the vertex in Fig.3(c), and the diagram in Fig.4(c) would give
rise to a local functional to the effective action.

Applying the Feynman rule in Fig.1, we have the amplitude for Diagram

o o
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A = (3 [ 512k = P)abe(p) = (26 = )b (1)

x [(2k +q)4h-_(g) — (2k +q)- Ty _(q)]

x[(2k—p+q@)ph_(r) — 2k - p+ q)-hy_(7)]

1 1 1
R R R R (R M I M Ry

x{

+(pe——rq).
(5.40)

(5.40) contains the following four cases for the combinations of the external

h ficlds.

(casel) : (ho_, h__, h__)

(casc2) : (hon ), ho_, hy)
(5.41)
(cased) : (ho_, hy_, hy.)

(cased) : (hy-, hy_, hy).

As we did before, we integrate (5.40) first over k_ by using the residue
method and then over ky. After these integrations we find that (case 3) and
(case 4) give rise to local functionals for Lhe cflective action which can be

ignored since the effective nction is ambiguous by a local functional. (case 1)

and (case 2) produce the following effective action 1V, of O(1?).

1 d’p  d’q
Wo = ——— | -2 P 8¥pdoadtr
> 7 2w J (2n)2 (2n)? Er&ptatn
I (9, I
o {~1_.1_ l’.-f_(ﬁ_'_?’i_).h___(,,)h“(q)h___(,.) (5.12)
Ir. -
I
() -())

Now we want Lo show that the O(h?) terins of 8(1V) -+ 1Va) apree with the
O(h?) terins of (5.18). In order to caleulate O(h?) terms of 61V, we need
O(h) terms of 8¢h,.,, i.c., one higher order than &, of (5.37) or (5.38).

Following a similar procedure as from (5.35) to (5.37) we ohtain

1
8( hvnn = —(’ mEu -+ aﬂE"\)
2
4 M — (€' Dlua + €D ,0)
(5.43)
1
- %(o."s'h., F ) (@ Ehia + T Ealun)
+O(h?) .

Using (5.43), (2.45) and the correspondence between (8,) and (ip,)) as

explained above (2.5G) in chapter 2, we have the following O(h?) terms of



5(Wh -+ Wy) which we will call §(W; + W2)[O(h?)] .

1 dp  d?
8 (W + Wa)[O(W?)) = — o= 5771)7 (—2;%; d’r 8 (p-tq+7)

x {h__(Mh_ ()€ (r)(P} -+ 3pias)
+he o (Phaa (D€ (P)(=2Py - — Pyp-ar + 329 4 Ip1q4q- + 42 )
+ho (DR 4 (€4 (r) (PP + 3p4P-q- — P-qiq- + pag?)
+ iy (Phy 4 (9)€-(7)(p-42 — q°)
+ho_(p)h-+(9)E-(r)(9p3 +9P1qr + 3psg + q3)
+ho_(ph_y ()4 (") =p-P} — 2-Peas — 3P\ - +3p_q} —Apyq_q, 1 q.q7)
+ho s (P (DE-(M)Bp py + plgs ~ p_prg- —2p_q_q ~ i+q3 +q2q)
by (s @)= ~ 3P q. —p_a® — )
+ h-+(r)h—+(q)f-(').('—2p-ri +4p_pyqy + 6phq)

+ho s (M- ()64 (P)(4plpy +r-peq-))
(5.44)

Since we used the light-cone coordinates for the diagram calculations, these
calculalions are not covariant and fairly complicated. After lengthy calcu-
lations it can be shown that (5.44) becomes the same as the O(h?) terms

of (5.18) by adding the following Lorentz invariant local functional We to

(Wy + W),

We - L. [ L2 &g

T (%7 (-57;? dr8(p 1 q-kr)

X e @ ()0 4 By + )
Fha(he (@b (1) 5 (7 4 4nq. +?)
+ho_(p)haa()hoi(r) 2 (=3p_py ~ 4peq- 1 q-q4) (7.45)

+ho (Mo (Dh_i () (=2)3P) +Pras +q})

+ h_y (P, +(q)’;—+(f) 2(p2 +p_q- —q%)

+hoy(Mh-i(9)h-y(r) g (2p-pe +p-qp +pig- +29-94)) .
Therefore it has been shown that (5.18) agrees with the diagram calculations
up to the sccond non-trivinl order, i.e., O(h?) in the anomaly. That is, in this
section we showed, up to the sccond non-trivial order, that the purely gravi-
tational anomaly obtained by the differential geometric method agrees with

the variation of 1V obtained by diagram celculations by adding appropriate

local counter terins.
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CHAPTER 6
SUPERSYMMETRY ANOMALY

In this chapter we study supersymmetric Yang-Mills gauge theory in
which the supersyminctry is a rigid symunetry [52]: We can think of two
kinds of supersymmetry anomalies. The first is an nnomnly of a supersym-
melry transformation in a superfield formulation without fixing a specific
gauge. We will call this transformation a genuine supersymnctry transfor-
mation, and this anomaly a genuine supersymmetry anomaly respectively.
The second is an anomnaly of a supersymmetry trnnsforrll;\tiox\ in the Wess-
Zumino gauge which is composcd of two steps of transformations, i.e. a gen-
uine supersymmetry tronsformation and a restoring supersyinmetric gauge
transformation. We will call this anomaly a supcrsymmetry anomaly in the
Wess-Zuinino gauge.

We find a supersymmetric extension of a gauge anomaly which we will
.call a supcrsymmetric gauge anomaly. This anomaly is then used to ob-
tain a gauge anomaly and a supersymmetry anomaly in the Wess-Zumino
gauge, which satisly the mixed consistency conditions. In this derivation it
is transparent that the supersymmetry anomaly in the Wess-Zumino gauge
originales only from a restoring supersymmetric gauge transformation, not
from a genuine supersymmetry transformation. This indicates that there is
no genuine supersymmetry anomaly [48]. This situation can be guessed from

the fact that the genuine supersymmetry trausformation is a rigid trans-
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formation. This also shows that when the gauge anomaly is canceled, the
supcrsymmetry anomaly in the Wess-Zumino gange is also canceled nuto-
malically.

Furthermere, we obtain the snpersymmetric extension of the Wess-Ziinino
term following Wess and Zumino’s original method in superspare [9,53] We
modify this extension such that it depends only on the vector inultiplet. This
extended Wess-Zumino term's gauge and supersymuelry variations give rise
to the gange and supersymmetry anowmalics in the Wess-Zumino ganps re-
spectively.

In scction 6.1 we present two-dimensional superfickds and th"ir_sn.pr:nym—
metry and gauge transformations. In section 6.2 we obtain a snpersynnretric
gauge anomaly and gauge and supersymmetry anomalies in the Wess-Znmino
gnuge. In section 6.3 we obtain the supersyminetric extension of the Wess-

Zmmino term.

6.1 Two-dimensional Superspace and Superfields
In two-dimensional snperspace we have two real space-time coordinates
z%, ' and two real spinorial coordinates 6y, ;. The conventions which we

will use are given by

{‘,“,711} — 27,“»' __7’00 - 1’|| — l, nm — 10 — "'
0 1 0 1 1 0

7= y Y= v =" = . (6.1)
-1 0 1 0 0 -1

The rest of our conventions and their propertics are given in Appendix AL
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A scalar superfield is given by
S=A+ibp 4 %bozr , (6.2)

where 0, = 8,72, is & linear combination of 8,’s and is not independent of the

0,’s. The supersymmetry transformation of S is given by using a generator

9 -
Qs = e + 194,0,0,, (6.3)

8.5 =[5,aQ)]:

A = iay
S = 0, Ay"a+ Fa ' (6.4)
§F =iy -0y .

A spinor superfield or a vector multiplet V,, which is real and contains a

gauge field A,, as one component field, is given by [52]
Va = €+ ol + 1300M + 0N + 200C, . (6.5)

Its supersymmetty transformation is given by

baVa = |Va,GQ]
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86 =", + Y aM + aN
67, = {ar .07 — fav.(

faySy - 0 - $ayS( (6.6)

§¢€ = —v"y"ad A, — Yy aB M — ¥y'ad,N .
In order to have a gauge structure, we let a sct of scalar superfields form
a representation of a gauge group such that S = {S;} transforms under a

finite gauge transformation as
S'=ets (6.7)
or under an inﬁnilr:;.imnl transformation-as
5,58 = —AS, (6.8)

where A = A;T;, A;'s are real scalar superfields which are supersymmetric
gauge transformation pacamelers, ie., A; = a; + ify; + -}(—)0[‘ and T:'s are
anti-hermitinn gauge group generators which satisly [T;,T;) = fij T -

We gnuge covariantize
D,S = (_-0-_- —iv"03,),S (6.9)
ae

to

V.S = (D, —1V,)S = —i(iD, + VL)5 , _ (6.10)

by requiring V, = V,;T; to transform under a gauge transformation as

(iDa+ V.Y = e MiD, 4 V)t inorder to have (V,S) = e *(V,5) That
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is, under a finite transformation
V! = (e *iD,et) + eV, e (6.11)
or under an infinitesimal trasformation
SAVa = iD.A + [Va, A) . (6.12)

In terms of the component fields, (6.12) becomes

(66 = x+ [£,q]

6/14' = 0,a -+ [Ama] + %(E'Ynx + x7.€)

M = [M,a]+ 3(Ev*x + X7%¢) (6.13)

SN = f+ [N,a]+3i(-Ex+x¢)

6¢=—v-0x+[(,a] 4+ [6 1]~ [Am7"x] - [M,7°x]) — [N, x] -

When we have the gauge symmetry (6.12) or (6.13), we can choose the
Wess-Zumino gauge in which £ = 0, N = 0 in the following way. Let us start
with £ = 0, N = 0, then we have the following transformations of £ andN.

Genuine supersymmetry transformation for £ and N :

8¢ = aA, + vtaM

(6.14)
SN = —ia( .
Supersymmetric gauge transformation for { and N :
6 =x
(6.15)
§N=f.

As we sce in {6.14), even though we start with § = 0, N = 0, these
component fields become non-zero afler a genuine supersyminetry transfor-

mation. But we can come back to £ = 0, N = 0 by performing a restoring

gauge transformation which is given by the following gange teansformation

parameler Ape as can be scen in (6.15).

SncV = iDApe + [V, Anal

wilh Anc:
l a =0
X = el — el (5.16)
l f =55
where

A=(4y-OF.

Thercfore the supersymmetry and gauge transformations in the Wess-

Zumino gauge arc given by

(l'.,l?)

Sspwzy = been. sosy 4 fne
a=a,x=0,f-=0,

bcowzy = 8sur.cavee with  Ag:

\'vhcrc Scrn. susy, Snc and Ssur carge mean genuine supersyminetry, restor-
ing gauge and supersymmetric gauge transformations respectively. After-
wards, we will wrile 8gavz) and 8garz) simply s 85 and 8¢, Under these
transformations, the component ficlds A,,, M, X in the Wess-Zumino gauge

transform as

sM = —5av*A _ (1:.18)

s == Yy aly. 4 2y (DM (A, M])



whete F,, = 9,4, - 3.A,, - A A, — AA,,
dc A, = dua+[A,, 4]

bgM = (M, q) ' (6.19)

6GA = [,\,a] .

Nole that in two dimensions the Wess-Zumino gauge has a pscudo-scalar
field M as well as A, and A, in contrast to the four-dimensional casc in
which there is no M [52].

For reference we wrile down the following supersymimnetry and gauge

transformations of a scalar multiplet in the Wess-Zumino gauge.
bs¢ = i
5. = yaD, ¢+ YSaMd + al’ (6.20)

8sF =iy D, -+ iay" My — L@

where

Du = ap + Au »

bcp = ~ad
{ 66 = —ap (6.21)
60[‘1: —al .

6.2 Anomalies
Fisst let us find a supersymmetric extension of a gauge anomaly which
we will call a supersyminetric gauge anomaly. A vector multiplet given by

(6.5) gives rise to

D1V = Day5 W = 2M — i645X 4000, A, . (6.22)
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Then with A = a 0y - %50[, we have
TH{ADY V)5, = i00 Tr(a e, 0" A" + %y%\ +fMY. (6.23)

Since the first term on the right hand side of (6.23) is just an ordinary
non-supersymmetric gauge anomaly, it scemns plausible that (6.23) is a su-

persymimetric gange anomaly. In order to confirm this we should show that

A(A) = Tr / & 3 d8 (ADA*V) (6.24)

_satisfics the consistency condition

61\:A(Al) - 'SMA(A?) = A([AhAl]) t (625)

where 8, V, is given in (6.12).
Let us show this.
50, (A DYPVY = A\DA*(iDA; + [V, A))

(5.26)

where U =4V, and Dy®D =0 was used.

From (6.26) we have

Tr{8a,(AsDYV) = 85, (A2 DYV} = Tr{[A2, MIDA*V + D([(Ay, MY V))

(5.27)
Since the sccond termi on the right hand side of (6.27) is a total derivitive,
it vanishes under the integration f d» dfd0 . Thus by taking f d%z d 49 on

both sides of (6.27) we obtain (6.25). Of conrse, (6.25) is also satisfied with
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an arbitrary normalization factor in (6.24). We can show the above in a more
elcgant, but equivalent way which is given in Appendix B.
The supersyminetry and gauge translormations in the Wess-Zumino gnuge,

i.c., (6.18) and (6.19) satisfy the algebra:

[65(8), 8s(a)) = ba(~2i(@y"B) A, — 2i(=r*A)M) + 2c+"B)id,
[5(b), bc(a)] = (b, a]) | (6.28)

[6c(a), bs(c)] =0.

Then a supersymmetry anomaly Ag(a) and a gauge anomaly Ag(a) in

the Wess-Zumino gauge satisfy the consistency conditions:

6s(B)Os(a) ~ 8s(a)As(B) = De(-2i(Ty"P)A,. — 2i(@y°F)M)
66(b)Dc(a) — 66(a)Aa(b) = Dc([b, a)) (6.29)
be(@)s(a) - s(x)e(a) = 0.

The term 2(&@y"3)id, in (6.28) did not contribute to (6.29), since the
vacuum functional is invariant under translation if we impose the condition
that a surface integral vanishes.

The interesting thing is that we can obtain As(a), Ag(a) which satisfy
(6.29) by using the supersymmetric gauge anomaly (6.24) in the following

way. Let us rewrite (6.24) with an arbitrary normalization factor as

B() = —ieTr [ P26 (DY) (6.30)

=cTr f &z (ae™d,A, + %,—n‘,\ + M)
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where /d"() = »—% /41(_? do such that /(130 00 =1 .

At first we oblain Ag(a) from (6.30) by tnking a = a,x = 0, f =0
since b in (6.17) or (6.19) was given by this assigmment of A, ic., Ag.
Next, in order to oblain Ag(a) we observe that §s in (6.17) or (6.18) is
composed of two steps, i.c., Sern. susy and Spe . But we exprct that the
bcrn. susy step will not prodice any annmaly since this lrnnsfnrm:\l.inn isn
rigid translormation. Then we expeet that A(A) with A = Apg in (G.15) will
give tise to As(a) [18]. That is, we expect the following to be the solution

of (6.29).

Dgla)=D(Ag: a=a,x=0, f=0)
(6 31)

=c 'I'r/d’:rac""O,,A.. .

As(a) = O(Ane : a =0, x = —7"aA, —ySall, f = ~aA)
2 (6 32)

=icTr / 'd’:(%A,,ﬁy“—y".\ + M@ .

We have confirmed that these Ag(a) and Ag(a) satisly (6.29) by explicit
application of (6.18) and (6.19). Therefore we have found that the snpersem-
melry anomaly in the Wess-Zumino gange originates from the supersynunet-
ric gange nnomaly. This indieates that there is no genuine supersymmetry
anomaly. This also shows that when the gange anomaly is canceled, the
supersyminetry anomaly in the Wess-Zumino gange is also canccled anto-

matically.
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6.3 Supersymmetric Fxtension of the Wess-Zumino
Term

We will find a supersymmetric extension of the Wgss-'/,umino term which
depends only on component fields of a vector multiplet. This vacuum func-
tional gives rise to gauge and supersymmelry anomalies by gange and su-
persymmelry variations respectively. In order to understand the derivation
better, lct us review bricfly the familiar non-supersymmetric gauge theory
case [8,9].

An clfective action can be obtained by solving an anomaly equation
WV = / d*z a0, G; (6.33)

where G;’s are anomalies. Wess and Zumino solved this equation and ob-

tained the solution
1
W[A,x] = / &z / dt mG(AW)(z) , (6.31)
o
where the m;'s are a sct of fields which transforms as
e" =e"e® (6.35)

and

Ay =c"Ae™ +e"d e, (6.36)

where

a = aiq‘i) = "inn An = A;u'Ti .
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Any gauge invariant funclional can be added in (6.31), so (6.34) is a parti-ular
solution and is called the Wess-Zumino term.

Now we are interested in having a solution W[A] as n functional of only
A,, without the independent w. This can be achicved by replacing the inde-
pendent 7 by a function 7(A) which translorins as (6.35) when A, transfooins
as a gauge ficld, if we can find such a function [27].

In the Abelian case we find such a w(A) easily as
1
cm(A) = fjo"A“ , where OO = 08,8 (6.37)

since A =", B,m(A)= —é]—f'),,(a"n) =a.
Then
WA = /dzz/llt(—]ﬁr’),,A“)G(A(t))
! 1 1
= / dz [ di(=8,A4")-8, A\(t)e™
‘/" O 2m (¢ 38)
; 1
=5 [d= [ (T'j—o,,A")o,,(A, — tovm(A))e
_ _‘:_ 2 _1_ " v
= 2N/d 2 (00,
for Lthe quantum effect of a left-handed chiral feention. We use the convention

10 m

€10 = g =1, e¥" = 7t = —1 . Our conventions are suinmarize: in

Appendix A.

In the light-cone coordinates, let us use the anomaly in the form —(i/7 10, A

* in (6.38), since they differ by a tari-

which is equivalent to (i/2r)d, Axe”
ation of a local functionnl (i/2r) f dz A,,A* . (9,) in the coordinate space

corresponds to (—ip,,) in the momentum space, since we will take external
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momenta as out-going. Then W[A] can be wrilten as

i. d’p p.
wiA) = o~ (2”),%/\-(:7)/1-(—:'), (6.39)

after adding an appropriate local functional to (6.38) which is allowed since
W({A] is nmbiguous by a local functional.
In the non-Abelian case we can gct' m(A) which transforins as (6.35) by
inverting
Ay=e""0,c". (6.10)
This inversion can be done as n power scrics of A, and the lowest order term
has the sane form as (6.37). Note that even though we are inverting the pure
gauge form (6.40), n(A) obtained by this procedure transforms as (6.35) for
a general A, . That is, (6.40) is just a guide for obtaining n(A) for a general
A, [27]. Using this w(A) we can obtain W|[A] as a power serics of A,, which

starts with the lowest order term similar to (6.38) or (6.39) ns
WiA] = c’Tr/ ﬁr—'—"—/l_(p)/\-(—p) +0(A%). (6.41)
(2m)* p-

We can use the above procedure to get a supersymmetric extension of
the Wess-Zumino term which gives rise to Ag(a), As(a) in (6.31), (6.32) by
.6c(a), §s(a) in (6.18), (6.19) respectively [53). First we will treat the Abelinn
case in dctail.

The consistency conditions for the Abelian case are the same as (6.29)

except that the second condition is replaced by

55(5)D(a) = So(a)Bo(8) = 0. (6.2)
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The solution of the consistency conditions is given, in analogy with (1.31)

and (6.32), by
Di(a) = i/ri’a:ae""a,,/'l,, , (r.43)

. 1
As(a) = / 2 (S AN b MR (.44)
which can be obtaincd from a supersymmetric Abelian gauge anomaly

Dot (A) = /.{’1,170(/\757‘V)
| (5.15)
- j £z (ae™ DA, + %,’\"7"/\ + M)
through the same procedure as that used in section 6.2 for the non-Ah~linn
cnse. In (6.45) we take such a normalization factor for convenience.
In the present two-dimensional supersynunetric case, (6.34) is replaced

by

WV, 1) = /d’md’o /o' dt LD Vi(t)) (-46)
where the TE's transform under a supersymmetric gange transformation as
=Mt (+.47)
and
V() = MLe ™ o Min,)e . (:.43)

The above formulas (6.46), (6.47) and (6.48) arc alse valid for the non-
Abelian case where 11 = 11;T;, A = A;T; are Lic algebra valued scala su-

perfields and V, = V,,Ti. The formulas for the Abelian case are simply given



by omitting the sum over the subscript i in (6.46) and using the Abclian
nature of I, A and V.
Tu the Abelian case the gauge transformation given in (6.12) becomes
8V, = iDJA . (6.19)
Then we find easily that
I(v) L Dy (6.50)
= —t=—" .
DD ’

transforms as (6.47) which is the same as 11’ = Il + A in the Abelinn case.

The expression (6.50) means

(V) = ~i55-Dole

WI‘)(DJD«)(E%) (6.51)

%ﬁ-(D,,D,,)(D,,& )

since
(DD)? = (DaD.)(D.D.) = ~49,0" = —40) .
Then from (6.46) we get W([V] as a functional of V, only
1 1 —
ViV] = —i | d’zd? —_— 4
WV] = —i / &= /o d(=DVIDT V(W)
1 1 oo
= —1 ? e d? — 5(V — ti 6.52
= ;/d od 9/0 di( 55 DVHDY*(V - tiDIN) (6.52)
=i / $2d*0(—DV)(D1*V)
DD
since Dy*D=0.
Let us express (6.52) in terms of component fields in the Wess-Zumino
gauge.

V = "84, +1°0M + %on

DV = —iliA + i060, A"
1 — oty dA
=DV =i ip(-2 120 ¢.53
SSDV =i (- ST (e59)
and
DYV = 20 4 i0(=~"A) + %60(25‘"’0,,/1,,) . (€.51)

Using (6.53) and (6.51) we get

9

W{V) = ie™ / a2 D 2. A qu ). (¢.55)

We have checked explicitly that the variations of (6.55) give the anom-lies
(6.43) and (6.44).

When we use the light-cone coordinates in (6.55), the terms fromn et~ and
£~% are equivalent to each other, since their varialions give rise to anomnlies

which diflee by variations of a local functional. Therefore we can replace

(6.55) by twice the e*~ term in (6.55). Then we have W{V] as

wivj=i [ 21 P2 A (=p)A (;»)——,,—M “PMP) (6 56)

(2m)*'p
by adding an appropriate local functional. Variations of (6.56) give ris: to

anomalies of the form

Nela) = -2 fd’za 8, A_
(6 57)
Os(a) = [dz(A,ay- A — MadN)

which arc cquivalent to (6.43) and (6.44) since they differ by varintions »f a
local functional.
In the non-Abelian case, in order to get a 1W[V] depending only on V,

from (6.4G), we need a function 1I(V) which transforms as (6.47) when V,
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”

7

transforms as (6.12). This can be obtained by inverting
Vo = MiD,e" (6.58)

in analogy with (6.40) in the non-supersymmetric non-Abelian case. II(V)
can be expanded in a power scries of V and the lowest order term hos the
same form as (6.50) in the Abelian case. Using this II{(V) we can get W{V]as
.u power scries of V' which starts with the lowest order term similar to (6.55)

or (6.56) as

Wyl =r [ (2,,),1”*/1 (PIA-(@) - 3 Hrhr2)] +0(v).

(6.59)

Appendix A
Let us suinmarize our conventions and their propertics. We use p, v,

A, + -+ for space-time indices, and a, b, ¢, - - - for spinorial indices.

{’7”,1"} — 2” _nno — 1]" — 1, nOI = ",10 = 0,
0 1 01 t o
7= , = , T=1"= -
-1 0 10 ) 0 -1
CID____COI_I, c00=CII =0
" v (T u L] n v, 8B w_ B

P =y, P =7 Yy YV =gt e

B VP t’lll’

V'Y =0 0 ™y

,7

f

6‘“/6,"\ — (7’,:,»

1
et = —(a® + 2y,

"

no -

»

A (Y

7).

1
— (g 4 ),

V2 T Ve
x.o=at, 2z, =2
eyt =gl =n_y =1, othery’s = 0.
a'h, =a'b, tab_ =a,b_ta b,
a’a, = 2a,a_ .
:—c"’:—c._ =e_4, =-1,

=]

othere's = 0.

0 V2 ; 0 o
(O’ +1) = = (=4 =
4+ ( 0) =y (\/) .

Tyt =47y =0,

RAR B S B

=2.

8,

6,

Ql

"C“h(’b (‘7 b = €ab, €12 = l) on ==
0| 62 _ 5,
o = , 0,‘ = N =
0, -0 0,
a - d
ey = " —-6), =
Onﬂ b Tab » 00“ b= ‘7«5 '
J ad 4 0_ _ ad o,
an.” “on e on, T an, ™
- 1- — -
0,0, = 5001 b (90 = 9‘,0,,) ,
a -
= (00) = 20, , =o-(80) = 20,
2 00) =20, o) =

).

= By, = €anlh .
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Let us show that (6.24), i.e.,

0 — a _
Da =57 1‘7:50‘,8“ » Da = Db‘rl?a =+ iob’hﬁ,")‘. s

30, an, A(A) = Tr / &z dB 40 (ADA*V) (12.3)
Qa = _% -+ i7alz‘b0b3u 9 _Qa = Qb‘Yg: = 5(5_ - 1.65‘7:,3,‘ - ‘

snlisfies (B.2). In the following expression, every Lerin is to have 1'r in front,

Iierz rcarrangement:
' i.e., we omit T'r in fronl of every term for notational simplicily.

_ __l & A el 5 5 A @ "
(@¥)ha = 2{( BYba + (@ B)(1°¥)a +(@1.0)(v"¥)a} - S(AB‘VBV) — (SA)D{‘V + (_1)21\7)’,76(5‘/)

= (-A?)DY*V + ADY*(—iDA - AV — VA)

Suf =Pyra (o pare el spinors ) : = ~A?DU - AD(AV) - A'ﬁ(u}\) (whete U = +*V ,  Dy"D = 0 were used
Using ()7 = 7°r"7°, (") =9°9%1° = +*  ( where superscript T = —A?DU — A(DAY + AA(DU) — A(DU)A + AU(DA)
means Transpose ), = (DA)AU - A(DAYU + AA(DU)
T=1, =9, 2°=—9, (7‘~7“)= ~-(r*"), = D(A?). |

("=, (PY)= (") . That is,

Sa(A) = [ =i do BTHAU)) =0,
We take external momenta as out-going, therefore (8,) in the coordinate

space corresponds to {(—ip,.) in the momentum space. since the integrand is a total derivative.

Appendix B Appendix C Three-dimensional Superspace

Let us show in another way that (6.24) satisfies (6.25). Here we treat A We summarize the three-dimensional supersymmetry for referenc be-

as a ghost and we take the following BRS transformation. cause of its similarity to the two-dimensional case. The three-dimensional

SA = —-A? supcrspace is described by three real space-time coordinates 2", 2!, 2”7 and
(B.1)

SVa=—tD,A - AV, - VoA, two rcal spinorial coordinatcs 8, #;. Therefore the structure of the spinorial

Then (8.25) can be expresscd simply as [8] coordinales is the same as the two-dimensional one. @, end .D.. have the
SA(A)=0. (13.2)



same forms as (6.3) and (6.9),

s

9 .. Ja .,
Qo= ~5 + 704068, , D = 35 190200, , 1 =0,1,2.

a

Our conventions and their propertics arc as follows.

Y =m, P =n"=9"=1,
i 0 1 ‘ 01 \ 1 0
40 = y 7= » T ES
-1 0 10 0 -1
€2 =10 = 19 = | ete.

[, "] = 2¢"s
T =0 e, Tr(y'yy) = 26,

ey, = —85 80 + 6280 .

A vector multiplet is given by
i
Vo =& + 306 A0+ 0N + 50% }
Genuine supersymmetry transformation :  §,V, = [V,,@Q)

(8¢ = YaA,+aN
§A, = feundy* ¢ + §70,.¢ ~ Jamd

SN = ioy- 8¢ - $a(

L 6¢ = eurr 0d"AY — @B, A" — y"ad,N .
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Supersymmetric gnuge transformation @ 8V, = iD,A + [V, A}

6{ = X + [f-“]
87, = Ak [A,a] + %(E'ﬁlx +X7.£)

SN = [+ [N,a]+i(-Ex 4 x8)

8 = —y-ax [ o] +[€f] = [Any"x] - [N, x] -
In the above V, = V,T: | A = ANT; (T's are anti-hermitian), A; =

a; -1- ‘lﬁx‘ + %ﬁ()[, .

In the Wess-Zumino gauge, £ =0, N=0, A =(,

Ssowz) = been. susy + 8na

withApe: a=0, x = —1"aA,,, [ = ;i\,

6G(WZ) = 6SUI‘. GAUGE

withAg:a=a,x=0, f=0.

{65(")/1:1 = —%57:11\

65(0)/\ = ‘7“‘7""F;n' »
where [ruv = (741/11/ - "’.;A,, 4 /1,./1., — /1,./‘“ ,

{ 5c(a)A, = Oun + A, 0]

Sc(a)A = A q],

where 85, 6 incan 8cavz), Sgpvz) tespectively. They satisly the following
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algebra.
[65(8) , 8s(a)] = Sa(—2iay"BA,) + 2(av"B)id,

[86(b) , 8c(a)} = dc([b, a))
[6c(a), 8s(a)] =0.
An interesting feature of the three-dimensional gauge theory is that there
is a gauge invariant {opological mass term [51). In the three-dimensional
supersymmetric gauge theory, we have the following supersymmetric topo-

logical mass term [55).
2
W =Tr / Pz (A% ds + 2™ (AuFir = SAuA.M))

Under 8g(a) and §s(c),
Sc(a)WV = 4iTr [ &z e*8,(ad. A))
Ss(a)W = —2Tr [ &z e 8,(A,.(G1aN)) .
Therefore when we assume that a surface integral is zero, W is invariant

under §g(a) and 85(a).

CHAPTER 7
ANOMALY SUPERFIELD FOR BOTILI 6,,J‘5‘ AND 0, J"

In four dimensions Ferrara and Zumino [56] showed that 4*S,,, 6,/ and
8, J¢ are components of a Wess-Zumino multiplet [57] (where S, is an im-
proved supercurrent, and 8, is an improved energy-momentum tenscr, and
J¢' is an axial vector current). ‘The corresponding anomalies have been stud-
ied in references [58-62).

In this chapter we find in two dimensions a vector multiplet which contains
3,J and 3,J" ns components (where J!' is an axial vector current nnd J»
is a vector current), and we find a corresponding anomaly superfield. Then
we cotnfirm that this anomaly superficld is realized by Feynman dirgram
calculations. Tliese calenlations show clearly how corresponding anormalies
form a superfield. We study an Abelian case, but the extension to » non-
Abelian case is not difficult.

In scction 7.1 we review the gauge anomaly for a non-supersymmetric
theory. In section 7.2 we find a vector multiplet which contains 8,,./!" and
8,J" as components, nnd a corresponding anomaly superfield. In section 7.3

we confirm this anommly superfield by Feynman diagramn calculations

7.1 Review of Non-Supersymmetric Case
In this seclion we revicw the gange anomaly of a non-supersymonetric

theory. We consider a systein of a massive Dirac fermion and a gange field,

A
-
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which is described by the [ollowing Lagrangian. (We omit writing the kinetic

encrgy lerm of the gauge field.)

= —i%"(@,. ¥ ieB,) —imynp . (7.1)

Our conventions are given by

" AY=w", P =a'=1,
0 1 01 1 0
7’ = v = y X =71 = ,
-1 0 10 0 -1
e =" =1. (7.2)

And their useful propertics are

iy " v w8 PN

P =, A = =, A = e

v

T =9

Y

VY =y, e = — (g — ). (7.3)
(7.1) gives the following equations of motion.

(0, + m 4 iey" B ) =

(7.4)
¥(1"9, —m —iey"},) = 0.
When we use the equations of motion naively, we get
3.‘(7;7"751/') = 27"%7511’ . (7.5)

However, (7.5) is true only classically, and the quantum correction modifies
it. This modification is called an anomaly. We can obtain the anomaly in

the following way [1,5].

Fig.1 ' and R¥

kt+p

In Fig.1 the double wiggled line in R corresponds to the axial v-ctor

current Yry*ysep, and that in R corresponds Lo Yryst) .

side of (7.5) is renlized by R** as

—i(‘y-k»l“y-p—im) N

ip R = ip,( l)/(2 y

—2ee"™

Il

4’k

(k +p)? 4 mn?

1 1

(—'Z_NS; k2 4+ m2(k +p)2+m?

Then the left hand

~((k+p)? -+ mhk,}

1 1

w/ (2n)? @

—2ee {-2mp,,

A-m2 (k4 p)?+ m’(

d*k 1

(2r)? k24 m2(k +p)? +m?

{(=2m?p,, + (K + m)%, + Pu)
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k, 4 p k
2 1 1 m
+ - —
mpa) [(k +p) 4 m? k?4m?
1 D
b
(7.6)

\
where we used the coirespondence 3, +» 1p, since p,, is an incoming momcn-

tum for the wiggled line. In the last step of (7.6), we used the [act [5]

A,,((l) =

d’k

(k +a),

@y

(k+a)? 4 mn?

ku

Tk m?

4

Ay

(7.7)

]
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Let us regularize (7.6).

ip, " (reg.) = {IRHS of (7.6)} — {RHS of (7.6) with 1n — M}
d’k 1 1
(2m)? k2 4 m2 (k + p)? -+ m?

k1 1
_ 2 _jw,
e ”“"/ (r) K4 M2 (k+p)2 + M2

The first term in the RI{S (right hand side) of (7.8) is nothing but 2mR* in

2 v
=4 e"p.e

(7.8)

Ilig.1, which corresponds to the RIS of (7.5), i.c., the naive classical result.
Therefore the anomaly is given by the second term of the IUI{ S of (7.8) when

we renormalize (7.8), that is, when we take the limit M — oo.

1 1 1 1
i =[ d = k4p{1—
Using o5 A (k + p) 4 A2 /o T e m oy | R,

—AM’epye (;l:,;: k2 +1 Mz (k + p)12 + M?
= —4M?e"pue /0l d= / (;;l)z 2+ M2 4 ;»’z(l - =)
= —4M """”""/ol dz;/ (ﬁ:;’ {13 + Ar? +1r’=v(1 -3)p
= —aM "'“"’"e/o‘ d= (;:)’ M2y p’l-'ﬁ(l - z)
- _1—':'5""1'17" , when M —oo.

(7.9)

Then using the correspondence 8,, «+ ip,, we have from (7.8) and (7.9)
- 1 € ,u
0u($7"169) = 2miye -~ 9B, . (7.10)

Therefore we obtain the anomaly as —(e/n)e**3, B, . We will gencralize this

to a superficld in the next section.
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7.2 Superfield Extension

In this section we extend the anomaly in (7.10) to an anomaly superficld,
and find a superfield which contains l'),‘(;l-v‘y“'ysl/)) and 0,,(@‘7"1/;) as conpo-
nents. We consider a vector multiplet (a spinorial superficld) V, which on-
tains a gange field I3, as a component, i.e., a supcrsymmetric extension

of n gauge field [52,63]. We use n, v, A, --- for space-lime indices, and

a, b, ¢, - for spinarial indiccs.
Va = €a +2a0D, + 2R0M -+ 0N - 2D0C, (7 11)

The conventions in this chapler are the same as these in chapter 6 and
summarized in Appendix A of that chapter.

Using the supersymmetric derivative

J —
D,, = —-07 - i‘y:,',,O,,(),. ' D, = I)(,"/,(:I N (7 ]2)

we have
DV = D% Vs = 20 —i8v%) 4 i00™0,,B,., (7 13)
] . 1 , i1
;(n D)o(DysV) = —-2-/\a-!-'7f,',,0¢,(e,,vf’)vh-!)+7:,,0,,(e,,.,0“ll' )4 0,(0 )4'%00( -5 7N,
(7 14)

where A = (+v-9€.

That is, ;’(751))0(7)'7,&') composes a spinorinl superfield whose compon-nts



are given by

( £n : ——%,\u

B, e 0"M
M : €, 0" DY (7.15)
N:o0

Ca: ——%(7 - 0A), .

Let us study this supersymmetric extension of the anomaly. An inter-
esting property of (7.15) is that the M component is the ordinary gauge
anomaly, and the N component is zero. Also, we obscrve in (7.11) that when
M is a pseudoscalar, N is a scalar. Thercfore we are led to expect that there
cxists a superficld which has 8u($7“'75¢) as the M comnponent and 9,,({y"¢)
as the N component. Indeed, there exists such a superfield, which is given
in the following.

We consider a complex scalar superfield

S=A4ily+ -60F,
z (7.16)
5% = A* +ify° + %601«".

After studying the structure of the supcrfield and using trial and error, we

obtain the following spinorial superfield which we expected to exist.

(D,SDyDsS* — D,S*DyDyS) =
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€o s —2i(1F° — 4 F)
B ¢ ~{Fb = e (Freth) + 2B AF* = 8,4°F))
M : 3,3y y) (7.17)

N : 0,,(;];-7“ W)

(o s 2l D (DA e DAY 1 DA — D" A

Then we anticipate that the supceeficld (7.17) is subject to the guantsnn cor-
rection which gives rise to the anomaly superficld (7.15). In the next ser tion
we will confirm this fact by diagram calculations similar to that in se-tinn

7.1

7.3 Realization by Diagram Calculations
We have the following supersyminetric extension of the Lagrangian (7.1)

{52]. (We omit writing the kinctic energy term of V, )
1
L= [~3T.5"VaS + mS" S, (.18)

where the subscript F' means the F' component of a scalar supeelicld o! the
form (7.16). Since I in (7.18) is the last component of a superfield, it is
invariant under a supersymmetry transformation up to a total derivalive. In

(7.18) V, and ¥, nre covarinnt derivatives
VoS = (D4 eV2)S, V.5 = (D, —eV,)S". (7.19)

Then (7.18) is invariant under the supersynmnetric gange transformation
5 == ¢"AS
(7.20)
V' = Vi iD,A,
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where A is a scalar superfield which is a supersymmetric gauge transformation

parameter

A=a+i?)'x+%§0f. _ (7.21)

(7.18) gives the equation of motion
VVS—-2im§ =0, ie.,

(D +eV)(D4eV)S-2imS =0,
DDS — 2imS + >VVS + VDS 4 ¢(DV)S + o(DS)V = 0. (7.22)
The Lagrangian in (7.18) is expressed in terms of component fields of S
lu‘1d V, as
L = —ipy"(8, +ieB,)A — imy

— (0 — ieB,)A* (0" +ieB")A —n?A*A (7.23)

~ EM*A° A + eMPysyh — g(,a%\ ~ ATY).
When we oblained (7.23), we took the Wess-Zumino gauge, i.e., £ =0, N =

0. We can anticipatc the realization of the anomalies (7.15) in this special

gauge, since (7.15) depends only on the component fields in the Wess-Zumino

gauge.

As we obtained (7.5) for the ordinary gauge theory, we oblain the cor-

responding supersymmetric equation from (7.17) by using the equation of .

motion (7.22) for Ds DS and the equation of motion for Dy Dy S* which is
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given by modifying (7.22) by the replacement of (e — —e).

i[D,,S(EI)S') - D.,S"(T)_DS)] = {Normal Tenns} C%('Yﬁ D),,(T)-qr_V) ,
(7.21)
where {Normal Terms} means the terms which are given by the nnive use
of the cquation of mntion such as 2myyst in (7.5). In (7.24) we added
the anomaly termn like in (7.10) with a normalization factor ¢ which will be
determined by diagraia enlculations.

In components (7.24) is given by the following cquations.
€n 0 —2i(PF* — 3 F) = 2im(PpA* = P°A) + c(—3N) -
B, . —[F0. — €, 0" (Fys) 1 20(BAF* — 3,A°F)]
= (normal terms) - ¢(e,,.0" M)
M : 0;:(?'—'7"'76\/’) == 27”%‘751/’ + QICA,;JJ-dl + %i('(A'X‘yS'ﬁ — A$75,\)
1 . (7.25)
+c(e,..0" B¥)
N : 8,(¥ry") = die(APX + A*Xp) + <(0)

Co : —20[e™ D, (WD A® — sh* D, A) + B (PO A* — D" N)]

= (normal terms) + c(—}v - 02).

In (7.25) we did not write down the normal termi for the By, and (n <ompo-
nent equations since Lthey nre long and not interesting in onr study.

Now let us show that the anomalies in (7.2%) are rcn]ich by diagram
calculations. The Lagrangian in (7.23) gives us the Feynman rules of Fig.2.

Let us study (7.25) comnponent by comnponent.

First for the €, component equation, we use the equations of 'nolion
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~ d
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P+ m? — e

I = —mA and F* = —mA* for F and P in the LIS (Ieft hand side).
Then the dingram in Fig.3 is polentially anomalous. In Fig.3 the doubls line
represents the first term of the LIIS of the €y componenl equation, which

will be denoted by &a(m). Then fram the Feynman rules in Fig.2 we bave

‘rf"k_ »-~i(-7.k—im)( E),\ o
(2r)2  k2gm? “'2 (k- p)?2 +mn?
&k 1 1
(2m)? k24 m2 (k4 p)? - m?

H ! !
2 _.../
cvn4 A ur

e rprz(t =)

Ea(n) =2 x 2im

—2em (v -k —1m)\ 17.26)

it

—y-p(l ~-x) —im

We regularize this by subtracting the Panli-Villars term.

€n(reg.) = Ea(in) — Ea(M). 17.27)

The first term in the RIS of (7.27) is a normal term. We renormnlize 17.27)

by taking Af — co.

Ea(ren) = lim €a{rcg.
i, Ealres) 17.28)

c
= v ' l - 1 —I\ .
(normal term) 1r( 2 )

For the B, component equation, the dingrams in Fig.4 are potentially
anomalous. Diag 4A snd AB come from the first term, Ding 4AC and 4D from
the second term, and Diag 4l from the third term of the LIS of the B,
component cquation. However, Diag.4D turns out to produce no ancmaly

and anomalies from Diag.AB and AE caneel each other. Then only Dirg 4A

a!
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Fig.4
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Fig.5 0.(V7"ys¥)
and 4C combine to give rise to an anomaly,
'k —i(y-k ly.p—im)
n, =(-2)x (-1 / L T fieyg ) TP T
o) = C2AN f gy o=y (7.29)
. vy ony (7 - K= im)
* {(~ik) b (eup)( ik )l""p",‘f‘,’,‘;i' -}
Then after sonie ealentations, we have
B.(ren) = lim {D,(m) - 13,,(A1)}
Moo {7.30)
== (normal term) — Ec,...ip".
"
Then using the correspondence 9, o ip,, ,
1 (ren) = (noral term) — E(r,..,O"}\I). (7.31)
"

For the M commponent equation, diagenms in Fig 5 ate potentinfly anamn-
lons. Nowever, Diag 51 Lturns oul to produce no anomaly. Diap 5A is the
sane ns that in Fig.? in section 7.1 which gave the result (7.10) Therefore
we hnve

M(ren.) = (normnal tern) — E((,,,O"H") . (7.02)

For the N componant equation, the ealculntions are similnr e those for

the M component equation. Ding 613 turas ont Lo produce no anomaly ns
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> —-=!
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2

Diag.7B 9, (¥3"A")

Diag.7A €8, (1593, A°)

Fig.7

Diag.5B, and Diag.6A gives

y—i(7-k+‘7-p—-im)’, ._‘—i('y -k —im)}

N(m) = —B.,/(;—-:%Tr{ie‘y

(k+p)?+m? ok gm?
=268, [ G\ oyt )
= %ep"u,, using (7.7).
(7.33)
Then
N(ren.) = lim {N(m) - N(M)} =0, o (1m)
Thercfore |

N(ren.}) = (normal term) — ;er_( 0). (7.35)

For the (n component equation, diagrams in Fig.7 give rise to an ancmaly,

d?k
Cam) = (i) [ oy (€ 4 o iK1 )]

(7.136)
y Ockeim) ey =f
k2 - m? 27 (k4 p)tm?
Then after some calenlations similar to these for (7.29), we have
Ca(ren) = lim {(a(m) — ¢a(A1)}
A —sner -y
(7.37)

O |
= (normal term) - S(—-—'y - ON).
: T 2
Therclore by (7.28, 31, 32, 35) and (7.37) we have confirmed (7.4) or

(7.25) with ¢ = —¢/m, that is,

i{D.S(DDS*) — D,5*(DDS)] = {Norinal Terns) — 213(‘751’),,(7)_75").

(7.38)

a3



CITAPTER 8
CONCILUSION

We studicd various topics of anomalies in two dimensions. In chapter 2
we obtained the gauge anomaly including the normalization factor up to the
sigh by using the differential geometric mcthod. We obtained the solution
of the anomaly eqution (the Wess-Zumino term) only in terms of the gauge
fields, withou! auxiliary ficlds. Then we showed, up to the sccond non-trivial
order, that this solution agrecs with the Feynman diagram calenlations. This
solution is interesting because it may be applicd as ano.ther approach to the
effective theory.

In chapter 3 we obtained the anomaly of D,,J* from the Schwinger terms
for the chiral Schwinger model and the non-Abelian chiral gauge theory. This
method provides a new way of calculating the anomaly of D, J" and shows
clearly the intimate relation between the anomaly of D,,J* and the Schwinger
termus. Through this study we could also understand the difliculties in quan-
tizing anomalous gauge theorics.

In chapter 4 we showed in the Schwinger model that the point-splitting
method disagrecs with the loop-diagram method by the sign and by the factor
1/2 for the anomaly of 8,,J¢' and for the Schwinger term of [J&(z), J°(v)|erc
respectively. When we calculated the Schwinger term by the point-splitting
method, we nused a spatial splitting which is not covariant. This may be part

of the reasons why the two methods disagree, since if we had used a spatial
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splitting instead of a covariant splitling for 8,J{" in seclion 3.2, we weuld
have got half of the result of scction 3.2 for 9,J¢. Tlowever, this does not
explain the disagreements completely, becanse the two methods disagreed by
the sign for 3,.J¢ even though we nsed a covariant splitting.

- In chapter 5 we obtained the gravitational anomaly including the nor-
malization factor up to the sign by using the differential geometric method.
Using the light-cone coordinates, we calculated the Feynman diagrams :nd
showed, up to the second non-trivial order, that the anomaly obtained by the
differential geometric method agrees with the Feynman dingram calculations.

In chapter 6 we showed that the origin of the supersymmetry anomals in
the Wess-Zumino gange is the supersymmetric gauge anomaly. This indicotes
that there is no genuine supersymmetry anomaly. This also shows that when
the gauge anomaly is canceled, the supersymmetry anomaly in the W.ss-
Zumino gauge is also canceled automatically. We expect that the situation
is the same in other supersymmetric gauge theorics which have superbicld
formulations. However, in a theory which has no superficld formulation, a
different analysis inay be nccessary. We have also obtained the supers:m-
metric extension of the ‘\\'css-Zmnino term in the form which depends enly
on the external vector inultiplet.

In chapter 7 we obtained n spinorial superfield which contains 3,J¢" nnd
3,..]“‘ as M (pscudoscalar) and N (scalar) coruponents respectively. ‘T his

superficld is subject to the quantum correction which gives rise to an anomaly
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superficld, which has the ordinary gauge anomaly and zcro as M and N
components respectively. We confirmed this anomaly superficld by diagram
calculations. This result could be expected since the Pauli-Villars regulator

terms constitute a superficld.
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