
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Simulating 3-Symbol Turing Machines with SIMD||DNA

Permalink
https://escholarship.org/uc/item/7xp4f93p

Author
Ong, Aaron Abram De Guzman

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xp4f93p
https://escholarship.org
http://www.cdlib.org/

Simulating 3-Symbol Turing Machines with SIMD||DNA

By

AARON ABRAM DE GUZMAN ONG
THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

David Doty

Fereydoun Hormozdiari

David Soloveichik

Committee in Charge

2021

i

Abstract

SIMD||DNA [11] is a model of DNA strand displacement allowing parallel in-memory computation on DNA

storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine with a SIMD||DNA

program, giving a more direct and efficient route to general-purpose information manipulation on DNA

storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [11]. We also develop software [9]

that can simulate SIMD||DNA programs and produce SVG figures.

ii

1 Introduction

DNA storage typically encodes information in the choice of DNA sequences [1,2,6], so that reading and writing

require expensive sequencing and synthesis steps. An alternative “nicked storage” scheme of Tabatabaei et

al. [10] uses a single long strand called a register, with a fixed sequence. Information is stored in the choice

of short complementary strands to bind to the register. This gives the potential to process the stored

information using DNA strand displacement [8], which reconfigures which DNA strands are bound without

changing their sequences. Thus manipulation of the stored information (i.e., computation) can potentially

be done in vitro with simpler lab steps than DNA sequencing or synthesis.

The SIMD||DNA model of Wang, Chalk, and Soloveichik [11] is an abstract model of such a system. It

allows parallel in-memory computation on several copies of the register; each register may store different

data. In the experimental implementation, each register strand is attached to a magnetic bead, enabling

elution: washing away strands not bound to a register while keeping the registers (and their bound strands)

in the solution. This motivates the “multi-stage” SIMD||DNA model of DNA strand displacement, which at

a high level works as follows. Each stage is called an instruction, consisting of a set of strands to add to the

solution. It is assumed that strand displacement reactions proceed until the solution reaches equilibrium,

at which point all strands and complexes not attached to a register are washed away. The strands for the

next instruction are then added. A key aspect of the model is that the wash step can constrain what strand

displacement reactions are possible afterward, compared to “one-pot” strand displacement schemes that mix

all strands from the start. This gives the SIMD||DNA model potentially more power than one-pot DNA

strand displacement. See section 2 for a formal definition and [11] for more details and motivation for the

model.

A major theoretical result of [11] is a SIMD||DNA program that that simulates a space-bounded version of

cellular automata Rule 110. When space is unbounded, Rule 110 is known to be efficiently Turing universal,

i.e., able to simulate any single-tape Turing machine [3] with only a polynomial-time slowdown [4], though by

an awkward indirect construction and encoding with very large constant factors. We show how to simulate an

arbitrary 3-symbol space-bounded single-tape Turing machine directly with a SIMD||DNA program. Since

custom manipulation of bits is much easier to program in a Turing machine than Rule 110, this gives a more

direct, efficient, and conceptually simple method of general-purpose information processing on nicked DNA

storage. Although we have not worked out the details, it seems likely that the construction can be extended

straightforwardly to Turing machines with alphabet sizes larger than 3.

Our construction was designed and tested using software we developed [9] for simulating the SIMD||DNA

model. It is able to take a description of an arbitrary SIMD||DNA program: a list of instructions, where

1

each instruction is a set of DNA strands to add. It produces figures indicating visually how the steps work,

both with text printed on the command line (for quickly testing ideas) and SVG figures, such as most of

those in this paper.

2 Model

In this section we define the model of SIMD||DNA [11].

1 2 3 4 5 6 1 2 3 4 5 6

both strands
have domain 6

(a)

(b) attachment

(d) one-way displacement

cell 1 cell 2

(f) cooperative displacement

(e) toehold exchange displacement

(c) detachment

only right strand
has domain 3

Figure 1: Notational conventions and reactions in the SIMD||DNA model. The register strand is on the bottom in each
subfigure, with a yellow round “magnetic bead” depicted on the left (not depicted in subsequent figures). Lightly shaded gray
or pink regions denote bonds (double-stranded regions), but later figures omit this and simply draw a forward strand (one with
5′ end on left and 3′ end on right) immediately above the domains to which it is bound on the register strand. (a) Conventions
for domain names of strands. Domains are numbered 1, . . . , d within each cell; d = 6 in fig. 1(a) and d = 18 in subsequent
figures. The register strand has the starred versions of these domains. If a top strand is horizontal over domain i, it has domain
i. If it is diagonal over the whole domain, it has an unlabelled domain distinct from all register domains (used as a toehold
overhang for detachment, see subfigure (c)). If two strands both partially cover a domain then they both have that domain.
(b) A forward instruction strand can attach if at least two complementary consecutive domains are unbound on the register.
(c) Reverse instruction strands can bind to toehold overhangs on forward bound strands to detach them from the register. The
fact that the (unlabelled) toeholds are complementary is indicated by a diagonal bend in the reverse strand matching. (d)
Forward instruction strands can do toehold-mediated strand displacement, one-way if the displacing strand contains all the
domains of the displaced strand. (e) If the displacing strand is missing the last domain of the displaced, displacement can also
happen, known as toehold exchange. This is often called “reversible” since it conserves the number of bound domains, but in
the SIMD||DNA model, instruction strands are added in large excess over registers, making it effectively irreversible due to the
entropic bias toward binding the instruction strand. Thus it is depicted with irreversible arrows in the figure. (f) Two forward
strands can cooperate to displace a single bound top strand if neither has enough domains to displace on its own.

See fig. 1 for notational conventions in the SIMD||DNA model and an explanation of the basic strand

displacement reactions. The register strand is on the bottom in each sub-figure, with a yellow round “magnetic

bead” depicted on the left (bead not depicted in subsequent figures). The register strand has its 3′ on the

left and 5′ end on the right. The model allows multiple registers to be present in solution at once, each

2

possibly configured differently. However, it is assumed that register strands are sufficiently dilute that they

do not interact with each other or with strands that have been displaced from other registers. Thus all

figures depict only a single register.

The register strand is divided into cells, which are further divided into domains. Each domain can be

thought of as a fixed-length DNA sequence with relatively weak binding (e.g., 5-7 bases). A strand is stably

attached to the register strand only if it is bound by at least two domains, but one domain is sufficiently

long to act as a “toehold” to help initiate strand displacement (fig. 1(c-f)). Within a cell with d domains,

each domain is unique and assumed to be named 1, 2, . . . , d. The register strand has the starred version of

these domains, e.g., 1∗, 2∗, 3∗, 4∗, 5∗, 6∗, 1∗, 2∗, 3∗, 4∗, 5∗, 6∗ reading from the register’s 3′ to 5′ end (left to

right) in fig. 1(a). All cells have the same ordered list of domains, so for example in fig. 1(a), domain 5 in

cell 1 is the same DNA sequence as domain 5 in cell 2.

An instruction is a set of strands that are added to the solution at once. fig. 1(b-f) shows the various

reactions that these strands might conduct to change the configuration of strands attached to the register.

Multiple reactions can occur in a cascade in a single instruction.1 Instruction strands can either be forward

(3′ arrow on right) or reverse (3′ arrow on left). Forward instruction strands can do attachment and

displacement reactions (fig. 1(b,d-f)) and reverse instruction strands can detach forward strands previously

bound to the register (fig. 1(c)).

Crucially, instruction strands are added in large excess over the register strands. Thus even the toehold

exchange displacement, which is often considered reversible due to being enthalpically balanced (same number

of domains bound before and after), is actually irreversible in the SIMD||DNA model, due to the entropic

bias toward binding the new instruction strand with much larger concentration than the strand it displaces.

The notation of [11] uses dashed lines for reverse strands used for detachment, as a visual reminder that

they do not bind to the register. We leave reverse strands as solid lines and rely on the 3′ arrow to denote

that the strand is reversed. We reserve the dashed line notation for later figures to depict inert instruction

strands: instruction strands that are shown above the register where they would bind if possible, but where

no reaction allows them to do so in the current configuration. We also have a slightly different notation for

strands with domains mismatching the register: in [11], these are depicted by writing an explicit domain

name. In our convention, the drawing of that part of the strand as diagonal and lying entirely above the

register domain indicates that the top strand domain and register domain are not complementary (fig. 1(a),

cell 2, domain 3). To denote that two adjacent top strands share the same domain, both of which can bind

to the register (so they dynamically compete with strand displacement), we draw both strands partially
1See for example instruction 39 in fig. 8. In the right cell, an orange instruction strand displaces an orange strand bound

to the register via toehold exchange. This opens a toehold for a blue instruction strand to displace the bound blue strand,
resulting in the configuration shown at the beginning of instruction 41.

3

horizontal over the domain, and partially diagonal (fig. 1(a), cell 1, domain 6).

Although these rules allow for nondeterministically competing reactions, our construction is deterministic

in the sense that there is only one sequence of reactions possible in any instruction step.

After instruction strands are added and the described reactions go to completion, the wash step removes

all strands not bound to the register. This includes excess instruction strands that never reacted, as well as

strands that were displaced or complexes formed in a detachment reaction.

3 Simulation of Turing machine in SIMD||DNA

In this section we describe how to simulate an arbitrary 3-symbol single-tape Turing machine with SIMD||DNA

instructions.

3.1 High-level overview of construction

Since the SIMD||DNA model as defined has no mechanism to grow the register strand, it can only simulate

a fixed-space-bound Turing machine (a.k.a., linear-bounded automaton), which starts with s total tape cells

and never moves the tape head off of them. A 3-symbol, space-s Turing machine has three tape symbols:

0, 1, xy. The binary input x ∈ {0, 1}<s is represented by string xxys−|x| on the tape in the initial configuration,

i.e. x padded with enough blank symbols to make s total tape cells. We use as a running example the 5-

transition Turing machine in fig. 2, which increments a binary number.

0 , 1→R

␣→ L 0→ 1 , L

1→ 0 , L

a b h

Figure 2: Turing machine (start state a) that increments an integer represented in binary, with the least
significant bit on the right. This example is simulated in all subsequent figures.

Each cell of the register represents a tape cell of the Turing machine. If the Turing machine has t total

transitions, then each cell uses d = 2t+ 8 domains.

For each Turing machine, there is a fixed sequence of instructions that, after executing, will update the

register to represent the next configuration of the Turing machine.

The cell with the tape head is the only cell with uncovered register domains. Which domains are

uncovered (known as a transition region) represents both the current state of the Turing machine and the

symbol written on that tape cell. For all other cells, a disjoint region (the symbol region) represents the

4

symbol on that cell through its pattern of nicks. On the cell with the tape head, the symbol region has no

nicks (and represents no symbol) since it is covered by a longer 8-domain strand.

3.2 Representation of Turing machine tape cell as a register cell

In the SIMD||DNA representation of a Turing machine, each register cell represents a single Turing machine

tape cell. We represent each Turing machine with tape alphabet Γ = {0, 1, xy}, state set Q, and halt state h,

as a set of transitions, where each transition (q, b) → (r, c,m) means that if the Turing machine is in state

q ∈ Q \ {h} reading symbol b ∈ Γ, it changes to state r, writes symbol c, and moves one cell by m ∈ {L,R}

(left or right). Since the Turing machine is deterministic, for each state-symbol pair, there is at most one

transition with that pair on the left. (But some such pairs could be undefined, e.g., there is no (b, xy)→ . . .

transition in fig. 2.)

(a,0) (b,0)(a,⎵) (b,1)

Transition regions

(a,1)

Symbol region

Figure 3: A SIMD||DNA cell where the tape head is presently located. The (a, 0) region is fully exposed,
indicating that the Turing machine is in state a and that the cell contains the symbol 0. The other transition
regions are fully covered, and the symbol region (rightmost 8 domains of the cell) is covered by a single long
strand, not encoding any symbol (which is encoded by the uncovered transition region).

Representation of tape cell with tape head We take every state-symbol pair (q, σ) ∈ (Q \ {h}) × Γ

(each possible left side of a transition) and represent each as two consecutive domains in a SIMD||DNA

register cell. See fig. 3. Recall the binary incrementing Turing machine of fig. 2. It has five transitions:

(a, 0) → (a, 0, R), (a, 1) → (a, 1, R), (a, xy) → (b, xy, L), (b, 0) → (1, h, L), (b, 1) → (0, b, L). We call

the pair on the left the transition input. Each of the given transition inputs is represented in the SIMD||DNA

cell using two domains, requiring ten domains total for our example. Since each register cell represents a

cell in M , we must denote the presence of the tape head on one of the cells. If the tape head is present on a

given cell and if the current Turing machine configuration has a valid transition, then the two domains that

represent that transition will have no top strand attached to them, leaving them exposed. For example, if

the tape head is on a cell with the 0 symbol, and the Turing machine is currently in state a, then the region

that represents (a, 0) in that cell will be exposed to serve as a toehold for strand displacement. The other

transition regions are fully covered by 2-domain strands.

5

Representation of tape cell without tape head If the tape head is not present on a cell, or if no valid

transitions exist for the current configuration,2 then every transition region is covered by 2-domain strands.

Eight additional domains at the rightmost part of the cell, called the symbol region represent the current

symbol written on that cell.

0 (a,1) ⎵

0 strand pattern

⎵ strand pattern

1 strand pattern

0 1 (a,⎵)

full list of instructions

0 (b,1) ⎵

full list of instructions

Figure 4: High-level overview of construction. A Turing machine register currently in state a, with the tape
head on the second cell. The second cell contains the symbol 1. The leftmost cell contains symbol 0. The
inset above shows encodings for 1 and xy. All the transition regions are fully covered in cells lacking the tape
head. After the full list of instructions in the SIMD||DNA program are complete, the register represents the
Turing machine configuration with state a and the tape head moved to the rightmost cell with the xy. The
same full list of instructions updates the register again, now representing the Turing machine configuration
in state b with the tape head back on the middle cell.

Whenever the tape head is present on a cell, the symbol region is covered by a single 8-domain strand

that does not encode any symbol, since the symbol information is already encoded in the transition region

with an open toehold.

3.3 Detailed description of SIMD||DNA instructions simulating a Turing ma-

chine

We designed an algorithm that converts Turing machine specifications from https://turingmachine.io into

SIMD||DNA representations, along with the equivalent instructions. Each transition τi has an associated
2For example, if the machine has halted; see the bottom register configuration of fig. 9 for a case where the state is non-halting

but no valid transition exists.

6

https://turingmachine.io

sublist of instructions Li, and, not knowing which transition is applicable to the current configuration, we

simply add instruction strands in order from L1, L2, For i 6= j, to ensure that Lj instructions have no

effect when the current applicable transition is τi, we “plug” the open domains of other transition regions

with a strand and remove the plug strand once it’s time to process that transition. Because the SIMD||DNA

model allows parallel computation among multiple registers in the same solution, this prevents instructions

meant for one configuration from affecting registers currently not in that configuration. In the beginning,

all transition regions are plugged, where the order of processing for the transitions is arbitrary.

Pre-plug and post-plug strands to protect instructions for inapplicable transitions from affect-

ing configuration The full list of instructions to simulate a Turing machine transition works as follows.

Recall that in the “clean” configurations shown in fig. 4, the only exposed register domains are on the cell

representing the tape head. The first instruction in the entire list contains pre-plug strands for each transition

region. At the end of each instruction sublist Li, a post-plug strand is also placed on the transition region

that represents the Turing machine’s next applicable transition. Examples of both can be seen in fig. 7.

These strands act like a “chemical protecting group” that prevents instruction sublists Li from modifying

the register unless they apply to the intended transition. The difference between the pre-plug and post-plug

strands is that pre-plug strands protect the configuration when using instructions strands before the appli-

cable transition, whereas post-plug strands protect the configuration when using instructions strands after

the applicable transition. In the left part of fig. 7, because the register has a pre-plug strand in (a, xy), it

means that the instruction sublist L(a,xy) has not been applied to it yet. Instruction sublists for the other

transitions (a, 0)→ . . . , (a, 1)→ . . . , (b, 0)→ . . . , (b, 1)→ . . . will be inert, not affecting the register.

The first instruction of L(a,xy) will remove this pre-plug strand so that any register in the (a, xy) configuration

can be processed. The instruction sublists will result in a configuration like that of the bottom of figs. 8

and 9. fig. 9 shows instructions that affect the cell where the tape head was (right cell), not where it will be

next (left cell), which is why the left cell is the same in both figs. 8 and 9. This almost represents the next

Turing machine configuration, but with the appropriate transition region covered by a post-plug strand. The

final instruction in the entire list (fig. 7) removes this post-plug strand, restoring the register configuration

to be as shown in fig. 4.

The post-plug strand placed on the transition region at the end of simulating a transition has a different

purpose from the pre-plug strand placed in instruction 1. Its purpose is to prevent the register from updating

its state multiple times in the same instruction iteration. For example, if a register has a post-plug strand

on the (b, 1) region (indicating that it has been processed and that its next transition is (b, 1)), and the

instruction sublist that processes (b, 1) comes after, the register will be unaffected by (b, 1)’s deprotecting

7

instruction, keeping it inert throughout. The final instruction in the entire iteration removes these post-plug

strands from the registers, as seen in fig. 7, preparing the registers for the next iteration of the instruction

set.

Note the duality between pre-plug and post-plug instructions. All pre-plug strands are included in

the first instruction, though only one of them will bind (the one matching the applicable transition), and

instruction strands removing all post-plug strands are included as part of the last instruction, though only

one will find its complementary post-plug strand to remove. On the other hand, each pre-plug instruction is

removed more specifically, by adding a single complementary strand to remove it just prior to the sublist of

instructions corresponding to the applicable transition. Similarly, each post-plug strand is added by itself,

at the end of the instruction sublist corresponding to the applicable transition.

In the next section, we will describe the details of the instruction sublists that represent the Turing

machine transitions.

Sublist of instructions representing a single Turing machine transition Figure conventions. For

the figures explaining SIMD||DNA instructions that simulate a single transition of the Turing machine

(fig. 8 and beyond), we use the following conventions in figures. Several register configurations are shown,

but they are not necessarily consecutive. Each is numbered with its absolute index in the list of all 86

instructions implementing the Turing machine of fig. 2. An example with all instructions shown can be

found in appendix A. If two adjacent configurations have non-consecutive instruction indices, this means

that the instructions not shown are inert: their strands do not affect the register in that configuration. The

instruction strands that have just been added are always shown above the register, with a solid line if they

will do a reaction as in fig. 1, and with a dashed line if that instruction strand is inert for that configuration.

The final configuration in each figure does not show any instruction strands, but for all figures there is a

followup figure showing what happens next from that configuration (possibly the followup is fig. 7, the final

instruction in the entire program, removing the post-plug strand from the next applicable transition region).

Each Turing machine transition is individually processed by a sublist of instructions. The pre-plug strand

is first removed by an instruction containing its complementary strand, so that its corresponding transition

region in the cell can be used as a toehold, such as instruction 38 in fig. 8. The next instructions then update

the contents of the current cell to encode the symbol that the tape head writes. For example, in fig. 9, the

transition (a, xy)→ (b, xy, L) is represented, and the strand encoding of xy is placed in the right cell after the

tape head writes on it and moves left. After that, the instructions check the contents of the tape head’s new

location and determine the Turing machine’s next configuration. In fig. 8, the tape head moves to the left

cell and finds a 1, and the Turing machine goes to state b, so it leaves a post-plug strand on (b, 1)’s transition

8

region to show that the register has been processed for that instruction iteration, as seen in instruction 46.

Left versus right tape head moves In the SIMD||DNA instructions implementing a single transition,

there are two sublists: next-cell instructions and previous-cell instructions. As their names indicate, next-cell

instructions update the contents of the tape head’s destination, while previous-cell instructions update the

contents of the tape head’s former location. Other factors such as the symbol to be written on the current

cell and the next applicable transition region only introduce minor variations in the instruction strands.

For transitions moving the tape head left, the next-cell instructions precede the previous-cell instructions

(see figs. 8 to 11). For transitions moving the tape head right, this order is reversed (see figs. 12 to 15).

Left tape head moves fig. 8 shows the next-cell instructions for transition (a, xy) → (b, xy, L), for the

special case when the cell to the left of the tape head has the symbol 1. fig. 10 shows the next-cell instructions

for the same transition when the cell to the left of the tape head has the symbol 0, and fig. 11 shows the

next-cell instructions when the cell to the left has the symbol xy. Note that in any given configuration,

the same instructions will result in exactly one of the situations depicted in figs. 8, 10 and 11. Once these

next-cell instructions are applied, the leftmost domain of the previous cell will serve as a toehold for the

previous-cell instructions that follow in fig. 9.

Right tape head moves For right transitions, the first three instructions are the previous-cell instructions,

as shown in fig. 12. The next-cell instructions follow, where fig. 13 shows what happens when the cell to

the right of the tape head has a xy, fig. 14 shows what happens when the cell to the right has a 0, and

fig. 15 shows what happens when the cell to the right has a 1. As with the left-cell instructions, the next-cell

situations depicted in figs. 13 to 15 are disjoint.

Final deprotecting instruction fig. 7 shows the final deprotecting instruction, which removes the post-

plug strand put in place during the last instruction of the non-inert instruction sublists. This puts the

register back into a “clean” configuration representing a Turing machine configuration, such as those shown

in fig. 4, opening up new toeholds for the next iteration of instructions.

3.4 Complexity of construction

A common metric of “complexity” of DNA systems is the number of unique domains they require. Fewer

is better because it is a nontrivial task to design orthogonal domains: domains that, if they are not com-

plementary, will have low binding affinity. Low domain complexity is particular important in SIMD||DNA,

where each domain is considered “toehold-length”: sufficiently short (5-7 bases) that the off-rate of a strand

9

bound by a single domain is large enough to detach in a short amount of time. However, there are only

47 = 16384 DNA sequences of length 7. In practice even fewer are available: half are complementary to the

other half, leaving only 8192 available to assign to the unstarred versions of each domain. DNA sequence

design heurtistics such as the “3-letter code” (using only A,T,C for forward strands, thus only A,T,G for the

register and reverse strands) reduce this number to 37 = 2187. Reasonable design constraints, e.g., avoiding

using almost equal domains such as 5′-AAAAAAT-3′ and 5′-AAAAAAA-3′, which both bind almost equally

strongly to 3′-TTTTTTT-5′, further limit the set of available domains.

Our construction uses d = 2t + 8 total unique DNA domains (which repeat throughout the register),

where t is the number of transitions of the simulated Turing machine. While each transition is represented

by 2 domains, the construction can be altered to use more domains in order to prevent transition strands

from spontaneously dissociating from the register. To simulate a Turing machine with space bound s, the

register has s “cells”, where each cell is simply a copy of one each of the d domains 1, . . . d. Thus, if each

domain consists of k nucleotides, the register strand has k · s · (2t+ 8) total nucleotides. There is an 11-state,

3-symbol universal Turing machine (directly simulating another Turing machine) with 32 transitions [5],

giving 2 · 32 + 8 = 72 total domains required in the worst case. However, specialized non-universal Turing

machines with a smaller number of transitions (for example the 5-transition binary incrementor of fig. 4)

could accomplish many computationally sophisticated tasks.

Each Turing machine transition can be represented by approximately 16 SIMD||DNA instructions. The

exact number varies depending on the specific properties of the transition in question, such as the the

direction of the tape head, the symbol to be written, and whether any of the possible next configurations are

halting or not. This range has constant upper and lower bounds, however, so the total number of instructions

is in O(t), where t is the number of transitions in the Turing machine. Because the size of the cell increases in

O(t) due to the transition regions, the number of DNA strands present in some instructions also scales by a

factor of O(t), most notably the instructions that cause a cascade of toehold exchanges, such as instructions

3 to 7 in figs. 12 and 13.

4 Conclusion

Our construction, like the Rule 110 simulation of Wang, Chalk, and Soloveichik [11], is not Turing universal

because it simulates a space-bounded Turing machine. Truly universal computation should be possible

without knowing in advance how much space will be required. An interesting question (raised also in [11]) is

whether a suitable augmentation of the SIMD||DNA model could allow Turing-universal computation. This

would require unbounded polymers such as those used in the two-stack machine implementation of Qian,

10

Soloveichik, and Winfree [7]. That paper showed Turing universal computation in the case where only a

single copy of certain strands are permitted to exist in solution, simulating only a single stack machine at

a time, in contrast to the SIMD||DNA model, where we can operate on many registers, each representing

their own Turing machine, in parallel.

Technically the strand displacement reactions of the SIMD||DNA model are currently powerful enough to

grow arbitrarily large polymers from a fixed set of strands, as in [7], by alternating top and bottom strands,

making a long double-helix with nicks on the top and bottom. However, it is difficult to see how to use

the ability of SIMD||DNA to exploit this to simulate a Turing machine represented in this way. If there are

multiple bottom strands, i.e., there is a nick on the bottom, then any strand displacement of top strands,

upon reaching this nick, would separate the polymer into two complexes to the left and right of this nick,

and the right polymer would be lost in the wash step. One could imagine, however, augmenting the model

to allow, for example, 3-arm junctions, which could be used to do strand displacement that crosses over the

boundary between two bottom strands without separating them (since they would be joined to each other

by a strong domain representing the third arm “below” the main helix).

Although some of the toehold exchanges in the SIMD||DNA model are reversible based on the principles

of DNA strand displacement, we make the assumption that the applied instructions are not undone by the

displaced strands. This is based on the assumption that the instruction strands are present in a sufficiently

high concentration, such that reversal is possible but unlikely. Because multiple registers can be present in the

same solution, another possibility to consider is a displaced DNA strand from Register A binding to an open

toehold in Register B, such that the attachment is irreversible even with the presence of a high concentration

of instruction strands. One open question is to design a system that factors in these possibilities, reducing

the likelihood of unexpected strand displacement results.

Another open question is whether a more domain-efficient encoding exists for the Turing machine con-

struction. Given n transitions, 2n domains are required to represent them, which has O(n) complexity.

However, given d domains, there are 2d−1 possible nick patterns among the attached strands, which makes

an O(log n) domain complexity possible in theory.

11

1

(a,0) 1 0 1 ⎵

2

(a,0) 1 0 1 ⎵

3

(a,0) 1 0 1 ⎵

4

1 0 1 ⎵

5

1 0 1 ⎵

6

1 0 1 ⎵

7

0 1 ⎵

8

0 1 ⎵

9

0 1 ⎵

10

0 1 ⎵

11

0 1 ⎵

12

0 1 ⎵

13

0 1 ⎵

14

0 1 ⎵

15

0 1 ⎵

16

0 1 ⎵

17

0 1 ⎵

18

0 1 ⎵

19

0 0 1 ⎵

Figure 5: An overview of the first 19 instructions of the construction, which represent the (a, 0)→ (a, 0, R)
transition of the Turing machine shown in fig. 2.

12

20

0 (a,1) 0 1 ⎵

21

0 (a,1) 0 1 ⎵

22

0 (a,1) 0 1 ⎵

23

0 (a,1) 0 1 ⎵

24

0 (a,1) 0 1 ⎵

25

0 (a,1) 0 1 ⎵

26

0 (a,1) 0 1 ⎵

27

0 (a,1) 0 1 ⎵

28

0 (a,1) 0 1 ⎵

29

0 (a,1) 0 1 ⎵

30

0 (a,1) 0 1 ⎵

31

0 (a,1) 0 1 ⎵

32

0 (a,1) 0 1 ⎵

33

0 (a,1) 0 1 ⎵

34

0 (a,1) 0 1 ⎵

35

0 (a,1) 0 1 ⎵

36

0 (a,1) 0 1 ⎵

37

0 (a,1) 0 1 ⎵

Figure 6: An overview of instructions 20 to 37 of the construction, which represent the (a, 1) → (a, 1, R)
transition of the Turing machine shown in fig. 2. Because the register in this example is not in the (a, 1)
configuration, the instructions in this section do not affect the register, as no toehold is present.

13

Figure 7: On the left, the first instruction in the whole SIMD||DNA program covers the transition region representing the
next applicable transition. The two horizontal rows of strands have the following interpretation: Bottom are strands bound
to register, top are instruction strands. Dashed instruction strands will not have an effect on the current cell (but to help
verify correctness, they are shown above where they would bind to the register). On the right, the last instruction in the whole
SIMD||DNA program, which removes the post-plug strands in each register. In the above example, the post-plug strand covers
the (a, 0) transition region, indicating the cell’s next Turing machine transition. After this, the entire register is updated to
appear as a configuration similar to those in fig. 4.

14

38

39

41

43

44

45

46

(b,1)

1 (a,⎵)

Figure 8: First half of instructions (next-cell instructions) to implement transition a, xy → b, xy, L, in the
case that the cell to the left (where the tape head will move) has a symbol 1. After instruction 46, the
left cell (where the tape head will move next) now encodes the next state b and the symbol 1 on the new
tape cell. The instructions not shown (40,42,47,48) are inert in this case, but are used when the cell to the
left already has a symbol 0 or xy on it instead. figs. 10 and 11 respectively show these cases. fig. 9 shows
instructions completing the transition by writing xy over the right cell. In instruction 38, the transition
region is first unplugged to expose the toehold. The strands in instruction 39 cascade until the left cell’s
symbol region, allowing the instructions to branch out depending on the tape content of the left cell. The
remaining instructions process the left cell so that it encodes the next configuration. In instruction 46, a
special post-plug strand whose leftmost domain is orthogonal is attached to the region that represents the
next configuration; this strand will be removed once all transitions have been processed. The angled dashed
strands to the right of the register indicate that no cells are present to the right of the rightmost cell; if there
were another cell, then one more domain of each of these strands would be horizontal, bound to the leftmost
domain of the cell to the right (just as with their solid counterparts to the left).

15

49

50

51

52

(b,1) ⎵

(b,1)

Figure 9: Second half (previous-cell instructions) of transition a, xy → b, xy, L whose first 11 instructions
are shown in fig. 8, fig. 10, and fig. 11; these instructions write xy over the old cell (right of fig. 8) where the
tape head was at the start of the transition. Slight variations of instruction 15 write 0 or 1 instead of xy.

38

39

40

42

(b,0)

0 (a,⎵)

Figure 10: The next-cell instructions of the transition in fig. 8 that are applicable when the cell to the left
of the tape head has a 0.

16

38

39

47

48

⎵

⎵ (a,⎵)

Figure 11: The next-cell instructions of the transition in fig. 8 that are applicable when the cell to the left
of the tape head has a xy. Because no transition exists for the state-symbol pair (b, xy), the left cell is left
unchanged.

2

3

4

5

00

0(a,0)

Figure 12: First half (previous-cell instructions) of transition a, 0→ a, 0, R. Instruction 3’s strands cascade
to the right side of the current cell, while instruction 4 removes the previously introduced strands. Instruction
5 then covers up all the transition regions and adds the strands of the symbol to be written on the current cell
(0 in this example), but leaving the rightmost domain exposed to act as a toehold for the next instructions.

17

6

7

8

9

10

11

0 (a,⎵)

0 ⎵

Figure 13: The next-cell instructions for when the right cell contains a blank. The Turing machine enters
the (a, xy) configuration afterward.

18

6

12

13

14

15

16

0 (a,0)

00

Figure 14: The next-cell instructions for when the right cell contains the symbol 0, entering the (a, 0)
configuration.

6

17

18

19

0 (a,1)

0 1

Figure 15: The next-cell instructions for when the right cell contains the symbol 1, entering the (a, 1)
configuration.

19

References
[1] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin Strauss. A

DNA-based archival storage system. In ASPLOS 2016: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 637–649,
2016.

[2] George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage in DNA.
Science, 337(6102):1628–1628, 2012.

[3] Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40, 2004.

[4] Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In ICALP 2006:
International Colloquium on Automata, Languages, and Programming, pages 132–143. Springer, 2006.

[5] Turlough Neary and Damien Woods. Small fast universal Turing machines. Theoretical Computer
Science, 362(1-3):171–195, 2006.

[6] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin
Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher N
Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart, Gagan Gupta,
Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and Karin Strauss. Random
access in large-scale DNA data storage. Nature Biotechnology, 36(3):242, 2018.

[7] Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation with DNA
polymers. In International Workshop on DNA-Based Computers, pages 123–140. Springer, 2010.

[8] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid logic
circuits. Science, 314(5805):1585–1588, 2006.

[9] SIMD||DNA simulator.
source code: https://github.com/UC-Davis-molecular-computing/simd-dna, 2021.

[10] S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali Athreya, Behnam Enghiad, Alvaro Gonzalo
Hernandez, Christopher J Fields, Jean-Pierre Leburton, David Soloveichik, Huimin Zhao, and Olgica
Milenkovic. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature
Communications, 11(1):1–10, 2020.

[11] Boya Wang, Cameron Chalk, and David Soloveichik. SIMD||DNA: Single instruction, multiple data
computation with DNA strand displacement cascades. In DNA 2019: International Conference on
DNA Computing and Molecular Programming, pages 219–235, 2019.

20

https://github.com/UC-Davis-molecular-computing/simd-dna

A Appendix

The following figures show the full instruction set on a register whose current value is 01xy, where the tape

head is on 1 and the current state is a. Because the (a, 1) transition is represented in this configuration,

the instruction sublists that represent the other transitions (figs. 16 and 18 to 20) are fully inert. Inert

instructions are marked with a red cross underneath the instruction number.

21

1

0 (a,1) ⎵

2

0 (a,1) ⎵

3

0 (a,1) ⎵

4

0 (a,1) ⎵

5

0 (a,1) ⎵

6

0 (a,1) ⎵

7

0 (a,1) ⎵

8

0 (a,1) ⎵

9

0 (a,1) ⎵

10

0 (a,1) ⎵

11

0 (a,1) ⎵

12

0 (a,1) ⎵

13

0 (a,1) ⎵

14

0 (a,1) ⎵

15

0 (a,1) ⎵

16

0 (a,1) ⎵

17

0 (a,1) ⎵

18

0 (a,1) ⎵

19

0 (a,1) ⎵

Figure 16: The initial pre-plug instruction, as well as the (a, 0) instruction sublist for a register whose next
transition is (a, 1).

22

20

0 (a,1) ⎵

21

0 (a,1) ⎵

22

0 ⎵

23

0 ⎵

24

0 ⎵

25

0

26

0

27

0

28

0

29

0

30

0 1 (a,⎵)

31

0 1 (a,⎵)

32

0 1 (a,⎵)

33

0 1 (a,⎵)

34

0 1 (a,⎵)

35

0 1 (a,⎵)

36

0 1 (a,⎵)

37

0 1 (a,⎵)

Figure 17: The (a, 1) instruction sublist for a register whose next transition is (a, 1).

23

38

0 1 (a,⎵)

39

0 1 (a,⎵)

40

0 1 (a,⎵)

41

0 1 (a,⎵)

42

0 1 (a,⎵)

43

0 1 (a,⎵)

44

0 1 (a,⎵)

45

0 1 (a,⎵)

46

0 1 (a,⎵)

47

0 1 (a,⎵)

48

0 1 (a,⎵)

49

0 1 (a,⎵)

50

0 1 (a,⎵)

51

0 1 (a,⎵)

52

0 1 (a,⎵)

Figure 18: The (a, xy) instruction sublist after the register was processed by the (a, 1) instruction sublist.
Even though the register is now in the (a, xy) configuration, the post-plug strand introduced in instruction
25 prevents the register from being updated a second time using the (a, xy) instructions.

24

53

0 1 (a,⎵)

54

0 1 (a,⎵)

55

0 1 (a,⎵)

56

0 1 (a,⎵)

57

0 1 (a,⎵)

58

0 1 (a,⎵)

59

0 1 (a,⎵)

60

0 1 (a,⎵)

61

0 1 (a,⎵)

62

0 1 (a,⎵)

63

0 1 (a,⎵)

64

0 1 (a,⎵)

65

0 1 (a,⎵)

66

0 1 (a,⎵)

67

0 1 (a,⎵)

68

0 1 (a,⎵)

69

0 1 (a,⎵)

70

0 1 (a,⎵)

Figure 19: The (b, 0) instruction sublist after the register was processed by the (a, 1) instruction sublist.

25

71

0 1 (a,⎵)

72

0 1 (a,⎵)

73

0 1 (a,⎵)

74

0 1 (a,⎵)

75

0 1 (a,⎵)

76

0 1 (a,⎵)

77

0 1 (a,⎵)

78

0 1 (a,⎵)

79

0 1 (a,⎵)

80

0 1 (a,⎵)

81

0 1 (a,⎵)

82

0 1 (a,⎵)

83

0 1 (a,⎵)

84

0 1 (a,⎵)

85

0 1 (a,⎵)

86

0 1 (a,⎵)

F

0 1 (a,⎵)

Figure 20: The (b, 1) instruction sublist after the register was processed by the (a, 1) instruction sublist, as
well as the final deprotecting instruction that removes the post-plug strands.

26

	Introduction
	Model
	Simulation of Turing machine in SIMD||DNA
	High-level overview of construction
	Representation of Turing machine tape cell as a register cell
	Detailed description of SIMD||DNA instructions simulating a Turing machine
	Complexity of construction

	Conclusion
	Appendix

