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ABSTRACT 
On November 24, 1993, the US Environmental Protection Agency adopted the transportation conformity rule, pursuant to Section 176(c)(4) of 
the Clean Air Act.  The conformity rule requires that transportation plans, programs and projects funded or approved by the federal government 
or their agents under Title 23 (Highways) U.S.C. or the Federal Transit Act conform with state or Federal air quality implementation plans.  
Federal transportation planning regulations contain reciprocal language (40 CFR 450.312(d)), stipulating that the MPO shall not approve any 
plan or program that does not conform to the SIP as determined in accordance with the conformity rule. 
 
The final transportation/air quality conformity rule (23 CFR Part 450 and 49 CFR Part 613) constrains the development of transportation plans, 
improvement programs and projects and has increased pressure on statewide metropolitan transportation agencies to ensure that transportation 
and air quality plans are coordinated.  Rigorous requirements for regional and local air quality modeling of transportation systems are included 
in the final conformity rule, and agencies are working diligently to meet these demands. 
 
The research community and practitioners alike have raised significant questions as to the reasonableness and accuracy for requiring specific 
modeling procedures--large uncertainties in the modeling process are prevalent.   These inherent uncertainties are likely to lead to erroneous 
transportation planning decisions, and possible mis-allocation of local, state, and federal moneys. 
 
This paper briefly addresses and identifies some of the more significant uncertainty issues associated with the transportation modeling process 
in context of the demands set forth by the Conformity Rule.  The uncertainties listed are not meant to be comprehensive, but instead aims to 
shed light on the ‘missing communication link’ between technical experts and policy makers. Modeling requirements and procedures set forth 
in the Conformity Rule do not reflect the magnitude and depth of current modeling deficiencies. 
 
Solutions to these modeling uncertainties can be provided with advancements in both transportation activity and emissions modeling 
procedures.  It is important for future modeling revisions and upgrades to explicitly include estimates of uncertainty in computations, so that 
decisions makers can re-shape existing policies--making them more sensitive to explicit uncertainties. 

 

INTRODUCTION 
The Transportation Conformity Final Rule (the Rule) [DOT, 1993] 
lays out specific and detailed modeling requirements that mandate 
transportation and air quality planners to follow ‘laundry list’ type 
procedures.  While providing a compelling reminder that urban air 
quality is a serious problem that needs addressing, the Rule does not 
reflect the uncertainty recognized by transportation and air quality 
planners and researchers. 
 
Two important purposes of conformity are to ensure 1) 
transportation plans will help to eliminate or reduce the severity and 
number of violations of the National Ambient Air Quality Standards 
(NAAQS), and 2) transportation activities will not cause or 
contribute to new violations in any area, nor delay attainment (i.e. 

increase emissions) of any standard or required interim emission 
reduction or other milestone in any area [CAAξ176(c)(1)(B)].  At 
this time, conformity applies only to non-attainment areas. 
 
There are basically two levels of analysis with regard to modeling 
emissions in a given non-attainment area, regional and local.  
Regional analysis requires estimation of emission inventories from 
motor vehicles (as well as other sources), while local analysis 
requires air quality impact analysis for emission ‘hot spots’. There is 
a growing body of research identifying and quantifying the 
uncertainties associated with current transportation-air quality 
modeling practice, and a growing concern that poor decisions may 
be made based on currently mandated modeling techniques [Ismart, 
1991; Ireson, Austin, and Carr, 1993; Harvey and Deakin, 1993; 
Guensler and Geraghty, 1991]. 



 
This paper briefly discusses and illustrates some of the major 
problems associated with modeling emissions from motor vehicles as 
guided by the Rule.  An effort is made to illustrate the nature of the 
uncertainties involved, as well as to identify how these errors are 
likely to affect transportation-air quality analysis results. 
 

CURRENT MODELING DEFICIENCIES 
The EMFAC and MOBILE series of emissions models have served 
very important and critical needs in historical emissions analysis 
practice.  Without these models, the transportation-air quality 
planning community would lack the tools in which to compare 
alternative transportation projects or to quantify the emissions 
impacts of projects.  Furthermore, transportation planners would lack 
the tools necessary to meet the requirements of Clean Air and 
Transportation Planning legislation.   
 
These models, however, are less than optimal for current emission 
inventory analysis demands. The ad-hoc development of the models 
brought about by the dynamic political climate and continually 
changing air quality analysis needs has left the current analysis 
models poorly suited to assess the new gamut of proposed 
transportation projects;  transportation demand management 
strategies,  market-based solutions, and intelligent transportation 
technologies. 
 
We must also acknowledge the role that transportation activity 
models play in current modeling shortfalls.  The accuracy of results 
provided by emissions analyses depend entirely upon the accuracy 
embedded in, and provided by transportation activity models.  When 
we consider the joint inaccuracies of transportation activity and 
emissions models,  the results suffer from both biases and 
inaccuracies of sometimes unknown magnitude and direction. 
 
The current emission modeling deficiencies are categorized as 
follows:  1) link between Urban Transportation Planning system 
(UTPS) type models and emission models; 2) methodological errors;  
3) sampling errors; and 4) model validation problems. 
 

Link Between UTPS and Emission Models 
As stated previously, the link between transportation activity models 
(UTPS type models) and emissions models is of critical importance 
for accurate emissions analyses.  In fact, the accuracy provided by 
emissions models is largely a function of the accuracy provided by 
activity models.  In this section, three general areas of inaccuracy 
and precision are discussed. 

Level of detail provided by UTPS models 
Many contemporary proposed transportation solutions do not intend 
to increase transportation supply.  In fact, many solutions bring 
about microscopic flow changes to the transportation system.  For 
example, high occupancy vehicle lanes (HOV) and ramp metering 
intend to smooth flows on freeways.  HOV lanes aim to increase the 
demand for ride-sharing, thereby reducing vehicle demand and 
making the transportation system more efficient.  Ramp metering 
aims to regulate traffic flow onto the freeway so that demand will not 
exceed capacity.  In each of these cases,  microscopic flow changes 
occur,  bringing about sometimes subtle yet important changes to 
vehicle speed time profiles.  For example, the number and severity of 
acceleration and deceleration events will change with ramp metering.  

Hard accelerations from vehicles leaving the merge lane queue will 
increase, while high-speed accelerations and decelerations from 
mainline vehicles will likely decrease.  These microscopic flow 
changes represent important changes in the calculus of emissions, 
however, they are difficult or impossible to capture with current 
transportation activity models. 
 
Typical regional transportation activity models (of the UTPS family 
of models) provide travel activity outputs by transportation system 
link, time of day (off peak vs. peak), and directional split.  Vehicle 
miles of travel (VMT) is the most common measure given to 
quantify vehicle activity on the transportation network.  The only 
measure of macroscopic roadway performance provided is mean 
vehicle speed (by link),  while there are no provided measures of 
microscopic performance.  Considering the fact that microscopic 
flow changes are critical for correctly assessing emission impacts,   it 
is unlikely that changes to average operating speed brought about by 
transportation projects like the addition of HOV lanes or ramp 
metering will accurately reflect the emission impacts upon the 
transportation corridor. 
 
The unfortunate outcome is that the wide variety of transportation 
projects,  many of which may improve air quality,  are not being 
modeled with the accuracy needed to determine their impact on 
emissions.  Specifically,  those projects that bring about microscopic 
changes to the transportation network are at highest risk of being 
wrongly assessed.  Emission impacts cannot be examined at the 
transportation corridor level. 

UTPS model calibration errors 
The typical Urban Transportation Planning System (UTPS) process 
consists of four steps:  trip generation, trip distribution, mode choice,  
and trip assignment.  These four steps comprise the mathematical 
models that ultimately predict transportation activity in a 
metropolitan region.  Although much has been written about the 
uncertainty of individual steps in this process, the focus in this 
section--and the perhaps the most significant in terms of emission 
impacts--is the second of these steps,  trip distribution. 
 
Trip distribution models have been widely criticized for some time.  
There are several types of trip distribution models, including gravity, 
growth factor, multi-nomial logit, and intervening opportunities 
models.  The most widely used type of trip distribution model today 
is the gravity model.  The gravity model has been criticized for 
poorly modeling the true causes of trip making [Williams, 1977], for 
requiring the use of K factors to arbitrarily adjust the level of 
tripmaking between locations [Halcrow, Fox, and Associates, 1984; 
Hutchinson, 1980], for possessing ‘grossly inadequate explanatory 
powers’ [Sikdar, Smith, and Hutchinson, 1980], for containing fixed 
K factors that are likely unstable over time [Harvey, et al., 1993; 
Stopher and Meyburg, 1975], and for over-estimating near trips and 
under-estimating far trips [Dickey, 1983].  
 
The more advanced modeling technique, the multi-nomial logit trip 
distribution model, is more robust than the gravity model [Harvey, et 
al., 1993].  This model includes variables that reflect the 
attractiveness of destination attractiveness, origin-destination travel 
conditions, and personal characteristics that influence travel 
decisions [Harvey, et al., 1993].  However, this model requires far 
more data, and is still used by only several regional agencies, thus, 
the gravity model is still used in the majority of regional modeling 
practice [Harvey, et al., 1993]. 
 



There are essentially two times in the trip distribution process when 
link attributes are adjusted so as to compromise the accuracy of link 
level vehicle activity estimates.  The first is in the calibration of the 
gravity model used for trip distribution.  The gravity model is used to 
distribute traffic volumes around a network and between zones.  The 
gravity model is the most commonly used model in regional 
modeling and takes the form [Dickey, 1983]: 
 
Tij = Pi * Aj * Fk(ij)  ;  where, 
 Tij = number of trips produced in zone i and attracted to 
  zone j, 
 Pi  = number of trips produced by zone i, 
 Aj = number of trips attracted to zone j, 
 Fk(ij) = travel time factor (friction factor) between  
 zone i and zone j for interval k. 
 
In the gravity model, trip interchanges between zones are inversely 
proportional to the friction factor, F.  This friction factor is usually 
some surrogate measure of travel cost, thus, increasing travel time 
between zones decreases the likelihood of travel between zones, and 
therefore the number of trip interchanges between zones.  The 
Bureau of Public Roads in 1965 proposed a calibration procedure 
whereby an iterative procedure is used to estimate friction factors 
between zones.  This procedure, being widely used today, begins by 
assuming certain friction factors and then iterating through so that 
predicted zonal trip interchanges match the zonal interchanges 
predicted by the trip generation model.  The iterative process ensures 
that predicted trip productions are equal to actual trip productions, 
however, trip attractions are usually not reconciled [Dickey, 1983].  
To reconcile both trip productions and attractions, an iterative 
factoring process is utilized until all estimated values match trip 
generation predicted values. This means that the model will over-
estimate trips on some links, while under-estimating trips on other 
links.   
 
To ‘correct’ problems with trip distribution tables,  UTPS models are 
calibrated to ‘agree’ with field data.  During this calibration process, 
individual link attributes (trip speed, trip length, etc.) can be adjusted 
so that modeled volumes are equal to observed ground counts.  For 
example, an FHWA regional modeling calibration manual suggests 
shortening or lengthening trip times in order to make routes more or 
less attractive [Ismart, 1990].   
 
Let us reiterate the necessity for the calibration process. What is 
happening internal to the model algorithms is that statistical models 
are not capturing a large portion of the variation in trip making 
behavior between individuals in different geographical locations.  
This is due to several factors.  Data aggregation by zone forces ‘like’ 
people within zones to make trips in a similar manner.  For example, 
a model might predict that a 4 person household (2 young children) 
living in a similar neighborhood with similar household income will 
make the same total number of trips per day.  Because it is hard to 
incorporate variables that are important for trip making behavior, 
such as stage in one’s life cycle [Kitamura, 1988], it is similarly hard 
to estimate with accuracy differences in trip making between 
households.  This difficulty translates to models where estimated 
trips are significantly different than observed trips, so, we 
compensate by adjusting K factors, link speeds, etc.   
 
What these calibration errors mean to emissions estimation are 
unclear.  We can speculate, however,  on the impacts of adjusting 
travel times (either adjusting link speeds or link lengths) on emission 
estimates.  In order to change a travel time, we must either change 
link distance, or speed of travel. Of course we should never change 
link distance unless it is to make it correspond to true link distance.  

By changing link speeds, on the other hand, we will change average 
operating speed estimates of vehicles. 
 
If ground counts on a link are greater than the model-estimated 
traffic volumes, the FHWA manual indicates that we must increase 
travel time on the link.  To increase travel time on the link we need 
to decrease average link speeds.  Decreasing link speed is 
accomplished by “tinkering” with the BPR curve, e.g. reducing the 
modeled capacity of the segment so that a given traffic volume will 
be modeled as exhibiting a lower average speed. 
 
The problem is that very few studies are ever conducted to determine 
whether modified link speeds ever match the link speeds predicted 
by the model after re-calibration of the BPR curve is undertaken to 
reconcile traffic volumes.  
 
No matter what we manipulate to reconcile traffic volumes,  we will 
affect estimates of emissions from motor vehicles.  The critical issue 
becomes, then, the magnitude and direction of change necessary to 
calibrate a ‘typical’ urbanized region. 
 
For example,   suppose a 5 mile two-lane link has an observed a.m. 
peak period traffic volume of 1800 vehicles per hour per lane, 
totaling 3600 vehicles for a one hour period.  Suppose that our 
regional model predicts traffic volumes of 4000 vehicles per hour.  
In order to reduce the flow on the link, we must either increase the 
travel time on the link or increase the link distance.   If we increase 
the travel time (reduce average speed) on the link to make ground 
counts match estimated traffic volumes,  then we under-estimate the 
average operating speed, which changes our estimate of emissions on 
this link.   

Treatment of recurrent and non-recurrent delay 
Finally, we consider the treatment of non-recurrent congestion.  
UTPS type models do not have a specific mechanism for modeling 
the random occurrence of incidents and accidents.  Because 
approximately 60% of observed network delay is non-recurrent and 
is caused by accidents or incidents, this delay is not typically 
included in ground count volumes or observed speeds.  For example, 
UTPS modelers compare predicted traffic volumes and average 
speeds to ground counts and observed average speeds.  When 
recording ground counts and average speeds on a network link, days 
when traffic is ‘gridlocked’ due to an overturned truck are not used 
as an ‘average’ day for that link, and are discarded.  That event 
represents a random occurrence that contributes to about 60% of the 
total delay experienced by motor vehicles.  In effect, a large portion 
of the total delay experienced by motorists on a network is not 
reflected in UTPS modeled outputs, contributing to underestimation 
of overall emissions. 
 
From a regional perspective, failure to account for the emissions 
impacts of accident delay may play a role in whether air quality plans 
are designed to achieve attainment.  However, from an analytical 
perspective,  the exclusion of non-recurrent delay is only a problem 
when transportation - air quality planners want to assess 
transportation projects or programs that may affect non-recurrent 
accidents or incidents.  As the typical procedure for assessing the 
emission impacts of a transportation project or program is to model 
pre and post project emissions,  a project or program that reduces 
non-recurrent congestion will not be shown to be beneficial to air 
quality.   Examples of these projects include:  roving emergency 
vehicle services;  advanced warning message signs;  in-route vehicle 
information services;  and vehicle safety inspection programs.  
Although these sorts of transportation projects or programs may be 



extremely beneficial and cost effective for improving air quality in a 
region,  there is no way to demonstrate this with the currently 
mandated modeling tools. 

Methodological Errors in Emission Models 
This section addresses several putative yet onerous errors besetting 
air quality analyses.  The topics are not meant to be exhaustive, but 
instead focus on areas that raise serious questions as to the 
uncertainty present in air quality analysis.  

Statistical confidence in modeled outputs 
One of the problems associated with current emissions models is the 
absence of error or confidence bounds.   Without confidence bounds 
to provide an indicator of the uncertainty introduced by sampling 
errors,  we have little information in which to construct useful 
policies surrounding the use of emissions models.   
 
Investigation into the nature of the uncertainty surrounding the speed 
correction factor curves embedded in the EMFAC model shed light 
onto the seriousness of this problem [Guensler, 1993].  The research 
showed that the confidence intervals surrounding the Speed 
correction factor curve are quite large, and that the uncertainty 
expressed in the currently employed statistical relation between 
emissions and average vehicle operating speed is quite large.   
 
The confidence interval concept is extremely important in the 
context of conformity analyses. Assume that our model predicts a 
mean emission rate for a specified fleet of vehicles moving at 10 
mph average speed is 4 grams per mile.  The 95% confidence 
interval, however, suggests that the mean emission rate for this fleet 
is actually between 3 and 5 grams per mile.  Despite the fact that our 
model has predicted 4 grams per mile, we are 95% confident that the 
true mean emission rate, considering the random uncertainty in 
emission rates, lies between 3 and 5 grams per mile. 
 
It is important to note that the confidence interval issue is not an 
issue of random error that disappears as the model is applied to 
numerous applications.  Every time the model is asked to provide a 
mean emission rate for an average speed of x mph, the model will 
return a value of y grams/mile.  Thus, every time the model is 
applied, it systematically over or under-estimates the emissions 
associated with this average speed.   
 
If policy makers were provided with confidence interval information, 
they would better understand the limitations of the current state of 
the practice emission models and potential implications of their 
decisions. Continuing from the above example, if a policy required 
rejection of transportation strategies that resulted in emission 
increases, we could not be sure that our models predicted higher 
emission because of randomness, or because of a true increase in 
emissions.  This distinction is important, because you could actually 
reject a possibly beneficial transportation strategy that showed 
negative emission impacts because of random uncertainty.   

Use of fleet average FTP Bag2 averages 
Current emissions models employ fleet average Federal Test 
Procedure (FTP) ‘Bag 2’ emission test results.  That is,  the average 
emission rate from a fleet of vehicles tested on the FTP Bag 2 test is 
used as a component of the emissions models.  Both regional 
emissions models,  EMFAC in California and MOBILE in the 
remainder of the US,  and many of the micro-scale, or project level 
models, use approximated fleet average values.  Significant problems 

arise when fleet average test results are used as inputs to emissions 
models. 
 
The first is that the models predict the same emission rate for any 
vehicle on the roadway.  The mathematical equations derived for 
predicting emissions are generally a function of the average 
measured emission rate and other vehicle activity variables.  They 
typically take the form: 
 

Ei = ƒ(ei, ai, ci);     where, 
 Ei = model predicted average emission rate on link i,  
 ei = average FTP Bag 2 emission rate for vehicles on 
  link i, 
 ai = average vehicle activity estimate on link i, 
 ci = average breakdown of vehicle technologies and 
  classes on link i. 
 
The required model inputs are typically average values--average FTP 
Bag 2 emission rate for the approximated regional fleet;  average 
vehicle activity, usually average speed by link;  and average 
breakdown of vehicle technology by region.   Average vehicle 
activity is derived from transportation activity models.  Average FTP 
Bag 2 emission rates are derived from various sources:  continued 
regional and statewide emissions certification testing results;  
estimated emissions degradation from accumulated mileage of 
existing on road vehicles;  and from estimates of the make up of the 
regional vehicle fleet [USEPA, 1992a; USEPA, 1992b; CARB 1991; 
CARB, 1992; CARB, 1994].   
 
It is important to note that our goal in emissions modeling is to 
predict both spatial and temporal dispersion of emissions. Because 
individual ‘dirty’ vehicles can contribute significantly to local and 
regional emission inventories,  it is important to identify when and 
where these dirty vehicles operate.  Furthermore, when these high 
emitting or ‘dirty’ vehicles engage in aggressive driving behavior, 
their contribution to the emission inventory can be even more 
substantial.  As long as the models employ fleet average Bag 2 
emission rates, we will not be able to effectively assess 
transportation policies and strategies that target the complex 
interactions between certain vehicle types and certain vehicle 
activities. 
 
The second problem with using fleet average FTP Bag 2 emission 
rates is that small mis-representations of the fleet average by region 
can result in large mis-calculations of fleet average emission rates.  
Specifically,  the proportion of high emitters has extreme influence 
on the computation of fleet average values, which in turn will impact 
estimates of carbon monoxide emissions for a vehicle fleet.    
 
Because both the CALINE4 and EMFAC7F models rely on fleet 
average FTP Bag 2 emission rates for computational accuracy. The 
models require that the estimated Bag 2 average is the ‘true’ average 
value for the entire regional fleet.  If for example, estimated FTP Bag 
2 averages are higher than those in the true fleet, the models would 
over-estimate carbon monoxide emissions.  The concern is, how 
much over or under estimation will occur from using an incorrect 
estimate of the fleet average FTP Bag 2 emission rate?   
 
Unfortunately, emission rates are not normally distributed, and only 
a small portion of the cleanest vehicles exhibit behavior that follows 
a normal distribution.  Using a more subjective criteria to identify 
outliers, and using a cut-point of 62.13 grams per kilometer (100 
grams per mile) to separate normal from high-emitting vehicles, the 
distribution becomes apparent.  This cut-point is chosen because it is 



an easy to remember cut-point, and because it is not subject to 
variation in vehicle fleet composition.  For example, an identification 
scheme employing the sample mean and one or two standard 
deviations from the sample mean is dependent upon the sample, and 
will vary across test samples, whereas using 62.13 grams per 
kilometer (100 grams per mile) is a consistent means in which to 
separate high emitters from normal emitters. 
 
Table 1 shows the breakdown of the high-emitters contained in the 
Speed correction factor data set for CO.  For example, when 7.8% of 
the vehicles exhibit test result emission rates greater than 62.13 
grams per kilometer (100 grams per mile), their contribution to the 
total emission inventory for that fleet is roughly 72%. Their 
proportion of a weighted average emission rate from all activity 
represented by the testing cycles would be 72%.  Similarly, 3.5% 
high emitters in the fleet contribute to 53%, all other things being 
equal.  The table shows that mean emission rates increase 
disproportionately to corresponding proportions of high-emitting 
vehicles.  For example, increasing the proportion of high emitting 

vehicles from  3.5% to 7.5% corresponds to an increase in the mean 
emission rate from roughly 9.9 to 16.2 grams per kilometer (16 to 26 
grams per mile).  Therefore, small variations in the estimated average 
FTP Bag 2 emission rate bring about large impacts in emission 
estimates. 
 
To illustrate the extreme importance of the results provided in Table 
1, consider the following example.  If we estimate that 3.5% of the 
vehicle fleet emit over 62.13 grams per kilometer (100 grams per 
mile), but in reality 7.5% are high-emitters, then we will under-
estimate the true mean emission rate by roughly 5.9 grams per 
kilometer per vehicle (9.5 grams per mile).  Applying this mistake on 
a region wide basis, we could expect an under-estimation of CO 
emissions by roughly 10 metric tons per million vehicle kilometers 
of travel, or an under-estimation of the contribution of high-emitter 
CO pollution to the total emission inventory by about 20%.  Of 
course, the reverse effect would occur if the proportion of high 
emitters in the vehicle fleet was over-estimated.   

 

Table 1 - Summary of High-Emitter Impact on Emission Inventory 

Proportion of Vehicle Test 

Results above  

62.13 grams / kilometer  

(% High-Emitters)2 

 

Mean  

Emission Rate 

(grams / kilometer) 

 

Median  

Emission Rate 

(grams / kilometer) 

Total Emissions Associated with  

Speed Correction Factor Database  

Test Vehicle Emission Results 

(%) 

7.85 16.66 1.80 72.27 

7.50 16.15 1.79 71.27 

6.80 15.10 1.74 69.04 

4.63 1 11.86 1.68 59.66 

3.54 10.29 1.67 52.99 

3.15 9.72 1.62 50.06 

2.38 8.57 1.62 42.89 
1 Proportion of high-emitters (> 62.13 grams/kilometer) contained in speed correction factor data set for CO (Bag1 and Bag3 vehicles not 
included) 
2 Percent of high-emitters in fleet was varied by randomly omitting or adding high emitting vehicles to the existing speed correction factor 
database vehicles 

Separation of automobile certification and 
emission inventory modeling 
A fundamental and critical question has thus far not been sufficiently 
addressed in the emissions model development arena is:  Should 
motor vehicle emission certification issues be separated from 
emission modeling development, i.e.,  should certification test 
results play a useful role in the derivation of modal emission testing 
protocol as they have in past US model development efforts?    
 
Currently, vehicle certification and emission model development 
rely upon test results from the current ‘certification cycle’.  The 
certification cycles (i.e. the Federal Test Procedure, Highway Fuel 
Economy Test, and new IM240 and Unified Cycles) were designed 
to serve as emissions benchmarks, against which vehicle-to-vehicle 
emissions performance can be compared.  In using emission testing 
cycle data for emission modeling purposes, there is an inherent 
presumption that if a vehicle operates cleanly on the certification 
cycle it is likely to operate cleanly under onroad operating 
conditions.  However, separation of vehicle certification from model 
development may be extremely beneficial.  
 

Vehicle certification and emission model development should be 
separated.  This separation would represent a significant departure 
from current practice, as existing models have been developed 
simultaneously with vehicle certification testing cycle development.  
Separation of vehicle certification testing from emission model 
development may make technical and practical sense, since emission 
forecasting and vehicle certification have two distinctly different 
objectives:  vehicle certification is an enforcement tool that aims to 
ensure that vehicle fleets meet emission standards while driven over 
a ‘typical’ driving cycle, whereas emission modeling is a planning 
tool used to forecast emission inventories and impacts from a fleet of 
motor vehicles driven over any number of possible cycles.  It is not 
entirely clear that these two objectives are compatible or 
complimentary.  De-coupling contemporary vehicle certification 
issues from emission modeling issues may allow more effective 
pursuit of these individual and independent objectives.   

Sampling Errors 
A problem that has largely not been recognized is the fact that the 
mathematical algorithms employed in regional emission models 
(EMFAC and MOBILE) were derived using outdated and 
statistically non-representative vehicle fleets.  The consequence is 



that the relationship between emission rates and vehicles is not well 
represented in the models. 
 
To illustrate, consider the distribution of California vehicles shown 
in Table 2.  It depicts the percentage of currently registered 
California vehicles by model year and inertial weight [Smith, et al., 
1995].  Not shown in the table are pre-1977 model year vehicles, 
which account for approximately 10% of the total road fleet in 
California. Ideally, an emission model that defines the relation 
between emission rates and vehicles should be derived using a 
representative sample of vehicles from the on-road fleet,  with the 
range of vehicle technologies, weights, and engine types represented.  

Of course, the primary objective is to obtain representative emission 
characteristics of on-road vehicles.  Model year and inertial weight 
classifications, shown in Table 2, are reasonably ‘good’ indicators of 
emissions.  Model year is a ‘surrogate’ variable that partially 
captures the effect of technological penetrations of fuel delivery 
technology, evaporative emissions control equipment, catalytic 
converter equipment, engine technology improvements, and engine 
degradation characteristics.  Inertial weight, on the other hand, 
partially captures the effect of load, engine size, number of 
cylinders, engine power, and engine torque [Smith et al, 1995].  
Other useful classifications might include fuel delivery technology 
and horsepower to weight ratio. 

 

Table 2 - Percent of California Registered Automobiles by Model Year and Inertial Weight 

DMV DATA EPA DATA
Percent Autos Vehicle Inertia Weight Row

Model Year Registered 1750 2000 2250 2500 2750 3000 3500 4000 4500 5000 Sum
1977 2.12% 0.00% 0.03% 0.16% 0.09% 0.07% 0.11% 0.14% 0.62% 0.66% 0.25% 2.12%
1978 2.69% 0.00% 0.06% 0.21% 0.19% 0.12% 0.22% 0.72% 0.54% 0.48% 0.15% 2.70%
1979 2.81% 0.00% 0.06% 0.18% 0.28% 0.12% 0.33% 0.70% 0.69% 0.40% 0.05% 2.82%
1980 2.76% 0.00% 0.08% 0.34% 0.34% 0.28% 0.59% 0.63% 0.38% 0.10% 0.00% 2.76%
1981 3.09% 0.00% 0.07% 0.42% 0.54% 0.25% 0.57% 0.65% 0.46% 0.11% 0.00% 3.08%
1982 3.36% 0.00% 0.07% 0.38% 0.62% 0.41% 0.67% 0.61% 0.52% 0.08% 0.00% 3.36%
1983 4.51% 0.00% 0.05% 0.56% 0.70% 0.49% 0.85% 0.94% 0.82% 0.10% 0.00% 4.51%
1984 5.55% 0.00% 0.05% 0.47% 0.79% 1.07% 1.04% 1.16% 0.88% 0.09% 0.00% 5.55%
1985 6.59% 0.02% 0.04% 0.51% 1.03% 1.15% 1.25% 1.50% 1.02% 0.07% 0.00% 6.59%
1986 7.40% 0.05% 0.04% 0.50% 1.09% 1.27% 1.90% 1.86% 0.61% 0.07% 0.00% 7.40%
1987 7.14% 0.03% 0.07% 0.31% 1.31% 1.26% 1.83% 1.68% 0.61% 0.05% 0.00% 7.15%
1988 7.70% 0.04% 0.13% 0.29% 1.30% 1.09% 2.26% 1.93% 0.59% 0.01% 0.00% 7.63%
1989 8.10% 0.02% 0.11% 0.23% 1.08% 0.97% 2.76% 2.17% 0.70% 0.07% 0.00% 8.11%
1990 8.10% 0.01% 0.06% 0.09% 0.87% 0.99% 2.62% 2.48% 0.93% 0.06% 0.00% 8.11%
1991 7.62% 0.00% 0.13% 0.11% 0.67% 1.30% 2.44% 1.91% 0.99% 0.06% 0.00% 7.62%
1992 9.02% 0.01% 0.16% 0.14% 0.63% 1.41% 2.35% 2.90% 1.29% 0.12% 0.02% 9.03%
1993 11.43% 0.01% 0.18% 0.17% 0.84% 1.68% 3.05% 3.60% 1.74% 0.15% 0.02% 11.45%

Column Sum 100.00% 0.19% 1.41% 5.07% 12.37% 13.94% 24.85% 25.58% 13.41% 2.68% 0.49% 100.00%
 

Source:  California Department of Motor Vehicles and United States Environmental Protection Agency 
0.00% is < 0.01% 
To illustrate the importance of obtaining a representative fleet of 
vehicles, consider the distribution of California vehicles shown in  
Table 2. We see that 3500 lb. 1993 model year vehicles represent a 
relatively large fraction of the California vehicle fleet.  We must be 
sure that this ‘class’ of vehicles is well represented in the test fleet or 
we may miss important emission characteristics from this ‘class’ of 
vehicles.  
 
Table 3 shows the percent of California vehicles contained in the 
Speed correction factor (SCF) database used to estimate the current 
EMFAC and MOBILE emission models.  From inspection we see 
that there are no vehicles beyond 1991 contained in the data set.  We 
also see that very few light or heavy vehicles are represented in the 
data set.  Casual inspection of Table 3 shows that the true 
distribution of California vehicles is not approximated well by the 
collection of vehicles used to derive the critical emission rate 
formulas contained in the EMFAC emissions model. 
 
The problem of non-representativeness can only be solved through 
procurement and testing of an updated and representative set of on-
road vehicles.  It should also be recognized that vehicle fleets can 
change significantly across regions and states,  and that these 
differences should be explicitly accounted for in any model 
improvement effort. 

Model Validation Problems 
There have been many research efforts to validate (or invalidate) the 
results of emissions models.  This section discusses three of these 
validation efforts:  tunnel studies; remote sensing studies; and 
ambient air quality studies. 

Tunnel Studies (Adapted from Washington, 1994) 
Tunnels are a natural test site in which to measure emissions from a 
fleet of vehicles because ambient air exchanges are minimized by the 
impermeable tunnel walls, traffic flows can be measured fairly 
accurately, and air quality monitors can be strategically placed to 
measure emissions from the fleet of vehicles passing through the 
tunnels.  In theory, observed concentrations of pollutants in the 
tunnels can be compared with model-predicted concentrations. 
 
Several tunnel studies have been conducted to compare predicted and 
observed emissions.  Most efforts thus far have compared the 
observed ratio of pollutant concentrations with the predicted ratio  
 

 
 



Table 3 - Percent of California Automobiles by Model Year and Inertial Weight Contained in the Speed Correction Factor Data Base 

Vehicle Weight Row
Model Year 1750 2000 2250 2500 2750 3000 3500 4000 4500 5000 Sum

1977 0.48% 0.16% 0.32% 1.27% 0.95% 1.43% 4.60%
1978 0.16% 0.48% 0.32% 0.32% 0.95% 1.27% 0.79% 1.43% 0.63% 6.35%
1979 0.00%
1980 0.16% 0.16% 0.32%
1981 0.48% 3.65% 4.44% 0.95% 7.78% 2.86% 4.60% 1.11% 25.87%
1982 1.75% 1.43% 0.63% 0.63% 0.16% 4.60%
1983 0.16% 0.48% 1.11% 1.75% 5.56% 0.63% 2.06% 11.75%
1984 1.59% 3.65% 3.65% 0.95% 9.84%
1985 0.16% 0.48% 1.11% 1.75% 3.97% 1.90% 0.63% 10.00%
1986 0.32% 0.16% 0.95% 2.86% 0.79% 0.32% 5.40%
1987 0.16% 0.32% 2.38% 3.02% 2.86% 0.79% 9.52%
1988 0.16% 0.16% 0.63% 2.38% 1.75% 0.79% 5.87%
1989 0.48% 0.48% 3.49% 0.95% 0.32% 5.71%
1990 0.16% 0.16%
1991 0.00%
1992 0.00%
1993 0.00%

Column Sum 0.16% 0.79% 5.71% 8.25% 13.02% 35.24% 17.94% 13.17% 3.65% 2.06% 100.00%  
 
 
of pollutant emissions based upon outputs from predictive models 
such as the CARB’s EMFAC and the USEPA’s MOBILE models.  
The calculated average emission rates in tunnel studies (based upon 
observed pollutant concentrations, measured airflows, and observed 
vehicle activity) are compared with the emission rate outputs from 
predictive models such as the CARB’s EMFAC and the USEPA’s 
MOBILE models.  Although the fruits of this research are extremely 
valuable, little has been done to investigate whether tunnel studies 
reflect a ‘representative’ sample of driving behavior and vehicle fleet 
characteristics for which modeled emissions should be compared.  
Furthermore, the implications of using such tunnel studies to validate 
or invalidate current models have not been assessed. 
 
There are three tunnel studies which provide data on CO, HC, and 
NOx emission rates, and CO/NOx and HC/NOx ratios (earlier tunnel 
studies are omitted because of non-representativeness of the vehicle 
fleets and because of the use of EMFAC 7C for emission estimation 
during those studies).  The three studies represent data from the Van 
Nuys (Sherman Way) Tunnel [Ingals, 1989; Pierson, Gertler, and 

Bradow, 1990] in Los Angeles, California, the Fort McHenry Tunnel 
[Gertler, Pierson, Zeilinska, Robinson, and Sagebiel, 1993] located 
in Baltimore, Maryland, and the Tuscarora Mountain Tunnel [Gertler 
et al., 1993] located in Pennsylvania.  The Van Nuys tunnel is about 
222 meters long, has a maximum grade of about 1.7%, and contains 
3 lanes both eastbound and westbound.  The Fort McHenry Tunnel is 
2,174 meters long, has a maximum grade of about 3.76%, and has 
four bores.  The Tuscarora Tunnel is 1,623 meters long, has a 
maximum grade of about 0.30%, and has 2 bores.  Both the Van 
Nuys and Tuscarora Tunnels contain horizontal curvatures.  The 
emissions data from the Van Nuys, Fort McHenry, and Tuscarora 
Tunnels were collected in October and December of 1987, June of 
1992, and September of 1992 respectively. 
 
In the Van Nuys Tunnel study, gram per mile emissions of CO, NOx, 
and HC, and emission rate ratios of CO/NOx and HC/NOx were 
compared to EMFAC7C predicted emission rate ratios [Pierson et al. 
1990]. Table 4 below summarizes the results from the study. 
 

 
 

Table 4- Summary of Emission Results from Van Nuys Tunnel Studyξξξξ 

 
result  (result standard deviation)  

CO 
(grams / mile) 

HC 
(grams / mile) 

NOx 
(grams / mile) 

CO / HC / NOx 
(NOx⇒1) 

2 Low Speed Runs (13 mi/hr*)     
Measured 40.8 (4.6) 5.0 (4.6) 1.26 (0.15) 32.5/4.0/1 
EMFAC7C Predicted 33.6 (1.8) 2.72 (4.6) 1.95 (0.13) 17.3/1.4/1 

19 High Speed Runs (14 mi/hr*)     
Measured 21.0 (5.2) 2.7 (1.2) 1.59 (0.35) 13.3/1.7/1 
EMFAC7C Predicted 7.5 (1.0) 0.65 (0.07) 1.44 (0.15) 5.3/0.45/1 

 ξ Adapted from Pierson, et al. 1990. 
* Average of run-median speeds. 
 
 
Assessment of the Van Nuys Tunnel Study led researchers to make 
the following conclusions [Pierson et al. 1990]:  the Van Nuys 
Tunnel Study results agree with other on-road experiments done 
around the US, which support the notion that emission rates of CO 
and HC as well as emission ratios of CO/NOx and HC/NOx are 
higher than dynamometer model predictions;  “The discrepancy 
between the CO/NOx emission rate ratio from the Van Nuys tunnel 
and the predicted CO/NOx emission rate ratio is a factor of about 
2.2, comparable with the 1.8-fold discrepancy between ambient 

CO/NOx concentration ratios and emissions inventory CO/NOx 
ratios”; and that some contributing factors to the shortfall in HC and 
CO estimates are inadequate treatment of running evaporative losses, 
the effect of mal-maintained and tampered vehicles in the fleet, and 
the lack of vehicle modal activity reflected in the tunnel.  Note, these 
conclusions assume that the model predictions for NOx are correct:  
if NOx emissions are under-predicted, the HC and CO emission 
predictions are under-predicted even more significantly than 
indicated; if NOx emissions are over-predicted, the HC and CO 



emission predictions are not as significantly under-predicted as 
indicated. 
 

The Tuscarora and Fort McHenry Tunnel Studies, however, revealed 
good agreement between measured emissions and modeled 
emissions from the USEPA’s mobile source emission model, 
MOBILE 4.1. Table 5 shows the results from the study. 

 
 

Table 5- Summary of Emission Results from Tuscarora and Fort McHenry Tunnel Studyξξξξ 

result  (result standard deviation)  CO 
(grams / mile) 

HC 
(grams / mile) 

NOx 
(grams / mile) 

CO / HC / NOx 
(NOx⇒1) 

Tuscarora Runs *     
Measured 4.89 (0.49) 0.29 (0.06) 0.39 (0.26) 12.5/0.74/1 
MOBILE 4.1 Predicted 7.06 (0.55) 0.45 (0.02) 0.64 (0.07) 11.0/0.70/1 

Fort McHenry Runs *     
Measured  6.44 (0.63)  0.67 (0.16) 9.6/na/1 
MOBILE 4.1 Predicted 3.85 (0.56)  0.57 (0.07) 6.75/na/1 

 ξ Adapted from Gertler, et al. 1993. 
* Arithmetic Average of runs - Light Duty Vehicles. 
 
The table shows that in most cases, MOBILE 4.1 over-predicts 
emissions measured in the tunnels.  The authors concluded that:  
“Mobile source emission factors can be measured in tunnels”;  
“Tunnels can be used to test and determine deficiencies in emission 
factor models”; “High emitters may have a major impact on total 
emissions”; and “Grade has a significant (factor of 2) impact on CO 
and NOx emissions” [Gertler et al. 1993].  However, tunnel studies 
cannot be used to pinpoint the flaws in modeling methodology. 
 
In reviewing the results of the tunnel studies (and other tunnel 
studies yielding similar results), several key issues have not been 
sufficiently addressed.  Does agreement of tunnel studies with 
emission model estimates provide sufficient evidence to ‘validate’ 
the emission models?  In other words, is there evidence to suggest 
that the tunnel studies, when performed correctly, provide realistic 
estimates of emissions from motor vehicles under ‘normal’ or 
‘average’ driving conditions? The general answer is ‘sort of’.’  The 
driving behavior in tunnels is likely to be very different than 
‘normal’ driving behavior.  Considering that a very small percentage 
of the time is spent driving in tunnels, where driver behavior may be 
much more conservative than normal , one can question the 
representativeness of vehicle activity in tunnels.  Is this unique 
driving situation the best ‘test’ for the emission models, or does it 
introduce some bias?  To answer this question, we must look briefly 
at the methodologies employed in the current emission models.   
 
The speed correction factor methodologies employed in current 
emission models employ the results of dynamometer tests under 
different average operating speeds to establish ‘speed correction 
factor curves’ which are assumed to represent driving behavior.  In 
essence, to estimate the emissions in a tunnel where the average 
speed is 45 mph, for example, the statistically derived ratio of 
emissions results for vehicle tests at 45 mph average speed and 
emission results for vehicle tests at 16 mph average speed define the 
EMFAC speed correction factor [Guensler, 1993]. The 16 mph 
average speed cycle (FTP Bag 2) employs a variable cycle, 
containing many modes of operation (acceleration, deceleration, 
cruise, and idle events).  As will be discussed later, increased modal 
activity leads to increased emissions.  The amount of modal activity 
is generally quite different across test cycles, where the high-speed 
cycles used in the SCF derivation methodology (which were derived 
from a relatively stable portion of the highway fuel economy test) 
exhibit significantly less variation.  The derived speed correction 
factor is dependent upon the ratio of emission under these two 
distinctly different cycles with different emission profiles.  This 

ratio, in the case of our hypothetical tunnel study for an average 
speed of 45 mph, is applied to baseline emission rates for the fleet of 
vehicles entering the tunnel (FTP Bag 2 test results).   
 
Two factors become critical in the appropriateness of the SCF used 
in the tunnel studies.  First, the speed correction factors were derived 
through flawed statistical methods [Guensler, 1993] and the SCFs 
used in the tunnel studies were unlikely to be representative of the 
conditions to which they would normally be applicable (i.e., if the 
vehicles were driven in the same modal patterns under which they 
were tested to gather the SCF data).  Second, the speed correction 
factor generated from testing cycle activity near an average speed of 
45 mph is not likely to be appropriate for the tunnel activity to which 
it is applied.  If the driving behavior in the tunnels is less variable 
than the modeled cycle, then the model is likely to over-estimate 
emissions.  If the tunnel driving activity contains more modal 
activity than the emission testing cycle, then the model is likely to 
underestimate emissions. 

Remote Sensing  
Remote sensing and laboratory studies indicate that the 
underestimation of emissions is likely due to both unaccounted high-
emitting vehicles in the vehicle fleet and unaccounted ‘off cycle’ 
emissions excluded from the FTP and SCF testing cycles.  Chase car 
studies and instrumented vehicle studies have confirmed the 
presence of a large amount of ‘off cycle’ emissions, and have 
indicated that present cycles need revision [Carlock, 1991; LeBlanc, 
et al., 1994]. 
 
However, we must be concerned with the implications of remote 
sensing studies with regard to identification of high-emitters.  A plot 
of observations of high-emitting remote-sensed vehicles against the 
same vehicles tested on the Federal Test Procedure for CO reveals 
that the FTP does not identify high-emitting vehicles on a gram per 
mile basis [CARB, 1993].  In other words, a visual ‘best fit’ line 
provides a slope of close to zero, which suggests that remote sensing 
results provide no useful information for predicting high gram per 
mile emitters, and vice versa.  Essentially this means that high-
emitters identified by remotely measuring tailpipe concentration are 
not necessarily high emitters on a gram per mile basis.  This 
observation deserves further exploration.   
 
When vehicles are identified via remote sensors as being high-
emitters, we can be reasonably sure that the vehicle is in severe 



enrichment at the instant of measurement (the vehicle is not 
combusting it’s fuel stoichiometrically and is running rich).  Remote 
sensors identify high concentrations of CO, but cannot discern the 
volume of exhaust gases being expelled from the tailpipe.  If a 
‘clean’ car is identified by a remote sensor as a high emitter, it may 
still exhibit a very low gram per mile emission rate, relative to dirtier 
cars with bigger engines.  However, the remote sensor is still a 
useful tool for identifying potentially high emitting vehicles because 
combustion stoichiometry is based upon correct ratios (or 
concentrations) of fuel and air, which is measured (indirectly) by the 
remote sensor.  
 
Identifying high-emitters via remote sensing is not likely to provide 
adequate information to estimate the impact of high emitters on the 
emissions inventory.  However, remote sensing is useful for 
targeting poorly operating vehicles for clean up.  Current evidence 
suggests that remote sensors can not adequately identify high gram 
per mile emitters, which is important for determining emission 
inventory impacts.   
 
What is also important to note is that remote sensors only capture a 
‘snapshot’ in time, and not the full emission profile of vehicles.  
This is extremely important when we consider the variability of 
vehicles across test cycles.  Some vehicles register low gram per 
mile emissions on the FTP, yet register high gram per mile emissions 
on the high speed cycles.  This has been shown with many vehicles 
and cycles contained in the existing speed correction factor database 
[Guensler, 1993].  Many vehicles exhibit erratic emissions behavior, 
where their behavior on one test cycle is not at all indicative of their 

behavior on an alternative test cycle.  Some vehicles are high-
emitters on high-speed cycles only, while others are high-emitters on 
low speed cycles only.  The current EMFAC methodology predicts 
that vehicles exhibit systematic behavior across emission testing 
cycles. 

Ambient Air Quality Monitoring Studies 
Ambient air quality monitoring studies provide a relatively good 
source of data with which to compare model estimated emissions 
from motor vehicles.  The advantages of these studies are that they 
provide virtually continuous (temporally) monitoring of air quality 
in a gridded fashion for a region;  they provide relatively consistent 
CO/NOx and HC/NOx ratios, and they provide spatial information 
broad enough to provide air quality measurements for an entire air 
basin.  The disadvantages are, however, that they measure all 
emissions in an air basin, not just motor vehicle emissions;  the 
measurements are dependent upon spatial location, and atmospheric 
dispersion, and may not represent the most severe or extreme 
episodes; and the measurements can be heavily influenced by spatial 
and temporal variation in meteorological characteristics. 
 
The South Coast Air Quality Study (SCAQS) included 11 intensive 
sampling days during the summer of 1987 spanning from June 19 to 
September 3, and included 6 intensive sampling days in the fall 
spanning from November 11 to December 11.  A summary of the 
results are provided in Table 6. 
  

 

Table 6- Mean of SCAQS Monitoring Results - All stations♣♣♣♣  

Study CO / NOx NMHC / NOx NMOG / NOx 
Summer Field Study 20.0 (0.7)* 8.2 (0.2) 8.8 (0.2) 

Fall Field Study 18.4 (0.9) 6.6 (0.5) 6.9 (05) 
Mean Fall/Summer 0.92  0.80 0.78 

♣♣♣♣  Adapted from Fujita, et al. 1992 
* standard error of observed mean 

 
When comparing emission derived results to ambient monitoring 
results, researchers found that ambient CO/NOx and NMOG/NOx 
ratios were 1.1 to 2.7 and 1.7 to 3.0 times higher, respectively, than 
the corresponding emissions ratios derived using EMFAC7E [Fujita, 
et al., 1992].  When considering dispersion effects and atmospheric 
chemical processes, they found that the most appropriate 
comparisons for fall were basin-wide overnight comparisons, and for 
summer were basin-wide 06 - 08 am comparisons.  Considering these 
results, researchers found that ambient CO/NOx and NMOG/NOx 
ratios are about 1.5 and 2 to 2.5 higher, respectively, than 
corresponding emission inventory ratios [Fujita et al. 1992]. 
 

CONCLUSIONS 
This paper has identified some of the shortcomings of the current 
emissions modeling procedures used to perform conformity analyses 
by transportation and air quality planning agencies in major 
metropolitan areas. The problems cited are just some of the major 
problems compromising the accuracy of existing modeling practice.  
There are others.   
 
For example, we did not discuss the uncertainties associated with 
dispersion modeling.  Nor did we the problems associated with data 
collection used to ‘verify’ transportation activity models.   

 
Despite the serious problems we have identified,  the current models 
are indeed very helpful and necessary tools with which to perform air 
quality and conformity analyses as directed by the Clean Air Act.   
Considering that the system we are trying to model is so complex and 
contains so many significant and important variables, it is no surprise 
that there are still errors.  In fact, it is likely that we will never be 
able to predict some of the outcomes of the ‘system’ due to the 
presence of the human element.    
 
The challenge, then, comes in trying to determine how precise and 
accurate we should strive to be in our predictions and modeling.  
This begs a question:  What margin of error is acceptable in terms or 
accuracy, and similarly, what margin of error is acceptable in terms 
of precision? 
 
Under ideal conditions, we want model outputs that are precise and 
accurate. In transportation emissions modeling, precision is not an 
issue.  Every time the model is run for a certain scenario, the model 
predicts the same emission rate.  Because the models are not Monte 
Carlo simulation approaches and do not employ probability 
distributions, the mean response values embedded in the models are 
consistent for each modeling run. 
 



Model accuracy is another issue altogether.  The mean emission 
responses described in the model algorithms are not necessarily 
accurate.  As discussed previously, if these algorithms are based 
upon a poor representation of the vehicle fleet, or inappropriate 
statistical inferences, the results are not likely to be accurate.  The net 
accuracy of the model is really a function of the contributing bias of 
individual model algorithms (e.g. speed correction, temperature 
correction, etc.) Realistically, however, the current emission and 
transportation activity models can be significantly improved.   
 
Modeling biases lead to inaccurate models.  For example, the trip 
distribution model has been criticized over-estimating near trips and 
under-estimating far trips [Dickey, 1983].  This consistent error 
might lead to the systematic over-estimation of cold starts, which in 
turn leads to overestimation of cold start emissions.  These kind of 
errors in our models, systematic over or under predictions, are very 
serious and compromise our ability to ever predict the true 
population value.  What makes model inaccuracies even more 
insidious is that they cannot be detected easily.  To illustrate, 
consider the history of trying to reconcile regional emission model 
estimates with observed emissions (tunnel studies, remote sensing, 
ambient air quality monitoring studies).  It is extremely difficult to 
determine the source of the model bias,  as evidenced by the EMFAC 
7G model improvement effort.   
 
In the context of emissions and modeling requirements contained in 
the Clean Air Act,  many of the inaccuracies presented in this paper 
result in inaccurate model predictions.   The inability of regional 
activity models to characterize non-recurrent delay, for example, 
results in consistent under-estimation of congestion and emissions. 
Even more problematic is the fact that strategies designed to reduce 
non-recurrent congestion events (e.g. roving emergency vehicle 
services and advanced traveler information systems)  can not be 
assessed using the currently mandated modeling methods 
[Washington, 1995]. 
 
We must embark on a model improvement effort that identifies and 
corrects the systematic errors in the current modeling process.  The 
problem is deciding whether to perform incremental changes to 
existing models, or whether to revamp the entire sequence of models.  
Fortunately, both approaches are being taken.   
 
Perhaps one of the most significant improvements that can be done to 
improve the current emission models is to develop an emission 
model that employs traffic measures other than average speed to 
estimate emissions.  As recent research has disclosed that vehicle 
modal activity [Leblanc et al, 1994; Washington, 1995] is extremely 
important in the calculus of emissions.   
 
Improvements to emission models must be accompanied by 
improvements in regional activity models.  Since regional activity 
models do not currently includes estimates for vehicular modal 
activity (acceleration, deceleration, cruise, and idle),  the models are 
inadequate for input into a new generation of emission models.  It is 
hoped that the emergence of both improved transportation activity 
and emissions models will occur simultaneously. 
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