Lawrence Berkeley National Laboratory Recent Work

Title

ANOMALIES IN GAUGE THEORIES

Permalink

https://escholarship.org/uc/item/7xn840sm

Author

Hwang, D.S.
Publication Date
1987-03-01

③ Lawrence Berkeley Laboratory university of california

RECEIVED

AUG 271987

LIBRARY AND DOCUMENTS SECTION

ANOMALIES IN GAUGE THEORIES

D.S. Hwang
(Ph.D. Thesis)

March 1987

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

ANOMALIES IN GAUGE 'IHEORIES'

Dae Sung Hwang

Department of Physics
and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720, U.S.A.

Ph.D. Thesis

[^0]
ACKNOWIEDGEMENTS

 advisor and many helps.

Inm gratelul to the prefeseors who tangh me durine wh gradual. sturly, especially I'rofessors Orlando Alvarea, Mary K. (iaillarl, Gerson Cinthator, Stanley Mandelstanm, Jerrold L', Marsden, and Mahiku Suzaki.

I ann also grateful to the members of the I,lBl, thengy gromp, riperially Dr. Michnel Chanowilz.

I would like to thank to frllow graduate students, Wwe Alh.ritin, Z:i li.rn, Huc-Sun Chan, Oren Cheyette, Miteh Golden, Yeomg Chunn Kin, Shohit Mahajan, Sang Jin Sin, Jon Yamron, sud especially Mandy Ingroman:n and 7ark Wolf for their discusaions and friendship

I thank my jarcuis for so many things.

This work was supported by the Director, Ollice of Binergy If ararch, Office of High Energy and Nurlear Physies, Division of High Ponergy !hysies of the U.S. Departmont of Finergy under Contract I)P-ACO3-ifisFonors, and the National Science Foundation under Resenrch Grant No. PllY-8re 158.57.

CON'IEN'IS

Acknowledgements

1 Introduction

2.1 Gauge Anomaly 4
2.2 Solution of the Anomaly Equation - Effective Action 8
2.3 Comparison with Diagram Calculations 15
3 Anomaly of $D_{\mu} J^{\mu}$ from Schwinger Terms 20
$3.1 \partial_{0} G_{u}=\left(D_{u} J^{\mu}\right)_{a} ; \Lambda$ Classical Relation 20
3.2 Anomaly of $D_{n} J^{\prime \prime}$ from Sclawinger 'Terms 22
3.3 Comparison with the Effective Action Method 32
3.4 Difficulties in Quantization and the Non-Abelian Case 3.1
4 Aspects of the Point-Splitting Method 37
4.1 Loop-Diagram Method 37
4.2 Point-Splitling Method 41
5 Gravitational Anomuly 46
5.1 Einstein Anomaly 46
5.2 Solution of the Anomaly Equation - Effective Action 50
5.3 Comparison with Diagran Calculations 51
0 Supersymmetry Anomaly (;1
6.1 Two-dimensional Superspace and Superfields 62
6.2 Anomalies 67
6.3 Supersymmetric Extension of the Wess-Zmmino Ferm 71
Appendix 77
7 Anomaly Superfichl for both $\partial_{\mu} J_{5}^{\prime \prime}$ and $i_{n} J^{\prime \prime}$ 84
7.1 Licview of Non-Supersymmelric Case 8.1
7.2 Superfield Exteusion 88
7.3 Realization by Diagram Calculations 90
8 Conclusion 99
References 102

CHAPTER 1

INTRODUCTION

In field theory a symmetry at the classical level is sometimes not a symmetry at the quanturn level. In such a situation the amount by which an effective action violates the symmetry, if it can not be removed by ndding a local functional to the effective action, is called an anomaly. The gauge anomaly has been obtained by calculating Feynman diagrams [1-3], by the point-splitting method [4,5], and also by the path integral method by noticing that the measure of a fermion field is not invariant under a chiral transformation [6]. The anomaly was also understood in terms of differentinl geomelry $[7,8]$.

Anomalies themselves can be used for phenomenological applications since they give the nmount of current non-conservation. Furthermore, by solving the anomaly equation $\delta W=$ Anomaly, we can get the effective action W which gives the effective interactions among particles in the system. This was first done by Wess and Zumino for the case of $S U(3)_{L} \times S U(3)_{n}$ flavor symmetry and was npplied to the internctions annong the pseudo-scalar and vector particles succe:sfully [9].

Another important npplication is as a criterion for the consistency of models of unificd gange theories. In order to have mitarity and remermalizability, a model should wot have an nomaly of a dynamical symmetry [10,11]. For example, in the Weinberg-Satam model the gange: anomaly is canceled ont for each gencration when the lepton and the quark sectors are combinced. A gravitatiomal anomaly was found recontly, and the cancellation of this anomaly lircame an important criterion for mondels which unify itt the internctions including the gravitational interaction $[12,13]$.

In this thessis we study various topies of anmmalies in two dimensions. The renson for interest in two dimensiomal anomalies is that they contan the main structures of higher dimensiomal anomalies and hnve their own interesting propertics. The topics of this thesis consists of the nnomalies of Ynng-Nills gnuge theory, gravitntional theory, and supersymmetric pange. theory.

In chapter $2-4$ we study the gange anomaly. We obtain the solution of the nnomaly equation (the Wess-7umine term) with only gauge fichls, without anxilinry fields. We show, up to the second non-trivial order, that this solution ngrees with the resnlt of Feymman diagram calculation. By studying the intimate relation between the nnomaly and the Schwinger term, we find a method of obenining the anomaly of $D_{0} \cdot J^{\prime \prime}$ (chiral curront) from the Schwinger terms of the: equal time enmmutntion relations. 'Through this procedure we ean also understand easily the dilficulties in quantizing anomalous
gange theorics. By studying the Schwinger model, we show that the point splitting method disa;irces with the loop-diagran method by the sign and by the factor $1 / 2$ for the anomaly of $\partial_{\mu} J_{6}^{\mu}$ and for the Schwinger term of $\left[J_{5}^{0}(x), J^{0}(y)\right]_{E T C}$ respectively.

In clapter 5 we study the gravitational anomaly. We calculate Feynman diagrams to get an effective action, and show, up to the second non-trivial order, that this effective action is in agreement with the nnomaly obtained by the differential geometric method.

In chapter 6-7 we study the supersymmetry anomaly. We obtain a supersymmetric extension of the gauge anomaly, and find that this is the origin of a supersymmetry anomaly in the Wess-Zumino gauge. We obtain an effective action whose variations give rise to the gange and supersymmetry anomalies in the Wess-Zumino gauge. We also find a supermultiplet which contains $\partial_{\mu} J_{6}^{\mu}$ and $\partial_{\mu} J^{\prime \prime}$ as components, and a corresponding anomaly superfield. We coufirm this anomaly superfield by diagram calculations.

In order to make comparisons with references easier, we use the metric of chapters 2-5 and that of chapters 6-7 diferently. However, there will be no confusion since we specify the metric in each chapter.

CHAP'IER 2

GAUGE ANOMALY

In this chapter we study lang. Mills gange fields compled to chiral fermions. We obtain a solution to the anomaly equation with only gange fields, without anxiliary fields. Similar problems were studied for the massless Dirnc fermion case, and solutions were ohtained in terms of gange fields and anxiliary scalar fields, or in terms of anxiliary scalar fields nlone (14-17). However, we study the massless chiral fermion ense and obtnin the solution explicitly in terms of gauge fields alone, which is a power series of gange ficlds for the non-Abelinn theory. Then we can compare this solution with the result of Feynman diagram calculations.

In section 2.1 we obtain the gauge anomaly including the normalization factor up to the sign by using the differential geometric method. In section 2.2 we solve the anon:aly equation to get the effective action which contains only gauge ficlds. In section 2.3 we calculate one-loop diagrams up to $O\left(A^{3}\right)$ in the effective action. We show that this calculation agrees with the results of scctious 2.1 nud 2.2.

2.1 Gauge Anomaly

Our system is composed of n multiplet of left-hnuded fermions nud n multiplet of gange fielels. Its Lagrangian is given by

$$
\begin{equation*}
L=i \bar{i} \gamma^{a}\left(o_{a}+A_{a}\right) \psi, \tag{2.1}
\end{equation*}
$$

where

$$
\frac{1-\gamma_{5}}{2} v_{j}=\psi, \quad \Lambda_{a}=\Lambda_{a i} T_{i}, \quad\left[T_{i}^{\prime}, T_{j}^{\prime}\right]=f_{i j k} T_{k} .
$$

We use i, j, k, \cdots for group indicies, and a, b, c, \cdots for Lorentz indicies.
Our conventions for the metric and gamma matrices are given by

$$
\begin{gather*}
\left\{\gamma^{a}, \gamma^{b}\right\}=2 \eta^{06}, \quad \eta^{00}=-\eta^{11}=1 \\
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \gamma_{5}=\gamma^{0} \gamma^{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \tag{2.2}
\end{gather*}
$$

We treat fermions as quantized fields and gauge fields as external classical
fields. Their infinitesimal gauge transformations are given by

$$
\left\{\begin{array}{l}
\delta_{\Lambda} \psi=-\Lambda \psi \tag{2.3}\\
\delta_{\Lambda} \Lambda_{a}=D_{a} \Lambda=\partial_{a} \Lambda+\left[\Lambda_{a}, \Lambda\right]
\end{array}\right.
$$

where

$$
\Lambda=\Lambda_{i} T_{i}
$$

In this paper we study the consistent anomaly which is given by a variation of a connected vacuum functional. We call this variation an anomaly if we cannot make it vanish by adding a local functional to the connected vacuum functional. There is another kind of anomaly, a covariant anomaly (which transforms covariantly), but this anomaly is not given by n varintion of a functional [13].

The consistent anomaly is defined by an equation which we will call an anomaly equation :

$$
\begin{equation*}
\delta_{\Lambda} W[A]=\Lambda \cdot G(A), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \Lambda \cdot G(A) \equiv \int d x \Lambda_{i} G_{i}(A) \equiv \equiv[\text { wn-Abolian Amomaly }] \tag{2.5}\\
& \text { wilh } \int d x \equiv \int d(\text { Volums })
\end{align*}
$$

In (2.4) $W[A]$ is the effertive netion, i.e., the comerted vacmun functional. (2.1) tells us by how minch the quantum effect of fermion fields canems the system not to be gange invarint.

Since the consistent anomaly is piven by a gange variation of $W|A|$, we hnve "n cousistency condition", i.e.,

$$
\begin{equation*}
\left(\delta_{\Lambda_{1}} \delta_{\Lambda_{2}}-\delta_{\Lambda_{2}} \delta_{\Lambda_{1}}\right) W[A]=\delta_{\left\{\Lambda_{1}, \Lambda_{2}\right]} W[A] \tag{2.6}
\end{equation*}
$$

gives the consistency condition

$$
\begin{equation*}
\int d x\left(\Lambda_{2 i} \delta_{\Lambda_{1}} G_{i}-\Lambda_{1} \delta_{\Lambda_{2}}, G_{i}\right)=\int d x\left(\left[\Lambda_{1}, \Lambda_{2}\right]\right) G_{i} \tag{2.7}
\end{equation*}
$$

which enn also be used ns a definition of the anomaly [9].
In orter to obtain the two-dimensionnl non-Abelinn nomaly which satisfirs the consistency condition (2.7), let us follow briefly the differential geonetric method given by Zummo [8]. The Atiyah-Singer index of the Dirac operator $\gamma^{n} D_{a}=\gamma^{n}\left(D_{a}+A_{n}\right)$ is given by the integral of the Chern ehnencter [18,19].

$$
\begin{equation*}
\left(n_{+}-n_{-}\right)=\int_{A S} C h(V), \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
C h\left(V^{\prime}\right)=\operatorname{Tr}\left[\exp \left(\frac{i}{2 \pi} F^{\prime}\right)\right] \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
F=\frac{1}{2} F_{a b} d x^{a} \wedge d x^{b}, \quad F_{a b}=\partial_{a} A_{b}-\partial_{b} A_{a}+A_{a} A_{b}-A_{b} A_{a} . \tag{2.10}
\end{equation*}
$$

In order to obtain the two-dimensional non-Abelian anomaly, we start from the Chern character in four dimensions.

$$
\begin{align*}
C h(V)[1-\mathrm{dim}] & =\frac{1}{2!}\left(\frac{i}{2 \pi}\right)^{2} \operatorname{Tr}\left(F^{2}\right) \tag{2.11}\\
& \equiv d \omega_{3}(A, F)
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{3}(A, F)=-\frac{1}{8 \pi^{2}} \operatorname{Tr}\left(A F-\frac{1}{3} A^{3}\right) . \tag{2.12}
\end{equation*}
$$

Then the two-dimensional non-Abelian gange anomaly is given by $\omega_{2}^{\prime}(v, A, F)$ which is first order in v when we expand $\omega_{3}(A+v, F)$ in powers of v, i.e.,

$$
\begin{equation*}
\omega_{2}^{1}(v, \Lambda, F)=-\frac{1}{8 \pi^{2}} \operatorname{Tr}[v d \Lambda] . \tag{2.13}
\end{equation*}
$$

The non-Abelian anomaly is normalized with an additional factor of 2π in order to give the unique $Z=e^{i v}$, i.e.,

$$
\begin{equation*}
\text { [2-dim. non-Abelian } \Lambda \text { no. }]=-\frac{1}{4 \pi} \int_{M} \operatorname{Tr}[v d A] \tag{2.14}
\end{equation*}
$$

By changing the form notation to the tensor notation, we have

$$
\begin{equation*}
[2-d i m . \text { non- } \Lambda \text { belian Ano. }]=-\frac{1}{4 \pi} \int d^{2} x \operatorname{Tr}\left[\Lambda \partial_{a} A_{b} e^{a b}\right] \tag{2.15}
\end{equation*}
$$

or $G_{i}(A)$ in (2.4) is given by

$$
\begin{equation*}
G_{i}(A)=-\frac{1}{4 \pi} \operatorname{Tr}\left[\eta_{i} \partial_{a} A_{b} \varepsilon^{n b}\right] . \tag{2.16}
\end{equation*}
$$

In the above derivation the overall sign of the anomaly is ambignons. By chance it turns out that the above sign agrees with the Feymman diagran calculation in section 2.3.

In the following light-cone coordinntes will be used often. The conventions and properties of the light-cone coordinates and $\varepsilon^{\text {ab }}$ which we will use are given below.

$$
\begin{gather*}
x^{ \pm}=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{1}\right), \quad x_{ \pm}=\frac{1}{\sqrt{2}}\left(x_{0} \pm x_{1}\right), \quad \gamma^{ \pm}=\frac{1}{\sqrt{2}}\left(\gamma^{0} \pm \gamma^{1}\right), \\
\gamma^{+} \gamma^{-}+\gamma^{-} \gamma^{+}=2, \quad \gamma^{+} \gamma^{+}=\gamma^{-} \gamma^{-}=0, \\
\eta^{+-}=\eta^{-+}=\eta_{+-}=\eta_{-+}=1 \text { (other } \eta^{\prime} \text { are zero), } \tag{2.17}\\
\varepsilon^{10}=-\varepsilon^{01}=1, \quad \varepsilon^{+-}=-\varepsilon^{-+}=1 .
\end{gather*}
$$

Another form of the anomaly, which will be useful in the following nnaly-
sis, is oltained by adding the gange variation of a local functional $1 / R \pi^{\prime} \operatorname{Tr} \int d^{2} x A_{1}, A^{\prime \prime}$ to (2.15), i.e.,
[2-dim. non-Abelian A no. $]=-\frac{1}{4 \pi} \int d^{2} x \operatorname{Tr}\left[\Lambda \partial_{0} A_{b}\left(e^{u b}+\eta^{n b}\right)\right]$

$$
\begin{equation*}
=-\frac{1}{2 \pi} \int d^{2} x \operatorname{Tr}\left[\Lambda \partial_{4} A_{-}\right] \tag{2.18}
\end{equation*}
$$

2.2 Solution of the Anomaly Equation - Effective Action

The solution of the anomaly equation gives the effective action of the system. Wess and Zmmino solved this equation in the following way $[8,0]$.

Introduce $\boldsymbol{\xi}$ fields which transform non-linearly under a finite gange trans
formation as

$$
\begin{equation*}
e^{\ell^{\prime}}=e^{t^{t}} e^{\Lambda} \tag{2.19}
\end{equation*}
$$

where

$$
\Lambda=\Lambda_{i} T_{i}, \quad \xi=\xi_{i} I_{i}^{\prime}
$$

Then the solution of (2.4) is given in a compact form as

$$
\begin{equation*}
W[A, \xi]=\int d x \int_{0}^{1} d t \xi_{i} G_{i}(A(t))(x)+W_{C}[A, \xi] \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{a}(t)=e^{t \ell} A_{a} e^{-t \ell}+e^{t \ell} \partial_{a} e^{-t \ell} \tag{2.21}
\end{equation*}
$$

and $W_{C}[A, \xi]$ is an arbitrary gauge invariant functional.
In their original work, Wess and Zumino dealt with $S U(3)_{v} \times S U(3)_{A}$ flavor symmetry and treated the pseudo-scalnr octet as non-linearly realized fields. Their solution describes the interactions among the pseudo-scalar and vector particles in good agreement with experiments.

In this section we will perform one more step to obtnin a solution which is a functional of only gruge fields, without independent $\boldsymbol{\xi}$ fields. This solution will be useful since in section 2.3 it will be compared, with Feynman diagran calculations which have only gauge fields as external ficlds. This solution is also intercsting since it gives a system which contains only gauge fields. In (2.20) we observe that instend of independent $\boldsymbol{\xi}$ fields, we can use the
functions $\xi(A)$ of ganpe fielels which transform as (2.19) when A transform as gauge fields, if we ran find such funclions.

In the Abeliatn case, we casily fiud such $\xi(A)$ as

$$
\begin{equation*}
\xi(A)-\frac{1}{[]} \partial_{n} A^{\prime 2}, \quad w \operatorname{licre} \quad[]=o_{n} \theta^{n} \tag{2.22}
\end{equation*}
$$

since

$$
\begin{equation*}
\xi^{\prime}(\Lambda)=\frac{1}{\square} \partial_{n}\left(\Lambda^{\prime}\right)^{n}=\frac{1}{\square} \partial_{n}\left(\Lambda^{\prime \prime}+\partial^{\prime \prime} \Lambda\right)=\xi(\Lambda)+\frac{1}{\square} \partial_{n} \partial^{\prime} \Lambda=\xi(\Lambda)+\Lambda \tag{2.23}
\end{equation*}
$$

which is the same ns (2.19) for the Abelian case.

Then in two dimensions the solution of the nnomaly equation can be given with only gruge fields as

$$
\begin{align*}
W[\Lambda] & =\int d^{2} x \int_{0}^{1} d l\left(\frac{1}{\square} \partial_{a} A^{n}\right) G(A(t))+W_{C}[A] \tag{2.24}\\
& =\int d^{2} x \int_{0}^{1} d t\left(\frac{1}{\square} \partial_{c} A^{c}\right)\left(\frac{i}{2 \pi} \partial_{n} \Lambda_{b}(t) \epsilon^{a b}\right)+W_{C}[A]
\end{align*}
$$

where

$$
\begin{equation*}
A_{b}(l)=A_{b}+c^{\ell \ell(A)} \partial_{b} r^{-t(t)}=A_{b}-l \partial_{b} \xi(A) \tag{2.25}
\end{equation*}
$$

Since the second term of (2.25) does not contribinte in (2.29), we have

$$
\begin{equation*}
W|A|=\frac{i}{2 \pi} \int d^{2} x\left(\frac{1}{[]} \theta_{c} A^{r}\right)\left(O_{n} A_{1, r^{n t}}\right)+W_{c}[A] \tag{2.26}
\end{equation*}
$$

Let us now consider the non-Abelian case in two dimensions. We notice
first that when ξ transform ns $e^{\prime}:=e^{t} e^{n}$,

$$
\begin{equation*}
A_{n}=e^{-t} \partial_{a} c^{\ell} \tag{2.27}
\end{equation*}
$$

transforms like a gauge field as seen by

$$
\begin{align*}
\Lambda_{\mathrm{a}}^{\prime} & =e^{-\xi^{\prime}} \partial_{\mathrm{a}} e^{\xi^{\prime}} \\
& =e^{-\Lambda} e^{-\epsilon} \partial_{\mathrm{a}}\left(e^{\ell} e^{\Lambda}\right) \tag{2.28}\\
& =e^{-\Lambda}\left(e^{-\epsilon} \partial_{\mathrm{u}} e^{\ell}\right) e^{\Lambda}+e^{-\Lambda} \partial_{\mathrm{a}} e^{\Lambda} \\
& =e^{-\Lambda} \Lambda_{\mathrm{a}} e^{\Lambda}+e^{-\Lambda} \partial_{a} e^{\Lambda}
\end{align*}
$$

Conversely, if we invert (2.27), we obtain $\xi(A)$ which transform as (2.19) when A transform as gauge fields.

We are going to obtain $W[A]$ as a functional of only A_{-}since in the next section we will compare this with Feynman diagram calculations which have only A_{-}as external fields. For this we will use the anomaly of the form (2.18) and invert (2.27) for $a=-$,

$$
\begin{equation*}
A_{-}=\mathbf{e}^{-t} \partial_{-} e^{t} \tag{2.29}
\end{equation*}
$$

Note that in (2.29) we: relate only Λ_{-}with $\boldsymbol{\xi}$ in this form, but A_{+}is not related with $\boldsymbol{\xi}$ and arbitrary, therefore our gauge fields \boldsymbol{A}_{a} 's are not restricted to be pure gauge fields.

In the following procedure of inversion of (2.29), we will denote A_{-}by A and x^{-}by x for notational simplicity. Then (2.29) becomes

$$
\begin{equation*}
A=e^{-\xi} \frac{d}{d x} c^{\xi} \tag{2.30}
\end{equation*}
$$

Let us multiply both sides of (2.30) on the right by $e^{-\ell}$. Then we have

$$
\begin{equation*}
A c^{-t}=e^{-t}\left(\frac{d}{d x} e^{t}\right) e^{-t}=-\frac{d}{d x} e^{-t} \tag{2.31}
\end{equation*}
$$

By defining

$$
\begin{equation*}
\eta \equiv c^{-\varepsilon} \tag{2.32}
\end{equation*}
$$

(2.31) becomes

$$
\begin{equation*}
\frac{d}{d x} \eta=-\Lambda \eta \tag{2.33}
\end{equation*}
$$

Solving (2.33) by iteration we get

$$
\begin{align*}
\eta(x)= & \eta(-\infty)-\int_{-\infty}^{x} d x_{1} A\left(x_{1}\right) \eta\left(x_{1}\right) \\
= & \eta(-\infty)-\int_{-\infty}^{x} d x_{1} A\left(x_{1}\right) \eta(-\infty)+\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} A\left(x_{1}\right) A\left(x_{2}\right) \eta(-\infty) \\
& -\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} \int_{-\infty}^{x_{2}} d x_{3} A\left(x_{1}\right) A\left(x_{2}\right) A\left(x_{3}\right) \eta(-\infty)+\cdots \tag{2.31}
\end{align*}
$$

In (2.34), note that all x 's in this equation are x^{-}component, however η and A are also dependent on x^{\dagger} even though we omitted writing this dependence. explicitly.

Let us take the boundary condition

$$
\begin{equation*}
\xi(\text { at } \quad x=-\infty)=0, \quad \text { i.e. }, \quad \eta(-\infty)=1 \tag{2.35}
\end{equation*}
$$

We also assume that lims $\lim _{x \rightarrow-\infty} A(x)=0$ sufficiently rapidly.) Then (2.31) ecomes

$$
\begin{align*}
& e^{-\ell(\Lambda)}=1-\int_{-\infty}^{x} d x_{1} \Lambda\left(x_{1}\right)+\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} A\left(x_{1}\right) A\left(x_{2}\right) \\
& +\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} \int_{-\infty}^{x_{2}} d x_{3} \Lambda\left(x_{1}\right) A\left(x_{2}\right) \Lambda\left(x_{3}\right)+\cdots \tag{2.3f}
\end{align*}
$$

hich can be given as a compact expression

$$
\begin{equation*}
e^{-\xi(A)}=P\left[\exp \left(-\int_{-\infty}^{x} d x^{\prime} A\left(x^{\prime}\right)\right)\right] \tag{2.37}
\end{equation*}
$$

by defining the path ordered product P to mean (2.36).

From (2.36) we can get $\zeta(\Lambda)$ in a power series of Λ,

$$
\begin{equation*}
-\xi(\Lambda)=\ln \left\{1-\int_{-\infty}^{x} d x_{1} \Lambda\left(x_{1}\right) \cdot \mid-\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} \Lambda\left(x_{1}\right) \Lambda\left(x_{2}\right)+\cdots\right\} \tag{2.38}
\end{equation*}
$$

Using $\ln (1+x)=x-\frac{1}{2} x^{2}+\cdots, \quad$ (2.38) beconies
$\xi(\Lambda)=\int_{-\infty}^{x} d x_{1} \Lambda\left(x_{1}\right)-\int_{-\infty}^{x} d x_{1} \int_{-\infty}^{x_{1}} d x_{2} \Lambda\left(x_{1}\right) A\left(x_{2}\right)-\frac{1}{2}\left(\int_{-\infty}^{x} d x_{1} \Lambda\left(x_{1}\right)\right)^{2}+O\left(\Lambda^{3}\right)$,
where all the A^{\prime} s are A_{-}and they depend on bolh x^{-}and x^{+}.
We are now prepared to obtain $W[A]$ in terms of only gange fields. Using the anomaly in (2.18), we get from (2.20)

$$
\begin{equation*}
W[A]=-\frac{1}{2 \pi} \int d^{2} x \int_{0}^{1} d t \operatorname{Tr}\left[\xi\left(A_{-}\right) \partial_{+} A_{-}(t)\right] \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{-}(t)=e^{\ell \ell\left(\Lambda_{-}\right)} A_{-} e^{-t\left(t \Lambda_{-}\right)}+e^{t t\left(\Lambda_{-}\right)} \partial_{-} e^{-l \ell\left(\Lambda_{-}\right)} \tag{2.41}
\end{equation*}
$$

and $\xi\left(\Lambda_{-}\right)$is given in (2.36), (2.37), or (2.39).
We can get $W[\Lambda]$ as a power scries of Λ_{-}by the following procedure.
First expand $A_{-}(t)$ of (2.41) in terins of t nd integrate over t in (2.40). Then $W[\Lambda]$ becones a sum of products of $\xi\left(\Lambda_{-}\right)$'s and Λ_{-}'s. Next expand the $\xi\left(A_{-}\right)$'s in $W[A]$ as power serics of A_{-}using (2.39). Then $W[\Lambda]$ in (2.40) becomes a sum of products of power series of Λ_{-}. As a last step, expand these products to gel $W[A]$ as one power series of $A_{\text {. }}$.

After following this procedure, we get

$$
\begin{align*}
W \mid A\}=-\frac{1}{2 \pi} \operatorname{Tr} \int d^{2} x & {\left[\frac{1}{2} f(x) \theta_{+} A_{-}(x)\right.} \\
& +\frac{7}{12} f(x) \theta_{1}\left\{f(x) A_{-}(x)\right\}+\frac{5}{12} f(x) \theta_{+}\left\{A_{-}(x) f(x)\right\} \\
& \left.-\frac{1}{2} g(x) O_{1} A_{-}(x)-\frac{1}{4}(f(x))^{2} O_{1} A_{-}(x)\right\}+O\left(A^{4}\right) \tag{2.42}
\end{align*}
$$

where

$$
\begin{gather*}
f(x)=f\left(x^{-}, x^{+}\right)=\int_{-\infty}^{x^{-}} d x_{1}^{-} A_{-}\left(x_{1}^{-}, x^{+}\right) \\
g(x)=g\left(x^{-}, x^{+}\right)=\int_{-\infty}^{r^{-}} d x_{1}^{-} \int_{-\infty}^{x_{1}^{-}} d x_{2}^{-} A_{-}\left(x_{1}^{-}, x^{+}\right) \Lambda_{-}\left(x_{2}^{-}, x^{+}\right) \tag{2.43}
\end{gather*}
$$

In momentum space, (2.12) beromes

$$
\begin{align*}
W[A] & =\frac{1}{1 \pi}\left\{\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{p_{+}}{p_{-}} A_{-}(p) A_{-}(\eta)\right. \\
& +\frac{2}{3} i^{\prime} \operatorname{lr} \int \frac{d^{2} p}{(2 \pi)^{2}}-\frac{d^{2} \eta}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \frac{p_{+} q--q_{1} p_{-}}{r_{-} \eta_{-}} A_{-}(p) A_{-}(q) A_{-}(r) \\
& \left.+O\left(A^{1}\right) \quad\right\} \tag{2.41}
\end{align*}
$$

As usual, (2.40) or (2.41) is nmbiguous by a local functional of A_{a}.
When we obtained (2.41) from (2.42), we used the convolution properties

$$
\begin{gather*}
\int d^{2} x a(x) h(x)=\int \frac{d^{2} \eta}{(2 \pi)^{2}} d^{2} q \delta^{2}(\eta+q) \hat{a}(p) \hat{b}(\eta) \\
\int d^{2} x a(x) b(x) c(x)=\int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \hat{a}(p) \dot{b}(\eta) \hat{c}(r) \tag{2.45}
\end{gather*}
$$

(where $\hat{n}(p)$ is the Fourier transform of $a(x)$, cte.), and the propertics of $f(x)$ and $\eta(x)$

$$
\dot{f}(p)=\frac{\Lambda_{-}(p)}{i p_{-}}
$$

$\int d^{2} x a(x) g(x)=\int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \hat{a}(p) \frac{A_{-}(q)}{-i p_{-}} \frac{A_{-}(r)}{i r_{-}}$. (2.46)

2.3 Comparison with Diagram Calculations

For our diagram calculations it is convenient to use the light-cone coordinates given in (2.17) [12]. In these coordinates the condition for a left-handed chiral fermion $\left(1+\gamma_{5}\right) \psi=\psi$ (where $\gamma_{5}=\gamma^{0} \gamma^{1}$) becomes simply $\gamma^{+} \psi=0$ or $\gamma_{-} \boldsymbol{\psi}=0$. Then, from (2.1) we have the interaction Lagrangian

$$
\begin{equation*}
L_{i n t .}=i \bar{\psi} \gamma_{+} A_{-} \psi \tag{2.47}
\end{equation*}
$$

i.c., only the A_{-}component of the gange field couples to the left-handed chiral fermion. Then we have the following Feynman rules.

For a vertex, from $i L_{i n t}$,

$$
\begin{equation*}
-\gamma_{+} A_{-}, \tag{2.48}
\end{equation*}
$$

and for a propagator of a fermion,

$$
\begin{equation*}
\frac{i p_{a} \gamma^{a}}{p^{2}+i \varepsilon}=\frac{i p_{+} \gamma_{-}+i p_{-} \gamma_{+}}{2 p_{+} p_{-}+i \varepsilon}=\frac{i}{2} \frac{\gamma_{-}}{p_{-}+i \varepsilon / p_{+}}, \tag{2.49}
\end{equation*}
$$

where we have eliminated the γ_{+}part since the vertex contains γ_{+}and $\left(\gamma_{+}\right)^{\mathbf{2}}=0$.

Using the fact $\operatorname{Tr}\left(\gamma_{+} \gamma_{-}\right)^{n}=2^{n}$, we obtain the Feymman rule given in Fig. 1 for one-loop diagrams.

Diagram [2.1] gives the ampltude
$A_{m p}=-\int \frac{d^{2} k}{(2 \pi)^{2}} \operatorname{Tr}\left[\left(-A_{-}(p)\right)\left(-A_{-}(q)\right)\right\}\left\{\frac{i}{k_{-}+i \epsilon / k_{+}}\right\}\left\{\frac{i}{(k+p)_{-}+i \epsilon /(k+p)_{+}}\right]2(2.50)$

Fig. 1 Fcynman rule: Take $\operatorname{Tr} \int \frac{d^{2} k}{(2 \pi)^{2}}$, and attach (-) sign for a fermion loop. Then multiply the symmetry factor ($1 / \mathrm{n}$!) for an effective action.

Fig. 2 Diagram [2.1]

Fig. 3 Diagram [2.2]
We integrate first over k_{-}by using the residue method and then over k_{+}to get the result [12]

$$
\begin{equation*}
A r ı p_{.}=\frac{i}{2 \pi} \frac{p_{+}}{p_{-}} \operatorname{Tr}\left[A_{-}(p) A_{-}(-p)\right] \tag{2.51}
\end{equation*}
$$

In order to obtain the effective action, we attach the symmetry factor ($1 / 2!$) and use the fact that the amplitude of a diagram calculation corresponds to $i W[A]$. Then we get for $O\left(A^{2}\right)$

$$
\begin{equation*}
W_{1}[A]=\frac{1}{4 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{p_{+}}{p_{-}} \operatorname{Tr}\left[A_{-}(p) A_{-}(q)\right] \tag{2.52}
\end{equation*}
$$

We call the lowest order of non-vanishing terms the first non-trivinl order, and so on.

For the next order in $A(x)$, i.e., $O\left(A^{3}\right)$, we calculate Diagram [2.2].

$$
\begin{aligned}
A m p= & -i \operatorname{Tr}\left[A_{-}(p) A_{-}(q) A_{-}(r)\right] \\
\times & \int \frac{d^{2} k}{(2 \pi)^{2}}\left\{\frac{1}{k_{-}+i \varepsilon / k_{+}}\right\}\left\{\frac{1}{(k+q)_{-}+i \varepsilon /(k+q)_{+}}\right\}\left\{\frac{1}{(k-p)_{-}+i \varepsilon /(k-p)_{+}}\right\} \\
& +(p \leftrightarrow q) \\
= & \left(-\frac{1}{2 \pi}\right) \frac{p_{+} q_{-}-q_{+} p_{-}}{p_{-} q_{-} r_{-}} T_{r}\left[A_{-}(p) A_{-}(q) A_{-}(r)\right]+(p \mapsto q),
\end{aligned}
$$

We atach the symmetry fnctor (1/3!) and mateh this with $i W_{2}|A|$,

$$
\begin{gather*}
W_{2}[\Lambda]=i \frac{2}{2 \pi} \frac{1}{3!} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \frac{\left(p+q--q+p_{-}\right)}{p_{-} q_{-} r_{-}} \\
\left.\times \operatorname{Tr} \mid \Lambda_{-}(p) A_{-}(q) \Lambda_{-}(r)\right] \tag{2.5.1}
\end{gather*}
$$

Adding (2.52) and (2.54) to have $W[A]$ up to $O\left(A^{3}\right)$,

$$
\begin{align*}
W(\lambda]= & \frac{1}{4 \pi}\left\{\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{p_{+}+}{p_{-}} \Lambda_{-}(r) \Lambda_{-}(\eta)\right. \\
& +i \frac{2}{3} \operatorname{Tr} \int \frac{d^{2} r}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \frac{\left(p_{+} q_{-}-q_{+} p_{-}\right)}{p_{-} q_{-} r_{-}} \Lambda_{-}(p) A_{-}(\eta) \Lambda_{-}(r) \\
& \left.+O\left(\Lambda^{4}\right)\right\} . \tag{2.55}
\end{align*}
$$

This is the same as (2.4.) which was obtained by expmeding the solution (2.40) of the anomaly equation. Therefore it has been shown that (2.40) agrees with the dingram cnlculations up to the second non-trivial ordir, i.e., $O\left(\Lambda^{3}\right)$ in the effective nction.

It is nlso interesting to secexplicitly how (2.55) gives rise to the nmomaly (2.18). We calculate $\delta_{A} W(A)$ in (2.1) by applying the gauge transformation (2.3) to (2.55). The derivative (0_{n}) in (2.3) corresponds to (ip.. in momentum space since we take extermal momonta as incoming as can be secn in Diagram
[2.1] and Diagram [2.2]. From the $O\left(A^{2}\right)$ term of $W[A]$, i.e., $W_{1}[A]$,

$$
\begin{align*}
\delta_{\Lambda} W_{1}[\Lambda]= & \frac{1}{4 \pi} \times 2\left\{\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{p_{+}}{p_{-}} A_{-}(p)\left[i q_{-} \Lambda(q)\right]\right. \\
& \left.+\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \frac{p_{+}}{p_{-}} \Lambda_{-}(p)\left[A_{-}(q) \Lambda(r)-\Lambda(r) A_{-}(q)\right]\right\} \\
= & \frac{1}{4 \pi} \times 2\left\{\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q)\left(-i p_{+}\right) A_{-}(p) \Lambda(q)\right. \\
& \left.+\operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r)\left(\frac{p_{+}}{p_{-}}-\frac{q_{+}}{q_{-}}\right) A_{-}(p) A_{-}(q) \Lambda(r)\right\} \tag{2.56}
\end{align*}
$$

From the $O\left(A^{3}\right)$ term of $W[A]$, i.e., $\left.W_{2} \mid A\right]$,

$$
\begin{align*}
\delta_{\Lambda} W_{2}[A]= & i \frac{1}{4 \pi} \frac{2}{3} \times 37 r \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \frac{\left(p_{+} q_{-}-q_{+} p_{-}\right)}{p_{-} q_{-} r_{-}} \\
& A_{-}(p) A_{-}(q)\left[i r_{-} \Lambda(r)\right]+O\left(A^{3}\right) \\
= & -\frac{2}{4 \pi} \operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r)\left(\frac{p_{+}}{p_{-}}-\frac{q_{+}}{q_{-}}\right) A_{-}(p) A_{-}(q) \Lambda(r) \\
& +O\left(A^{3}\right) . \tag{2.57}
\end{align*}
$$

When we add (2.56) and (2.57), we see that the second term of (2.56) is cancelled by the first term of (2.57). We then expect that the second term of (2.57) will be cancelled by the first term of $\delta_{A} W_{3}[A]$, where $W_{3}[A]$ is the $O\left(\Lambda^{4}\right)$ term of $W[A]$, and so on. Therefore we expect that the direct contribution to the anomaly comes only from the two point vacuum functional. The reason behind this is that higher order dingrams are more finite and do not contribute to the anomaly. Then we have consistently with (2.18)

$$
\begin{align*}
\delta_{\Lambda} W[A] & =\frac{1}{2 \pi} \operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q)\left(-i p_{+}\right) A_{-}(p) \Lambda(q) \tag{2.58}\\
& =-\frac{1}{2 \pi} \operatorname{Tr} \int d^{2} x \Lambda(x) \partial_{+} \Lambda_{-}(x) .
\end{align*}
$$

CHAPTER 3

ANOMALY OF $D_{\mu} J^{\prime \prime}$ FROM SCIIWINGER TERMS

After the discovery of the anomaly of $\partial_{3} J_{5}^{\prime \prime}$ (where $J_{5}^{\prime \prime}=\overline{V^{\prime}} \gamma^{\prime \prime} \gamma_{5}{ }^{\prime}{ }^{\prime}$), it was soon understood that the Schwinger term of the equal time commutntion relation is another face of the anomaly [5]. Recently this relation has been studied in the differential geometric method $[20,21]$. In this chipter we will show this relation clearly by obtaining the anomaly of $D_{\mu} J^{\prime \prime}$ (where $J_{0}^{\prime \prime}=\bar{\psi} \gamma^{\mu} \frac{1-r_{5}}{2} \lambda_{n} \psi^{\prime}$) from the Schwinger terms of the equal time commutation relations.

We first derive a classical relation $\boldsymbol{a}_{0} G_{a}=\left(D_{\mu} J^{\prime \prime}\right)_{a}$. Then we calcuInte the quantum vertion of this relation. By this procedure we obtain the anomaly of $D_{\mu} J^{\prime \prime}$ from the Schwinger terms. This relation also suggests the situation that when 1$)_{n} J^{\prime \prime}$ is nnomalous, the constraint $G_{a} \mid$ phys $\rangle=0$ does not propagate in time. We confirm this explicitly at the quantum level. This feature causes a difficulty in quantizing an anomalous gauge theory.

In section 3.1 we nbtain a classical relation $i_{v} G_{a}=\left(D_{1}, J^{\mu}\right)_{a}$. In section 3.2 we obtain the nnomaly of $\partial_{1} J^{\prime \prime}$ from the Sclwinger terms for the chiral Schwinger model. In section 3.3 we show that the result of section $\mathbf{3 . 2}$ aprees with that of the effective action method. In section 3.1 we show the difliculties in guantizing anomalous gange theorics, and sfudy the non-Abelian case.

$3.1 \partial_{0} \mathrm{G}_{\mathrm{n}}=\left(\mathrm{D}_{n} \cdot \mathbf{J}^{\prime \prime}\right)_{\mathrm{n}} ; ~ \Lambda$ Classical Relation

In this section let us consider a four-dimensional chiral gauge theory which is described by the Lagrangian

$$
\begin{equation*}
L=-\frac{1}{4} F_{a}^{\cdot P_{a}^{\prime \nu}} F_{a, \mu \nu}+i \bar{\gamma} / \gamma^{\prime \prime}\left(\partial_{\mu}-i \Lambda_{\mu} \frac{1-\gamma_{b}}{2}\right) \psi \tag{3.1}
\end{equation*}
$$

where $\left[\lambda_{a}, \lambda_{b}\right]=i f_{a \neq \lambda} \lambda_{c}, \operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=\frac{1}{2} \delta_{a b}, \Lambda_{11}=\lambda_{a, 1,} \lambda_{a}$,

$$
\Gamma^{\prime \mu}=\Gamma_{a}^{\mu \prime} \lambda_{a}=\partial^{\prime \prime} \Lambda^{\nu}-\partial^{\nu} \Lambda^{\prime \prime}-i\left[\Lambda^{\prime \prime}, \Lambda^{\prime \prime}\right], \text { and we use } \eta_{m}=(+,-,-,-)
$$

(3.1) gives the equation of motion

$$
\begin{equation*}
D_{\mu} F^{\mu \nu}=-J^{\nu}, \text { where } J_{a}^{\nu}=\bar{\psi} \gamma^{\nu} \frac{1-\gamma_{5}}{2} \lambda_{a} \psi_{\nu} . \tag{3.2}
\end{equation*}
$$

(3.2) can be written in components as

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{E}_{a}-f_{a b c} \vec{A}_{b} \cdot \vec{E}_{c}=-J_{a}^{0}, \tag{3.3}\\
\vec{\nabla} \times \vec{B}_{a}-\partial_{0} \vec{E}_{a}-f_{a b c}\left(A_{b}^{0} \vec{E}_{c}+\vec{\Lambda}_{b} \times \vec{B}_{c}\right)=-\vec{J}_{a}, \tag{3.4}
\end{gather*}
$$

where $E_{a}^{k}=F_{a}^{k 0}, B_{c}^{k}=-\frac{1}{2} \varepsilon^{k i j} F_{i j}\left(\varepsilon^{123}=1\right)$, thint is,

$$
\begin{align*}
\vec{E}_{a} & =-\vec{\nabla} A_{a}^{0}-\partial_{0} \vec{A}_{a}+f_{a b} \vec{A}_{b} A_{c}^{0} \tag{3.5}\\
\vec{B}_{a} & =\vec{\nabla} \times \vec{\Lambda}_{a}-\frac{1}{2} f_{a+c} \vec{\Lambda}_{b} \times \vec{A}_{c} \tag{3.6}
\end{align*}
$$

In the following derivation, we treat (3.3) and (3.4) as satisfied only at the initial time, and derive how the Gauss law constraint $G_{a}(x)$ given in the following (3.7) propagates in time. That is, we do not treat the time derivatives of (3.3) and (3.4) as satisfied equations.

$$
\begin{equation*}
G_{a}(x)=J_{a}^{0}(x)+\vec{\nabla} \cdot \vec{E}_{a}(x)-\int_{a b c} \vec{A}_{b}(x) \cdot \vec{E}_{c}(x) \tag{3.7}
\end{equation*}
$$

then

Using (3.4) and (3.5) for $\partial_{0} \vec{E}_{\mathrm{i}}$ and $\partial_{0} \vec{i}_{n}$, we get.
$\partial_{1} C_{n}=\partial_{0} J_{n}^{0}$
$+\vec{\nabla} \cdot\left(\vec{J}_{n}+\vec{\nabla} \times \vec{B}_{n}-f_{n} \times \vec{A}_{b} \times \vec{B}_{r}+f_{n l m} \vec{E}_{b}, A_{r}^{\prime}\right)$
$-\int_{n+m}\left(-\vec{E}_{b}-\vec{\nabla} A_{b}^{\prime \prime}+f_{\text {mer }} \vec{A}_{A} \cdot A_{0}^{0}\right) \cdot \vec{E}_{c}$

$$
-f_{a k} \vec{A}_{b} \cdot\left(\vec{J}_{c}+\vec{\nabla} \times \vec{B}_{e}-f_{r, t} \overrightarrow{A_{i}} \times \vec{B}_{e}+f_{c, t} \vec{B}_{B} d A_{e}^{n}\right)
$$

Then nfter some colculations using (3.3)-(3.6), a vector identity nud the Jacobi identity we obtain the following relation.

$$
\begin{equation*}
\partial_{0} G_{n}(x)=\left(D_{1}, J^{\prime \prime}(x)\right)_{n} \tag{3.10}
\end{equation*}
$$

That is, the time derivative of $G_{0}(x)$ is equal to the covarinnt derivative of the fermionic current. We enn also write the left hand side of (3.10) a.s a gange covariant form $D_{0} G_{n}$ since $D_{0} G_{0}=\partial_{0} G_{a}+f_{n} A_{n} A_{r} G_{c}=\partial_{0} G_{n}$ by using (3.3). In the nbove we derived (3.10) in four dimensions. In two dimensions the corresponding derivation becomes simpler since lhere is no \vec{B}_{a} in two dimensions, and the resnlt is the same as (3.10). (3.10) is a clasical relation. We will obtain n quantum version of this relation in two dimensions in sections 3.2 and 3.4 .

3.2 Anomaly of $\mathrm{D}_{\mathbf{n}} \mathrm{J}^{\prime \prime}$ from Schwinger 'Terms

 for the chiral Schwinger model by using the Schwinger terms of the equal time
commutation relations. When we calculate the Schwinger terms, we will use the 13JL (Bjorken-Johnson-Low) limit method which is summarized below $[1,5,22,23]$.

When we have a time ordered product of two operators

$$
\begin{equation*}
T^{\prime}(p)=\int d^{2} x e^{-i p x}(\alpha|T(\Lambda(x) B(0))| \beta\rangle \tag{3.11}
\end{equation*}
$$

the equal time commutation relation of these two operators is obtained by the following limiting procedure.

$$
\begin{equation*}
\lim _{p^{\infty} \rightarrow \infty} p^{0} T(p)=-i \int d \vec{x} e^{i \vec{p} \cdot \vec{x}}\langle\alpha|[\Lambda(0, \vec{x}), B(0, \overrightarrow{0})]|\beta\rangle \tag{3.12}
\end{equation*}
$$

Then from (3.12) we have the following correspondence.

$$
\begin{gather*}
{[A(0, \vec{x}), B(0, \overrightarrow{0})]=i \delta(x), \text { if } \lim _{p^{0} \rightarrow \infty} p^{0} T(p)=1} \tag{3.13}\\
{[A(0, \vec{x}), B(0, \overrightarrow{0})]=\cdots \delta^{\prime}(x), \text { if } \lim _{p^{0} \rightarrow \infty} p^{0} T(p)=p^{2}} \\
\text { where } \delta(x) \equiv \delta\left(x^{1}\right), \quad \delta^{\prime}(x) \equiv \frac{\partial}{\partial x^{1}} \delta\left(x^{1}\right)
\end{gather*}
$$

If $T(p)$ has a polynomial in p^{0} (that is, $1, p^{0},\left(p^{0}\right)^{2}, \cdots$), we drop such terms since they do not contribute to the Schwinger terms.

The chiral Schwinger model is described by the Lagrangian

$$
\begin{equation*}
L=-\frac{1}{4} F_{, \mu} F^{\prime \prime \prime}+i \overline{V^{\prime}} \gamma^{\prime \prime}\left(\partial_{\mu}-i c A_{\mu} \frac{1-\gamma_{\mathrm{b}}}{2}\right) \psi \tag{3.14}
\end{equation*}
$$

Our conventions are given by

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}, \quad \eta^{n 0}=-\eta^{11}=1
$$

$$
\begin{gather*}
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \gamma_{5}=\gamma^{n} \gamma^{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \tag{3.15}\\
\epsilon^{01}=-\varepsilon^{10}=1 .
\end{gather*}
$$

From (3.14) we get the cononical conjugate momenta

$$
\begin{equation*}
\pi\left(A_{1}\right)=F^{\prime, 00} \equiv F^{\prime \prime}, \pi\left(V_{n}\right)=i V_{n}^{\prime} . \tag{3.16}
\end{equation*}
$$

Then we assigu the Poisson brackets

$$
\begin{align*}
& \left(A_{, \mu}(t, x), E^{\nu \nu}\left(t, x^{\prime}\right)\right)_{\Gamma \cdot B .}=\eta_{\mu}^{\nu} \delta\left(x-x^{\prime}\right) \tag{3.17}\\
& \left(i \psi_{; ~}^{*}(t, x), \psi_{\rho}^{\prime}\left(t, x^{\prime}\right)\right)_{\Gamma \cdot B .}=\delta_{\alpha \beta} \delta\left(x-x^{\prime}\right)
\end{align*}
$$

The equation of motion is given by the Hamilloninn H as

$$
\begin{equation*}
\partial_{v} f=(f, H)_{p} n \tag{3.18}
\end{equation*}
$$

when f is not dependent explicitly on the time, which is satisfied in our case. Using (3.16) we obtain the IIamiltonian

$$
\begin{aligned}
& H_{0}=\int d x\left\{\pi\left(A_{\mu}\right) \partial_{0} A_{\mu}+\pi\left(\psi_{a}\right) \partial_{0} \psi_{\alpha}-L\right\} \\
&=\int d x\left\{\frac{1}{2} E^{\prime} E^{\prime}+e A^{\prime} \bar{\psi} \gamma^{\prime} \frac{1-\gamma_{5}}{2} \psi-i \bar{\psi} \gamma^{\prime} \partial_{1} \psi-A_{0}\left(\partial_{1} E^{1}+e \bar{\psi} \gamma^{n} \frac{1-\gamma_{5}}{2} \psi_{1}\right)\right\} \\
&(3.19)
\end{aligned}
$$

From (3.16) we sce that $\pi\left(\lambda_{0}\right) \approx 0$ is a primary constraint [24-26] (wher: \approx means a weak condition in Dirac's sense), and we get a secondary constraint
as

$$
\begin{equation*}
G \equiv \partial_{0}\left(\pi\left(A_{0}\right)\right)=\left(\pi\left(\Lambda_{0}\right), H_{0}\right)_{F n}=\partial_{1} F^{\prime}+c \overline{v_{1}} \gamma^{0} \frac{1-\gamma_{\mathrm{B}}}{2} \psi^{2} \approx 0 \tag{3.20}
\end{equation*}
$$

Since $\partial_{0} G=\left(G, I_{n}\right)_{r . n}=0$, at the Poisson bracket level the chiral Schwinger model is consistent by linving two first class constraints $\pi\left(\Lambda_{0}\right) \approx 0$ nul
$G \approx 0$. Then by incorporating these constraints we have

$$
\begin{equation*}
H^{\prime}=H_{0}+a \pi\left(A_{0}\right)+b G \tag{3.21}
\end{equation*}
$$

where a, b are arbitrary functions of canonical coordinates and momenta. In (3.21) $\pi\left(\Lambda_{0}\right) \approx 0$ is always satisficd and $\partial_{0} \Lambda_{0} \approx a$ is arbitrary, so $\pi\left(\Lambda_{0}\right)$ nud A_{0} are not of intercst. Therefore we neglect these two canonical varinbles [24]. Then we lave the following IImiltonian.

$$
\begin{align*}
& H=H_{1}+I_{2}+H_{3}, \\
& \left\{\begin{array}{l}
H_{1}=\int d x\left(\frac{1}{2} E^{1} E^{1}+e \Lambda^{1} \bar{\psi} \gamma^{1}\left(\frac{1-\mathrm{na}}{2}\right) \psi\right) \\
H_{2}=\int d x(u G) \\
H_{3}=\int d x\left(-i \bar{\psi} \gamma^{1} \partial_{1} \psi\right),
\end{array}\right. \tag{3.22}
\end{align*}
$$

where u is an arbitrary function of the canonical variables Λ^{1}, E^{1}, ψ and ψ^{*}.

Now let us consider a quantum theory. We change (3.17) nnd (3.18) to the equal time commutation relations

$$
\begin{align*}
& {\left[\Lambda^{1}(t, x), E^{1}\left(t, x^{\prime}\right)\right]=-i \delta\left(x-x^{\prime}\right)} \\
& \left\{\psi_{\alpha}^{\prime}(t, x), \psi_{\beta}\left(t, x^{\prime}\right)\right\}=\delta_{\alpha \beta} \delta\left(x-x^{\prime}\right) \tag{3.23}
\end{align*}
$$

$$
\partial_{0} O=i[H, O]
$$

If we calculate $[H, G]$ naively using (3.23), we get zero as in the cnse of using the Poisson brarkets. Ilowever, we should be careful when there is an anomaly.

First let us calculate varions basic equal time commutation relations using the BJI, limit method which takes care of the quantuin effect. Let us take
the gange $\Lambda_{0}(x)=0$ in (3.14). Then

$$
\begin{equation*}
E^{1}=-e_{11} A^{1} \tag{3.21}
\end{equation*}
$$

nud the propagator of the gange field is given by

$$
\begin{equation*}
\left.\left.D_{1}(p)=\frac{-i}{p^{2}+i \varepsilon} \right\rvert\, \eta_{n \prime},-\frac{p_{1} n_{1}+p_{1} n_{1}}{(p \cdot n)}+\frac{p_{1} p_{1}}{(r \cdot n)^{2}}\right\} \tag{3.25}
\end{equation*}
$$

where $n_{1,}=(1,0)$.
We quantized gange fietds as well as fermionic fields by considering our system ns n sub-system of nu nnomaly-free larger system. 'Then we study whether this sub-system is anomalous or unt. For example, our system whirh is composed of gnuge fieds nud left-hnnded chiral fermions can be comsidfered ns a sub-system of a larger nommaly free system which is composed of ginge fields and Dirac fermions.

For $\left[J^{0}(x), J^{0}(y)\right]_{\text {Erc }}$ (where ETC means equal time commutator), we consider

$$
\begin{equation*}
T(p)=\int d^{2} x e^{-i p x}\left(0\left|T\left(J^{0}(x) J^{0}(0)\right)\right| 0\right\rangle \tag{3.26}
\end{equation*}
$$

which corresponds to Fig.1. Then

$$
\begin{equation*}
T^{\prime}(p)=\left(-i n_{1}\right)\left(-i n_{\nu}\right) I L^{\mu \prime \prime}(p), \tag{3.27}
\end{equation*}
$$

where

$$
\begin{align*}
I I^{\prime \prime \prime \prime}(\gamma) & =-\int \frac{d^{2} k}{(2 \pi)^{2}} \operatorname{Tr}\left|\frac{i}{\gamma \cdot k+\gamma \cdot \gamma+i \varepsilon} i \gamma^{\prime \prime} \frac{1-\gamma_{5}}{2} \frac{i}{\gamma \cdot k+i \varepsilon} i \gamma^{\prime \prime}-\frac{1-\gamma_{5}}{2}\right| \\
& =-\frac{i}{4 \pi} \frac{1}{p^{2}}\left(\cdot \eta^{\prime \prime \prime \prime} p^{2}+2 p^{\prime \prime} \nu^{\prime \prime}+\epsilon^{\prime \prime \prime} p, p^{\prime \prime}+\varepsilon^{\prime \prime \lambda} p^{\prime} \gamma^{\prime \prime}\right) \tag{3.28}
\end{align*}
$$

Fig. 1

Fig. 2

Fig. 3

In the BJL limit,

$$
\lim _{p^{\circ} \rightarrow \infty} p^{0} T(p)=-\frac{i}{2 \pi} p^{1}
$$

where we follow the prescription of the BJL limit method to drop a term which is proportional to p^{0} in $p^{0} T(p)$. Then using the correspondence given in (3.13), we obtain

$$
\begin{equation*}
\left[J^{0}(x), J^{0}(0)\right]_{s . T}=\frac{i}{2 \pi} \delta^{\prime}(x) \tag{3.29}
\end{equation*}
$$

where the commutator is an equal time commutator, and the subscript S.T

means Schwinger term.

For other equal time commutation relations we follow the same procedure. For example, for $\left[J^{0}(x), \partial_{1} E^{1}(y)\right]_{E T C}$ and $\left[\partial_{1} E^{1}(x),\left.\partial_{1} E^{1}(y)\right|_{E T C}\right.$, we consider the Feynman dingrans in Fig. 2 and Fig. 3 respectively. After similar calculations we obtain the following results.

$$
\left[J^{0}(x), J^{0}(y)\right]_{s . r .}=\left[J^{0}(x), J^{\prime}(y)\right]_{\text {s.r. }}=\left[J^{\prime}(x), J^{\prime}(y)\right]_{s . T .}=-2 \delta^{\prime}(x-y) k
$$

$$
\left[J^{0}(x),\left.\partial_{1} E^{1}(y)\right|_{\text {s.T. }}=\left[J^{\prime}(x),\left.\partial_{1} E^{1}(y)\right|_{s . T .}=e \delta^{\prime}(x-y) k\right.\right.
$$

$$
\left[J^{0}(x), E^{1}(y)\right]_{s . x .}=\left[J^{\prime}(x), E^{1}(y)\right]_{s . T .}=-e \delta(x-y) k
$$

$$
\left[J^{0}(x), A^{\prime}(y)\right]_{\boldsymbol{s} \cdot \boldsymbol{r}}=\left[J^{1}(x),\left.\Lambda^{\prime}(y)\right|_{s . T .}=0\right.
$$

[commutaters among $\partial_{1} E^{\prime}(x), E^{\prime}(x)$ and $\left.A^{\prime}(x)\right]_{s . x}=0$,
where

$$
k=-\frac{i}{4 \pi}, \delta(x-y) \equiv \delta\left(x^{1}-y^{1}\right), \delta^{\prime}(x-y) \equiv \frac{\partial}{\partial x^{2}} \delta\left(x^{1}-y^{\prime}\right),
$$

and all commutators are equal time commutators. We note the sip. of the last icrm in

$$
\left[J^{\prime}(x),\left.J^{0}(y)\right|_{s . x}=-2 \delta^{\prime}(x-y) k=+\left[J^{0}(x), J^{\prime}(y) \mid s . r .,\right. \text { etc. }\right.
$$

in contrnst to

$$
\left|E^{\prime}(x), J^{0}(y)\right|_{S . T}=\delta(x-y) k=-\left(J^{n}(x), E^{\prime}(y) \mid s . T .\right.
$$

Then let us calculate $[I, G(x)]$ using the results in (3.30). We first consider H_{2} in (3.22).

$$
\begin{align*}
{\left[I_{2}, G(x)\right] } & =\int d x^{\prime}\left[u\left(x^{\prime}\right) G\left(x^{\prime}\right), G(x)\right] \\
& =\int d x^{\prime}\left\{u\left(x^{\prime}\right)\left[G\left(x^{\prime}\right), G(x)\right]+\left[u\left(x^{\prime}\right), G(x)\right] G\left(x^{\prime}\right)\right\} \tag{3.31}\\
& \approx \int d x^{\prime} u\left(x^{\prime}\right)\left[G\left(x^{\prime}\right), G(x)\right]
\end{align*}
$$

where we could decompose the commutator since a radiative correction does not give rise to an anomaly. By using the basic commutation relations in (3.30) we get

$$
\begin{equation*}
[G(x), G(y)]=\left[\partial_{1} E^{1}(x)+c J^{0}(x), \partial_{1} E^{1}(y)+c J^{0}(y)\right]=0 \tag{3.32}
\end{equation*}
$$

Thercfore $\left[H H_{2}, G(x)\right]=0$, here and (3.33) we use $=$ instead of \approx by restricting the IIilbert space to the physical space which satisfies $G(x) \mid$ phys $)=0$.

Therefore following relations are satisfied in the physical space.
For $\left[H_{3}, G(x)\right]$, we should calculate $\left[\bar{\psi} \gamma^{1} \partial_{1} \psi(x), \partial_{1} E^{1}(y)\right]$ and $\left[\bar{\psi} \gamma^{1} \partial_{1} \psi(x), J^{0}(y)\right]$ which are not given in the table of (3.30). Since $\bar{\psi} \boldsymbol{\gamma}^{\mathbf{1}} \partial_{1} \psi$ has a derivative, corresponding diagrans are more divergent, so we should regularize. Using the Pauli-Villars regularization method, we obtain after a somewhat lengthy calculation the result that $T(p)^{\prime}$ s of those diagrams have no $\left(\frac{1}{p^{n}}\right)$ term when we expand $T(p)$ in a Laurent scrics. Therefore H_{3} does not give an nnomalous
contribution. 'Then

$$
\begin{align*}
-i \partial_{v} G(x)= & \left.|H, G(x)|=\mid I_{1}, G(x)\right] \\
= & \int d x^{\prime}\left\{\frac{1}{2} E^{\prime}\left(x^{\prime}\right) F^{\prime}\left(x^{\prime}\right)+c A^{\prime}\left(x^{\prime}\right) \cdot J^{\prime}\left(x^{\prime}\right), \partial_{1} E^{\prime}(x)+c J^{n}(x) \mid\right. \\
= & \int d x^{\prime}\left\{\frac{1}{2} F^{\prime}\left(x^{\prime}\right)\left|F^{\prime}\left(x^{\prime}\right), c J^{n}(x)\right|+\frac{1}{2}\left[F^{\prime}\left(x^{\prime}\right), c J^{\mathrm{O}}(x) \mid E^{\prime}\left(x^{\prime}\right)\right.\right. \\
& \left.+c A^{\prime}\left(x^{\prime}\right)\left|J^{\prime}\left(x^{\prime}\right), \partial_{1} E^{\prime}(x)\right|\right\} \\
= & -\frac{i}{4 \pi} c^{2} \int d x^{\prime}\left\{E^{\prime}\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right)+\Lambda^{\prime}\left(x^{\prime}\right) \frac{\partial}{\partial x^{\prime}} \delta\left(x-x^{\prime}\right)\right\} \\
= & -\frac{i}{4 \pi} e^{2} \int d x^{\prime}\left\{E^{\prime}\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right)+\Lambda^{\prime}\left(x^{\prime}\right) \frac{\partial}{\partial x^{\prime}} \delta\left(x-x^{\prime}\right)\right\} \\
= & -\frac{i}{4 \pi} c^{2}\left\{E^{\prime}(x)-\partial_{1} A^{\prime}(x)\right\} . \tag{3.33}
\end{align*}
$$

Therefore we obtain n non-zero result for [$H, G(\tau)]$, wherens it is zere, at the Poisson hracket level.

On the other hiand, from the definition of G

$$
\begin{equation*}
\partial_{0} G=\partial_{0}\left(\partial_{1} F^{1}+c J^{0}\right)=c \partial_{0} J^{0}+\partial_{1}\left(\partial_{0} F^{1}\right) \tag{334}
\end{equation*}
$$

$\partial_{0} E^{1}(x)$ in the right linnd side of (3.3.1) is calculated ns

$$
\begin{align*}
& { }^{\prime} \partial_{0} E^{\prime}(x)=i\left[H, E^{1}(x) \mid\right. \\
& =\int d x^{\prime}\left\{i c\left[\Lambda^{\prime}\left(x^{\prime}\right), F^{\prime}(x)\right] J^{\prime}\left(x^{\prime}\right)+i c \Lambda^{\prime}\left(x^{\prime}\right)\left[J^{\prime}\left(x^{\prime}\right), F^{\prime}(x)\right]\right. \\
& \text { f. icu(} \left.\left.x^{\prime}\right)\left[J^{0}\left(x^{\prime}\right), E^{\prime}(x)\right]\right\} \\
& =\int d x^{\prime}\left\{\operatorname{ir}\left(\cdots i S\left(x^{\prime}-x\right)\right) J^{\prime}\left(x^{\prime}\right)+\operatorname{ir} \Lambda^{\prime}\left(x^{\prime}\right)\left(c \frac{i}{4 \pi} \delta\left(x^{\prime}-x\right)\right)\right. \tag{335}\\
& \left.\nmid \operatorname{icn}\left(x^{\prime}\right)\left(c_{4 \pi}^{i \pi} \delta\left(x^{\prime}-x\right)\right)\right\} \\
& =c . J^{\prime}(x)-\frac{e^{2}}{4 \pi}\left(\Lambda^{\prime}(x) \mid u(x)\right) .
\end{align*}
$$

Then (3.34) becomes

$$
\begin{equation*}
\partial_{0} G=c \partial_{\mu} J^{\prime \prime}-\frac{e^{2}}{4 \pi} \partial_{1}\left(\Lambda^{1}+u\right) \tag{3.36}
\end{equation*}
$$

Therefore by combining (3.33) and (3.36) we have for $\Lambda_{0}=0$

$$
\begin{equation*}
\partial_{1}, J^{\prime \prime}(x)=\frac{e}{1 \pi}\left\{E^{1}(x)+\partial_{1} u(x)\right\}=\frac{e}{4 \pi}\left\{\partial_{0} A_{1}(x)+\partial_{1} u(x)\right\} \tag{3.37}
\end{equation*}
$$

In (3.37) $u(x)$ should be dependent only on $\Lambda_{1}(x)$, since the anomaly is a local function and terons containing E^{1}, ψ or ψ^{*} would give rise to non-local functions in (3.37) because of their dimensionalities. Then

$$
\begin{equation*}
\partial_{\mu} J^{\prime \prime}(x)=\frac{e}{4 \pi}\left\{\partial_{0} A_{1}(x)+c \partial_{1} A_{1}(x)\right\} \tag{3.38}
\end{equation*}
$$

where c is an arbitrary constant. Therefore we calculated the anomaly of $\partial_{\mu} J^{\prime \prime}$ using the Schwinger terms of the equal time commutators. In the next section we will show that (3.38) is consistent with the result of the effective action method.

It is sometimes allowed to add an arbitrary local function of the gange field A to G. If we do it, the right hand side of (3.33) changes, but $\partial_{\mu} J^{\prime \prime}$ in (3.37) does not change since the right hand side of (3.35) also changes by the same amount as that of (3.33). However, in this paper we do not consider such an ambiguity of G because the conslanint G is given as (3.20) without ambiguity when we follow the Dirac's treatment as we did from (3.14) to (3.20). This is also true in the non-Abelian case in section 3.4.

3.3 Comparison with the Efrective Action Method

Let us calculate the effective action for the chiral Schwinger morlel described by (3.14). Then we can calculate the anomaly of $\partial_{\mu} J^{\prime \prime}$ following the familiar method [27]. The only dingram which gives nn anomaly is given in Fig. 4
'Then using II ${ }^{\prime \prime \prime}\left({ }^{\prime}\right)$ in (3.28)

$$
\begin{align*}
& i W[A]=e^{2} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{1}{2} A_{\mu}(p) \Pi^{\prime \prime \prime \prime}(p) A_{\nu}(q) \\
& \quad=-\frac{i c^{2}}{8 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q) \frac{1}{p^{2}}\left\{-\eta^{\prime \prime 2} p^{2}+2 \eta^{\prime \prime} \eta^{\nu}+2 \varepsilon^{\prime \prime \lambda} p \eta^{\prime \prime}\right\} A_{\mu}(p) A_{\nu}(q) \tag{3.39}
\end{align*}
$$

Using $\delta_{A} \Lambda_{\mu}(p)=i p_{\mu} \Lambda(p)$ which corresponds to $\delta_{A} \Lambda_{\mu}(x)=\partial_{\mu} \Lambda(x)$ in coordinate space

$$
\begin{align*}
i \delta_{\Lambda} W[A]= & -\frac{i e^{2}}{4 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q S^{2}(\eta+q)\left(i p_{\mu} A^{\prime \prime}(p)-2 i p_{\mu} A^{\prime \prime}(p)\right. \\
& \left.+e^{\prime \mu} i p_{\mu} A_{1}(p)\right\} \Lambda(\eta) \tag{3.40}\\
= & -\frac{i e^{2}}{4 \pi} \int d^{2} x \Lambda(x)\left(e^{\prime \prime \prime} \partial_{\mu} A_{\nu}(x)-\partial_{\mu} A^{\mu}(x)\right\}
\end{align*}
$$

However, in (3.40) the second term which is proportional to $\partial_{\mu} A^{\prime \prime}$ is n variation of a local term which is ambiguous in the loop calculation. Whin we take care of this ambiguity, (3.40) becomes

$$
\begin{equation*}
i \delta_{\Lambda} W[A]=-\frac{i}{4 \pi} \int d^{2} x \Lambda(x)\left\{\epsilon^{\mu} \cdot \partial_{\mu} \Lambda_{\nu}(x)+c^{\prime} \partial_{\mu} A^{\mu}\right\}, \tag{3.41}
\end{equation*}
$$

Fig. 4
where d is an arbitrary constant. On the other hand,

$$
\begin{align*}
\delta_{\Lambda} W[A] & =\int d^{2} x \frac{\delta W}{\delta A_{\mu}} \delta_{A} A_{\mu} \\
& =\int d^{2} x c \cdot J^{\prime \prime}(x) \partial_{\mu} \Lambda(x) \tag{3.42}\\
& =\int d^{2} x \Lambda(x)\left\{-c \partial_{\mu} J^{\prime \prime}(x)\right\}
\end{align*}
$$

Then from (3.41) and (3.42)

$$
\begin{equation*}
\partial_{\mu} J^{\mu}=\frac{e}{4 \pi}\left\{e^{\mu \mu} \partial_{\mu} A_{\nu}+c^{\prime} \partial_{\mu} A^{\prime \prime}\right\} \tag{3.43}
\end{equation*}
$$

In order to compare (3.43) with (3.37), let us take $\Lambda_{0}(x)=0$ in (3.43).
Then (3.43) becomes

$$
\begin{equation*}
\partial_{\mu} J^{\mu}(x)=\frac{e}{4 \pi}\left\{\partial_{0} A_{1}(x)-c^{\prime} \partial_{1} A_{1}(x)\right\} \tag{3.44}
\end{equation*}
$$

This is the same as (3.38) since both c and d are arbitrary. Therefore we showed that the result of section 3.2 is consistent with that of the effective action method.
3.4 Dimentifes in Quantization and the Non-Abelian

Case

When we gunntize a system with ronstraints $\boldsymbol{C}_{a} \approx 0$ Following Dirac's method, we should have the consistency contitions [2.1],

$$
\begin{align*}
& \left|G_{, n}, G_{b}\right| \approx U_{a b}^{c} G_{c} \tag{3.45}\\
& {\left[H, G_{n}\right] \approx V_{n}^{b} G_{b}} \tag{?.16}
\end{align*}
$$

where \approx was introduced in section 3.2.
For the chiral Schwinger model in section 3.2 and 3.3, we have one enolstraint Ggiven in (3.20). At the 「oisson bracket level both (3.45) and (3.46) are satisfied. Ilowever, at the quantum level (3.45) is sntisfied ns shown in (3.32), but (3.46) is not satisfied as shown in (3.33). This menns that when we impose on the physical state \mid phys the condition $G \mid$ phys $\rangle=0$ nt an initial time, this condition is not satisfied at a later time. Thereform we can not quantize the cliral Schwinger model consistently. Refermeses [28 30] discussed this dificully of quantization in similnr ways.

It is interesting that the classical relation (3.10) already suggrsts this difficulty when $D_{n}, J^{\prime \prime}$ is anomatons. Of course, this should be confirmed by calculations nt the quantum level. We also note that we can not have a satisfactory situation by taking the right hand side of (3.33) as a new secomlary constraint, since if we do that, the time derivative of this new eonstraint is again not zero nud gives rise to another new secondary constraint, and so ont.

Then we will have too many constraints.

Now let us consider a non- Abelian chiral gauge theory, which has constraints G_{a} 's given in (3.7). At the Poisson bracket level both (3.45) and (3.46) are satisfied. However, at the quantum level the Schwinger terins can spoil this situation. Recently references [31-33] studied the condition (3.15) and presented the result that this has a Schwinger term.

Let us consider the condition (3.46) for the system described by the Lagrangian in (3.1) in two dimensions. In this non-Abelian case the Hamiltonian is given by

$$
I T=\int d x\left\{\left(\frac{1}{2} E_{a}^{1} E_{a}^{1}+A_{a}^{1} \bar{\psi} \gamma^{1}\left(\frac{1-\gamma_{5}}{2}\right) \lambda_{a} \psi\right)+\left(u_{a} G_{a}\right)+\left(-i \bar{\psi} \gamma^{1} \partial_{1} \psi\right)\right\}
$$

which is similar to (3.22), and we have the following Schwinger terins like (3.30) of the Abelian case.

$$
\begin{align*}
& {\left[J_{a}^{0}(x), J_{b}^{0}(y)\right]_{\text {s.T. }}=\left[J_{a}^{0}(x), J_{b}^{1}(y)\right]_{\text {S.T. }}=\left[J_{a}^{1}(x), J_{b}^{1}(y)\right]_{s . T .}=-\delta^{\prime}(x-y) k \delta_{a b}} \\
& {\left[J_{a}^{0}(x), \partial_{1} F_{b}^{1}(y)\right]_{S . T .}=\left[J_{a}^{1}(x), \partial_{1} E_{b}^{1}(y)\right]_{s . T .}=\frac{1}{2} \delta^{\prime}(x-y) k \delta_{a b}} \\
& {\left[J_{a}^{0}(x), E_{b}^{1}(y)\right]_{S . T .}=\left[J_{a}^{1}(x), E_{b}^{1}(y)\right]_{s . T .}=-\frac{1}{2} \delta(x-y) k \delta_{a b}} \\
& {\left[J_{a}^{0}(x), A_{b}^{\prime}(y)\right]_{s . x .}=\left[J_{a}^{1}(x), A_{b}^{1}(y)\right]_{\text {s. } . ~}=0} \\
& \text { [commutators among } \left.\partial_{1} E^{2}(x), E^{\prime}(x) \text { and } A^{\prime}(x)\right]_{s . T}=0, \tag{3.48}
\end{align*}
$$

where $k=-\frac{i}{4 n}$. Then using these Schwinger terms we obtain the following result by the procedure which gave (3.33).

$$
\begin{equation*}
\partial_{0} G_{a}=i\left[H, G_{a}\right]=\frac{1}{8 \pi}\left\{E_{a}^{1}-\partial_{1} A_{a}^{1}\right\} \tag{3.49}
\end{equation*}
$$

(3.49) shows that the condition (3.46) is subject to the Schwinger terin and this fact gives rise to a difficulty in qunntization. Of course, when (3.45.) has a Sclwinger term, it also canses a dificulty in quantization [34].

Now let us calculate $\left(D_{\mu} J^{\prime \prime}\right)_{a}$ using the procedure in section 3.2. From the definition of G_{a}

$$
\begin{equation*}
\partial_{0} G_{a}=\partial_{0} J_{a}^{0}+\partial_{1}\left(\partial_{0} E_{a}^{1}\right)+f_{0 b_{x}} A_{b 1}\left(\partial_{0} E_{c}^{1}\right) \tag{3.50}
\end{equation*}
$$

where $\partial_{0} A_{b 1}=F_{b 1}$ is used since we are taking the gange $A_{n 0}=0$. Using the snme procedure ns (3.35) $\partial_{0} E_{a}^{1}$ in (3.50) is given by

$$
\begin{equation*}
\partial_{0} E_{a}^{1}=J_{a}^{1}-\frac{1}{8 \pi}\left(\Lambda_{a}^{1}+u_{a}\right) \tag{3.51}
\end{equation*}
$$

Then (3.50) becomes

$$
\begin{equation*}
\partial_{1} G_{a}=\left(D_{u} J^{\prime \prime}\right)_{a}-\frac{1}{8 \pi} \partial_{1}\left(\Lambda_{a}^{1}+u_{a}\right), \tag{3.52}
\end{equation*}
$$

where we used $\int_{a b c} \Lambda_{b 1} u_{c}=0$ since u_{e} is proportional to $\Lambda_{c 1}$ becanse if the reason explained below (3.37). Then from (3.49) and (3.52) we have

$$
\begin{equation*}
\left(D_{1}, J^{\prime \prime}\right)_{a}=\frac{1}{8 \pi}\left\{\partial_{0} A_{a 1}+c \partial_{1} A_{a}\right\} \tag{3.53}
\end{equation*}
$$

One can show that (3.53) agrees with the result of the effective nction m-thod in the same way as in section 3.3 [27].

CIIAPTER 4

ASPECIS OF 'THE POINT'SPLITTING ME'THOD

As tools for calculating nomalies, the loop-diagram method and the point-splitting method have been important from the beginning of the discovery of the nnomalies $[1-5,35,36]$. However, it is known that in four dimensions these two methods agree for the anomaly of $\partial_{14} J_{6}^{\prime 2}$, but disagree for the Schwinger term of $\left[J_{8}^{0}(x), J^{0}(y)\right]_{E T C}$ (where "ETC" means "equal time commutator") [37-39]. When we calculate the Schwinger term [35] by the loop-diagram method, we use the Bjorken-Johnson-Low (BJL) limit method $[22,23]$. In this chapter we study the two-dimensional Λ belinn gange theory (the Schwinger model) [40-42], and we find that in this case the two methods disagree for both the anomaly of $\partial_{\mu} J_{5}^{\mu}$ and the Schwinger term of $\left[J_{5}^{0}(x), J^{0}(y)\right]_{E T C}$. This result shows that the disagreement of the two methods are more severe than it has been known.

In section 4.1 we calculate $\partial_{\mu} J_{8}^{\prime \prime}$ and $\left[J_{5}^{0}(x), J^{0}(y)\right]_{E T C}$ using the loopdiagram method. In section 4.2 we calculate the same quantities using the point-splitting method, and show that these two methods disagree.

4.1 Loop-Diagram Method

A. $\partial_{11} J_{5}^{\mu}$

We consider the two-dimensional Abelian gange theory which is described
by the Lagranginn

$$
\begin{equation*}
L=i \bar{W} \gamma^{\prime \prime}\left(O_{1}, \cdots i c A_{1}\right) \psi \tag{1.1}
\end{equation*}
$$

Our crmuentions and their propertios are given by

$$
\begin{gather*}
\left\{\gamma^{\prime \prime}, \gamma^{\prime \prime}\right\}=2 \eta^{\prime \prime \prime}, \quad \eta^{m}=-\eta^{\prime \prime}=1, \\
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \gamma_{5}=\gamma^{0} \gamma^{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \\
\varepsilon^{10}=-\varepsilon^{01}=1, \quad \gamma^{\prime \prime} \gamma_{5}=\varepsilon^{\prime \prime \prime \prime} \gamma_{1}, \operatorname{Tr}\left(\gamma_{5} \gamma^{\prime \prime} \gamma^{\prime \prime}\right)=-2 \varepsilon^{\prime \prime \prime \prime} \tag{1.2}
\end{gather*}
$$

In order to obtain $\partial_{\mu}, J_{B}^{\prime \prime}$, let us start by including a mass term -min, in
(1.1). Then using the equation of motion we get

$$
\begin{equation*}
\partial_{1} J_{\mathrm{s}}^{\prime \prime}=2 \mathrm{im} \bar{\eta}_{\bar{\prime}} \gamma_{5} V^{\prime}, \text { whime } J_{5}^{\prime \prime}=\bar{\psi}, \gamma^{\prime \prime} \gamma_{5} / \tag{1.3}
\end{equation*}
$$

Let us regularize (4.3) as

$$
\begin{align*}
& \partial_{1}, J_{5}^{\prime \prime}(\text { reg })=2 i m \bar{\psi} \gamma_{5} \psi-2 i M \bar{\Psi} \gamma_{5} \Psi, \tag{1.4}\\
& \text { where } J_{5}^{\prime \prime}(r e g)=\bar{\psi} \gamma^{\prime \prime} \gamma_{5} \psi-\bar{\Psi} \gamma^{\prime \prime} \gamma_{5} \Psi .
\end{align*}
$$

In the nhove Ψ and M are the l'anli-Villars regulator field and its wass respectively [1]. Then for the massless fermion case $(m=0)$ given by (1.1),
(1.1) becomes

$$
\begin{equation*}
\partial_{1}, l_{5}^{\prime \prime}(r r g)=-2 i M \bar{\Psi} \gamma_{5} \Psi \tag{1.5}
\end{equation*}
$$

In terms of $R^{\prime \prime v}$ and $F^{\prime \prime}$ in Fig.1, (1.5) is expressed ns

$$
\begin{equation*}
{ }^{i} r^{\prime}, R^{\prime \prime \prime \prime}(r c q .)=-2 i M R^{\prime} \tag{1.6}
\end{equation*}
$$

Fig.1; $R^{\prime \nu}$ and R^{ν}
where we used the correspondence $\partial_{\mu} \rightarrow i p_{\mu}$, since p_{μ} is an incoming mo-

mentum. Then the anomaly is given by

$$
\begin{equation*}
\partial_{\mu} J_{5}^{\prime \prime}(\text { renormalized })=\text { Anomaly }=\lim _{M \rightarrow \infty}\left\{-2 i M R^{\nu} A_{\nu}\right\} . \tag{4.7}
\end{equation*}
$$

Let us calculate the right hand side of (4.7)

$$
\begin{aligned}
R^{\nu} & =-\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{i}{k^{2}-M^{2}} \frac{i}{(k+p)^{2}-M^{2}} \operatorname{Tr}\left\{(\gamma \cdot k+\gamma \cdot p+M) \gamma_{5}(\gamma \cdot k+M) i e \gamma^{\prime}\right\} \\
& =2 i e \epsilon^{\prime \omega} p_{\mu} M I
\end{aligned}
$$

$$
\begin{equation*}
\text { where } I=\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}-M^{2}} \frac{1}{(k+p)^{2}-M^{2}} \tag{4.8}
\end{equation*}
$$

where $I=\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}-M^{2}} \frac{1}{(k+p)^{2}-M^{2}}$

$$
\begin{align*}
& =\int_{0}^{1} d x \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{1}{\left[l^{2}-M^{2}+p^{2} x(1-x)\right]^{2}}, \text { with } l=k+p(1-x) \\
& =\int_{0}^{1} d x i \int \frac{d^{2} l_{E}}{(2 \pi)^{2}} \frac{1}{\left[l_{E}^{2}+M^{2}-p^{2} x(1-x)\right]^{2}} \\
& =\int_{0}^{1} d x \frac{i \pi}{(2 \pi)^{2}} \frac{1}{\left[M^{2}-p^{2} x(1-x)\right]} . \tag{4.9}
\end{align*}
$$

Then

$$
\begin{align*}
\text { Anomaly } & =\lim _{M \rightarrow \infty}\left\{i \frac{e}{\pi} \epsilon^{\prime \mu /} p_{\mu} A_{\nu}(p) M^{2} \int_{0}^{1} d x \frac{1}{\left[M^{2}-p^{2} x(1-x)\right]}\right\} \tag{4.10}\\
& =\frac{e}{\pi} \epsilon^{\prime \mu \prime} i p_{\mu} A_{1}(p) .
\end{align*}
$$

Fig. 2

To get the condinate space expression we use $\partial_{\mu} \rightarrow i p_{1}$, again, then

$$
\begin{equation*}
\partial_{\mu} J_{S}^{\mu}=\frac{e}{\pi} e^{\prime \mu} \partial_{\mu} \cdot A_{\nu} \tag{1.11}
\end{equation*}
$$

B. $\left|J_{5}^{0}(x), J^{0}(y)\right|_{E T C}$

The BJI, limit method snys $\{1,5,43\}$ that

$$
\begin{gather*}
\text { when } T(p)=\int d^{2} x e^{-i p e}\left(0\left|T\left(J_{s}^{0}(x) J^{0}(0)\right)\right| 0\right\rangle, \tag{412}\\
\lim _{p 0 \rightarrow \infty} p_{0} T(p)=-i \int d x^{1} e^{i p^{1} x^{1}}\langle 0|\left[J_{s}^{0}\left(0, x^{1}\right), J^{0}(0,0)| | 0\right\rangle . \tag{4.13}
\end{gather*}
$$

Therefore if we get $\boldsymbol{p}^{\mathbf{1}}$ in the left hand side of (4.13), it means that (0| $\left.\left[J_{8}^{0}\left(0, x^{1}\right), J^{0}(0,0)\right] \mid 0\right)$ in the right hand side is $-\frac{8}{\hat{h}_{x}^{1}} \delta\left(x^{1}\right)$, i.e.,

$$
\begin{equation*}
p^{1} \cdots-\frac{\partial}{\partial x^{1}} \delta\left(x^{1}\right) \tag{414}
\end{equation*}
$$

$T(p)$ in (4.12) is given by Fig. 2 as

$$
\begin{align*}
T(p) & =-\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{i}{k^{2}} \frac{i}{(k+p)^{2}} \operatorname{Tr}\left\{(\gamma \cdot k+\gamma \cdot p) \gamma_{0} \gamma_{5} \gamma \cdot k \gamma_{0}\right\} \\
& =-2 \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}} \frac{1}{(k+p)^{2}}\left(2 k_{0} k_{1}+k_{0} p_{1}+k_{1} p_{0}\right) \\
& =-2 \int_{0}^{1} d x \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{-2 j_{0} p_{1}: x(1-x)}{\left[l^{2}+p^{2} x(1-x)\right]^{2}}, \text { with } l=k+p(1-x) \\
& =4 p_{0} p_{1} \int_{0}^{1} d x i \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{x(1-x)}{\left[l_{E}^{2}-p^{2} x(1-x)\right]^{2}} \\
& =-\frac{i}{\pi} \frac{p_{0} p_{1}}{p^{2}} . \tag{4.15}
\end{align*}
$$

Then

$$
\begin{equation*}
\lim _{m_{0} \rightarrow \infty} p_{0} T(p)=-\frac{i}{\pi} \frac{p_{0}^{2} p_{1}}{p_{0}^{2}-p_{1}^{2}}=-\frac{i}{\pi} p_{1}=\frac{i}{\pi} p^{1} \tag{4.16}
\end{equation*}
$$

Therefore from (4.14)

$$
\langle 0|\left|J_{B}^{0}\left(0, x^{1}\right), J^{0}(0,0)\right||0\rangle=-\frac{i}{\pi} \frac{\partial}{\partial x^{1}} \delta\left(x^{1}\right)
$$

or

$$
\begin{equation*}
\left.\langle 0| \mid J_{5}^{0}(x), J^{0}(y)\right]_{E T C}|0\rangle=-\frac{i}{\pi} \frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{2}\right) \tag{1.17}
\end{equation*}
$$

4.2 Point-Splitting Method

A. $\partial_{\mu} J_{5}^{\mu}$

From (4.1) we have the equations of motion

$$
\begin{align*}
& \gamma^{\prime \prime} \partial_{\mu} \psi=i e \gamma^{\prime \prime} A_{\mu} \psi \\
& \bar{\psi} \tilde{\partial}_{1} \gamma^{\prime \prime}=-i c \bar{\psi} \gamma^{\prime \prime} A_{1 \prime} . \tag{4.18}
\end{align*}
$$

Let us define the axial current in the following gange invariant form $[1,4,5]$.

In this sertion we treat, $A_{\text {, }}$ as an external firld.

$$
\begin{equation*}
J_{5}^{\prime \prime}(x ; \epsilon)=\overline{V^{2}}\left(x+\frac{\varepsilon}{2}\right) \gamma^{\prime \prime} \gamma_{5} / /\left(x-\frac{\varepsilon}{2}\right) c x_{r}\left[\left.i c \int_{x-\frac{1}{2}}^{x+\frac{t}{2}} A_{1}(y) d y^{\prime \prime} \right\rvert\,\right. \tag{1.19}
\end{equation*}
$$

Using (1.18)

$$
\begin{align*}
& =-i c \cdot J_{6}^{\prime \prime}(x ; \varepsilon) \varepsilon^{\sim}\left|O_{,} A_{1}(x)-\partial_{1} A_{n}(x)+O(\varepsilon)\right| \\
& =-i c \cdot J_{b}^{\prime \prime}(x ; \varepsilon) \varepsilon^{\wedge}\left[F_{r, 1}^{\prime}(x)+O(\varepsilon) \mid\right. \text {, } \\
& \text { where } F_{11}=i_{1,} A_{2}-i_{2} A_{1} \tag{1.20}
\end{align*}
$$

Then

$$
\begin{equation*}
\langle 0| a_{1} J_{5}^{\prime \prime}(x)|0\rangle=-\operatorname{ic} I^{m u}\left|F_{o n}+O(e)\right| \tag{1.21}
\end{equation*}
$$

where $\left.I^{n \prime \prime} \equiv e^{n}(0)\left|J_{5}^{\prime \prime}(x ; \varepsilon)\right| 0\right\rangle$.
From (4.19)

$$
\begin{align*}
& =-\operatorname{Tr}\left\{\gamma^{\prime \prime} \gamma_{5} \varepsilon^{n} S_{A}\left(x-\frac{\varepsilon}{2}, x+\frac{\varepsilon}{2}\right) \operatorname{crp}\left[i e \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} A_{1}(y) d y^{\prime \prime}\right]\right\} \text {, } \tag{1.22}
\end{align*}
$$

where $S_{A}(x, y)$ is a ferminn propagator in the extermal field A_{i}, and ϵ^{0} is taken as positive [r]. $S_{A}(x, y)$ can be expauled in powers of $A_{1,}$ as shown in Fig. 3.
$S_{A}\left(x-\frac{\varepsilon}{2}, x+\frac{\varepsilon}{2}\right)$
$=S_{F}(-\varepsilon)+i e \int d^{2} y S_{F}\left(x-\frac{\varepsilon}{2}-y\right) \gamma^{\prime \prime} S_{r}\left(y-x-\frac{\varepsilon}{2}\right) A_{r}(y) \cdots$,
integral.

$$
\begin{equation*}
\int d^{2} \nu \partial^{\alpha}\left(\frac{p^{\prime}}{p^{2}}\right)=i 2 \pi \frac{\rho^{\infty} \Gamma^{\beta}}{\Gamma^{2}}=i 2 \pi \frac{\eta^{\sim \beta}}{2}=i \pi \eta^{\alpha \beta} \tag{427}
\end{equation*}
$$

where we applied the averaging procedure. 'Then

$$
\begin{equation*}
J^{\infty \prime \prime}=\frac{i}{2 \pi} \epsilon_{0}^{\prime \prime} \eta^{\kappa \beta}=-\frac{i}{2 \pi} \epsilon^{\pi \prime \prime} . \tag{428}
\end{equation*}
$$

Fig. 3 Fermion propagator $S_{A}(x)$ in the external field A_{μ}
where S_{F} is a free fermion propagator.

The first term $S_{F}(-c)$ in (4.23) or Fig. 3 is as singular ns $1 / \varepsilon$, and next terms are less singular. Therefore when e goes to zero, only this first term contributes in (4.22)

Therefore from

$$
\begin{align*}
& S_{F}(x)=i \int \frac{d^{2} p}{(2 \pi)^{2}} c^{-i p \cdot x} \frac{\gamma \cdot p}{p^{2}} \\
& S_{F}(-\varepsilon)=i \int \frac{d^{2} p}{(2 \pi)^{2}} e^{i p \cdot \frac{\gamma^{G} p_{\rho}}{p^{2}}} \tag{4.24}
\end{align*}
$$

we have

$$
\begin{align*}
I^{a \mu} & =-i \operatorname{Tr}\left\{\gamma^{\mu} \gamma_{B} \gamma^{A}\right\} \int \frac{d^{2} p}{(2 \pi)^{2}} \varepsilon^{a} e^{i p \cdot \varepsilon} \frac{p_{\beta}}{p^{2}} \\
& =-2 i \varepsilon^{\mu \mu_{i}} \int \frac{d^{2} p}{(2 \pi)^{2}} e^{i p \cdot} \frac{\partial}{\partial p_{a}}\left(\frac{p_{\rho}}{p^{2}}\right) \tag{4.25}\\
& =2 \varepsilon_{\rho}^{\mu} \int \frac{d^{2} p}{(2 \pi)^{2}} \partial^{a}\left(\frac{p^{\beta}}{p^{2}}\right)
\end{align*}
$$

In (4.25) we apply the following property.

$$
\begin{equation*}
\int_{p=P} d^{2} p \partial^{\alpha} f(p)=i 2 \pi P^{\alpha} f(P) \tag{4.26}
\end{equation*}
$$

where P is the nalue of p at infinity which is the boundary of the volume
and $J^{0}(y)$. Then

$$
\begin{align*}
& {\left[J_{6}^{0}\left(0, x^{1} ; \varepsilon^{1}\right), J^{0}\left(0, y^{1}\right)\right]} \\
& =\left[\psi_{a}^{\dagger}\left(0, x^{1}+\frac{\varepsilon^{1}}{2}\right) \psi_{\beta}\left(0, x^{1}-\frac{\varepsilon^{1}}{2}\right), \psi_{\lambda}^{\dagger}\left(0, y^{1}\right) \psi_{\lambda}\left(0, y^{1}\right)\right]\left(\gamma_{5}\right)_{\alpha \rho} c x p\left[i c \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} \Lambda_{1}(z) d z^{1}\right] \\
& =\left\{\delta\left(x^{1}-y^{1}-\frac{\varepsilon^{1}}{2}\right)-\delta\left(x^{1}-y^{1}+\frac{\varepsilon^{1}}{2}\right)\right\} \psi^{1}\left(0, x^{1}+\frac{\varepsilon^{1}}{2}\right) \gamma_{5} \psi\left(0, x^{1}-\frac{\varepsilon^{1}}{2}\right) \operatorname{cx} p\left|i e \int_{z-\frac{\cdot 1}{2}}^{x+\frac{1}{2}} A_{1}(z) d z^{1}\right| \\
& =-\varepsilon^{1} \frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{1}\right) J_{5}^{0}\left(0, x^{1} ; \epsilon^{1}\right) . \tag{4.31}
\end{align*}
$$

Therclore
$\langle 0|\left[J_{5}^{0}\left(0, x^{1} ; \varepsilon^{1}\right), J^{0}\left(0, y^{1}\right)\right]|0\rangle$
$=-\frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{2}\right) \varepsilon^{1}\langle 0| J_{5}^{0}\left(0, x^{1} ; \varepsilon^{1}\right)|0\rangle$
$=-\frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{1}\right) I^{10}$, where $I^{a n}$ is defined in (4.21)
$=-\frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{1}\right) \frac{i}{2 \pi} \epsilon^{10}$, where we used (4.28)
$=-\frac{i}{2 \pi} \frac{\partial}{\partial x^{1}} \delta\left(x^{1}-y^{1}\right)$.
(4.32) is half of the result (4.17) of the loop-dingram method.

CIAMPEAK

GRAVITMTIONAL ANOMALY

In this chapter we stuty the purely gravitational amomaly in the system of the gravitational field coupled to a chiral fermion [4t-4c]. We obtain at effective action by calculaling Feymman diagrams in the light cone corordi mates, and we show that the numaly given by this effective action aurres with that given by the diferential geometric method. We will aall a general coordinate transformation an Einstcin transformmtion nud a grueral cronedinate transformation nuomaly an Einstein amomaly respectively [1:3]

In section 5.1 we obtain the anomaly up to the sign by using the differential geometric method. In section 5.2 we solve the nnomaly equation. In section 5.3 we show that the result of section 5.1 ngrees with the diarram calculations.

5.1 Einstein Anomaly

Let us consider a system of a left-handed chiral fromion intrancting with an external gravitatinmal firld. It is described by a symmetrized Lagrangian

$$
\begin{equation*}
L=\frac{i}{2} e e_{n}^{\prime \prime}\left(\bar{\psi} \gamma^{a} D_{r}, v-\overline{D_{n}, v} \gamma^{n} \psi_{1}\right) \tag{5.1}
\end{equation*}
$$

where $e_{n}{ }^{\prime \prime}$ is n vierberin firld and

$$
\begin{equation*}
c=\operatorname{dct} c_{11}^{a}, \quad c_{a}{ }^{\prime \prime} c_{11}^{b}=\delta_{a}^{b}, \quad D_{1}=a_{\mu}-\frac{1}{2} \omega_{1 d x} \Sigma^{\prime r}, \quad v^{\prime m}=\frac{1}{4}\left|\gamma^{b}, \gamma\right| \tag{5.2}
\end{equation*}
$$

Since in two dimensions we have ouly one independent $\Sigma^{\text {be }}$ which is prepor-
tional to γ_{5}, the term which contains the Cartun-Weyl comection $\omega_{1,16}$ in (5.1) is proportional to $\left\{\gamma^{\text {a }}, \gamma_{6}\right\}$ which vanishes. Therefore (5.1) becomes simply

$$
\begin{equation*}
L=\frac{i}{2} c e_{a}^{\mu}\left(\bar{\psi} \gamma^{a} \overleftarrow{\partial}_{\mu} \psi\right), \quad \text { where }\left(a \ddot{\partial}_{\mu} b\right) \equiv a\left(\partial_{\mu} b\right)-\left(\partial_{\mu} a\right) b \tag{5.3}
\end{equation*}
$$

Under the Einstein transformation, the vierbein and the connection trans-
form as

$$
\left\{\begin{array}{l}
\delta_{\xi} e_{\mu}^{a}=\xi^{\rho} \partial_{\rho} c_{\mu}^{a}+\partial_{\mu} \xi^{\rho} e_{\rho}^{a}, \tag{5.4}\\
\delta_{\zeta} \Gamma_{\lambda \mu}{ }^{\nu}=\xi^{\rho} \partial_{\rho} \Gamma_{\lambda_{\mu}}{ }^{\nu}+\partial_{\lambda} \xi^{\rho} \Gamma_{\rho \mu}{ }^{\nu}+\partial_{\mu} \xi^{\rho} \Gamma_{\lambda \rho}^{\nu}-\Gamma_{\lambda, \mu}^{\rho} \partial_{\rho} \xi^{\nu}-\partial_{\lambda} \partial_{\mu} \xi^{\nu}
\end{array}\right.
$$

Let us treat $e_{\mu}{ }^{a}, \Gamma_{\lambda, \beta^{\prime}},-\partial_{\mu} \xi^{\nu}$ as matriccs E, Γ_{λ}, and Λ respectively, i.e.,

$$
\begin{equation*}
(E)_{\mu}{ }^{a} \equiv e_{,}{ }^{a}, \quad\left(\Gamma_{\lambda}\right)_{\mu}{ }^{\nu} \equiv \Gamma_{\lambda_{1},}{ }^{\nu}, \quad(\Lambda)_{\mu}{ }^{\nu} \equiv-\partial_{\mu} \xi^{\nu}, \tag{5.5}
\end{equation*}
$$

and decompose δ_{f} into two parts

$$
\begin{equation*}
\delta_{\xi}=\mathcal{L}_{\ell}+\delta_{\Lambda}, \tag{5.6}
\end{equation*}
$$

such that

$$
\left\{\begin{array}{l}
\mathcal{L}_{\ell} E=\xi^{\rho} \partial_{\rho} E \tag{5.7}\\
\mathcal{C}_{\ell} \Gamma_{\lambda}=\xi^{\rho} \partial_{\rho} \Gamma_{\lambda}+\partial_{\lambda} \xi^{\rho} \Gamma_{\rho}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\delta_{\Lambda} E=-\Lambda E \tag{5.8}\\
\delta_{\Lambda} \mathrm{I}_{\lambda}=D_{\lambda} \Lambda=\partial_{\lambda} \Lambda+\Gamma_{\lambda} \Lambda-\Lambda \Gamma_{\lambda}
\end{array}\right.
$$

We notice that \mathcal{L}_{ξ} is a Lic derivative with E as a scalar and I_{λ} as a covariant vector. δ_{A} is the same as a Yang-Mills gauge transformation with Γ_{λ} as n Yang-Mills gange field. Repcated applications of $\delta_{A} E$ in (5.8) give

$$
\begin{equation*}
E^{\prime}=e^{-\Lambda} E \tag{5.9}
\end{equation*}
$$

for a finite transformation. (5.9) reminds us of (2.19) in chapter 2 anl will be used when we solve an anomaly equation in section 5.2.

As in the Yang-Mills gange theory case, we have an anomaly equalion

$$
\begin{equation*}
\delta_{\ell} W_{t}=I_{\ell} \tag{5.10}
\end{equation*}
$$

where W_{ℓ} is an effective action which gives rise to an Einstein anomaly H_{q} under the Einstein transformation δ_{t}. Then from

$$
\begin{equation*}
\left[\delta_{\ell_{1}}, \delta_{\ell_{2}}\right]=\delta_{\left\{\ell_{1}, \ell_{2}\right]}, \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\left|\xi_{1}, \xi_{2}\right|\right)^{\mu}=\xi_{2}^{\rho} \partial_{\rho} \xi_{1}^{\prime \prime}-\xi_{1}^{\rho} \partial_{\rho} \xi_{2}^{\mu}, \tag{5.12}
\end{equation*}
$$

we get n consistency condition

$$
\begin{equation*}
\delta_{\xi_{1}} H_{\xi_{2}}-\delta_{\xi_{2}} H_{\xi_{1}}=H_{\left[\xi_{1}, \xi_{2}\right]} . \tag{5.13}
\end{equation*}
$$

Bardeen and Zumino showed that the Einstein anomaly which is the solution of (5.13) is given ly the same function as that of a Yang-Mills gauge theory by replacing A, F by Γ, R respectively [13]. Therefore from (2.15) we have the two-dimensional Einstein anomaly as

$$
\begin{equation*}
\text { [2-dim. Einstein Ano.] } \propto-\frac{1}{4 \pi} \operatorname{Tr} \int d^{2} x \Lambda \partial_{\rho} \Gamma_{\lambda} e^{\mu \lambda} \tag{5.14}
\end{equation*}
$$

However, the normalization factor is diferent from that of the Vang Mills gange nomaly. The Atiyah-Singer index of the llirac operator in the sy stem (5.1) is given ly the integration of the Dirac genus $\tilde{A}(M)$ ns $[18,19]$

$$
\begin{equation*}
n_{+}-n_{-}=\int_{M} \dot{A}(n f), \tag{5.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\Lambda}(M)=\prod_{i=1}^{n / 2} \frac{\left(x_{i} / 2\right)}{\sinh \left(x_{i} / 2\right)}=1-\frac{1}{24} p_{1}+\frac{1}{5760}\left\{7\left(p_{1}\right)^{2}-4 p_{2}\right\}+\cdots . \tag{5.16}
\end{equation*}
$$

'Then in four-dimensions, where we started to get the two-dimensiond non-
Abclian gauge anomaly,

$$
\begin{align*}
n_{+}-n_{-} & =-\frac{1}{24} P_{1}=-\frac{1}{24} \int_{M} m_{1}(T(M)) \\
& =\frac{1}{24 \cdot 8 \pi^{2}} \operatorname{Tr} \int_{M}(R \wedge n) \tag{5.17}
\end{align*}
$$

In (5.17) we have an additional factor of $(-1 / 24)$ compared with $\left(-1 / 8 \pi^{2}\right) \operatorname{Tr}\left(F^{2}\right)$
in (2.11). Thercfore, with the correct normalization factor we oblain the two-

dimensional Einstein anomaly as

[2-dim. Einstein Λ no.] $=\left(-\frac{1}{24}\right)\left(-\frac{1}{4 \pi}\right) \operatorname{Tr} \int d^{2} x \Lambda \partial_{\rho} \Gamma_{\lambda} \epsilon^{\rho \lambda}$

$$
\begin{align*}
& =\frac{1}{96 \pi} \int d^{2} x(\Lambda)_{\mu}{ }^{\nu} \partial_{\rho}\left(\Gamma_{\lambda}\right)_{\nu}{ }^{\prime \prime} e^{\rho \lambda} \tag{5.18}\\
& =-\frac{1}{96 \pi} \int d^{2} x \partial_{\mu} \xi^{\nu} \partial_{\rho} \Gamma_{\lambda \nu}{ }^{\prime \prime} e^{\mu \lambda}
\end{align*}
$$

$$
\left\{\begin{array}{l}
S_{\Lambda} W_{\epsilon}=H_{\epsilon} \\
H_{\varepsilon}=\frac{1}{\min } \int d^{2} r \operatorname{Tr}\left(\Lambda \partial_{r} \Gamma_{\Lambda} \varepsilon^{n \lambda}\right) .
\end{array}\right.
$$

We notice that the first equation in (5.20) is the same as the Yanr-Mills gange transformation, and the second equation in (5.20) is a mon-linear transformation like (2.19). Therefore, we obtain a solution of (5.22) in analory with (2.20) [13],

$$
\begin{equation*}
\left.W_{\ell}[\Gamma, H]=\frac{1}{9 \in \pi} \int d^{2} x \int_{0}^{1} d l \operatorname{Tr}[(-H))_{\rho} \Gamma_{i}(l) e^{\rho \cdot \lambda}\right] \tag{5.23}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{\lambda}(f)=e^{-t \prime \prime} \Gamma_{\lambda} e^{c \prime \prime}+e^{-1 \prime \prime} \partial_{\lambda} e^{\prime \prime \prime} \tag{5.24}
\end{equation*}
$$

Let us show that the lie derivative of $W_{\epsilon}[\Gamma, I]$ in (5.23) is zero. (5.7) says that E is a scalar under a Lie derivative, so $I I$ is also a scalar. (5.7) also snys that Γ_{λ} is a covariant vector, then $\Gamma_{\lambda}(t)$ in (5.24) is also a covariant vector, and then $\partial_{\rho} \Gamma_{\lambda}(t) \varepsilon^{\rho \lambda}$ in (5.23) is a scalar density. Therefore the integrand of $W_{\epsilon}[\Gamma, H]$ in (5.23) is a product of a scalar and a scalar density, i.e., a scalar density. Therefore,

$$
W_{\ell}[\Gamma, H]=\int d^{2} x M
$$

where $M=1 / 0 G \pi \int_{0}^{1} d t T r\left[(-H) \partial_{\rho} \Gamma_{\lambda}(t) \varepsilon^{\rho \lambda}\right]$ is a scalar density. Then

$$
\mathcal{C}_{\ell} W_{\ell}[\Gamma, H]=\int d^{2} x\left\{\xi^{\mu} \partial_{\mu} M+\left(\partial_{\mu} \xi^{\mu}\right) M\right\}=\int d^{2} x \partial_{\mu}\left(\eta^{\mu} M\right)=0
$$

Combining (5.22) and (5.25), we have

$$
\begin{equation*}
\delta_{\ell} W_{\xi}=\left(\mathcal{C}_{\ell}+\delta_{A}\right) W_{\ell}=\delta_{\Lambda} W_{\ell}=I_{\ell} . \tag{5.26}
\end{equation*}
$$

Thus it has been shown that (5.23) is a solution of the original anomaly equation (5.19).

5.3 Comparison with Diagram Calculations

As we have shown in section 5.1, our system is described by the Lagrangian

$$
\begin{equation*}
L=\frac{i}{2} e e^{a_{u}} \cdot \bar{\psi} \gamma_{u} \dddot{\partial}_{\mu} \psi \tag{5.27}
\end{equation*}
$$

where $\left(1+\gamma_{5}\right) \psi=0$, i.e., $\gamma_{-} \psi=0$. Let us linearize the vierbein with the symmetrized $h_{\text {pa }}$ as

$$
\begin{equation*}
e_{\mu}{ }^{a} \equiv \delta_{1,}{ }^{a}+h_{u}{ }^{a} \tag{5.28}
\end{equation*}
$$

Fig. 1 Feynman rule : Take $\operatorname{Tr} \int \frac{d^{2} k}{(2 \pi)^{2}}$, and attach (-) sign for n fermion loop. Then multiply the symmetry factor $\prod_{i}\left(1 / n_{i}!\right)$ for an effective $a \cdot t i o n$.

Then

$$
\begin{equation*}
e_{a}^{\mu}=\delta_{a}^{\mu}-h_{a}^{\mu}+O\left(h^{2}\right) \text { from } e_{a}^{\mu} e_{\mu}^{b}=\delta_{a}^{b}, \tag{5.29}
\end{equation*}
$$

and

$$
\begin{equation*}
e=\operatorname{det}\left(e_{,}{ }^{a}\right)=\operatorname{det}(I+h)=\exp [\operatorname{Tr}[\ln (I+h)]\}=1+h_{\mathrm{a}}{ }^{0}+O\left(h^{2}\right) . \tag{5.30}
\end{equation*}
$$

Using these expansions, we have the interaction Lagrangian

$$
\begin{equation*}
L_{\text {int. }}=\frac{i}{2}\left(h_{+-} \bar{\psi} \gamma_{+} \ddot{\partial}_{-} \psi-h_{--} \bar{\psi} \gamma_{+} \ddot{\partial}_{+} \psi\right)+O\left(h^{2}\right) \tag{5.31}
\end{equation*}
$$

Then we obtain the Feynman rule given in Fig.t for one-loop diagrams in the same way as in section 2.3 of chapter 2.

Using the Feymman rule in Fig. 1 we get the following amplitude fir Dia-

Fig. 2 Diagram [5.1]
grain [5.1].

$$
\begin{align*}
\text { Amp. }= & -\int \frac{d k_{+} d k_{-}}{(2 \pi)^{2}}\left\{(2 k+p)_{+} h_{--}(p)-(2 k+p)_{-} h_{+-}(p)\right\} \\
& \times\left\{(2 k+p)_{+} h_{--}(-p)-(2 k+p)_{-} h_{+-}(-p)\right\} \tag{5.32}\\
& \times \frac{1}{4}\left\{\frac{1}{k_{-}+i \varepsilon / k_{+}}\right\}\left\{\frac{1}{(k+p)_{-}+i \varepsilon /(k+p)_{+}}\right\} \\
= & -\frac{i}{24 \pi} \frac{\left.p_{+}^{3} h_{--}(p) h_{--}(-p)+\text { (local terms }\right)}{p_{-}}
\end{align*}
$$

In the above calculation we followed the same procedure as that for (2.50) in chapter 2. We attach the symmetry factor ($1 / 2$!) to (5.32) and match this to $i W_{1}$,

$$
\begin{align*}
W_{1}=- & \frac{1}{48 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} d^{2} q \delta^{2}(p+q)\left\{\frac{p_{+}^{3}}{p_{-}} h_{--}(p) h_{--}(q)\right. \\
& +a p_{+}^{2} h_{--}(p) h_{-+}(q)+b p_{-} p_{+} h_{--}(p) h_{++}(q) \tag{5.33}\\
& \left.+c p_{-} p_{+} h_{-+}(p) h_{-+}(q)+d p_{-}^{2} h_{-+}(p) h_{++}(q)\right\} .
\end{align*}
$$

In (5.33) we added a general local functional which is Jorentz invarinnt [12].
In order to show that the diagram calculation gives the same anomaly ns 'that obtained by the differential geometric method, let us try to adjust the coefficients a, b, c and d such that the variation of (5.33) gives rise to the
$O(h)$ term of (5.18). Pirst we expand (5.18) for compatison,
[2-dim. Einstein Amo.]

$$
\begin{align*}
& =-\frac{1}{3 G_{i}} \int d^{2} x O_{1,} \xi^{\prime \prime} O_{\mu} r_{\lambda, ~},^{\prime \prime} \varepsilon^{\rho^{\prime}} \tag{5.34}\\
& =-\frac{i}{96 \pi} \int \frac{d^{2} \eta}{(2 \pi)^{2}} d^{2} \eta \delta^{2}(p+q)\left(\xi_{-}(q) p_{+}+-\xi_{+}(q) r_{-}\right\} \\
& \times\left\{n_{-}^{2} h_{1+}(p)-2_{p} p_{-} h_{L_{-}}(p)+p_{+}^{2} h_{--}(p)\right\}+O\left(h^{2}\right) .
\end{align*}
$$

When the system is assumed to have local lorentzinvariance, we can mse the local Idorentz Lransfomation as n restoring transfommation to kerp the symmetrized hin symmetric under the Finstein transformation in the follow-
 plus the local lorentz transformation,

$$
\begin{equation*}
\delta_{t} h_{1, n}=\xi^{\prime} \partial_{p} h_{1, n}+\partial_{1} \xi^{n}\left(\eta_{m}+h_{m}\right)-\theta_{n}^{b}\left(\eta_{1, n}+h_{, B}\right), \tag{5,35}
\end{equation*}
$$

where $\theta_{n b}(x)$ is an nntisymmetric parameter function for the lical Inr•ntz transformation. Then by choosing $\theta_{\text {ab }}$ ns

$$
\begin{equation*}
\theta_{n h}=-\frac{1}{2}\left(\partial_{n} \xi_{n}-\partial_{n} \xi_{n}\right)+O(h) \tag{r.36}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta_{\ell} h_{1, n}=\frac{1}{2}\left(\partial_{11} \xi_{n}+\partial_{n} \xi_{11}\right)+O(h) \tag{5,37}
\end{equation*}
$$

Since the variation in (5.37) is symmetrie, $h_{\text {men }}$ is kept symmetric under the transformation if we started with n symmotric $h_{\text {ta }}$. Each component of han

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 4 Diagrams of the order of $O\left(h^{3}\right)$

Fig. 5 Diagram [5.2]

Let us now show thint diagrain calculations agree with (5.18) up the next order, i.e., $O\left(h^{2}\right)$ in the amomaly. For this we need to calculate only the diagram in Fig.4(a), since the diagram in Fig.4(b) does not exist beculase of the absence of the vertex in Fig.3(c), and the dingram in Fig. 1(c) would give rise to a local functional to the effective action.

Applying the Feynman rule in Fig.1, we have the amplitude for Dingram
lation we did not include the diagram in Fig. 3(a) which is the same order in h as the diagram in Fig.3(b) since this diagram would give a local functional. Actually in our systein the vertex in Fig.3(c) does not exist when we expand the Lagrangian (5.27) using (5.28), (5.29) and (5.30). Then the diagram in Fig.3(a) docs not exist.
[5.2].

$$
\begin{align*}
\text { Amp. }=- & \left(\frac{1}{2}\right)^{3} \int \frac{d^{2} k}{(2 \pi)^{2}}\left[(2 k-p)_{+} h_{--}(p)-(2 k-p)_{-} h_{+-}(p)\right] \\
& \times\left[(2 k+q)_{+} h_{--}(q)-(2 k+q)_{-} h_{+-}(q)\right] \\
& \times\left[(2 k-p+q)_{+} h_{--}(r)-(2 k-p+q)_{-} h_{+-}(r)\right] \\
\times & \left\{\frac{1}{k_{-}+i \varepsilon / k_{-}}\right\}\left\{\frac{1}{(k+q)_{-}+i \epsilon /(k+q)_{+}}\right]\left\{\frac{1}{(k-p)_{-}+i \epsilon /(k-p)_{+}}\right\} \\
& +(p \longleftrightarrow q) . \tag{5.40}
\end{align*}
$$

(5.40) contains the following four cases for the combinations of the external h ficlds.

$$
\left\{\begin{array}{l}
(\text { casc } 1):\left(h_{--}, h_{--}, h_{--}\right) \tag{5.41}\\
(\text {casc } 2):\left(h_{-}, h_{--}, h_{+-}\right) \\
(\text {casc } 3):\left(h_{--}, h_{+-}, h_{+-}\right) \\
(\text {case } 4):\left(h_{+-}, h_{+-}, h_{+-}\right)
\end{array}\right.
$$

As we did before, we integrate (5.40) first over k_{-}by using the residue method and then over k_{+}. After these integrations we find that (case 3) and (case 4) give rise to local functionals for the effective action which can be ignored since the effective action is ambiguous by a local functional. (case 1)
and (case 2) produce the following offective action W_{2} of $O\left(t^{3}\right)$.

$$
\begin{aligned}
& W_{2}=\frac{1}{2 q \pi}-\int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \cdot \delta^{2}(p+q+r) \\
& \times\left\{-\frac{1}{3} \frac{1}{r_{-}} \frac{r_{+}^{3}\left(2 r_{4}-1 p_{4}\right)}{p-} h_{---}(p) h_{---}(q) h_{-\ldots}(r)\right. \\
& \left.\cdot \frac{r_{1}^{3}}{p_{--}} h_{--}(p) h_{--}(q) h_{;-}(r)\right\}
\end{aligned}
$$

Now we want to show that the $O\left(h^{2}\right)$ terms of $\delta_{6}\left(W_{1}+W_{2}\right)$ arree with the $O\left(h^{2}\right)$ terms of (5.18). In ordre to calculate $O\left(h^{2}\right)$ terms of $\delta_{\ell} W_{1}$, we need $O\left(h_{1}\right)$ terms of $\delta_{\ell} h_{m,}$, i.e., oue higher order than $\delta_{\ell} h_{i, n}$ of (5.37) or (5.t8).

Following n similar procedure ns from (5.35) to (5.37) we ohtain

$$
\begin{aligned}
\delta_{\ell} h_{m n} & =\frac{1}{2}\left(\partial_{m} \xi_{n}+\partial_{a} \xi_{m}\right) \\
& +\xi^{\prime} \partial_{1} h_{m n}-\left(\xi^{\prime} \partial_{m} h_{l n}+\xi^{\prime} \partial_{n} h_{l m}\right) \\
& -\frac{1}{4}\left(\partial_{m} \xi^{\prime} h_{l_{a}}+\partial_{n} \xi^{\prime} h_{l_{m 1}}\right)-\frac{1}{4}\left(\partial^{\prime} \xi_{m} h_{l a}+\partial^{\prime} \xi_{n} h_{t_{n, n}}\right) \\
& +O\left(h^{2}\right)
\end{aligned}
$$

Using (5.13), (2.45) and the correspondence between (∂_{μ}) and ($i{ }_{i},$.) as explained above (2.5G) in chapter 2 , we have the following $O\left(h^{2}\right)$ tertis of

$$
\begin{aligned}
& \delta_{\xi}\left(W_{1}+W_{2}\right) \text { whicl we will call } \delta_{\xi}\left(W_{1}+W_{2}\right)\left[O\left(h^{2}\right)\right] \\
& \begin{aligned}
& \delta_{\epsilon}\left(W_{1}\right.\left.+W_{2}\right)\left[O\left(h^{2}\right)\right]=-\frac{i}{96 \pi} \int \frac{d^{2} p^{\prime}}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d^{2} r \delta^{2}(p+q+r) \\
& \quad \times\left\{h_{--}(p) h_{--}(q) \xi_{+}(r)\left(p_{+}^{3}+3 p_{+}^{2} q_{+}\right)\right. \\
&+h_{--}(p) h_{++}(q) \xi_{-}(r)\left(-2 p_{+}^{2} p_{-}-p_{+} p_{--} q_{+}+3 p_{+}^{2} q_{-}+3 p_{+} q_{+} q_{-}+q_{+}^{2} q_{-}\right) \\
&+h_{--}(p) h_{++}(q) \xi_{+}(r)\left(p_{+} p_{-}^{2}+3 p_{+} p_{-} q_{-}-p_{-} q_{+} q_{-}+p_{+} q_{-}^{2}\right) \\
&+h_{++}(p) h_{++}(q) \xi_{-}(r)\left(p_{-} q_{-}^{2}-q_{-}^{3}\right) \\
&+h_{--}(p) h_{-+}(q) \xi_{-}(r)\left(9 p_{+}^{3}+9 p_{+}^{2} q_{+}+3 p_{+} q_{+}^{2}+q_{+}^{3}\right) \\
&+h_{--}(p) h_{-+}(q) \xi_{+}(r)\left(-p_{-} p_{+}^{2}-2 p_{-} p_{+} q_{+}-3 p_{+}^{2} q_{-}+3 p_{-} q_{+}^{2}-4 p_{+} q_{-} q_{+}+q_{-} q_{+}^{2}\right) \\
&+h_{-+}(p) h_{++}(q) \xi_{-}(r)\left(3 p_{-}^{2} p_{+}+p_{-}^{2} q_{+}-4 p_{-} p_{+} q_{-}-2 p_{-} q_{-} q_{+}-p_{+} q_{-}^{2}+q_{-}^{2} q_{+}\right) \\
&+h_{-+}(p) h_{++}(q) \xi_{+}(r)\left(-p_{-}^{3}-3 p_{-}^{2} q_{-}-p_{-} q_{-}^{2}-q_{-}^{3}\right) \\
&+h_{-+}(p) h_{-+}(q) \xi_{-}(r)\left(-2 p_{-} p_{+}^{2}+4 p_{-} p_{+} q_{+}+6 p_{+}^{2} q-\right) \\
&\left.+h_{-+}(p) h_{-+}(q) \xi_{+}(r)\left(4 p_{-}^{2} p_{+}+4 p_{-} p_{+} q_{-}\right)\right]
\end{aligned}
\end{aligned}
$$

$$
(5.44)
$$

Since we used the light-cone coordinates for the diagram calculations, these calculations are not covariant and fairly complicated. After lengthy calcu-
lations it can be shown that (5.14) becomes the same as the $O\left(h^{2}\right)$ terms of (5.18) by adding the following Lorentz invariant local functional W_{C} to

$$
\begin{align*}
&\left(W_{1}+W_{2}\right) \\
& W_{G}=\frac{i}{06 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} d d^{2} r \delta^{2}(p+q+r) \\
& \times\left(h_{-\ldots}(p) h_{-\ldots}(q) h_{++}(r)\left(-\frac{1}{2}\right)\left(p_{+}^{2}+8 p_{+} q_{+}+q_{+}^{2}\right)\right. \\
&+h_{++}(p) h_{++}(q) h_{-}(r) \frac{1}{2}\left(p_{-}^{2}+4 p_{-q} q+q_{-}^{2}\right) \\
&+h_{--}(p) h_{++}(q) h_{-+}(r) 2\left(-3 p_{--} p_{+}-q^{\prime} p_{+} q_{-}+q_{-} q_{+}\right) \tag{5.45}\\
&+h_{--}(p) h_{-+}(q) h_{-+}(r)(-2)\left(3 p_{+}^{2}+p_{+} q_{+}+q_{+}^{2}\right) \\
&+h_{-+}(p) h_{++}(q) h_{-+}(r) 2\left(p_{-}^{2}+p_{-} q_{-}-q_{-}^{2}\right) \\
&\left.+h_{-+}(p) h_{-+}(q) h_{-+}(r) \frac{4}{3}\left(2 p_{-} p_{+}+p_{-} q_{+}+p_{+} q_{-}+2 q_{-} q_{-}\right)\right\}
\end{align*}
$$

Therefore it has been shown that (5.18) agrees with the diagram calculations up to the second non-trivinl order, i.c., $O\left(h^{2}\right)$ in the nomaly. That is, in this section we showed, up to the second non-trivial order, that the purely gravitational anomaly obtained by the diferential geometric method agrees with the variation of W obtained by diagram calculations by adding appropiate local counter terms.

CHAPTER 6

SUPEIRSYMMETRY ANOMALY

In this chapter we study supersymmetric Yang-Mills gauge theory in which the supersymmetry is a rigid symmetry [52]. We can think of two kinds of supersymmetry anomalies. The first is an anomaly of a supersymmetry transformation in a superfield formulation without fixing n specific gauge. We will call this transformation a genuine supersymmetry transformation, and this anomaly a genuine supersymmetry nnomaly respectively. The second is an anomaly of a supersymmetry transformation in the WessZumino gauge which is composed of two steps of transformations, i.e. n genuine supersymmetry transformation and a restoring supersymmetric gauge transformation. We will call this anomaly a supersymmetry anomnly in the Wess-7umino gauge.

We find a supersymmetric extension of a gauge anomaly which we will call a supersymmetric gauge anomaly. This anomaly is then used to obtain a gauge anomaly and a supersymmetry anomaly in the Wess-Zumino gauge, which satisly the mixed consistency conditions. In this derivation it is transparent that the supersymmetry anomaly in the Wess-Zumino gange originates only from a restoring supersymmetric gauge transformation, not from a genuine supersymmetry transformation. This indicales that there is no genuine supersymmetry anomaly [48]. This situation can be guessed from the fact that the genuine supersymmetry transformation is a rigid trans-
formation. This also shows that when the gange momaly is cnneded, the supersymmetry nomomaly in the Wess-Zumine ginge is nlso canceled atomalically.

Furthermore, we ohtain the sumersymmetric extension of the Wrss-Zיmmin term following Wess nad Zumino's original method in superspace [9,53]. We modify this extension surlh that it depends only on the vector membiplet. This extended Wess-Zumino term's gange nud supersymuelry variations give rise to the gange and supersymmetry nnomalies in the Wess-7,mino gatise respectively.

In section 6.1 we present two-dimensional superfichls nud thrir super aymmetry and gnteg transformations. In section 6.2 we ohtain a supersymuretric gauge anomaly and gange nud supersymmetry anomalies in the Wess-Zunino gnuge. In section 6.3 we obtain the supersymmetric extension of the Wess7amino term.

6.1 Two-dimensional Superspace and Superfields

In two-dimensional superspace we have two real spare-time coordinates x^{n}, x^{1} and two real spinorial conrdinates θ_{1}, θ_{2}. The conventions which we will use are given liy

$$
\begin{gather*}
\left\{\gamma^{\prime \prime}, \gamma^{\prime \prime}\right\}=2 \eta^{\prime \prime \prime}, \quad-\eta^{m}=\eta^{\prime \prime}=1, \quad \eta^{m 1}=\eta^{\prime 0}=0, \\
\gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \gamma^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{k}=\gamma^{n} \gamma^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) . \tag{6.1}
\end{gather*}
$$

The rest of our conventions and their properties are given in \wedge ppendix \wedge.

A scalar superfield is given by

$$
\begin{equation*}
S=A+i \bar{\theta} \psi+\frac{i}{2} \bar{\theta} \theta F, \tag{6.2}
\end{equation*}
$$

where $\bar{\theta}_{a}=\theta_{b} \gamma_{b a}^{0}$ is a linear combination of θ_{a} 's and is not independent of the θ_{a} 's. The supersymmetry transfounation of S is given by using a generator

$$
\begin{equation*}
Q_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}+i \gamma_{a b}^{\mu} \theta_{b} \partial_{\mu} \tag{6.3}
\end{equation*}
$$

as

$$
\delta_{\alpha} S=[S, \bar{\alpha} Q]:
$$

$$
\left\{\begin{array}{l}
\delta A=i \bar{\alpha} \psi \tag{6.4}\\
\delta \psi=\partial_{\mu} A \gamma^{\mu} \alpha+F \alpha \\
\delta F=i \bar{\alpha} \gamma \cdot \partial \psi
\end{array}\right.
$$

A spinor superfield or a vector multiplet V_{a}, which is real and contains a gauge field A_{μ} as one component field, is given by [52]

$$
\begin{equation*}
V_{\mathrm{a}}=\xi_{\mathrm{a}}+\gamma_{\mathrm{ab}}^{\mu} \theta_{b} \lambda_{1}+\gamma_{a b}^{\mathrm{s}} \theta_{\mathrm{b}} M+\theta_{\mathrm{a}} N+\frac{i}{2} \bar{\theta} \theta \zeta_{\mathrm{a}} \tag{6.5}
\end{equation*}
$$

Its supersymmetry transformation is given by
$\delta_{a} V_{a}=\left[V_{a}, \bar{\alpha} Q\right]:$

$$
\left\{\begin{array}{l}
\delta \xi=\gamma^{\prime \prime} \alpha A_{\mu}+\gamma^{5} \kappa M+\alpha N \tag{6.6}\\
\delta A_{\mu}=\frac{i}{2} \bar{\alpha} \gamma_{\nu} \gamma_{\mu}, \partial^{\prime} \xi-\frac{i}{2} \bar{\alpha} \gamma_{\mu} \zeta \\
\delta M=-\frac{i}{2} \bar{\alpha} \gamma^{5} \gamma \cdot \partial \xi-\frac{i}{2} \bar{\alpha} \gamma^{5} \zeta \\
\delta N=\frac{i}{2} \bar{\alpha} \gamma \cdot \partial \xi-\frac{i}{2} \bar{\alpha} \zeta \\
\delta \zeta=-\gamma^{2} \gamma^{\prime \prime} \alpha \partial_{\mu}, A_{1,}-\gamma^{5} \gamma^{\prime \prime} \alpha \partial_{\mu} M-\gamma^{\prime \prime} \alpha \partial_{\mu} N
\end{array}\right.
$$

In order to have a gauge structure, we let a set of scalar superfield: form a representation of a gnuge group such that $S=\left\{S_{i}\right\}$ transforms under a finite gange transformation as

$$
\begin{equation*}
S^{\prime}=e^{-\Lambda} S \tag{6.7}
\end{equation*}
$$

or under an infinitesimal transformation as

$$
\begin{equation*}
\delta_{\Lambda} S=-\Lambda S \tag{6.8}
\end{equation*}
$$

where $\Lambda=\Lambda_{i} 7_{;}, \Lambda_{i}$'s are real scalar superfields which are supersymenctric gauge transformation prameters, i.e., $\Lambda_{i}=a_{i}+i \bar{\theta}_{\chi_{i}}+\frac{i}{2} \overline{0} 0 f_{i} \quad$ and Ti's are anti-hermitian gange group generntors which sntis $\left[\begin{array}{l}\text { g }\end{array} T_{i}, T_{j}\right]=f_{i j h} T_{k}$

We gange covariantize

$$
\begin{equation*}
D_{a} S=\left(-\frac{\partial}{\partial \bar{\theta}}-i \gamma^{\prime \prime} 0 \partial_{10}\right)_{a} S \tag{6.9}
\end{equation*}
$$

to

$$
\begin{equation*}
\nabla_{a} S=\left(D_{a}-i V_{a}\right) S=-i\left(i D_{a}+V_{a}\right) S \tag{6.10}
\end{equation*}
$$

by requiring $V_{a}=V_{a i} T_{i}$ to transform under a gauge transformation as

is, under a finite transformation

$$
\begin{equation*}
V_{a}^{\prime}=\left(e^{-\Lambda} i D_{a} e^{\Lambda}\right)+e^{-\Lambda} V_{a} e^{\Lambda} \tag{6.11}
\end{equation*}
$$

or under an infinitesimal trasformation

$$
\begin{equation*}
\delta_{\Lambda} V_{\mathrm{n}}=i D_{\mathrm{n}} \Lambda+\left[V_{\mathrm{a}}, \Lambda\right] \tag{6.12}
\end{equation*}
$$

In terms of the component fields, (6.12) becomes

$$
\left\{\begin{array}{l}
\delta \xi=\chi+[\xi, a] \\
\delta A_{\mu}=\partial_{\mu} a+\left[A_{\mu}, a\right]+\frac{i}{2}\left(\bar{\xi} \gamma_{\mu} \chi+\bar{\chi} \gamma_{\mu} \xi\right) \tag{6.13}\\
\delta M=[M, a]+\frac{i}{2}\left(\bar{\xi} \gamma^{6} \chi+\bar{\chi} \gamma^{6} \xi\right) \\
\delta N=f+[N, a]+\frac{i}{2}(-\bar{\xi} \chi+\bar{\chi} \xi) \\
\delta \zeta=-\gamma \cdot \partial \chi+[\zeta, a]+[\xi, f]-\left[A_{\mu}, \gamma^{\prime \prime} \chi\right]-\left[M, \gamma^{5} \chi\right]-[N, \chi]
\end{array}\right.
$$

When we have the gauge symmetry (6.12) or (6.13), we can choose the Wess-Zumino gauge in which $\boldsymbol{\xi}=0, N=0$ in the following way. Let us start with $\xi=0, N=0$, then we have the following transformations of ξ and N.

Genuine supersymmetry transformation for ξ and N :

$$
\left\{\begin{array}{l}
\delta \xi=\gamma^{\mu} \alpha A_{\mu}+\gamma^{\delta} \alpha M \tag{6.14}\\
\delta N=-\frac{1}{2} \bar{\alpha} \zeta
\end{array}\right.
$$

Supersymmetric gnuge transformation for $\boldsymbol{\xi}$ and \boldsymbol{N} :

$$
\left\{\begin{array}{l}
\delta \xi=x \tag{6.15}\\
\delta N=f
\end{array}\right.
$$

As we see in (6.14), even though we start with $\xi=0, N=0$, these component fields become non-zero after a genuine supersymmetry transformation. But we can come back to $\xi=0, N=0$ by performing a restoring
gauge transformation which is given by the following gange transformation parameler $\Lambda_{n g}$ as call be seren in (6.15).

$$
\left.\delta_{n \cdot} V=i l\right) \Lambda_{n c}+\left[V, \Lambda_{n c}\right]
$$

wilh $\quad \Lambda_{n G}$:

$$
\left\{\begin{array}{l}
n=0 \tag{;.16}\\
x=-\gamma^{\prime \prime} \alpha A_{1 \prime}-\gamma^{5} \gamma M \prime \\
f=\frac{i}{2} \bar{\gamma} \lambda
\end{array}\right.
$$

where

$$
\lambda=\zeta+\gamma \cdot \partial \xi
$$

Therefore the supersymmetry and gnuge transformations in the Wess-
Zumino gauge are given by

$$
\left\{\begin{array}{l}
\delta_{S(W Z)}=\delta_{G E N . S H S Y}+\delta_{n G} \tag{1.17}\\
\delta_{G(W Z)}=\delta_{S U R G G A G E} \quad \text { wilh } \quad \Lambda_{G}: \quad a=a, \chi=0, f=0
\end{array}\right.
$$

where $\delta_{G F N .}$ susy, $\delta_{\text {mi }}$ and $\delta_{\text {sur gange mean grmuine supersymumetry, reitor- }}$ ing gauge and supersymmetrir gauge transformations respectively. Afterwards, we will write $\delta_{s(w z)}$ and $\delta_{G(w z)}$ simply ns δ_{s} and δ_{G}. Under these transformations, the component fields $\Lambda_{\mu \prime}, M, \lambda$ in the Wess-7,mmino gature transform as

$$
\left\{\begin{array}{l}
\delta_{S} A_{1}=-\frac{i}{2} \bar{\gamma} \gamma_{1,1} \lambda \tag{1:18}\\
\delta_{S} M=-\frac{i}{2} \bar{\sigma} \gamma^{5} \lambda \\
\delta_{S} \lambda=\gamma^{\prime \prime} \gamma^{\prime \prime} \alpha F_{1,1}+2 \gamma^{\prime \prime} \gamma^{5} a\left(\delta_{1,} M\left|+\left|A_{\mu, 1}, M\right|\right)\right.
\end{array}\right.
$$

where $F_{1 \mu}=\partial_{\mu} A_{\nu}-\theta_{1} A_{\mu}+A_{\mu} A_{\nu}-A_{\nu} A_{1 \mu}$,

$$
\begin{cases}\delta_{G} \Lambda_{\mu}=\partial_{\mu} a+\left[A_{\mu}, a\right] \tag{6.19}\\ \delta_{G} M= & {[M, a]} \\ \delta_{G} \lambda= & {[\lambda, a]}\end{cases}
$$

Note that in two dimensions the Wess-Zumino gange has a pseudo-scalar field M as well as A_{μ} and λ, in contrast to the four-dimensional case in which there is no M [52].

For reference we write down the following supersymmetry and gange transformations of a scalar multiplet in the Wess-Zumino gauge.

$$
\left\{\begin{array}{l}
\delta_{S} \phi=i \bar{\alpha} \psi \tag{6.20}\\
\delta_{:} ; \psi=\gamma^{\prime \prime} \alpha D_{\mu} \phi+\gamma^{\mathbf{s}} \alpha M \phi+\alpha F^{\prime} \\
\delta_{S} F=i \bar{\alpha} \gamma^{\mu} D_{\prime \prime} \psi+i \bar{\alpha} \gamma^{5} M \psi-\frac{i}{2} \bar{\alpha} \lambda \phi
\end{array}\right.
$$

where

$$
D_{\mu}=\partial_{\mu}+A_{\mu}
$$

$$
\left\{\begin{array}{l}
\delta_{G} \phi=-a \phi \tag{6.21}\\
\delta_{G} \psi=-a \psi \\
\delta_{G} F=-a F
\end{array}\right.
$$

6.2 Anomalies

First let us find a supersymmetric extension of a gauge anomaly which we will call a supersymmetric gauge anomaly. A vector multiplet given by (6.5) gives rise to

$$
\begin{equation*}
\bar{D} \gamma^{5} V=\bar{D}_{a} \gamma_{a b}^{5} V_{b}=2 M-i \bar{\theta} \gamma^{5} \lambda+i \bar{\theta} \theta_{\varepsilon}^{\prime \mu \prime} \partial_{1,}, A_{\nu} \tag{6.22}
\end{equation*}
$$

Then with $\Lambda=a+i \bar{\theta}_{\chi}+\frac{i}{2} \bar{\theta} \theta$, we have

$$
\begin{equation*}
\left.\operatorname{Tr}\left(\Lambda \bar{D} \gamma^{5} V\right)\right|_{\bar{\theta} \theta}=i \bar{\theta} O \operatorname{T}^{\prime} r\left(a \epsilon_{\mu, \cdot} \partial^{\prime \prime} A^{\nu}+\frac{i}{2} \bar{\chi} \gamma^{5} \lambda+f M\right) \tag{6.23}
\end{equation*}
$$

Since the first term on the right hand side of (6.23) is just an ordinary non-supersymmetric gauge anomaly, it secms plausible that (6.23) is a supersymmetric gange anomaly. In order to confirm this we shond show that

$$
\begin{equation*}
\Delta(\Lambda)=\operatorname{Tr} \int d^{2} x d \bar{\theta} d \theta\left(\Lambda \bar{D} \gamma^{5} V\right) \tag{6.24}
\end{equation*}
$$

satisfies the consistency condition

$$
\begin{equation*}
\delta_{\Lambda_{2}} \Delta\left(\Lambda_{1}\right)-\delta_{\Lambda_{1}} \Delta\left(\Lambda_{2}\right)=\Delta\left(\left[\Lambda_{2}, \Lambda_{1}\right]\right) \tag{6.25}
\end{equation*}
$$

where $\delta_{A} V_{a}$ is given in (6.12).
Let us show this.

$$
\begin{align*}
\delta_{\Lambda_{2}}\left(\Lambda_{1} \bar{D} \gamma^{8} V\right) & =\Lambda_{1} \bar{D} \gamma^{5}\left(i D \Lambda_{2}+\left[V, \Lambda_{2}\right]\right) \\
& =\Lambda_{1}(\bar{D} U) \Lambda_{2}-\Lambda_{1} U\left(\bar{D} \Lambda_{2}\right)-\Lambda_{1}\left(\bar{D} \Lambda_{2}\right) U-\Lambda_{1} \Lambda_{2}(\bar{D} U) \tag{5.26}
\end{align*}
$$

where $U \equiv \gamma^{5} V$, and $\bar{D} \gamma^{5} D=0$ was used.
From (6.26) we linve
$\operatorname{Tr}\left\{\delta_{\Lambda_{2}}\left(\Lambda_{1} \bar{D} \gamma^{8} V\right)-\delta_{\Lambda_{1}}\left(\Lambda_{2} \bar{D} \gamma^{5} V\right)\right\}=\operatorname{Tr}\left\{\left[\Lambda_{2}, \Lambda_{1} \mid \bar{D} \gamma^{8} V+\bar{D}\left(\left|\Lambda_{2}, \Lambda_{1}\right| \gamma^{8} V\right)\right\}\right.$.
(6.27)

Since the second term on the right hand side of (6.27) is a total deriv:itive, it vanishes under the integration $\int d^{2} v d \bar{\theta} d \theta$. Thus by taking $\int d^{2} x d \vec{\theta} d \theta$ on both sides of (6.27) we obtain (6.25). Of course, (6.25) is also salisfied with
an arbitrary normalization factor in (6.24). We can show the above in a more elcgant, but equivalent way which is given in Appendix 13.

The supersymmetry and gauge transformations in the Wess-7umino gnuge, i.c., (6.18) and (6.19) satisfy the algebra:

$$
\left\{\begin{array}{l}
{\left[\delta_{S}(\beta), \delta_{S}(\alpha)\right]=\delta_{G}\left(-2 i\left(\bar{\alpha} \gamma^{\mu} \beta\right) A_{11}-2 i\left(\bar{\alpha} \gamma^{5} \beta\right) M\right)+2\left(\bar{\alpha} \gamma^{\prime \prime} \beta\right) i \partial_{\prime \prime}} \tag{6.28}\\
{\left[\delta_{G}(b), \delta_{G}(a)\right]=\delta_{G}([b, a])} \\
{\left[\delta_{G}(a), \delta_{S}(\alpha)\right]=0}
\end{array}\right.
$$

Then a supersynmetry anomaly $\Delta_{S}(\alpha)$ and a gruge anomaly $\Delta_{G}(a)$ in the Wess-Zumino gauge satisfy the consistency conditions:

$$
\left\{\begin{array}{l}
\delta_{S}(\beta) \Delta_{S}(\alpha)-\delta_{S}(\alpha) \Delta_{S}(\beta)=\Delta_{G}\left(-2 i\left(\bar{\alpha} \gamma^{\prime \prime} \beta\right) \Lambda_{11}-2 i\left(\bar{\alpha} \gamma^{B} \beta\right) M\right) \tag{6.29}\\
\delta_{G}(b) \Delta_{G}(a)-\delta_{G}(a) \Delta_{G}(b)=\Delta_{G}([b, a]) \\
\delta_{G}(a) \Delta_{S}(\alpha)-\delta_{S}(\alpha) \Delta_{G}(a)=0
\end{array}\right.
$$

The term $2\left(\bar{\alpha} \gamma^{\prime \prime} \beta\right) i \partial_{\mu}$ in (6.28) did not contribute to (6.29), since the vacuum functional is invariant under translation if we impose the condition that a surface integral vanishes.

The intercsting thing is that we can obtain $\Delta_{s}(\alpha), \Delta_{G}(a)$ which satisfy (6.29) by using the supersymmetric gange anomaly (6.24) in the following way. Let us rewrite (6.24) with an arbitrary normalization factor as

$$
\begin{aligned}
\Delta(\Lambda j & =-i c \operatorname{Tr} \int d^{2} x d^{2} \theta\left(\Lambda \bar{D} \gamma^{\mathrm{k}} V\right) \\
& =c \operatorname{Tr} \int d^{2} x\left(a e^{\mu \nu} \partial_{\mu} A_{\nu}+\frac{i}{2} \bar{\chi} \gamma^{\mathrm{B}} \lambda+\int M\right)
\end{aligned}
$$

$$
\text { where } \quad \int d^{\prime} \theta \equiv-\frac{1}{4} \int d \bar{\theta} d \theta \quad \text { such thiat. } \int d^{2} \theta \bar{\theta} \theta=1 \text {. }
$$

Λt first we oblain $\triangle_{C}(a)$ from (6.30$)$ by taking $a=a, \chi=0, f=0$ since δ_{G} in (6.17) or (6.19) was given by this nssigmment of Λ, i.e., Λ_{G}. Next., in order to obtimin $\triangle_{s}(\alpha)$ we observe that δ_{s} in (0.17) or (6.18) is composed of two strps, i.c., $\delta_{\text {GEN }}$ susy and $\delta_{\text {ng }}$. Wut we expect that the $\delta_{\text {gen }}$ susr step will not produce nny anmmaly since this transformation is a rigid transformntion. 'Then we expect that $\Delta(\Lambda)$ with $\Lambda=\Lambda_{\text {nc }}$ in (6.15) will give tise to $\triangle_{S}(x) \mid\{8]$. That is, we expect the following to be the solution of (6.29).

$$
\begin{align*}
\Delta_{G}(a) & =\Delta\left(\Lambda_{G}: a=a, \chi=0, f=0\right) \\
& =c \operatorname{Tr} \int d^{2} x a e^{\prime \prime \prime} \partial_{1}, A_{1}, \tag{0.31}\\
\Delta_{s}(\alpha) & =\Delta\left(\Lambda_{n c}: a=0, \chi=-\gamma^{\prime \prime} \alpha A_{\mu}-\gamma^{s} \alpha M, f=\frac{i}{2} \bar{\alpha} \lambda\right) \tag{0.32}\\
& =i c \operatorname{Tr} \int d^{2} x\left(\frac{1}{2} A_{\mu} \bar{\alpha} \gamma^{\prime \prime} \gamma^{s} \lambda+M \bar{\alpha} \lambda\right) .
\end{align*}
$$

We have confirmed that these $\Delta_{G}(a)$ and $\Delta_{s}(\alpha)$ satisfy (6.29$)$ by explicit. nppliention of (6.18) and (6.19). Therefore wre have found that the supers:-mmelry nnomaly in the Wess-Zuminn gange originntes from the surersymuetric gange nnomaly. This indientes that there is no genuine supersymutry nnomaly. This also shows that when the gange momaly is conceled, the supersymmetry anomaly in the Wess-Zuminn gange is also canceled antomatically.

6.3 Supersymmetric Extension of the Wess-Zumino

Term

We will find a supersymmetric extension of the Wess-Zumino term which depends ouly on component fields of a vector multiplet. This vacumm functional gives rise to gange and supersymmetry anomalies by gange and supersymmetry variations respectively. In order to understand the derivation better, let us review briefly the familiar non-supersymmetric gauge theory case $[8,9]$.

An effective action can be obtaincd by solving an anomaly equation

$$
\begin{equation*}
\delta_{a} W=\int d^{2} x a_{i} G_{i} \tag{6.33}
\end{equation*}
$$

where G_{i} 's are anomalics. Wess and Zumino solved this equation and obtained the solution

$$
\begin{equation*}
W[A, \pi]=\int d^{2} x \int_{0}^{1} d t \pi_{i} G_{i}(A(t))(x), \tag{6.34}
\end{equation*}
$$

where the π_{i} 's are a set of fields which transforms as

$$
\begin{equation*}
e^{\pi^{\prime}}=e^{\pi} e^{a} \tag{6.35}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\mu}(t)=e^{t \pi} A_{\mu}, e^{-t \pi}+e^{t \pi} \partial_{\mu} e^{-t \pi}, \tag{6.36}
\end{equation*}
$$

where

$$
a=a_{i} T_{i}, \pi=\pi_{i} T_{i}, A_{1}=A_{, i} I_{i}
$$

Any gange invariant funclional can be added in (6.34), so (6.34) is a parti-ular solution and is called the Wess-Zumino term.

Now we are intercsted in having a solution $W[A]$ as n functional of moly A_{1} without the independent π. This can be achieved by replacing the independent π by a function $\pi(A)$ which transforms as (6.35) when $A_{\text {, }}$ transfirins as a gange field, if we can find such a function [27].

In the Abelian case we find such $n \pi(A)$ ensily as

$$
\begin{equation*}
\pi(A)=\frac{1}{[]} \partial_{1}, A^{\prime \prime}, \text { where } \square \equiv \partial_{1,} \partial^{\prime \prime} \tag{0.37}
\end{equation*}
$$

since

$$
\delta_{a} A^{\prime \prime}=\partial^{\prime \prime} a, \quad \delta_{a} \pi(\Lambda)=\frac{1}{\square} \partial_{11}\left(\partial^{\prime \prime} a\right)=a .
$$

Then

$$
\begin{align*}
W[A] & =\int d^{2} x \int d t\left(\frac{1}{\square} \partial_{1} A^{\prime \prime}\right) C(A(t)) \\
& =\int d^{2} x \int_{0}^{i} d t\left(\frac{1}{\square} \partial_{1} A^{\prime \prime}\right) \frac{i}{2 \pi} \partial_{\nu} A_{\lambda}(t) \varepsilon^{\prime \prime \lambda} \tag{c;38}\\
& =\frac{i}{2 \pi} \int d^{2} x \int_{0}^{1} d t\left(\frac{1}{\square} \partial_{1,} A^{\prime \prime}\right) \partial_{1}\left(A_{\lambda}-t \partial_{\lambda} \pi(A)\right) e^{\prime \lambda} \\
& =\frac{i}{2 \pi} \int d^{2} x\left(\frac{1}{\square} \partial_{1} A^{\prime \prime}\right) \partial_{\nu} A_{\lambda} e^{\prime \prime \lambda},
\end{align*}
$$

for the quantum effect of a left-handed chiral fermion. We use the convemion $\varepsilon^{10}=-\varepsilon^{01}=1, \varepsilon^{+-}=-\varepsilon^{-+}=-1$. Our conventions are summarize. 1 in Appendix Λ.

In the light-cone coordinates, Int us use the anomnaly in the form - $\left(i / \pi \mid \partial_{4}, A_{-}\right.$ which is equivalent to ($i / 2 \pi$) $0_{\nu} A_{\lambda} \varepsilon^{i \lambda}$ in (6.38), since they diffre by a ariation of a local functionnl $(i / 2 \pi) \int d^{2} x \Lambda_{1,} A^{\prime \prime} .\left(O_{11}\right)$ in the coorlinate space corresponds to ($-\boldsymbol{i} p_{1}$) in the momentum spare, since we will take external
momenta as out-going. Then $W[\Lambda]$ can be written as

$$
\begin{equation*}
W \mid \Lambda]=\frac{i}{2 \pi} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{p_{\vdash}}{p_{-}} \Lambda_{-}(p) \Lambda_{-}(-p) \tag{6.39}
\end{equation*}
$$

after adding an appropriate local functional to (6.38) which is allowed since $W[A]$ is nmbiguous by a local functional.

In the non- Λ beliain case we can get $\pi(A)$ which transforms as (6.35) by inverting

$$
\begin{equation*}
A_{\mu}=c^{-\pi} \partial_{\mu}, c^{\pi} \tag{6.40}
\end{equation*}
$$

This inversion can be done as a power serics of Λ_{μ} and the lowest order term has the snme form as (6.37). Note that even though we are inverting the pure gauge form (6.10), $\pi(A)$ oblnined by this procedure transforms as (6.35) for a general A_{μ}. That is, (6.10) is just a guide for obtaining $\pi(A)$ for a general A_{μ} [27]. Using this $\pi(A)$ we can oblain $W[\Lambda]$ as a power series of A_{μ} which starts with the lowest order term similar to (6.38) or (6.39) ns

$$
\begin{equation*}
W[\Lambda]=c^{\prime} \operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{p_{+}}{p_{-}} \Lambda_{-}(p) \Lambda_{-}(-p) \quad+O\left(\Lambda^{3}\right) \tag{6.11}
\end{equation*}
$$

We can use the above procedure to get n supersymmetric extension of the Wess-Zumino term which gives rise to $\Delta_{G}(a), \Delta_{s}(\alpha)$ in (6.31), (6.32) by $\delta_{G}(a), \delta_{S}(\alpha)$ in $(6.18),(6.19)$ respectively [53]. First we will treat the Λ belian case in detail.

The consistency conditions for the Abelian case are the same as (6.29) except that the second condition is replaced by

$$
\begin{equation*}
\delta_{G}(b) \Delta_{G}(a)-\delta_{G}(a) \Delta_{G}(b)=0 \tag{6.42}
\end{equation*}
$$

The solution of the consistency conditions is given, in analogy with ($: .31$) and (6.32), by

$$
\begin{align*}
& \Delta_{r}(a)=i \int d^{2} x a \epsilon^{\prime \mu} \partial_{\mu}, A_{\nu}, \tag{1.43}\\
& \Delta_{s}(\alpha)=-\int d^{2} x\left(\frac{1}{2} A_{\mu} \overline{r r} \gamma^{\prime \prime} \gamma^{5} \lambda+M \bar{\alpha} \lambda\right), \tag{4;14}
\end{align*}
$$

which enn be obtained from n supersymmetric. Abelian gange anomaly

$$
\begin{align*}
\Delta_{A_{\text {Irl }}}(\Lambda) & =\int d^{2} x d^{2} \theta\left(\Lambda \vec{D}_{\gamma}{ }^{k} V\right) \tag{6.45}\\
& =i \int d^{2} x\left(a c^{\prime \prime \prime} \partial_{n} \Lambda_{v}+\frac{i}{2} \bar{\chi} \gamma^{\prime \prime} \lambda+\int M\right)
\end{align*}
$$

through the same procedure as that used in section 6.2 for the non- Λ helinn cnse. In (6.45) we take such n normalization factor for convenience.

In the present two-dinensional supersymumetric case, (6.34) is replaced by

$$
\begin{equation*}
W[V, I I]=\int d^{2} x d^{2} \theta \int_{0}^{1} d t I_{i}\left(\bar{I} \gamma^{\mathrm{L}} V_{i}(t)\right) \tag{1:46}
\end{equation*}
$$

where the $I l_{i}$'s transform under a supersymmetric gange transfumation as

$$
\begin{equation*}
c^{\mathrm{II}}=e^{\mathrm{II}} c^{\mathrm{A}} \tag{1:.47}
\end{equation*}
$$

nud

$$
\begin{equation*}
V_{n}(t)=e^{t \pi} V_{a} e^{-i \prime \prime}+c^{t 11}\left(i D_{n}\right) e^{-t 11} \tag{1.48}
\end{equation*}
$$

The: nbove formulas (6.46), (0.17) and (6.18) are alsn valirl for the 'onAbelinn case where $I I=H_{i} T_{i}, \Lambda=\Lambda_{i} T_{i}$ are lic algebra valued scala superfields and $V_{a}=V_{a i} T_{i}$. The formulas for the Ahelian case are simply fiven
by omitting the sum over the subscript i in (6.46) and using the Abelian nature of II, Λ and V_{a}

In the Abelian case the gauge transformation given in (6.12) becomes

$$
\begin{equation*}
\delta V_{a}=i D_{a} \Lambda \tag{6.49}
\end{equation*}
$$

Then we find easily that

$$
\begin{equation*}
\Pi(V)=-i \frac{1}{\bar{D} D} \bar{D} V \tag{6.50}
\end{equation*}
$$

transforms as (6.17) which is the same as $\Pi^{\prime}=\Pi+\Lambda$ in the Λ belinn case. The expression (6.50) means

$$
\begin{align*}
I I(V) & =-i \frac{1}{\bar{D}_{a} D_{a}} \bar{D}_{b} V_{b} \\
& =-i \frac{1}{\left(\bar{D}_{a} D_{a}\right)\left(\bar{D}_{c} D_{c}\right)}\left(\bar{D}_{d} D_{d}\right)\left(\bar{D}_{b} V_{b}\right) \tag{6.51}\\
& =\frac{i}{4} \frac{1}{\square}\left(\bar{D}_{d} D_{d}\right)\left(\bar{D}_{b} V_{b}\right)
\end{align*}
$$

since

$$
(\bar{D} D)^{2}=\left(\stackrel{\rightharpoonup}{D}_{o} D_{a}\right)\left(\bar{D}_{c} D_{c}\right)=-4 \partial_{\mu} \partial^{\mu}=-4 \square
$$

Then from (6.46) we get $W[V]$ as a functional of V_{a} only

$$
\begin{aligned}
& W[V]=-i \int d^{2} x d^{2} \theta \int_{0}^{1} d l\left(\frac{1}{\bar{D} D} \bar{D} V\right)\left(\bar{D} \gamma^{5} V(l)\right) \\
& =-i \int d^{2} x d^{2} \theta \int_{0}^{1} d l\left(\frac{1}{\bar{D}} \bar{D} \bar{D} V\right)\left\{\bar{D}_{\gamma}{ }^{6}(V-t i D I I)\right\} \\
& =-i \int d^{2} x d^{2} \theta\left(\frac{1}{\bar{D} D} \bar{D} V\right)\left(\bar{D} \gamma^{8} V\right) \\
& \text { since } \quad \bar{D} \gamma^{5} D=0
\end{aligned}
$$

Let us express (6.52) in terms of component fields in the Wess-Zumino gauge.

$$
V=\gamma^{\mu} \theta A_{11}+\gamma^{5} \theta M+\frac{i}{2} \bar{\theta} \theta \lambda
$$

$$
\begin{gather*}
\bar{D} V=-i \bar{\theta} \lambda+i \vec{\theta} \theta \partial_{\mu} A^{\prime \prime} \\
\frac{1}{\bar{D} D} \bar{D} V=i \frac{\partial_{\mu} A^{\prime \prime}}{\square}+i \bar{\theta}\left(-\frac{i}{2} \frac{\gamma \cdot \partial \lambda}{\square}\right) \tag{4.53}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{D} \gamma^{\mathrm{K}} V=2 \Lambda+i \bar{\theta}\left(-\gamma^{\mathrm{s}} \lambda\right)+\frac{i}{2} \bar{\theta} \theta\left(2 \varepsilon^{\prime \mu} \partial_{1} A_{1}\right) . \tag{:.51}
\end{equation*}
$$

Using (6.53) nnd (6.54) we get

$$
\begin{equation*}
W[V]=i \varepsilon^{\prime \prime \prime} \int d^{2} x\left(\frac{\partial_{\lambda} A^{\lambda}}{\square} \partial_{\mu} A_{\nu}-\frac{i}{4} \bar{\lambda} \gamma_{\nu} \frac{\partial_{\mu} \lambda}{\square}\right) \tag{1.5.5}
\end{equation*}
$$

We linve checked explicitly that the variations of (6.55) give the anomedies (6.43) and (6.11).

When we use the light-cone coordinates in (6.55), the terins from ϵ^{+-}and ε^{-+}are equivalent to ench other, since their variations give rise to anomelies which differ by variations of a local functional. Therefore we can rellace (6.55) by twice the ϵ^{+-}term in (6.55). Then we have $W[V]$ ns

$$
\begin{equation*}
W[V]=i \int \frac{d^{2} p}{(2 \pi)^{2}}\left[\frac{p_{+}}{p_{-}} A_{-}(-p) A_{-}(p)-\frac{1}{4} \frac{1}{p_{-}} \bar{\lambda}(-p) \gamma_{-} \lambda(p)\right] \tag{r.56}
\end{equation*}
$$

by adding an appropriate local functional. Variations of (6.56) give ris: to anomalies of the form

$$
\left\{\begin{array}{l}
\Delta_{G}(a)=-2 i \int d^{2} x a \partial_{+} A_{-} \tag{657}\\
\Delta_{S}(\alpha)=\int d^{2} x\left(A_{+} \bar{\alpha} \gamma_{-} \lambda-M(\bar{x} \lambda)\right.
\end{array}\right.
$$

which are equivalent to (6.43) and (6.14) since they difler by varintions of a local Innctional.

In the non-Abelinn case, in order to get a $\mathbb{V}[V]$ depending only on V_{a} from (6.46), we need a function $I I(V)$ which transforms as (6.47) when V_{a}
transforms as (6.12). This can be obtnined by inverting

$$
\begin{equation*}
V_{a}=e^{-\Pi_{i}} D_{a} e^{\Pi} \tag{6.58}
\end{equation*}
$$

in analogy with (6.40) in the non-supersymmetric non- Λ belian case. II (V) can be expanded in a power series of V and the lowest order term has the same form ns (6.50) in the Abelian case. Using this II(V) we can get $W[V]$ as a power series of V which starts with the lowest order term similar to (6.55) or (6.56) ns
$W[V]=c^{\prime \prime} \operatorname{Tr} \int \frac{d^{2} p}{(2 \pi)^{2}}\left[\frac{p_{+}}{p_{-}} \Lambda_{-}(-p) \Lambda_{-}(p)-\frac{1}{4} \frac{1}{p_{-}} \bar{\lambda}(-p) \gamma_{-} \lambda(p)\right] \quad+O\left(V^{3}\right)$.

Appendix $\boldsymbol{\Lambda}$

Let us summarize our conventions and their propertics. We use μ, ν,
λ, \cdots for spacc-time indices, and a, b, c, \cdots for spinorial indices.

$$
\begin{gathered}
\left\{\gamma^{\mu \prime}, \gamma^{\nu}\right\}=2 \eta^{\prime \mu}, \quad-\eta^{n 0}=\eta^{11}=1, \quad \eta^{01}=\eta^{10}=0, \\
\gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \gamma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{\mathrm{s}}=\gamma^{0} \gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) . \\
\varepsilon^{10}=-\varepsilon^{01}=1, \quad \varepsilon^{00}=\varepsilon^{11}=0 . \\
\gamma^{\mu} \gamma^{5}=\varepsilon^{\mu \prime \prime} \gamma_{\nu}, \quad \gamma^{\mu} \gamma^{\nu}=\eta^{\prime \mu \nu}-\varepsilon^{\prime \prime \prime \prime} \gamma^{5}, \quad \gamma^{\prime \prime \prime} \gamma^{\delta}=\eta^{\prime \prime \prime} \gamma^{\mathrm{E}}-\varepsilon^{\prime \mu \prime} \\
\gamma^{\prime \prime} \gamma^{\nu} \gamma^{\rho}=\eta^{\prime \mu \nu} \gamma^{\rho}+\eta^{\prime \rho} \gamma^{\mu}-\eta^{0 \mu} \gamma^{\nu},
\end{gathered}
$$

$$
\varepsilon^{\prime \prime \prime \prime} \varepsilon^{r \lambda}=-\left(\eta^{\prime \prime \prime} \eta^{\prime \prime \lambda}-\eta^{\prime \prime \lambda} \eta^{\prime r}\right) .
$$

$$
\begin{gathered}
x^{t}=\frac{1}{\sqrt{2}}\left(+x^{0}+x^{1}\right), x_{ \pm}=\frac{1}{\sqrt{2}}\left(+x_{0}+x_{1}\right), \\
x=x^{+}, x_{+}=x^{-}
\end{gathered}
$$

$$
\eta^{+-}=\eta^{-+}=\eta_{+-}=\eta_{-+}=1, \text { other } \eta^{\prime} s=0 .
$$

$$
a^{\prime \prime} b_{1}=a^{1} b_{+}+a^{-} b_{-}=a_{+} b_{-}+a_{-} b_{+}
$$

$$
a^{\prime \prime} a_{1,}=2 a_{1} a_{-}
$$

$$
\begin{gathered}
\epsilon^{+-}=-\epsilon^{-+}=-\epsilon_{+}=\epsilon_{-+}=-1, \text { other } \varepsilon^{\prime} s=0 . \\
\gamma^{+}=\frac{1}{\sqrt{2}}\left(\gamma^{0}+\gamma^{1}\right)=\left(\begin{array}{cc}
0 & \sqrt{2} \\
0 & 0
\end{array}\right), \gamma^{-}=\frac{1}{\sqrt{2}}\left(-\gamma^{0}+\gamma^{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
\sqrt{2} & 0
\end{array}\right) . \\
\gamma^{+} \gamma^{+}=\gamma^{-} \gamma^{-}=0, \quad \gamma^{+} \gamma^{-}+\gamma^{-} \gamma^{+}=2 .
\end{gathered}
$$

$$
\begin{aligned}
& \bar{\theta}_{a}=\theta_{b} \gamma_{b a}^{0}=\cdots \varepsilon_{n b} \theta_{b}\left(\gamma_{a b}^{0}=\varepsilon_{a b}, \epsilon_{12}=1\right), \theta_{a}=-\bar{\theta}_{b} \gamma_{b a}^{n}=\epsilon_{a n} \bar{\theta}_{b} . \\
& \theta_{n}=\binom{\theta_{1}}{\theta_{2}}=\binom{\bar{\theta}_{2}}{-\bar{\theta}_{1}}, \bar{\theta}_{n}=\binom{\bar{\theta}_{1}}{\bar{\theta}_{2}}=\binom{-\theta_{2}}{\theta_{1}} . \\
& \frac{\partial}{\partial} \frac{\hat{\theta}_{a}}{\theta_{b}}=\gamma_{a h}^{n}, \quad \frac{\partial}{\partial \bar{\theta}_{a}^{-}} \theta_{b}=-\gamma_{a b}^{n}, \\
& \frac{\partial}{\partial \tilde{n}_{a}}=-\frac{\partial}{\partial \overline{\bar{\theta}}_{b}} \gamma_{b_{c}}^{n_{n}}, \quad \frac{\partial}{\partial \overline{\tilde{n}}_{a}}=\frac{\partial}{\partial \rho_{b}} \gamma_{b_{a}}^{n} . \\
& \bar{\theta}_{n} \theta_{b}=\frac{1}{2} \bar{\theta} \theta S_{a r} \quad\left(\bar{\theta} \theta=\bar{\theta}_{a} O_{n}\right), \\
& \frac{\partial}{\partial \bar{\theta}_{a}}(\bar{\theta} \theta)=2 \theta_{a}, \frac{\partial}{\partial \theta_{a}}(\bar{\theta} \theta)=-2 \bar{\theta}_{a} .
\end{aligned}
$$

$$
\begin{aligned}
& D_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}-i \gamma_{a b}^{\prime \prime} \theta_{b} \partial_{\mu}, \bar{D}_{a}=D_{b} \gamma_{b a}^{0}=\frac{\partial}{\partial \theta_{a}}+i \bar{\theta}_{b} \gamma_{b a}^{\prime \prime} \partial_{b 1}, \\
& Q_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}+i \gamma_{a b}^{\prime \prime} \theta_{b} \partial_{a}, \bar{Q}_{a}=Q_{b} \gamma_{b a}^{0}=\frac{\partial}{\partial \theta_{a}}-i \bar{\theta}_{b} \gamma_{b a}^{0} \partial_{\mu} .
\end{aligned}
$$

Fierz rearrangement:

$$
(\bar{\alpha} \psi) \beta_{a}=-\frac{1}{2}\left\{(\bar{\alpha} \beta) \psi_{a}+\left(\bar{\alpha} \gamma^{5} \beta\right)\left(\gamma^{\delta} \psi^{\prime}\right)_{a}+\left(\bar{\alpha} \gamma_{\mu} \beta\right)\left(\gamma^{\prime \prime} \psi\right)_{a}\right\}
$$

$$
\bar{\alpha} \gamma_{A} \beta=\bar{\beta} \tilde{\gamma}_{A} \alpha \quad(\alpha, \beta \text { are real spinors }):
$$

Using $\left(\gamma^{\mu}\right)^{\boldsymbol{T}}=\gamma^{0} \gamma^{\mu} \gamma^{0}, \quad\left(\gamma^{8}\right)^{T}=\gamma^{0} \gamma^{5} \gamma^{0}=\gamma^{6} \quad($ where superscript T means Transpose),

$$
\tilde{1}=1, \quad \tilde{\gamma^{\prime}}=-\gamma^{\mu}, \quad \tilde{\gamma^{5}}=-\gamma^{\mathrm{B}}, \quad\left(\gamma^{\delta^{\mu}} \gamma^{\mu}\right)=-\left(\gamma^{\mathrm{s}} \gamma^{\mu}\right)
$$

$$
\left(\gamma^{\tilde{\prime}} \gamma^{\nu}\right)=\left(\gamma^{\nu} \gamma^{\mu}\right), \quad\left(\gamma^{\mathrm{b}} \tilde{\gamma}^{\mu} \gamma^{\nu}\right)=-\left(\gamma^{\mathrm{b}} \gamma^{\nu} \gamma^{\mu}\right) .
$$

We take external momenta as out-going, therefore $\left(\partial_{\mu}\right)$ in the coordinate space corresponds to $\left(-i p_{r}\right)$ in the momentum space.

Appendix B

Let us show in another way that (6.24) sntisfies (6.25). Here we treat Λ as a ghost and we take the following BRS transformation.

$$
\left\{\begin{array}{l}
S \Lambda=-\Lambda^{2} \tag{B.1}\\
S V_{a}=-i D_{a} \Lambda-\Lambda V_{a}-V_{a} \Lambda
\end{array}\right.
$$

Then (6.25) can be expressed simply ns [8]

$$
\begin{equation*}
S \triangle(\Lambda)=0 \tag{13.2}
\end{equation*}
$$

Let us show that (6.24), i.e.,

$$
\begin{equation*}
\triangle(\Lambda)=\operatorname{Tr} \int d^{2} x d \bar{\theta} d \theta\left(\Lambda \bar{D} \gamma^{5} V\right) \tag{B3.3}
\end{equation*}
$$

satisfies (B.2). In the following expression, every term is to have $T \mathbf{T}$ in front, i.e., we omit T'r in front of every term for notational simplicity.

$$
\begin{aligned}
S\left(\Lambda \bar{D} \gamma^{5} V\right) & =(S \Lambda) \bar{D} \gamma^{8} V+(-1)^{2} \Lambda \bar{D} \gamma^{5}(S V) \\
& =\left(-\Lambda^{2}\right) \bar{D} \gamma^{5} V+\Lambda \bar{D} \gamma^{5}(-i D \Lambda-\Lambda V-V \Lambda) \\
& =-\Lambda^{2} \bar{D} U-\Lambda \bar{D}(\Lambda U)-\Lambda \bar{D}(U \Lambda)\left(\text { where } U \equiv \gamma^{5} V, \quad \bar{D} \gamma^{r} D=0\right. \text { were used } \\
& =-\Lambda^{2} \bar{D} U-\Lambda(\bar{D} \Lambda) U+\Lambda \Lambda(\bar{D} U)-\Lambda(\bar{D} U) \Lambda+\Lambda U(\bar{D} \Lambda) \\
& =(\bar{D} \Lambda) \Lambda U-\Lambda(\bar{D} \Lambda) U+\Lambda \Lambda(\bar{D} U) \\
& =\bar{D}\left(\Lambda^{2} U\right)
\end{aligned}
$$

That is,

$$
S \triangle(\Lambda)=\int d^{2} x d \bar{\theta} d \theta \bar{D}\left\{\operatorname{Tr}\left(\Lambda^{2} U\right)\right\}=0
$$

since the integrand is a lotal derivative.

Appendix C 'Three-dimensional Superspace

We summarize the three-dimensional supersymmetry for referenc. becanse of its similarity to the two-dimensional case. The threc-dimensional superspace is described by threc real space-time conrlinates x^{n}, x^{1}, x^{-}and two real spinorial comdinates θ_{1}, θ_{2}. Therefore the structure of the spinnrina coordinates is the same as the two dimensional one. Q_{n} and D_{n} havr the
same forms as (6.3) nud (6.9),

$$
Q_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}+i \gamma_{a b}^{\prime \prime} \theta_{b} \partial_{\mu}, D_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}-i \gamma_{a b}^{\prime \prime} \theta_{b} \partial_{\mu}, \mu=0,1,2 .
$$

Our conventions and their propertics are os follows.

$$
\begin{gathered}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\prime \mu}, \quad-\eta^{n 0}=\eta^{11}=\eta^{22}=1 \\
\gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \gamma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \gamma^{2}==\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) . \\
\epsilon^{012}=\varepsilon^{120}=-\varepsilon^{102}=1, \text { elc. } \\
\left|\gamma^{\mu}, \gamma^{\nu}\right|=2 \varepsilon^{\prime \mu \lambda} \gamma_{\lambda} \\
\gamma^{\mu \prime} \gamma^{\nu}=\eta^{\prime \nu}+\varepsilon^{\prime \mu \lambda} \gamma_{\lambda}, \quad \operatorname{Tr}\left(\gamma^{\mu \mu} \gamma^{\nu} \gamma^{\lambda}\right)=2 \epsilon^{\prime \mu \lambda}, \\
e^{\lambda \alpha \beta} \varepsilon_{\lambda \mu \nu}=-\delta_{\mu}^{\alpha} \delta_{\nu}^{\Omega}+\delta_{\nu}^{\alpha} \delta_{\mu}^{\mathcal{A}} .
\end{gathered}
$$

A vector multiplet is given by

$$
V_{a}=\xi_{a}+\gamma_{a b}^{\prime \prime} \theta_{b} A_{\mu}+O_{a} N+\frac{i}{2} \bar{\theta} \theta \zeta_{a}
$$

Genuine supersymmetry transformation : $\delta_{\mathrm{m}} V_{\mathrm{a}}=\left[V_{\mathrm{a}}, \bar{\alpha} Q\right]$

$$
\left\{\begin{array}{l}
\delta \xi=\gamma^{\prime \prime} \alpha A_{\mu}+\alpha N \\
\delta A_{\mu}=\frac{i}{2} \varepsilon_{\mu \nu \lambda} \bar{\alpha} \gamma^{\nu} \partial^{\lambda} \xi+\frac{i}{2} \bar{\alpha} \partial_{\mu} \xi-\frac{i}{2} \bar{\alpha} \gamma_{\mu} \zeta \\
\delta N=\frac{i}{2} \bar{\alpha} \gamma \cdot \partial \xi-\frac{i}{2} \bar{\alpha} \zeta \\
\delta \zeta=\varepsilon_{\mu \nu \lambda} \gamma^{\lambda} \alpha \partial^{\prime \prime} A^{\nu}-\alpha \partial_{\mu} A^{\mu}-\gamma^{\prime \prime} \alpha \partial_{\mu} N
\end{array}\right.
$$

Supersymmetric ghnge transformation: $\delta_{A} V_{a}=i D_{n} \Lambda+\left[V_{a}^{\prime}, \Lambda\right]$

$$
\left\{\begin{array}{l}
\delta \xi=\chi+[\xi, a] \\
\delta \Lambda_{1,}=\partial_{11} n+\left[\Lambda_{1,}, a\right]+\frac{i}{2}\left(\bar{\xi} \gamma_{1, \chi} \chi+\bar{\chi} \gamma_{1,} \xi\right) \\
\delta N=\int+[N, a]+\frac{i}{2}(-\bar{\xi} \chi+\bar{\chi} \xi) \\
\delta \zeta=-\gamma \cdot \partial \chi+[\zeta, a]+[\xi, f]-\left[\Lambda_{1,}, \gamma^{\prime \prime} \chi\right]-[N, \chi]
\end{array}\right.
$$

In the above $V_{n}=V_{n i} T_{i}, \Lambda=\Lambda_{i} T_{i}$ (T_{i} 's are nnti-hermitian), $\Lambda_{i}=$ $a_{i}+i \bar{\theta}_{\chi_{i}}+\frac{i}{2} \bar{\theta} O f_{i}$.

In the Wess-Zumino gange, $\xi=0, N=0, \lambda=\zeta$,

$$
\left\{\begin{aligned}
\delta_{S(W Z)}= & \delta_{G E N} \text { susy }+\delta_{R G} \\
& \text { wilh } \Lambda_{\pi G}: a=0, \chi=-\gamma^{\prime \prime} \alpha \Lambda A_{1}, f=\frac{i}{2} ; A, \\
\delta_{G(W Z)}= & \delta_{\text {SUF GAUGF }} \\
& \text { with } \Lambda_{G}: a=a, \chi=0, f=0 .
\end{aligned}\right.
$$

$$
\left\{\begin{array}{l}
\delta_{s}(\alpha) A_{\mu}=-\frac{i}{2} \bar{\alpha} \gamma_{\mu} \lambda \\
\delta_{S}(\alpha) \lambda=\gamma^{\prime \prime} \gamma^{\prime \prime} \alpha F_{\mu^{\prime}}^{\prime},
\end{array}\right.
$$

where $F_{u \nu}=\theta_{u} A_{\nu}-a_{1}, A_{u}+A_{1} A_{\nu}-A_{v} A_{1,}$,

$$
\left\{\begin{array}{l}
\delta_{G}(a) A_{\mu}=\theta_{1, n}+\left[\lambda_{1,}, a\right] \\
\delta_{G}(a) \lambda=\quad[\lambda, a]
\end{array}\right.
$$

where δ_{s}, δ_{G} menn $\delta_{\text {s(ivz) }}, \delta_{G(W Z)}$ respectively. They satisfy the following
algebra.

$$
\left\{\begin{array}{l}
{\left[\delta_{S}(\beta), \delta_{S}(\alpha)\right]=\delta_{G}\left(-2 i \bar{\alpha} \gamma^{\mu} \beta A_{\mu}\right)+2\left(\bar{\alpha} \gamma^{\prime \prime} \beta\right) i \partial_{\mu}} \\
{\left[\delta_{G}(b), \delta_{G}(a)\right]=\delta_{G}([b, a])} \\
{\left[\delta_{G}(a), \delta_{S}(\alpha)\right]=0 .}
\end{array}\right.
$$

An interesting feature of the three-dimensional gange theory is that there is a gauge invariant topological mass term [54]. In the three-dimensional supersymmetric gauge theory, we have the following supersymmetric topological mass term [55].

$$
W=\operatorname{Tr} \int d^{3} x\left\{\lambda_{a} \gamma_{a b}^{0} \lambda_{b}+2 i \epsilon^{\mu \nu \lambda}\left(A_{\mu} F_{\nu \lambda}-\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)\right\}
$$

Under $\delta_{G}(a)$ and $\delta_{S}(\alpha)$,

$$
\left\{\begin{array}{l}
\delta_{G}(a) W=4 i \operatorname{Tr} \int d^{3} x \varepsilon^{\mu \nu \lambda} \partial_{\mu \prime}\left(a \partial_{\nu} A_{\lambda}\right) \\
\delta_{S}(\alpha) W=-2 \operatorname{Tr} \int d^{3} x \varepsilon^{\prime \mu \lambda} \partial_{\mu^{\prime}}\left(A_{\nu^{\prime}}\left(\bar{\alpha} \gamma_{\lambda} \lambda\right)\right)
\end{array}\right.
$$

Therefore when we assume that a surface integral is zero, W is invariant under $\delta_{G}(a)$ and $\delta_{s}(\alpha)$

CIIAPTER 7

INOMAIX SUPERFIELD FOR 13O'TH $\partial_{\mu} \mathbf{J}_{5}^{\mu} \Lambda N D \partial_{\mu} \mathrm{J}^{\mu}$
In four dimensions Ferrara and Zumino [50] showed that $\gamma^{\prime \prime} S_{\mu}, \theta_{, 1 "}{ }^{\prime \prime}$ and $\partial_{1}, J_{5}^{\prime \prime}$ are components of a Wess-Zumino multiplet [57] (where S_{n} is :n im proved supercurrent, and θ_{m} is nu improved energy-momentum tenser, nud J_{E}^{11} is an axial vector current). 'The corresponding anomalies have been stud jed in references [58-62].

In this chapter we find in two dimensions a vector multiplet which crintains $\partial_{1}, J_{\mathrm{B}}^{\prime \prime}$ and $\partial_{1} J^{\prime \prime}$ as components (where $J_{B}^{\prime \prime}$ is an axial vector current and $J^{\prime \prime}$ is a vector current), and we find a corresponding anomaly superfield. Then we confirm that this anomaly superficld is realized by Feymman diagram calculations. These calculations show clearly how corresponding nonenalies form a superfield. We study an Λ belian case, but the extension to nonAbelian case is not difficult.

In section 7.1 we revicw the gauge anomaly for a non-supersymuetric
theory. In section 7.2 we find n vector multiplet which contains ∂_{0}. ! ! $!$ and
$\partial_{\mu} J^{\prime \prime}$ as components, and n corresponding anomaly superfield. In section 7.3
we confirm this anommly superfield by Feynman dingram calculations

7.1 Review of Non-Supersymmetric Case

In this section we review the gange anomaly of a non-supersymenetric theory. We consider a system of a massive Dirac fermion and a gangr field,
which is described by the following Lagrangian. (We onnit writing the kinetic encrgy term of the gauge ficld.)

$$
\begin{equation*}
L=-i \bar{\psi} \gamma^{\prime \prime}\left(\partial_{\mu}+i e B_{1 \mu}\right) \psi-i m \bar{\psi}, \mu / \tag{7.1}
\end{equation*}
$$

Our conventions are given by

$$
\begin{gather*}
\left\{\gamma^{\prime \prime}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}, \quad-\eta^{00}=\eta^{11}=1 \\
\gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \gamma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \gamma_{6}=\gamma^{0} \gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
\varepsilon^{10}=-\varepsilon^{01}=1 \tag{7.2}
\end{gather*}
$$

And their useful propertics are

$$
\begin{align*}
& \gamma^{\prime \prime} \gamma^{5}=\varepsilon^{\prime \prime \prime} \gamma_{\nu}, \quad \gamma^{\prime \prime} \gamma^{\nu}=\eta^{\mu \nu}-\varepsilon^{\prime \mu \nu} \gamma^{5}, \quad \gamma^{\prime \prime} \gamma^{\prime \prime} \gamma^{5}=\eta^{\prime \prime \prime} \gamma^{5}-\varepsilon^{\mu \nu} \\
& \gamma^{\prime \prime} \gamma^{\nu} \gamma^{\rho}=\eta^{\prime \prime \mu} \gamma^{\rho}+\eta^{\nu \rho} \gamma^{\mu}-\eta^{\rho \mu} \gamma^{\nu}, \varepsilon^{\mu \nu} \varepsilon^{\rho \lambda}=-\left(\eta^{\mu \rho \rho} \eta^{\nu \lambda}-\eta^{\mu \lambda \lambda} \eta^{\mu \rho}\right) . \tag{7.3}
\end{align*}
$$

(7.1) gives the following equations of motion.

$$
\begin{align*}
& \left(\gamma^{\mu} \partial_{\mu}+m+i e \gamma^{\mu} B_{\mu}\right) \psi=\dot{0} \tag{7.4}\\
& \bar{\psi}\left(\gamma^{\prime \prime}-\partial_{\mu}-m-i e \gamma^{\mu} B_{\mu}\right)=0 .
\end{align*}
$$

When we use the equations of motion naively, we get

$$
\begin{equation*}
\partial_{\mu}\left(\bar{\psi} \gamma^{\prime \prime} \gamma_{5} \psi\right)=2 m \bar{\psi} \gamma_{5} \psi \tag{7.5}
\end{equation*}
$$

However, (7.5) is true only classically, and the quantum correction modifies it. This modification is called an anomaly. We can obtain the anomaly in the following way $[1,5]$.

Fig. $1 R^{\prime \mu \prime}$ and R^{ν}

In Fig. 1 the dowhte wiggled line in $R^{\prime 4}$ corresponds to the axial wetor current $\bar{\psi} \gamma^{\prime \prime} \gamma_{s} \psi$, nud that in π^{ν} corresponds to $\bar{\psi} \gamma_{s} \psi$. Then the left liand side of (7.5) is realized by R^{40} as

$$
\begin{aligned}
& i p_{\mu} R^{\prime \prime \prime}=i p_{\mu}(-1) \int \frac{d^{\prime} k}{(2 \pi)^{2}} \operatorname{Tr}\left\{\frac{-i(\gamma \cdot k+\gamma \cdot p-i m)}{(k+p)^{2}+m^{2}} \gamma^{\prime \prime} \gamma_{5} \frac{-i(\gamma \cdot k-i m)}{k^{2}+m^{2}} i c \gamma^{\nu}\right\} \\
& =-2 c e^{\prime \mu} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k+p)^{2}+m^{2}}\left(-2 m^{2} p_{1,}+\left(k^{2}+m^{2}\right)\left(\xi_{\mu \mu}+p_{\mu}\right)\right. \\
& \left.-\left((k+p)^{2}+m^{2}\right) k_{i}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =-2 c \varepsilon^{\mu \nu}\left\{-2 m^{2} r_{u} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k+p)^{2}+m^{2}}+i \frac{\Gamma_{\mu}}{4 \pi}\right\},
\end{aligned}
$$

where we used the correspondence $\partial_{\mu} \rightarrow i p_{\mu}$ since p_{μ} is an incoming monentum for the wiggled line. In the last step of (7.6), we used the fact [5]

$$
\begin{equation*}
\triangle_{\mu}(a)=\int \frac{d^{2} k}{(2 \pi)^{2}}\left|\frac{(k+a)_{\mu}}{(k+a)^{2}+m^{2}}-\frac{k_{\mu}}{k^{2}+m^{2}}\right|=i \frac{a_{\mu}}{1 \pi} \tag{7.7}
\end{equation*}
$$

Let us regularize (7.6).

$$
\begin{align*}
i p_{\mu} R^{\prime \prime \prime \prime}(r e g .)= & \{R H S \text { of }(7.6)\}-\{R H S \text { of }(7.6) \text { with } m \rightarrow M\} \\
= & 4 m^{2} \varepsilon^{\mu \prime \prime} p_{\mu} e \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k+p)^{2}+m^{2}} \tag{7.8}\\
& -4 M^{2} \varepsilon^{\prime \prime \prime} p_{\mu} e \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+M^{2}} \frac{1}{(k+p)^{2}+M^{2}} .
\end{align*}
$$

The first term in the NHS (right hand side) of (7.8) is nothing but $2 m R^{\prime \prime}$ in Fig.1, which corresponds to the RIIS of (7.5), i.e., the naive classical result.

Therefore the anomaly is given by the second term of the $R H S$ of (7.8) when we renormalize (7.8), that is, when we take the limit $M \rightarrow \infty$.

$$
\begin{align*}
& \text { Using } \frac{1}{k^{2}+M^{2}} \frac{1}{(k+p)^{2}+M^{2}}=\int_{0}^{1} d x \frac{1}{\left[l^{2}+M^{2}+p^{2} x(1-x)\right]^{2}}, l=k+p(1-x), \\
& -4 M^{2} \varepsilon^{\prime \prime} p_{\mu} e \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+M^{2}} \frac{1}{(k+p)^{2}+M^{2}} \\
& =-4 M^{2} e^{\prime \prime \prime} . p_{\mu} e \int_{0}^{1} d x \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{1}{\left[l^{2}+M^{2}+p^{2} x(1-x)\right]^{2}} \\
& =-4 M^{2} \varepsilon^{\prime \prime \mu} p_{\mu} e \int_{0}^{1} d x i \int \frac{d^{2} l_{E}}{(2 \pi)^{2}} \frac{1}{\left[l_{E}^{2}+M^{2}+\eta^{2} x(1-x)\right]^{2}} \\
& =-4 M^{2} \varepsilon^{\prime \mu} p_{\mu} e \int_{0}^{1} d x \frac{i \pi}{(2 \pi)^{2}} \frac{1}{M^{2}+p^{2} x(1-x)} \\
& \rightarrow-\frac{e}{\pi} \varepsilon^{\prime \prime \prime \prime} i p_{\mu}, \text { when } M \rightarrow \infty \text {. } \tag{7.9}
\end{align*}
$$

Then using the correspondence $\partial_{\mu} \rightarrow i p_{\mu}$, we have from (7.8) and (7.9)

$$
\begin{equation*}
\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \gamma_{\sigma} \psi\right)=2 m \bar{\psi} \gamma_{\sigma} \psi-\frac{e}{\pi} \varepsilon^{\prime \prime \prime} \partial_{\mu} B_{\nu} \tag{7.10}
\end{equation*}
$$

Therefore we obtain the anomaly as $-(e / \pi) \varepsilon^{\mu \nu} \partial_{\mu} B_{\nu}$. We will gencralize this to a superfield in the next section.

7.2 Superfield Extension

In this section we extend the anomaly in (7.10) to an anomaly superfiedd, and find a superfield which contains $\partial_{\mu}\left(\overline{V_{1}} \gamma^{\prime \prime} \gamma_{5} \psi\right)$ and $\partial_{\mu}\left(\bar{\psi} \gamma^{\prime \prime} \psi\right)$ as conponents. We consider a vector multiplet (a spinorial superfield) V_{o} which "ontains n gange field $B_{1,}$ as a component, i.e., a supersymmetric extencion of a gange ficld $[52,63]$. We use μ, v, λ, \cdots for space-time indices, and a, b, c, \cdots for spinorial indices.

$$
\begin{equation*}
V_{a}=\xi_{a}+\gamma_{a b}^{\mu} O_{b} B_{1,}+\gamma_{n b}^{\mathrm{s}} O_{b} M+O_{a} N+\frac{i}{2} \bar{\theta} \theta \zeta_{a} . \tag{array}
\end{equation*}
$$

The conventions in this chapter are the same as those in chapter 6 and summarized in Appendix Λ of that chapter.

Using the supersymmetric derivative

$$
\begin{equation*}
D_{a}=-\frac{\partial}{\partial \bar{\theta}_{a}}-i \gamma_{a b}^{\prime \prime} \theta_{b} \partial_{p}, \bar{D}_{a}=D_{b} \gamma_{b+1}^{0}, \tag{array}
\end{equation*}
$$

we have

$$
\begin{equation*}
\bar{D} \gamma_{5} V=\bar{D}_{\mathrm{a}} \gamma_{n b}^{5} V_{\mathrm{b}}=2 M-i \bar{\theta} \gamma^{3} \lambda+i \bar{\theta} \theta_{\varepsilon^{\prime \prime \prime}} \partial_{\mu} I_{w^{\prime}} \tag{7}
\end{equation*}
$$

$\frac{i}{2}\left(\gamma_{5} D\right)_{a}\left(\bar{D} \gamma_{5} V\right)=-\frac{1}{2} \lambda_{a}+\gamma_{a b}^{\prime \prime} \theta_{b}\left(\varepsilon_{, \mu} \partial^{\nu} M\right)+\gamma_{a b}^{s}, \theta_{b}\left(\varepsilon_{\mu \prime}, \partial^{\prime \prime} B^{\prime \prime}\right) \cdot 1 \theta_{n}(0)+\frac{i}{2} \bar{\theta} \theta\left(-\frac{1}{2} \gamma \cdot \partial \lambda\right)_{n}$,
where $\lambda=\zeta+\gamma \cdot \partial \xi$.
That is, $\frac{i}{2}\left(\gamma_{5} D\right)_{a}\left(\bar{D} \gamma_{\mathrm{s}} V\right)$ romposes n spinorinl superfield whose compon n nts
are given by

$$
\left\{\begin{array}{l}
\xi_{\mathrm{n}}:-\frac{1}{2} \lambda_{\mathrm{a}} \tag{7.15}\\
\mathrm{~B}_{1,}: \epsilon_{\mu \nu} \partial^{\mu} M \\
\mathrm{M}: \varepsilon_{\mu \mu} \partial^{\mu} B^{\nu} \\
\mathrm{N}: 0 \\
\zeta_{\mathrm{a}}:-\frac{1}{2}(\gamma \cdot \partial \lambda)_{a} .
\end{array}\right.
$$

Let us study this supersymmetric extension of the nnomaly. $\Lambda \mathfrak{n}$ interesting property of (7.15) is that the M component is the ordinary gnuge anomaly, nud the N component is zero. Also, we obscrve in (7.11) that when M is a pseudoscalar, N is a scalar. Therefore we are led to expect that there exists a superfichl which has $\partial_{\mu}\left(\bar{\psi} \gamma^{\prime \prime} \gamma_{5} \psi\right)$ as the M component and $\partial_{\mu}\left(\bar{\psi} \gamma^{\prime \prime} \psi\right)$ as the N component. Indeed, there exists such a superfield, which is given in the following

We consider a complex scalar superfield

$$
\begin{align*}
& S=A+i \bar{\theta} \psi+\frac{i}{2} \bar{\theta} O F, \tag{7.16}\\
& S^{*}=A^{*}+i \bar{\theta} \psi^{*}+\frac{i}{2} \bar{\theta} \theta F^{*}
\end{align*}
$$

After studying the structure of the superfield and using trial and error, we obtain the following spinorial superfield which we expected to exist.

$$
i\left(D_{a} S \widetilde{D}_{b} D_{b} S^{*}-D_{a} S^{*} \bar{D}_{b} D_{b} S\right)=
$$

Then we anticipate that the superfield (7.17) is subject to the quanturn correction which gives rise to the nommaly superfield (7.15). In the next se tion we will confirm this fact by dingram caleulations similar to that in sertime 7.1.

7.3 Realization by Diagram Calculations

We have the following supersymmetric extension of the Lagranginn (7.1) [52]. (We onit writing the kinetic energy term of V_{n}.)

$$
\begin{equation*}
L=\left|-\frac{i}{2} \bar{\nabla}_{n} S^{*} \nabla_{a} S+m S^{\cdot} S\right|_{F} \tag{7.18}
\end{equation*}
$$

where the sulseript F means the F emponent of a scalar superlichl o! the form (7.16). Since L in (7.18) is the lnst component of n superfield, it is invariant under a surersymmetry transformation up to a total derivative. In (7.18) ∇_{n} and $\bar{\nabla}_{n}$ are covariant derivatives

$$
\begin{equation*}
\nabla_{n} S=\left(D_{n}+e V_{n}^{\prime}\right) S, \bar{\nabla}_{n} S^{\bullet}=\left(\bar{D}_{n}-e \bar{V}_{a}\right) S^{*} \tag{i.19}
\end{equation*}
$$

Then (7.18) is invariant moder the supersymunctric gange transformation

$$
\left\{\begin{array}{l}
S^{\prime}=e^{i=\Lambda} S \tag{;20}\\
V_{a}^{\prime}=V_{n}-i D_{a} \Lambda
\end{array}\right.
$$

where Λ is a scalar superfield which is a supersymmetric gauge transformation parameter

$$
\begin{equation*}
\Lambda=a+i \vec{\theta}_{\chi}+\frac{i}{2} \bar{\theta} \theta \rho \tag{7.21}
\end{equation*}
$$

(7.18) gives the equation of motion

$$
\begin{gather*}
\bar{\nabla} \nabla S-2 i m S=0, \text { i.e., } \\
(\bar{D}+e \bar{V})(D+e V) S-2 i m S=0, \\
\bar{D} D S-2 i m S+c^{2} \bar{V} V S+e \bar{V} D S+e(\bar{D} V) S+e(\bar{D} S) V=0 . \tag{7.22}
\end{gather*}
$$

The Lagrangian in (7.18) is expressed in terms of component fields of S and V_{n} ns

$$
\begin{align*}
L= & -i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i e B_{\mu}\right) A-i m \bar{\psi} \psi \\
& -\left(\partial_{\mu}-i e B_{\mu}\right) A^{\bullet}\left(\partial^{\prime \prime}+i e B^{\prime \prime}\right) A-m^{2} A^{\cdot} A \tag{7.23}\\
& -e^{2} M^{2} A^{*} A+e M \bar{\psi} \gamma_{5} \psi-\frac{e}{2}\left(A \bar{\psi} \lambda-A^{\bullet} \bar{\lambda} \psi\right) .
\end{align*}
$$

When we oblained (7.23), we took the Wess-Zumino gnuge, i.e., $\xi=0, N=$ 0 . We can anticipate the realization of the anomalies (7.15) in this special gauge, since (7.15) depends only on the component ficlds in the Wess-Zumino gauge.

As we obtained (7.5) for the ordinary gauge theory, we obtain the corresponding supersymmetric equation from (7.17) by using the equation of motion (7.22) for $\bar{D}_{b} D_{b} S$ and the equation of motion for $\bar{D}_{b} D_{b} S^{\bullet}$ which is
given ly modifying (7.22) by the replacement of ($e \rightarrow-\infty$).

$$
\begin{equation*}
\left.i\left[D_{a} S\left(\bar{D} D S^{\bullet}\right)-D_{a} S \cdot(\bar{l} D S)\right]=\{\text { Normal Terns }\}+c \frac{i}{2}\left(\gamma_{5} D\right)_{n}(\bar{I})_{r} V\right), \tag{7.24}
\end{equation*}
$$

where \{Normal Termif means the terms which are given by the nive use of the equation of motion such as $2 m \bar{\psi} \gamma_{5} \psi$ in (7.5). In (7.21) wr added the anomaly term like in (7.10) with a normalization factor c which will be determined by diagratu colculations.

In components (7.24) is given by the following equations.

$$
\begin{aligned}
& \left(\xi_{\mathrm{a}}:-2 i\left(\psi F^{*}-\psi \cdot F\right)=2 i m\left(\psi A^{*}-\psi^{\bullet} A\right)+c\left(-\frac{1}{2} \lambda\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& =(\text { normal terms })+c\left(\varepsilon_{, \mu}, \delta^{\prime} M\right) \\
& \mathrm{M}: \partial_{\mu}\left(\bar{\psi} \gamma^{\prime \prime} \gamma_{5} \psi\right)=2 m \bar{\psi} \gamma_{5} \psi+2 i e M \bar{\psi} \psi+\frac{1}{2} i c\left(\Lambda^{\bullet} \bar{\lambda} \gamma_{5} \psi-\Lambda \bar{\psi} \gamma_{5} \lambda\right) \tag{7.25}\\
& +c\left(e_{\mu} \partial^{\prime} \cdot B^{\nu}\right) \\
& N: \partial_{H}\left(\vec{\psi} \cdot \gamma^{\prime \prime} \psi\right)=\frac{1}{2} i c\left(\Lambda \vec{\psi} \lambda+\Lambda^{\prime} \cdot \bar{\lambda} \psi\right)+c(0) \\
& \zeta_{n}:-2 i\left[e^{\prime \prime \prime} \partial_{n}\left(\gamma_{5} \psi^{\prime} \partial_{\nu} A^{*}-\gamma_{5} \psi^{*} \partial_{\nu} \Lambda\right)+\partial_{n}\left(\psi^{\prime} \partial^{\prime \prime} A^{\bullet}-\psi^{\bullet} \partial^{\prime \prime}, \lambda\right)\right] \\
& =(\text { normal terms })+c\left(-\frac{1}{2} \gamma \cdot \partial \lambda\right) .
\end{align*}
$$

In (7.25) we did not write down the normal termi for the \mathbf{B}_{u} and ζ_{n} 'omponent equations since they nre long nad not interesting in our study.

Now let us show that the anomalies in (7.2r) are realized by diagram calculations. The Lagrangian in (7.23) gives us the Feymman rules of Fig. 2. Let us study (7.25) component by component.

First for the $\xi_{\text {a }}$ cimponent equation, we use the equations of notion

$i e\left(\gamma^{\mu}\right)_{B a}$

Fig. 2 Feynman Rules
$F^{\prime}=-m A$ and $F^{*}=-m A^{\bullet}$ for F and F^{\bullet} in the L/fS (INft hand side).
Then the dingram in lig. 3 is potentially anomalous. In Fig. 3 the doul, Io line represeats the first term of the $L H S$ of the ξ_{n} component equation, which will be denoted by $\xi_{n}(m)$. Then from the Feyminn rules in Fig. 2 we liove

$$
\begin{align*}
\xi_{n}(m) & =2 \times 2 i m \int \frac{d^{2} k}{(2 \pi)^{2}}-\frac{-i(\gamma \cdot k-i m)}{k^{2}+m^{2}}\left(-i \frac{c}{2}\right) \lambda \frac{-i}{(k+p)^{2}+m^{2}} \\
& =-2 c m \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{1}{k^{2}+m^{2}}--\frac{1}{(k+1)^{2}+m^{2}}(\gamma \cdot k-i m) \lambda \tag{17.20}\\
& =-2 c m \frac{i}{4 \pi} \int_{0}^{1} d x \frac{\gamma \cdot p(1-x)-i m}{\left[m^{2}+p^{2} x(1-x)\right]} \lambda .
\end{align*}
$$

We regularize this by suhtracting the Pauli-Villars term.

$$
\xi_{n}(r c g)=\xi_{n}(m)-\xi_{n}(M)
$$

The first term in the $N i l l S$ of ($\mathbf{7 . 2 7}$) is n normal term. We renormonlize (7.27) by taking $M \rightarrow \infty$.

$$
\begin{aligned}
\ell_{n}(r c n .) & =\lim _{n \rightarrow \infty} \ell_{n}(r c g .) \\
& =(\text { normal term })-\frac{c}{\pi}\left(-\frac{1}{2} \lambda\right) .
\end{aligned}
$$

For the B_{4} component equation, the dingrams in Fig. 4 are potrotinlly nomalous. Ding 4Λ and 4$\}$ come from the first term, Ding. A(nad if) from the second term, and Diag AE from the third term of the $L / H S$ of the: \mathbf{B}_{μ} component equation. Ilowever, Diag. AD turns out to produce no ant maly and nnomalies from Diag. 43 nad 4 E cancel ench other. Then only Dieg. 4 A

Fig. 4

Fig. $5 o_{1,}\left(\bar{y}_{1} \gamma^{\prime \prime} \gamma_{3} V^{\prime}\right)$
nud te combiour to give sise to nn nummaly.

$$
\begin{align*}
B_{1 \prime}(m)=(-2) \times(\cdots 1) \int \frac{d^{2} k}{(2 \pi)^{2}}\left[\operatorname { T r } \left(i c \gamma_{s}-i(\gamma \cdot k \mid \gamma \cdot p-i \cdots)\right.\right. \tag{7.29}\\
(k+p)^{2} \mid m^{2}
\end{align*}
$$

'Tlien afler smure ralrulatinus, we linve

$$
\begin{align*}
& \left.11_{1}(\operatorname{rcn})=\lim _{N: \rightarrow \infty}\{1]_{1}(m)-13_{1,}(N f)\right\} \tag{7.30}\\
& =(\text { normal } \operatorname{term})-\frac{c}{\pi} \epsilon_{n}, i \mu^{\prime \prime} .
\end{align*}
$$

Then using the correspondence $0_{1,} \cdots$ ip,.

$$
\begin{equation*}
H_{n}(\operatorname{rrn})=(n o r m a l \operatorname{trrm})-\frac{e}{\pi}\left(f_{1}, V^{\prime} M\right) . \tag{7.31}
\end{equation*}
$$

loms. Dlowever, Diap.ill turns not to produce no nmomaly. Diap 5 A is the snme ns that in lig.t in sertion 7.1 whirh gnve the iesult (7.10) Tirrefore we linve

$$
\begin{equation*}
M(\text { ran. })=(\text { nortmini tertn })-\frac{e}{\pi}\left(e_{\operatorname{mon}} d^{\prime} B^{\prime}\right) \tag{7.32}
\end{equation*}
$$

Fig. $6 \partial_{\mu}\left(\bar{\psi} / \gamma^{\mu} \nu\right)$

Fig. 7

For the h_{n} enmponent muntion, diagrams in Fig. 7 give rise to an an maly

$$
\begin{array}{r}
\zeta_{n}(m)=(-\lambda i) \int \frac{d^{2} k}{(2 \pi)^{2}}\left[\epsilon^{\prime \prime \prime} i \mu_{1} i(k+p)_{1}, \gamma_{5}+i \mu_{,} i\left(k+p^{\prime \prime}\right]\right. \\
\times-\frac{-i(\gamma \cdot k-i m)}{k^{2}+m^{2}}\left(-i \frac{c}{2}\right) \lambda \frac{-i}{(k+p)^{2}+m^{2}} \tag{7.16}
\end{array}
$$

Then after some calculations similar to those for (7.29), we hive

$$
\begin{align*}
\zeta_{n}(\text { ron }) & =\lim _{n \rightarrow \rightarrow \infty}\left\{\zeta_{n}(m)-\zeta_{n}(N r)\right\} \tag{7.37}\\
& =(\text { normal terrut })-\frac{c}{\pi}\left(-\frac{1}{2} \gamma \cdot \partial \lambda\right) .
\end{align*}
$$

Therefore by ($7.28,31,32,35$) nud (7.37) we have confirmed (7. 4) or (7.25) with $c=-c / \pi$, that is,
$i\left[D_{a} S\left(\bar{D} D S^{*}\right)-D_{n} S^{*}(\vec{D} D . S)\right]=\{$ Normal Terms $\}-\frac{i e}{2 \pi}\left(\gamma_{5} I\right)_{n}\left(\bar{D}_{\gamma_{5}}{ }^{\prime \prime}\right)$.

Diag.5B, and Diag.6A gives

$$
\begin{align*}
N(m) & =-B_{\nu} \int \frac{d^{2} k}{(2 \pi)^{2}} \operatorname{Tr}\left\{i e \gamma^{\nu} \frac{-i(\gamma \cdot k+\gamma \cdot p-i m)}{(k+p)^{2}+m^{2}} i \gamma \cdot p \frac{-i(\gamma \cdot k-i m)}{k^{2}+m^{2}}\right\} \\
& =2 c B_{\nu} \int \frac{d^{2} k}{(2 \pi)^{2}}\left[\frac{(k+p)^{\nu}}{(k+p)^{2}+m^{2}}-\frac{k^{\nu}}{k^{2}+m^{2}}\right] \\
& =\frac{e}{2 \pi} i p^{\nu} B_{\nu}, \quad u \operatorname{sing}(7 . \%) . \tag{7.33}
\end{align*}
$$

Then

$$
\begin{equation*}
N(\text { ren } .)=\lim _{M \rightarrow \infty}\{N(m)-N(M)\}=0 \tag{7.34}
\end{equation*}
$$

Thercfore

$$
\begin{equation*}
N(\text { ren } .)=(\text { normal term })-\frac{e}{\pi}(0) . \tag{7.35}
\end{equation*}
$$

CIIAPTER 8

CONCLUSION

We studied various topics of anomalies in two dimensions. In chapter 2 we obtained the gange anomaly including the normalization factor up to the sign by using the differential geometric method. We obtained the solution of the anomaly eqution (the Wess-Zumino term) only in terms of the gauge fields, without auxiliary ficlds. Then we showed, up to the second non-trivial order, that this solution agrecs with the Feymman dingram calculations. This solution is interesting because it may be applied as another approach to the effective theory.

In chapter 3 we obtained the anomaly of $D_{\mu} J^{\mu}$ from the Schwinger terms for the chiral Schwinger model and the non- Λ belian chiral gauge theory. This method provides a new way of calculating the anomaly of $D_{\mu} J^{\mu}$ and shows clearly the intimate relation between the anomaly of $D_{\mu} J^{\prime \prime}$ and the Schwinger terms. Through this study we could also understand the dificulties in quantizing anomalous gauge theorics.

In chapter 4 we showed in the Schwinger model that the point-splitting method disagrees with the loop-diagram method ly the sign and by the factor $1 / 2$ for the anomaly of $\partial_{4} J_{6}^{\prime \prime}$ and for the Schwinger term of $\left[J_{5}^{0}(x), J^{0}(y)\right]_{\text {ETC }}$ respectively. When we calculated the Schwinger term by the point-splitting method, we used a spatial splitting which is not covariant. This may be part of the reasons why the two methods disagree, since if we had used a spatial
splitting instend of a covariant splitting for $\partial_{\mu} J_{5}^{\prime \prime}$ in section 3.2 , we w whld have got half of the result of section 3.2 for $\partial_{\mu} J_{5}^{\prime \prime}$. However, this does not explain the disagreements completely, tecause the two methods disagree. by the sign for $\partial_{\mu} J_{5}^{\prime \prime}$ even though we used a covariant splitting.

In chapter 5 we obtained the gravitational anomaly including the normalization factor up to the sigu by using the differential geometric method. Using the light-cone coordinates, we calculated the Feynman dingrams and showed, up to the second non-trivial order, that the anomaly obtained by the differential geometric method agrees with the Feymman dingram calculations.

In chapter 6 we showed that the origin of the supersymmetry nnomali; in the Wess-Zumino gange is the supersymmetric gange anomaly. This indic-tes that there is no genuine supersymmetry anomaly. This also shows that when the gauge anomaly is canceled, the superammetry anomaly in the W .ssZumino gnuge is also canceled automatically. We expect that the sitmadion is the same in other supersymmetric gange theories which have superfield formulations. However, in a theory which has no superficld formulation, a different analysis may he necessary. We have also obtained the supers: mmetric extension of the Wess-Zumino term in the form which depends anly on the external vector multiplet.

In chapter 7 we obtained n spinorial superfield which contains $\boldsymbol{\theta}_{\mu} J_{5}^{\mu}$ nnd $\partial_{1} J^{\prime \prime}$ as M (pscudoscalar) and N (scalar) componcnts respectively. 'T his superficld is suliject to the quantum correction which gives rise to an onomialy
superficld, which has the ordinary gauge anomaly and zero as M and N components respectively. We confirmed this anomaly superfield by dingram calculations. This result could be expected since the Pauli-Villnrs regulator terms constitute a superfield.

REEERENCLS

[1] S. Adler, in Lectures on Elmontary I'articles and Quantum Field Theery, ed. S. Deser et al. (MITT Press, 1970)
[2] J. Bell and R. Jnckiw, Nnovo Cim. 60^ (1969) 47
[3] W.A. Bardecn, Plys. Hev. 184 (1969) 1848
[1] B. Zumino, in Irorecdings of Topical Conferenere on Weak Internclinus, ed. J.S. Bell (CDELCN 69-7, 1909)
[5] IL. Jnckiw, in Leclures on Current Aggelira and Its Applications (Princeton Univ. I'ress, 1972)
[0] K. Fujikawn, Phys. Mev. Iect. 42 (1979) 1195; Phys. Itev. D21 (1980) 2844; D22 (1980) 1493 (B)
[7] E. Witten, Nucl. Plys. 1323 (1983) 422; 13223 (1983) 433
[8] 13. Zumino, in Relativity, Groups, and Topology II, Les Houclies 1983, ed. B.S. DeWitt and II. Stora (North-IInlland, 198.1)
[9] J. Wess nud B. 7umino, l'hys. Lett. 37 B (1971) 95
[10] II. Georgi ned S.L. Glashow, Plys. Rev. DG (1972) 429
[11] D.J. Gross and R. Jackiw, Phys. Rev. Dg (1972) 477
[12] L. Alvarez-Gammé and E. Witten, Nucl. Phys. B231 (198!) 269
[13] W.A. Bardeen nud 13. 7,mmino, Nucl. Phys. B244 (108.1) 421
[14] R.E. Gambon Saravi, F.A. Schaposnik and J.E. Solomin,
Nucl. Phys. B185 (1081) 239; Phys. Rev. D30 (1984) 1353
[15] R. Roskies, in Symmetries In Pneticle Physics, ed. I. Bnrs et
n. (Plemum, 1984)
[16] A. Polyakov and P.B. Wiegmann, Phys. Ictt. 131 B (1983) 121
[17] O. Alvarez, Nucl. Phys. B238 (1984) 61
[18] O. Alvarez, I.M. Singer and J. Zumino, Comunun. Math. Phys. $96(1984) 409$
[19] T. Eguchi, P. Gilkey and A. Ilanson, Phys. Rep. 66 (1980) 213
[20] L.D. Faddeev, Phys. lett. 14513 (1984) 81
[21] B. Zumino, Nucl. Phys. B253 (1985) 477
[22] J.D. Bjorken, Phys. Rev. 148 (1966) 1407
[23] K. Johnson and F.E. Low, Prog. Theor. Phys. (Kyoto) Suppl. 37-38 (1966) 74
[24] P. 1. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva Univ. N.Y. (1964)
[25] R. Jackiw and IR. Majaraman, Phys. Rev. I.ett. 54 (1985) 1219;
(E) 54 (1985) 2060
[26] R. Rajaraman, Plys. Lett. 154B (1985) 305
[27| D.S. IIwang, chapter 2 of this thesis; Phys. Rev. D35 (1987) 1268 [28] E. Witten, in Proceedings of the XVIIIth Solvay Conference, 1982, Physics Reports 104 (1984) 201
[29] II. Sonoda, Pliys. Lett. 156 B (1985) 220
[30] M.S. Chanowitz, Phys. Lett. 171 B (1986) 280
[31] S. Jo, Nucl. Phys. B259 (1985) 616 ; Plyss. Lett. 163B (1985) 353
[32] M. Kobayashi, K. Seo and A. Suganoto, Nucl. Phys. 13273 (108'i) 607
[33] I,D. Fadicev, in Supersymmetry and Its $\Lambda_{\text {pplications, ed. G.W }}$
Gibbous el al. (Cambridge Univ. Press, 1086)
[34] R. Rajaraman, Phys. Letl. 162 B (1085) 148
[35] J. Schwinger, Phys. Rev. Lelt. 3 (1959) 206
[3G] K. Johnson, Phys. Lett. 5 (1903) 253
[37] R. Jackiw and K. Johnson, Phys. Rev. 182 (1969) 1459
[38] C.R. Hagen, Phys. Rev. 188 (1969) 2416
[39] M.S. Chanowitz, Phys. Rev. D2 (1970) 3016
[40] J. Schwinger, Phys. Rev. 125 (1962) 397 ; 128 (1062) 2425
[41] II. Georgi nad J.M. Rawls, Phys. Rev. D3 (1971) 874
[42] R. Roskies and F. Schaposnik, Phys. Rev. D23 (1081) 553
[43] D.S. Ifwang, chapter 3 of this thesis; Nucl. Phys, B286 (1987) 2:1
[44] F. Langouche, Plys. Lett. 148B (1984) 93
[45] II. Leutwyler, Phys. Lett. 1533 (1085) 65
[46] K. Fujikawa, M. Tomiya nod O. Yasuda, Zeit. Phys. C28 (1985) 289
[47] G. Girardi, R. Grimm and R. Stora, Plys. Lett. 15GB (1985) 20:
[48] 13. Zumino, in Symposium on Anomalies, Geometry, Topelogy,
cd. W.A. Bardeen et al. (World Scientific, 1985)
[49] I. Howe and P. West, Plys. Lett. 156B (1985) 335
[50] P. Mossi, Nucl. Phys. 13261 (1985) 731
[51] H. 1loyama, V.P. Nair and II. Ren, Nucl. Phys. 3262 (1985) 317;
I'hys. Let.t. 168B (1980) 78
[52] S. Ferrara, Lett. Nuovo Cim. 13 (1975) 629
[53] T.E. Clark and S.T. Love, Phys. Lett. 138[3 (198.1) 289
[54] S. Deser, IR. Jackiw and S. Templeton, Ann. Phys. (N.Y.) 140 (1982) 372
[55] S.J. Gates, Jr., M.T. Grisaru, M. Rocek and W. Siegel, Superspace (Benjamin-Cummings, 1983)
[5G] S. Ferrara and B. Zumino, Nucl. Phys. B87 (1975) 207
[57] J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39
[58] M.T. Grisaru, in Recent Developments in Gravitation (Cargese, 1978), eds. M. Levy and S. Deser (Plenum Press, 1979)
[59] M.T. Grisaru, N.K. Nielsen, W. Siegel and D. Zanon, Nucl. Phys. B247 (1981) 157
[G0] D.R.'T. Jones, Phys. Lett. 123B (1983) 45
[61] V.A. Novikov, M.A. Shifınan, A.I. Vainshtein nnd V.I. 7aklınrov, JETP Lelt. 10 (1984) 920 ; Phys. Lect. 157 B (1985) 169
[C2] M.T. Grisaru and P.C. West, Nucl. Phys. B254 (1985) 249
[63] D.S. Invang, chapter 6 of this thesis; Nucl: Plys. B267 (1986) 349)

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: ${ }^{1}$ This work was suppoted by the Director, Office of Energy Research, Ollice of lligh Energy and Nuclear Plysics, Divisiou of High Energy Plysics of the U.S. Department of Energy under Contract DE-AC03-76SFu0098, and the National Science Fonndation under Rescarch Grant No. PllY-85-15857.

